
To appear in EPTCS.
c© François Laroussinie, Nicolas Markey

This work is licensed under the
Creative Commons Attribution License.

Satisfiability of ATL with strategy contexts

François Laroussinie
LIAFA – Univ. Paris Diderot & CNRS

francoisl@liafa.univ-paris-diderot.fr

Nicolas Markey
LSV – ENS Cachan & CNRS

markey@lsv.ens-cachan.fr

Various extensions of the temporal logic ATL have recently been introduced to express rich properties
of multi-agent systems. Among these, ATLsc extends ATL with strategy contexts, while Strategy Logic
has first-order quantification over strategies. There is a price to pay for the rich expressiveness of these
logics: model-checking is non-elementary, and satisfiability is undecidable.

We prove in this paper that satisfiability is decidable in several special cases. The most important
one is when restricting to turn-based games. We prove that decidability also holds for concurrent games
if the number of moves available to the agents is bounded. Finally, we prove that restricting strategy
quantification to memoryless strategies brings back undecidability.

1 Introduction

Temporal logics are a convenient tool to reason about computerised systems, in particular in the setting of
verification [Pnu77, CE82, QS82]. When systems are interactive, the models usually involve several agents
(or players), and relevant properties to be checked often question the existence of strategies for these agents
to achieve their goals. To handle these, alternating-time temporal logic was introduced, and its algorithmic
properties were studied: model checking is PTIME-complete [AHK02], while satisfiability was settled
EXPTIME-complete [WLWW06].

While model checking is tractable, ATL still suffers from a lack of expressiveness. Over the last
five years, several extensions or variants of ATL have been developed, among which ATL with strategy
contexts [BDLM09] and Strategy Logic [CHP07, MMV10]. The model-checking problem for these logics
has been proved non-elementary [DLM10, DLM12], while satisfiability is undecidable, both when looking
for finite-state or infinite-state models [MMV10, TW12]. Several fragments of these logics have been
defined and studied, with the aim of preserving a rich expressiveness and at the same time lowering the
complexity of the decision problems [WHY11, MMPV12, HSW13].

In this paper we prove that satisfiability is decidable (though with non-elementary complexity) for the
full logic ATLsc (and SL) in two important cases: first, when satisfiability is restricted to turn-based games
(this solves a problem left open in [MMV10] for SL), and second, when the number of moves available to
the players is bounded. We also consider a third variation, where quantification is restricted to memoryless
strategies; in that setting, the satisfiability problem is proven undecidable, even for turn-based games.

Our results heavily rely on a tight connection between ATLsc and QCTL [DLM12], the extension
of CTL with quantification over atomic propositions. For instance, the QCTL formula ∃p. ϕ states that
it is possible to label the unwinding of the model under consideration with proposition p in such a way
that ϕ holds. This labeling with additional proposition allows us to mark the strategies of the agents and
the model-checking problem for ATLsc can then be reduced to the model-checking problem for QCTL.
However, in this transformation, the resulting QCTL formula depends both on the ATLsc formula to be
checked and on the game where the formula is being checked. This way, the procedure does not extend
to satisfiability, which is actually undecidable. We prove here that this difficulty can be overcome when

This work was partly supported by ERC Starting grant EQualIS (308087) and by European project Cassting (FP7-ICT-601148).

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Satisfiability of ATL with strategy contexts

considering turn-based games, or when the number of available moves is fixed. The satisfiability prob-
lem for ATLsc is then reduced to the satisfiability problem for QCTL, which we proved decidable (with
non-elementary complexity) in [LM13]. When restricting to memoryless strategies, a similar reduction
to QCTL exists, but in a setting where the quantified atomic propositions directly label the model, instead
of its unwinding. The satisfiability problem for QCTL under that semantics is undecidable [Fre01, LM13],
and we adapt the proof of that result to show that satisfiability of ATL0

sc (in which quantification is restricted
to memoryless strategies) is also undecidable.

2 Definitions

2.1 ATL with strategy contexts

In this section, we define the framework of concurrent game structures, and define the logic ATL with
strategy contexts. We fix once and for all a set AP of atomic propositions.

Definition 1. A Kripke structure S is a 3-tuple 〈Q,R, `〉 where Q is a countable set of states, R⊆ Q2 is a
total relation (i.e., for all q ∈ Q, there is q′ ∈ Q s.t. (q,q′) ∈ R) and ` : Q→ 2AP is a labelling function.

A path in a Kripke structure S is a mapping ρ : N→Q such that (ρ(i),ρ(i+1))∈ R for all i. We write
first(ρ) = ρ(0). Given a path ρ and an integer i, the i-th suffix of ρ , is the path ρ≥i : n 7→ ρ(i+n); the i-th
prefix of ρ , denoted ρ≤i, is the finite sequence made of the i+ 1 first state of ρ . We write Execf(q) for
the set of finite prefixes of paths (or histories) with first state q. We write last(π) for the last state of a
history π . Given a history ρ≤i and a path π such that last(ρ≤i) = first(π), the concatenation λ = ρ≤i ·π is
defined by λ (j) = ρ(j) when j ≤ i and λ (j) = π(j− i) when j > i.

Definition 2 ([AHK02]). A Concurrent Game Structure (CGS) C is a 7-tuple 〈Q,R, `,Agt,M ,Mov,Edge〉
where: 〈Q,R, `〉 is a (possibly infinite-state) Kripke structure, Agt = {a1, . . . ,ap} is a finite set of agents,
M is a non-empty set of moves, Mov : Q×Agt→P(M)r {∅} defines the set of available moves of
each agent in each state, and Edge : Q×M Agt→ R is a transition table associating, with each state q and
each set of moves of the agents, the resulting transition departing from q.

The size of a CGS C is |Q|+ |Edge|. For a state q ∈ Q, we write Next(q) for the set of all states
reachable by the possible moves from q, and Next(q,a j,m j), with m j ∈Mov(q,a j), for the restriction
of Next(q) to possible transitions from q when player a j plays move m j. We extend Mov and Next to
coalitions (i.e., sets of agents) in the natural way. We say that a CGS is turn-based when each state q is
controlled by a given agent, called the owner of q (and denoted Own(q)). In other terms, for every q∈Q, for
any two move vectors m and m′ in which Own(q) plays the same move, it holds Edge(q,m) = Edge(q,m′)
(which can be achieved by letting the sets Mov(q,a) be singletons for every a 6= Own(q)).

A strategy for some player ai ∈Agt in a CGS C is a function fi that maps any history to a possible move
for ai, i.e., satisfying fi(π) ∈Mov(last(π),ai). A strategy fi is memoryless if fi(π) = fi(π

′) whenever
last(π) = last(π ′). A strategy for a coalition A is a mapping assigning a strategy to each agent in A. The set
of strategies for A is denoted Strat(A). The domain dom(FA) of FA ∈ Strat(A) is A. Given a coalition B,
the strategy (FA)|B (resp. (FA)rB) denotes the restriction of FA to the coalition A∩B (resp. ArB). Given
two strategies F ∈ Strat(A) and F ′ ∈ Strat(B), we define F ◦F ′ ∈ Strat(A

⋃
B) as (F ◦F ′)|a j(ρ) = F|a j(ρ)

(resp. F ′|a j
(ρ)) if a j ∈ A (resp. a j ∈ BrA).

Let ρ be a history. A strategy FA = (f j)a j∈A for some coalition A induces a set of paths from ρ , called
the outcomes of FA after ρ , and denoted Out(ρ,FA): an infinite path π = ρ ·q1q2 . . . is in Out(ρ,FA) if, and
only if, writing q0 = last(ρ), for all i≥ 0 there is a set of moves (mi

k)ak∈Agt such that mi
k ∈Mov(qi,ak) for

all ak ∈ Agt, mi
k = fk(π|ρ|+i) if ak ∈ A, and qi+1 is the unique element of Next(qi,Agt,(mi

k)ak∈Agt). Also,

François Laroussinie, Nicolas Markey 3

given a history ρ and a strategy FA = (f j)a j∈A, the strategy Fρ

A is the sequence of strategies (f ρ

j)a j∈A such
that f ρ

j (π) = f j(ρ ·π), assuming last(ρ) = first(π).
We now introduce the extension of ATL with strategy contexts [BDLM09, DLM10]:

Definition 3. Given a set of atomic propositions AP and a set of agents Agt, the syntax of ATL∗sc is defined
as follows (where p ranges over AP and A over 2Agt):

ATL∗sc 3 ϕstate,ψstate ::=p | ¬ϕstate | ϕstate∨ψstate | ·〉A〈·ϕstate | 〈·A·〉ϕpath

ϕpath,ψpath ::=ϕstate | ¬ϕpath | ϕpath∨ψpath | Xϕpath | ϕpath Uψpath.

That a (state or path) formula ϕ is satisfied at a position i of a path ρ of a CGS C under a strategy
context F ∈ Strat(B) (for some coalition B), denoted C ,ρ, i |=F ϕ , is defined as follows (omitting atomic
propositions and Boolean operators):

C ,ρ, i |=F ·〉A〈·ϕstate iff C ,ρ, i |=FrA ϕstate

C ,ρ, i |=F 〈·A·〉ϕpath iff ∃FA ∈ Strat(A). ∀ρ ′ ∈ Out(ρ≤i,FA ◦F). C ,ρ ′, i |=FA ◦F ϕpath

C ,ρ, i |=F Xϕpath iff C ,ρ, i+1 |=F ϕpath

C ,ρ, i |=F ϕpath Uψpath iff ∃ j ≥ 0. C ,ρ, i+ j |=F ψpath and ∀0≤ k < j. C ,ρ, i+ k |=F ϕpath

Notice how the (existential) strategy quantifier contains an implicit universal quantification over the set of
outcomes of the selected strategies. Also notice that state formulas do not really depend on the selected
path: indeed one can easily show that

C ,ρ, i |=F ϕstate iff C ,ρ ′, j |=F ′ ϕstate

where we assume ρ(i) = ρ ′(j) and where F and F ′ verifies: F(ρ≤i ·ρ ′′) = F ′(ρ ′≤ j ·ρ ′′) for any finite ρ ′′

starting in ρ(i). In particular this is the case when the ρ≤i = ρ ′≤ j and F = F ′.
In the sequel we equivalently write C ,π(0) |=F ϕstate in place of C ,π,0 |=F ϕstate when dealing with

state formulas.
For convenience, in the following we allow the construct 〈·A·〉ϕstate, defining it as a shorthand for

〈·A·〉⊥Uϕstate. We also use the classical modalities F and G , which can be defined using U . Also,
[·A·]ϕpath = ¬ 〈·A·〉 ¬ϕpath expresses that any A-strategy has at least one outcome where ϕpath holds.

The fragment ATLsc of ATL∗sc is defined as usual, by restricting the set of path formulas to

ϕpath,ψpath ::= ¬ϕpath | Xϕstate | ϕstate Uψstate.

It was proved in [BDLM09] that ATLsc is actually as expressive as ATL∗sc. Moreover, for any given set of
players, any ATLsc formula can be written without using negation in path formulas, replacing for instance
〈·A·〉Gϕ with 〈·A·〉 ¬ 〈·Agt\ (A∪B)·〉F ¬ϕ , where B is the domain of the context in which the formula is
being evaluated. While this is not a generic equivalence (it depends on the context and on the set of agents),
it provides a way of removing negation from any given ATLsc formula.

2.2 Quantified CTL

In this section, we introduce QCTL, and define its tree semantics.

Definition 4. Let Σ be a finite alphabet, and S be a (possibly infinite) set of directions. A Σ-labelled
S-tree is a pair T = 〈T, l〉, where T ⊆ S∗ is a non-empty set of finite words on S s.t. for any non-empty
word n = m · s in T with m ∈ S∗ and s ∈ S, the word m is also in T ; and l : T → Σ is a labelling function.

4 Satisfiability of ATL with strategy contexts

The unwinding (or execution tree) of a Kripke structure S = 〈Q,R, `〉 from a state q ∈ Q is the 2AP-
labelled Q-tree TS (q) = 〈Execf(q), `T 〉 with `T (q0 · · ·qi) = `(qi). Note that TS (q) = 〈Execf(q), `T 〉
can be seen as an (infinite-state) Kripke structure where the set of states is Execf(q), labelled according
to `T , and with transitions (m,m · s) for all m ∈ Execf(q) and s ∈ Q s.t. m · s ∈ Execf(q).

Definition 5. For P⊆ AP, two 2AP-labelled trees T = 〈T, `〉 and T ′ = 〈T ′, `′〉 are P-equivalent (denoted
by T ≡P T ′) whenever T = T ′, and `(n)∩P = `′(n)∩P for any n ∈ T .

In other terms, T ≡P T ′ if T ′ can be obtained from T by modifying the labelling function of T for
propositions not in P. We now define the syntax and semantics of QCTL∗:

Definition 6. The syntax of QCTL∗ is defined by the following grammar:

QCTL∗ 3 ϕstate,ψstate ::=p | ¬ϕstate | ϕstate∨ψstate | Eϕpath | Aϕpath | ∃p. ϕstate

ϕpath,ψpath ::=ϕstate | ¬ϕpath | ϕpath∨ψpath | Xϕpath | ϕpath Uψpath.

QCTL∗ is interpreted here over Kripke structures through their unwindings1: given a Kripke struc-
ture S , a state q and a formula ϕ ∈QCTL∗, that ϕ holds at q in S , denoted with S ,q |=t ϕ , is defined by
the truth value of TS (q) |= ϕ that uses the standard inductive semantics of CTL∗ over trees extended with
the following case:

T |= ∃p.ϕstate iff ∃T ′ ≡AP\{p} T s.t. T ′ |= ϕstate.

Universal quantification over atomic propositions, denoted with the construct ∀p. ϕ , is obtained by dualising
this definition. We refer to [LM13] for a detailed study of QCTL∗ and QCTL. Here we just recall the
following important properties of these logics. First note that QCTL is actually as expressive as QCTL∗

(with an effective translation) [Fre01, DLM12]. Secondly model checking and satisfiability are decidable
but non elementary. More precisely given a QCTL formula ϕ and a (finite) set of degrees D ⊆N, one can
build a tree automaton Aϕ,D recognizing the D-trees satisfying ϕ . This provides a decision procedure for
model checking as the Kripke structure S fixes the set D , and it remains to check whether the unwinding
of S is accepted by Aϕ,D . For satisfiability the decision procedure is obtained by building a formula ϕ2
from ϕ such that ϕ2 is satisfied by some {1,2}-tree iff ϕ is satisfied by some finitely-branching tree. Finally
it remains to notice that a QCTL formula is satisfiable iff it is satisfiable in a finitely-branching tree (as
QCTL is as expressive as MSO) to get the decision procedure for QCTL satisfiability. By consequence
we also have that a QCTL formula is satisfiable iff it is satisfied by a regular tree (corresponding to the
unwinding of some finite Kripke structure).

3 From ATLsc to QCTL

The main results of this paper concern the satisfiability problem for ATLsc: given a formula in ATLsc, does
there exists a CGS C and a state q such that C ,q |=∅ ϕ (with empty initial context)? Before we present
these results in the next sections, we briefly explain how we reduce the model-checking problem for ATLsc

(which consists in deciding whether a given state q of a given CGS C satisfies a given ATLsc formula ϕ)
to the model-checking problem for QCTL. This reduction will serve as a basis for proving our main result.

3.1 Model checking

Let C = 〈Q,R, `,Agt,M ,Mov,Edge〉 be a finite-state CGS, with a finite set of moves M = {m1, . . . ,mk}.
We consider the following sets of fresh atomic propositions: PQ = {pq | q ∈ Q}, P j

M = {m j
1, . . . ,m

j
k}

1Note that several semantics are possible for QCTL∗ and the one we use here is usually called the tree semantics.

François Laroussinie, Nicolas Markey 5

for every a j ∈ Agt, and write PM =
⋃

a j∈Agt P j
M . Let SC be the Kripke structure 〈Q,R, `+〉 where

for any state q, we have: `+(q) = `(q)∪ {pq}. A strategy for an agent a j can be seen as a function
f j : Execf(q)→ P j

M labeling the execution tree of SC with propositions in P j
M .

Let F ∈ Strat(C) be a strategy context and Φ ∈ ATLsc. We reduce the question whether C ,q |=F Φ to
a model-checking instance for QCTL∗ over SC . For this, we define a QCTL∗ formula Φ

C inductively: for
non-temporal formulas,

·〉A〈·ϕC
= ϕ

CrA
ϕ∧ψ

C = ϕ
C∧ψ

C ¬ψ
C = ¬ϕ

C pC = p

For a formula of the form 〈·A·〉Xϕ with A = {a j1 , . . . ,a jl}, we let:

〈·A·〉Xϕ
C
= ∃m j1

1 ...m j1
k ...m jl

1 ...m
jl
k .
∧

a j∈A

AG
(

Φstrat(a j)
)
∧ A

(
Φ

[C∪A]
out ⇒Xϕ

C∪A
)

where:

Φstrat(a j) =
∨
q∈Q

(
pq∧

∨
mi∈Mov(q,a j)

(m j
i ∧
∧
l 6=i

¬m j
l)
)

Φ
[A]
out = G

[∧
q∈Q

m∈Mov(q,A)

(
(pq∧m)⇒X

Ä ∨
q′∈Next(q,A,m)

pq′
ä)]

where m is a move (m j)a j∈A ∈Mov(q,A) for A and Pm is the propositional formula
∧

a j∈A m j characteriz-
ing m. Formula Φstrat(a j) ensures that the labelling of propositions m j

i describes a feasible strategy for a j.
Formula Φ

[A]
out characterizes the outcomes of the strategy for A that is described by the atomic propositions

in the model. Note that Φ
[A]
out is based on the transition table Edge of C (via Next(q,A,m)). For a formula

of the form 〈·A·〉(ϕ Uψ) with A = {a j1 , . . . ,a jl}, we let:

〈·A·〉(ϕ Uψ)
C
= ∃m j1

1 ...m j1
k ...m jl

1 ...m
jl
k .
∧

a j∈A

AG
(

Φstrat(a j)
)
∧ A

(
Φ

[C∪A]
out ⇒(ϕC∪A Uψ

C∪A)
)

Then:

Theorem 7. [DLM12] Let q be a state in a CGS C . Let Φ be an ATLsc formula and F be a strategy
context for some coalition C. Let T ′ be the execution tree TSC

(q) with a labelling function `′ s.t. for every
π ∈ Execf(q) of length i and any a j ∈C, `′(π)∩P j

M = m j
i if, and only if, F(π)|a j = mi. Then C ,q |=F Φ

if, and only if, T ′,q |=t Φ
C.

Combined with the (non-elementary) decision procedure for QCTL∗ model checking, we get a model-
checking algorithm for model checking ATLsc. Notice that our reduction above is into QCTL∗, but as
explained before every QCTL∗ formula can be translated into QCTL. Finally note that model checking is
non elementary (k-EXPTIME-hard for any k) both for QCTL and ATLsc [DLM12].

3.2 Satisfiability

We now turn to satisfiability. The reduction to QCTL we just developed for model checking does not
extend to satisfiability, because the QCTL formula we built depends both on the formula and on the
structure. Actually, satisfiability is undecidable for ATLsc, both for infinite CGS and when restricting

6 Satisfiability of ATL with strategy contexts

to finite CGS [TW12]. It is worth noticing that both problems are relevant, as ATLsc does not have the
finite-model property (nor does it have the finite-branching property). This can be derived from the fact
that the modal logic S5n does not have the finite-model property [Kur02], and from the elegant reduction of
satisfiability of S5n to satisfiability of ATLsc given in [TW12] 2.

In what follows, we prove decidability of satisfiability in two different settings: first in the setting
of turn-based games, and then in the setting of a bounded number of actions allowed to the players.
A consequence of our decidability proofs is that in both cases (based on automata constructions), ATLsc

does have the finite-model property (thanks to Rabin’s regularity theorem). We also consider the setting
where quantification is restricted to memoryless strategies, but prove that then satisfiability is undecidable
(even on turn-based games and with a fixed number of actions).

Before we proceed to the algorithms for satisfiability, we prove a generic result 3 about the number of
agents needed in a CGS to satisfy a formula involving a given set of agents. This result has already been
proved for ATL (e.g. in [WLWW06]). Given a formula Φ ∈ ATLsc, we use Agt(Φ) to denote the set of
agents involved in the strategy quantifiers in Φ.
Proposition 8. An ATLsc formula Φ is satisfiable iff, it is satisfiable in a CGS with |Agt(Φ)|+1 agents.

Proof. Assume Φ is satisfied in a CGS C = 〈Q,R, `,Agt,M ,Mov,Edge〉. If |Agt| ≤ Agt(Φ), one can
easily add extra players in C in such a way that they play no role in the behavior of the game structure.
Otherwise, if |Agt| > Agt(Φ)+ 1, we can replace the agents in Agt that do not belong to Agt(Φ) by a
unique agent mimicking the action of the removed players. For example, a coalition A = {a1, . . . ,ak} can
be replaced by a player a whose moves are k-tuples in M k.

4 Turn-based case

Let Φ be an ATLsc formula, and assume Agt(Φ) is the set {a1, . . . ,an}. Following Prop. 8, let Agt be
the set of agents Agt(Φ)∪{a0}, where a0 is an additional player. In the following, we use an atomic
propositions (turn j)a j∈Agt to specify the owner of the states. A strategy for an agent a j can be encoded by
an atomic proposition mov j: indeed it is sufficient to mark one successor of every a j-state (notice that this
is a crucial difference with CGS). The outcomes of such a strategy are the runs in which every a j-state is
followed by a state labelled with mov j; this is the main idea of the reduction below.

Given a coalition C (which we intend to represent the agents that have a strategy in the current context),
we define a QCTL∗ formula “ΦC inductively:
• for non-temporal formulas we let:

·̂〉A〈·ϕ
C
= ϕ̂

CrA
ϕ̂∧ψ

C
= ϕ̂

C∧“ψC ‘¬ψ
C
= ¬ ϕ̂

C P̂C = P

• for path formulas, we define:

X̂ϕ
C
= X ϕ̂

C
ϕ̂ Uψ

C
= ϕ̂

C U“ψC

• for formulas of the form 〈·A·〉ϕ with A = {a j1 , . . . ,a jl}, we let:

〈̂·A·〉ϕ
C
= ∃mov j1 ...mov jl .ñ

AG
∧

a j∈A

(turn j⇒ EX1 mov j)∧ A
[
G
(∧

a j∈A∪C

(turn j⇒Xmov j)
)
⇒ ϕ̂

C∪A
]ô

2Indeed the finite-branching property for ATLsc would imply the finite-model property for S5n.
3Note that it still holds true when restricting to turn-based games.

François Laroussinie, Nicolas Markey 7

where EX1 α is a shorthand for EXα∧∀p.
(

EX(α∧ p)⇒ AX(α⇒ p)
)

, specifying the existence
of a unique successor satisfying α .

Now we have the following proposition, whose proof is done by structural induction over the formula:

Proposition 9. Let Φ ∈ ATLsc, and Agt = Agt(Φ)∪{a0} as above. Let C be a turn-based CGS, q be a
state of C , and F be a strategy context. Let TC (q) = 〈T, `〉 be the execution tree of the underlying Kripke
structure of C (including a labelling with propositions (turn j)a j∈Agt). Let `F be the labelling extending `
such that for every node ρ of T belonging to some a j ∈ dom(F) (i.e., such that last(ρ) ∈ Own(a j)), its
successor ρ ·q according to F (i.e., such that Fj(ρ) = q) is labelled with mov j. Then we have:

C ,q |=F Φ iff 〈T, `F〉 |= “Φdom(F)

Proof. The proof is by structural induction over Φ. The cases of atomic propositions and Boolean operators
are straightforward.

• Φ= 〈·A·〉(ϕ Uψ): assume C ,q |=F Φ. Then there exists FA ∈ Strat(A) s.t. for any ρ ∈Out(q,FA ◦F),
there exists i≥ 0 s.t. C ,ρ(i) |=(FA ◦F)ρ≤i ψ and ∀0≤ j < i, we have C ,ρ(j) |=(FA ◦F)ρ≤ j ϕ . Let `FA ◦F

be the extension of ` labelling T with propositions (mov j)a j∈Agt according to the strategy con-
text FA ◦F . By induction hypothesis, the following two statements hold true:

– 〈T, `FA ◦F〉ρ≤i |= “ψdom(F)∪A, and

– 〈T, `FA ◦F〉ρ≤ j |= ϕ̂dom(F)∪A for any 0≤ j < i.

(where 〈U, l〉π is the subtree of 〈U, l〉 rooted at node π ∈ U). As this is true for every ρ in the
outcomes induced by FA ◦F , it holds for every path in the execution tree satisfying the constraint
over the labelling of (turn j)a j∈Agt and (mov j)a j∈Agt. It follows that

〈T, `FA ◦F〉 |= A
[
G
(∧

a j∈A∪C

(turn j⇒Xmov j)
)
⇒ ϕ̂

dom(F)∪A
]

Moreover we also know that AG
∧

a j∈A(turn j⇒ EX 1mov j) holds true in 〈T, `FA ◦F〉 since the la-
belling `FA ◦F includes the strategy FA. Hence 〈T, `F〉 |= “Φdom(F), with the labelling for (mov j)a j∈A

being obtained from FA.

Now assume 〈T, `F〉 |= “Φdom(F). Write A = {a j1 , . . . ,a jl}. Then we have:

〈T, `F〉 |= ∃mov j1 ...mov jl .
[

AG
∧

a j∈A

(turn j⇒ EX 1mov j)∧

A
[
G
(∧

a j∈A∪C

(turn j⇒Xmov j)
)
⇒(ϕ̂dom(F)∪A U“ψdom(F)∪A)

]]

The first part of the formula, namely AG
∧

a j∈A(turn j⇒ EX 1mov j), ensures that the labeling
with (mov j)a j∈A defines a strategy for the coalition A. The second part states that every run belonging
to the outcomes of FA ◦F (remember that `F already contains the strategy context F) satisfies
(ϕ̂dom(F)∪A U“ψdom(F)∪A). Finally it remains to use the induction hypothesis over states along the
execution to deduce C ,q |=F 〈·A·〉(ϕ Uψ).

8 Satisfiability of ATL with strategy contexts

• Φ = ·〉A〈·ψ : assume C ,q |=F Φ. Then C ,q |=Fdom(F)\A ψ . Applying the induction hypothesis, we get
〈T, `Fdom(F)\A〉 |= “ψdom(F)\A. And it follows that 〈T, `F〉 |= “ψdom(F)\A because the labeling of strategies
for coalition A in F is not used for evaluating “ψdom(F)\A. Conversely, assume 〈T, `F〉 |= “ψdom(F)\A.
Then we have 〈T, `Fdom(F)\A〉 |= “ψdom(F)\A (again the labeling of A strategies in F is not used for
evaluating the formula). Applying induction hypothesis, we get C ,q |=Fdom(F)\A ψ and then C ,q |=F Φ.

• Φ = 〈·A·〉Xϕ and Φ = ·〉A〈·Xϕ: the proofs are similar to the previous ones.

Finally, let Φtb be the following formula, used to make the game turn-based:

Φtb = AG
[∨

a j∈Agt

(
turn j∧

∧
al 6=a j

¬ turnl

)]

and let ‹Φ be the formula Φtb∧“Φ∅. Then we have:

Theorem 10. Let Φ be an ATLsc formula and ‹Φ be the QCTL∗ formula defined as above. Φ is satisfiable
in a turn-based CGS if, and only if, ‹Φ is satisfiable (in the tree semantics).

Proof. If Φ is satisfiable in a turn-based structure, then there exists such a structure C with |Agt(Φ)|+1
agents. Assume C ,q |= Φ. Now consider the execution tree TC (q) with the additional labelling to mark
states with the correct propositions (turn j)a j∈Agt, indicating the owner of each state. From Proposition 9,
we have TC (q) |= “Φ∅. Thus clearly TC (q) |= ‹Φ.

Conversely assume T |= ‹Φ. As explained in Section 2, we can assume that T is regular. Thus
T |= Φtb∧“Φ∅: the first part of the formula ensures that every state of the underlying Kripke structure can
be assigned to a unique agent, hence defining a turn-based CGS. The second part ensures that Φ holds for
the corresponding game, thanks to Proposition 9.

The above translation from ATLsc into QCTL∗ transforms a formula with k strategy quantifiers into a
formula with at most k+1 nested blocks of quantifiers; satisfiability of a QCTL∗ formula with k+1 blocks
of quantifiers is in (k+3)-EXPTIME [LM13]. Hence the algorithm has non-elementary complexity. We
now prove that this high complexity cannot be avoided:

Theorem 11. Satisfiability of ATLsc formulas in turn-based CGS is non-elementary (i.e., it is k-EXPTIME-
hard, for all k).

Proof (sketch). Model checking ATLsc over turn-based games is non-elementary [DLM12], and it can
easily be encoded as a satisfiability problem. Let C = 〈Q,R, `,Agt,M ,Mov,Edge〉 be a turn-based CGS,
and Φ be an ATLsc formula. Let Pq be a fresh atomic proposition for every q ∈Q. Now we define an ATLsc

formula ΨC to describe the game C as follows:

ΨC = AG
(∨

q∈Q

(Pq∧
∧

q′ 6=q

¬Pq′ ∧
∧

P∈`(q)
P∧

∧
P′ 6∈`(q)

¬P′)
)
∧

AG
[∨

q∈Q

(
Pq⇒(

∧
q→q′
〈〈Own(q)〉〉XPq′ ∧

∧
q′. q6→q′

¬ 〈〈Own(q)〉〉XPq′)
)]

where q→ q′ denotes the existence of a transition from q to q′ in C . Any turn-based CGS satisfying ΨC

corresponds to some unfolding of C , and then has the same execution tree. Finally we clearly have that
C ,q |= Φ if, and only if, ΨC ∧Pq∧Φ is satisfiable in a turn-based structure.

François Laroussinie, Nicolas Markey 9

5 Bounded action alphabet

We consider here another setting where the reduction to QCTL∗ can be used to solve the satisfiability of
ATLsc: we assume that each player has a bounded number of available actions. Formally, it corresponds to
the following satisfiability problem:

Problem: (Agt,M)-satisfiability
Input: a finite set of moves M , a set of agents Agt, and an ATLsc formula Φ involving

the agents in Agt;
Question: does there exist a CGS C = 〈Q,R, `,Agt,M ,Mov,Edge〉 and a state q ∈Q such

that C ,q |= Φ.

Assume M = {1, . . . ,α} and Agt = {a1, . . . ,an}. With this restriction, we know that we are looking
for a CGS whose execution tree has nodes with degrees in the set D = {1,2, . . . ,αn}. We consider such
D-trees where the transition table is encoded as follows: for every agent ai and move m in M , we use the
atomic proposition movm

i to specify that agent ai has played move m in the previous node. Any execution
tree of such a CGS satisfies formula

ΦEdge = AG
[(∧

m̄∈M n

EX 1movm̄
)
∧ AX

(∨
m̄∈M n

movm̄
)]

where movm̄ stands for
∧

a j∈Agt mov
m̄ j
j . Notice that the second part of the formula is needed because of the

way we handle the implicit universal quantification associated with the strategy quantifiers of ATLsc.
Given a coalition C, we define a QCTL∗ formula ÁΦC inductively as follows:

• for non-temporal formulas we letÌ·〉A〈·ϕC
= ÊϕCrA Ìϕ∧ψ

C
= ÊϕC∧ÁψC Î¬ψ

C
= ¬ ÊϕC ÊPC = P

• for temporal modalities, we defineÍXϕ
C
= X ÊϕC Ìϕ Uψ

C
= ÊϕC UÁψC.

• finally, for formulas of the form 〈·A·〉ϕ with A = {a j1 , . . . ,a jl}, we let:Ì〈·A·〉ϕC
= ∃choose1

j1 . . .chooseα
j1 . . .choose1

jl . . .chooseα
jl .[

AG
(∧

a j∈A

∨
m=1...α

(choosem
j ∧

∧
n6=m

¬choosen
j)
)
∧

A
[
G
(∧

a j∈A∪C

∧
m=1...α

(choosem
j ⇒Xmovm

j)
)
⇒ ÊϕC∪A

]]
.

The first part of this formula requires that the atomic propositions choosem
j describe a strategy, while

the second part expresses that every execution following the labelled strategies (including those
for C) satisfies the path formula ÊϕC∪A.

Now, letting ÙΦ be the formula ΦEdge∧ÁΦ∅, we have the following theorem (similar to Theorem 10):

Theorem 12. Let Φ be an ATLsc formula, Agt = {a1, . . . ,an} be a finite set of agents, M = {1, . . . ,α} be
a finite set of moves, and ÙΦ be the formula defined above. Then Φ is (Agt,M)-satisfiable in a CGS if, and
only if, the QCTL∗ formula ÙΦ is satisfiable (in the tree semantics).

10 Satisfiability of ATL with strategy contexts

We end up with a non-elementary algorithm (in (k+2)-EXPTIME for a formula involving k strategy
quantifiers) for solving satisfiability of an ATLsc formula for a bounded number of moves, both for a fixed
or for an unspecified set of agents (we can infer the set of agents using Prop. 8). Since ATLsc model
checking is non-elementary even for a fixed number of moves (the crucial point is the alternation of strategy
quantifiers), we deduce:

Corollary 13. (Agt,M)-satisfiability for ATLsc formulas is non-elementary (i.e., k-EXPTIME-hard, for
all k).

6 Memoryless strategies

Memoryless strategies are strategies that only depend on the present state (as opposed to general strategies,
whose values can depend on the whole history). Restricting strategy quantifiers to memoryless strategies
in the logic makes model checking much easier: in a finite game, there are only finitely many memoryless
strategies to test, and applying a memoryless strategy just amounts to removing some transitions in the
graph. Still, quantification over memoryless strategies is not possible in plain ATLsc, and this additional
expressive power turns out to make satifiability undecidable, even when restricting to turn-based games.
One should notice that the undecidability proof of [TW12] for satisfiability in concurrent games uses
one-step games (i.e., they only involve one X modality), and hence also holds for memoryless strategies.

Theorem 14. Satisfiability of ATL0
sc (with memoryless-strategy quantification) is undecidable, even when

restricting to turn-based games.

Proof. We prove the result for infinite-state turn-based games, by adapting the corresponding proof for QCTL
under the structure semantics [Fre01], which consists in encoding the problem of tiling a quadrant. The
result for finite-state turn-based games can be obtained using similar (but more involved) ideas, by encoding
the problem of tiling all finite grids (see [LM13] for the corresponding proof for QCTL).

We consider a finite set T of tiles, and two binary relations H and V indicating which tile(s) may appear
on the right and above (respectively) a given tile. Our proof consists in writing a formula that is satisfiable
only on a grid-shaped (turn-based) game structure representing a tiling of the quadrant (i.e., of N×N).
The reduction involves two players: Player 1 controls square states (which are labelled with), while
Player 2 controls circle states (labelled with). Each state of the grid is intended to represent one cell of
the quadrant to be tiled. For technical reasons, the reduction is not that simple, and our game structure will
have three kinds of states (see Fig. 1):

• the “main” states (controlled by Player 2), which form the grid. Each state in this main part has a
right neighbour and a top neighbour, which we assume we can identify: more precisely, we make
use of two atomic propositions v1 and v2 which alternate along the horizontal lines of the grid. The
right successor of a v1-state is labelled with v2, while its top successor is labelled with v1;

• the “tile” states, labelled with one item of T (seen as atomic propositions). Each tile state only has
outgoing transition(s) to a tile state labelled with the same tile;

• the “choice” states, which appear between “main” states and “tile” states: there is one choice state
associated with each main state, and each choice state has a transition to each tile state. Choice states
are controlled by Player 1.

Assuming that we have such a structure, a tiling of the grid corresponds to a memoryless strategy of Player 1
(who only plays in the “choice” states). Once such a memoryless strategy for Player 1 has been selected, that
it corresponds to a valid tiling can be expressed easily: for instance, in any cell of the grid (assumed to be

François Laroussinie, Nicolas Markey 11

m
m

m

m
m

m

m
m

m

m

c

m

c

m

c
m

c

m

c

m

c
m

c

m

c

m

c

Fig. 1: The turn-based game encoding the tiling problem

labelled with v1), there must exist a pair of tiles (t1, t2)∈H such that v1∧ 〈·2·〉0 XX t1∧ 〈·2·〉0 X(v2∧XX t2).
This would be written as follows:

〈·1·〉0 G

v1⇒

∨
(t1,t2)∈H

〈·2·〉0 XX t1∧ 〈·2·〉0 X(v2∧XX t2)

∧
v2⇒

∨
(t1,t2)∈H

〈·2·〉0 XX t1∧ 〈·2·〉0 X(v1∧XX t2)

 .

The same can be imposed for vertical constraints, and for imposing a fairness constraint on the base line
(under the same memoryless strategy for Player 1).

α

β

to c-state

Fig. 2: The cell gadget

v1 α

β

v1 α

β

v2 α

β

v2 α

β

v1 α

β

v1 α

β

Fig. 3: Several cells forming (part of) a grid

It remains to build a formula characterising an infinite grid. This requires a slight departure from the
above description of the grid: each main state will in fact be a gadget composed of four states, as depicted
on Fig. 2. The first state of each gadget will give the opportunity to Player 1 to color the state with either α

or β . This will be used to enforce “confluence” of several transitions to the same state (which we need to
express that the two successors of any cell of the grid share a common successor).

We now start writing our formula, which we present as a conjunction of several subformulas. We require
that the main states be labelled with m, the choice states be labelled with c, and the tile states be labelled
with the names of the tiles. We let AP′ = {m,c}∪T and AP = AP′∪{v1,v2,α,β , , }. The first part of
the formula reads a follows (where universal path quantification can be encoded, as long as the context is

12 Satisfiability of ATL with strategy contexts

empty, using 〈·∅·〉0):

AG

 ∨
p∈AP′

p∧
∧

p′∈AP′\{p}

¬ p′
∧ A(mWc)∧ AG

[
c⇒

(
∧
∧
t∈T

〈·1·〉0 X t∧ AX
(∨

t∈T

AG t

))]
∧

AG

(⇔¬)∧

Ñ
⇒

∧
p∈AP

(EX p⇔ 〈·1·〉0 X p)

é
∧

Ñ
⇒

∧
p∈AP

(EX p⇔ 〈·2·〉0 X p)

é (1)

This formula enforces that each state is labelled with exactly one proposition from AP′. It also enforces
that any path will wander through the main part until it possibly goes to a choice state (this is expressed
as A(mWc), where mWc means Gm∨mUc, and can be expressed a negated-until formula). Finally, the
second part of the formula enforces the witnessing structures to be turn-based.

Now we have to impose that the m-part has the shape of a grid: intuitively, each cell has three successors:
one “to the right” and one “to the top” in the main part of the grid, and one c-state which we will use
for associating a tile with this cell. For technical reasons, the situation is not that simple, and each cell
is actually represented by the gadget depicted on Fig. 2. Each state of the gadget is labelled with m.
We constrain the form of the cells as follows:

AG
[
m⇒((�∧¬α∧¬β)∨(∧¬(α∧β)))

]
∧ AG

[Ä
(m∧)⇒(v1⇔¬v2)

ä
∧
Ä
(v1∨v2)⇒(m∧)

ä]
∧

AG
[
(m∧)⇒

î
AX
Ä
m∧ ∧(α∨β)∧ AX(m∧ ∧¬α∧¬β)

ä
∧ 〈·1·〉0 Xα∧ 〈·1·〉0 Xβ

ó]
(2)

This says that there are four types of states in each cell, and specifies the possible transitions within such
cells. We now express constraints on the transitions leaving a cell:

AG
[
(EXc∨ EXv1∨ EXv2)⇒(m∧ ∧¬α∧¬β)

]
∧

AG
[
(m∧ ∧¬α∧¬β)⇒(EXc∧ EXv1∧ EXv2∧ AX(c∨v1∨v2)

]
(3)

It remains to enforce that the successor of the α and β states are the same. This is obtained by the
following formula:

AG
î
(m∧)⇒ [·2·]0

Ä
〈·∅·〉0 X 3(c∨v1)∨ 〈·∅·〉0 X 3(c∨v2)

äó
(4)

Indeed, assume that some cell has two different “final” states; then there would exist a strategy for Player 2
(consisting in playing differently in those two final states) that would violate Formula (4). Hence each cell
as a single final state.

We now impose that each cell in the main part has exactly two m-successors, and these two m-successors
have an m-successor in common. For the former property, Formula (3) already imposes that each cell has
at least two m-successors (one labelled with v1 and one with v2). We enforce that there cannot be more that
two:

AG
[
(m∧)⇒ [·1·]0 [(〈·2·〉0 X 3(v1∧Xα)∧ 〈·2·〉0 X 3(v2∧Xα))⇒ [·2·]0 〈·∅·〉0 X 3Xα]

]
. (5)

Notice that [·2·]0 〈·∅·〉0 ϕ means that ϕ has to hold along any outcome of any memoryless strategy of
Player 2. Assume that a cell has three (or more) successor cells. Then at least one is labelled with v1 and

François Laroussinie, Nicolas Markey 13

at least one is labelled with v2. There is a strategy for Player 1 to color one v1-successor cell and one
v2-successor cell with α , and a third successor cell with β , thus violating Formula (5) (as Player 2 has a
strategy to reach a successor cell colored with β)

For the latter property (the two successors have a common successor), we add the following formula
(as well as its v2-counterpart):

[·1·]0 〈·∅·〉0 G
[
(m∧ ∧v1)⇒

(
[〈·2·〉0 X 3(v1∧ [·2·]0 X 3Xα)]⇒[〈·2·〉0 X 3(¬v1∧X 3(¬v1∧Xα))]

)]
(6)

In this formula, the initial (universal) quantification over strategies of Player 1 fixes a color for each cell.
The formula claims that whatever this choice, if we are in some v1-cell and can move to another v1-cell
whose two successors have color α , then also we can move to a v2-cell having one α successor (which we
require to be a v2-cell). As this must hold for any coloring, both successors of the original v1-cell share a
common successor. Notice that this does not prevent the grid to be collapsed: this would just indicate that
there is a regular infinite tiling.

We conclude by requiring that the initial state be in a square state of a cell in the main part.

7 Results for Strategy Logic

In this section, we extend the previous results to Strategy Logic (SL). This logic has been initially introduced
in [CHP07] for two-player turn-based games. It has then been extended to n-players concurrent games
in [MMV10]. As explained in the introduction, satisfiability has been shown undecidable when considering
infinite structures [MMV10], and the proof in [TW12] for finite satisfiability of ATLsc straightforwardly
extends to SL. Here we show that satisfiability is decidable when considering turn-based games and when
fixing a finite alphabet, and that it remains undecidable when only considering memoryless strategies.

Strategy Logic in a nutshell. We start by briefly recalling the main ingredients of SL. The syntax is
given by the following grammar:

ϕ,ψ ::= p | ϕ∧ψ | ¬ϕ | Xϕ | ϕ Uψ | 〈〈x〉〉ϕ | (a,x)ϕ

where a ∈ Agt is an agent and x is a (strategy) variable (we use Var to denote the set of these variables). For-
mula 〈〈x〉〉ϕ expresses the existence of a strategy, which is stored in variable x, under which formula ϕ holds.
In ϕ , the agent binding operator (a,x) can be used to bind agent a to follow strategy x. An assignment χ

is a partial function from Agt∪Var to Strat. SL formulas are interpreted over pairs (χ,q) where q is a state
of some CGS and χ is an assignment such that every free strategy variable/agent4 occurring in the formula
belongs to dom(χ). Note that we have Agt⊆ dom(χ) when temporal modalities X and U are interpreted:
this implies that the set of outcomes is restricted to a unique execution generated by all the strategies
assigned to players in Agt, and the temporal modalities are therefore interpreted over this execution. Here
we just give the semantics of the main two constructs (see [MMV10] for a complete definition of SL):

C ,χ,q |= 〈〈x〉〉ϕ iff ∃F ∈ Strat s.t. C ,χ[x 7→ F],q |= ϕ

C ,χ,q |= (a,x)ϕ iff C ,χ[a 7→ χ(x)],q |= ϕ

In the following we assume w.l.o.g. that every quantifier 〈〈x〉〉 introduces a fresh strategy variable x: this
allows us to permanently use variable x to denote the selected strategy for a.

4We use the standard notion of freedom for the strategy variables with the hypothesis that 〈〈x〉〉 binds x, and for the agents with
the hypothesis that (a,x) binds a and that every agent in Agt is free in temporal subformula (i.e., with U or X as root).

14 Satisfiability of ATL with strategy contexts

Turn-based case. The approach we used for ATLsc can be adapted for SL. Given an SL formula Φ and
a mapping V : Agt→ Var, we define a QCTL∗ formula “ΦV inductively as follows (Boolean cases omitted):

〈̂〈x〉〉ϕ
V
= ∃movx.

[
AG

(
EX 1movx

)
∧ ϕ̂

V
]

(̂a,x)ϕ
V
= ϕ̂

V [a→x]

Note that in this case we require that every reachable state has a (unique) successor labeled with movx:
indeed when one quantifies over a strategy x, the agent(s) who will use this strategy are not known yet.
However, in the turn-based case, a given strategy should be dedicated to a single agent: there is no natural
way to share a strategy for two different agents (or the other way around, any two strategies for two different
agents can be seen as a single strategy), as they are not playing in the same states. When the strategy x is
assigned to some agent a, only the choices made in the a-states are considered.

The temporal modalities are treated as follows:

ϕ̂ Uψ
V
= A

[
G
(∧

a j∈Agt
(turn j⇒XmovV (a j))

)
⇒ ϕ̂

V U“ψV
]

X̂ϕ
V
= A

[
G
(∧

a j∈Agt
(turn j⇒XmovV (a j))

)
⇒X ϕ̂

V
]

Now let ‹Φ be the formula Φtb∧“ΦV∅ . Then we have the following theorem:
Theorem 15. Let Φ be an SL formula and ‹Φ be the QCTL∗ formula defined as above. Then Φ is satisfiable
in a turn-based CGS if, and only if, ‹Φ is satisfiable (in the tree semantics).

Bounded action alphabet Let M be {1, . . . ,α}. The reduction carried out for ATLsc can also be adapted
for SL in this case. Given an SL formula Φ and a partial function V : Agt→ Var, we define the QCTL∗

formula ÁΦV inductively as follows:Ì〈〈x〉〉ϕV
= ∃choose1

x . . .∃chooseα
x .AG

(∨
1≤m≤α

choosem
x ∧

∧
n6=m

¬choosen
x

)
∧ ÊϕV Ó�(a,x)ϕV

= ÊϕV [a7→x]

The temporal modalities are handled as follows:Ìϕ Uψ
V
= A

[(
G

∧
a j∈Agt

∧
1≤m≤α

Ä
choosem

V (a j)
⇒Xmovm

j

ä)
⇒
(ÊϕV UÁψV

)]
ÍXϕ

C
= A

[(
G

∧
a j∈Agt

∧
1≤m≤α

Ä
choosem

V (a j)
⇒Xmovm

j

ä)
⇒
(

X ÊϕV
)]

Remember that in this case, movm
j labels the possible successors of a state where agent a j plays m.

Finally, let ÙΦ be the formula Φmove∧ÁΦV
∅. We have:

Theorem 16. Let Φ be an SL formula based on the set Agt = {a1, . . . ,an}, let M = {1, . . . ,α} be a finite
set of moves, and ÙΦ be the QCTL∗ formula defined as above. Then Φ is (Agt,M)-satisfiable if, and only if,ÙΦ is satisfiable (in the tree semantics).

7.1 Memoryless strategies

We now extend the undecidability result of ATL0
sc to SL with memoryless-strategy quantification. Notice

that there is an important difference between ATL0
sc and SL0 (the logic obtained from SL by quantifying

only on memoryless strategies): the ATLsc-quantifier 〈·A·〉0 still has an implicit quantification over all the
strategies of the other players (unless their strategy is fixed by the context), while in SL0 all strategies must
be explicitly quantified. Hence SL0 and ATL0

sc have uncomparable expressiveness. Still:

François Laroussinie, Nicolas Markey 15

Theorem 17. SL0 satisfiability is undecidable, even when restricting to turn-based game structures.

Proof (sketch). The proof uses a similar reduction as for the proof for ATL0
sc. The difference is that the

implicitly-quantified strategies in ATL0
sc are now explicitly quantified, hence memoryless. However, most

of the properties that our formulas impose are “local” conditions (involving at most four nested “next”
modalities) imposed in all the reachable states. Such properties can be enforced even when considering
only the ultimately periodic paths that are outcomes of memoryless strategies. The only subformula not of
this shape is formula AmWc, but imposing this property along the outcomes of memoryless strategies is
sufficient to have the formula hold true along any path.

8 Conclusion

While satisfiability for ATLsc and SL is undecidable, we proved in this paper that it becomes decidable
when restricting the search to turn-based games. We also considered the case where strategy quantification
in those logics is restricted to memoryless strategies: while this makes model checking easier, it makes
satisfiability undecidable, even for turn-based structures. These results have been obtained by following the
tight and natural link between those temporal logics for games and the logic QCTL, which extends CTL
with quantification over atomic propositions. This witnesses the power and usefulness of QCTL, which we
will keep on studying to derive more results about temporal logics for games.

Acknowledgement. We thank the anonymous reviewers for their numerous suggestions, which helped
us improve the presentation of the paper.

References
[AHK02] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. J. ACM, 49(5):672–713,

2002. doi: 10.1145/585265.585270.

[BDLM09] Th. Brihaye, A. Da Costa, F. Laroussinie, and N. Markey. ATL with strategy contexts and bounded
memory. In Proceedings of the International Symposium Logical Foundations of Computer Science
(LFCS’09), LNCS 5407, p. 92–106. Springer, 2009. doi: 10.1007/978-3-540-92687-0 7.

[CE82] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using branching-
time temporal logic. In Proceedings of the 3rd Workshop on Logics of Programs (LOP’81), LNCS 131,
p. 52–71. Springer, 1982. doi: 10.1007/BFb0025774.

[CHP07] K. Chatterjee, T. A. Henzinger, and N. Piterman. Strategy logic. In Proceedings of the 18th International
Conference on Concurrency Theory (CONCUR’07), LNCS 4703, p. 59–73. Springer, 2007. doi:
10.1007/978-3-540-74407-8 5.

[DLM10] A. Da Costa, F. Laroussinie, and N. Markey. ATL with strategy contexts: Expressiveness and model
checking. In Proceedings of the 30th Conferentce on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS’10), LIPIcs 8, p. 120–132. Leibniz-Zentrum für Informatik,
2010. doi: 10.4230/LIPIcs.FSTTCS.2010.120.

[DLM12] A. Da Costa, F. Laroussinie, and N. Markey. Quantified CTL: Expressiveness and model checking. In
Proceedings of the 23rd International Conference on Concurrency Theory (CONCUR’12), LNCS 7454,
p. 177–192. Springer, 2012. doi: 10.1007/978-3-642-32940-1 14.

[Fre01] T. French. Decidability of quantified propositional branching time logics. In Proceedings of the 14th
Australian Joint Conference on Artificial Intelligence (AJCAI’01), LNCS 2256, p. 165–176. Springer,
2001. doi: 10.1007/3-540-45656-2 15.

http://www.doi.org/10.1145/585265.585270
http://www.doi.org/10.1007/978-3-540-92687-0_7
http://www.doi.org/10.1007/BFb0025774
http://www.doi.org/10.1007/978-3-540-74407-8_5
http://www.doi.org/10.4230/LIPIcs.FSTTCS.2010.120
http://www.doi.org/10.1007/978-3-642-32940-1_14
http://www.doi.org/10.1007/3-540-45656-2_15

16 Satisfiability of ATL with strategy contexts

[HSW13] C.-H. Huang, S. Schewe, and F. Wang. Model-checking iterated games. In Proceedings of the
19th International Conference on Tools and Algorithms for Construction and Analysis of Systems
(TACAS’13), LNCS 7795, p. 154–168. Springer, 2013. doi: 10.1007/978-3-642-36742-7 11.

[Kur02] A. Kurucz. S5× S5× S5 lacks the finite model property. In Proceedings of the 3rd Workshop on
Advances in Modal Logic (AIML’00), p. 321–327. World Scientific, 2002.

[LM13] F. Laroussinie and N. Markey. Quantified CTL: expressiveness and complexity. Research Report
LSV-13-07, Lab. Spécification & Vérification, ENS Cachan, France, 2013.

[MMPV12] F. Mogavero, A. Murano, G. Perelli, and M. Y. Vardi. What makes ATL* decidable? a decidable
fragment of strategy logic. In Proceedings of the 23rd International Conference on Concurrency Theory
(CONCUR’12), LNCS 7454, p. 193–208. Springer, 2012. doi: 10.1007/978-3-642-32940-1 15.

[MMV10] F. Mogavero, A. Murano, and M. Y. Vardi. Reasoning about strategies. In Proceedings of the 30th
Conferentce on Foundations of Software Technology and Theoretical Computer Science (FSTTCS’10),
LIPIcs 8, p. 133–144. Leibniz-Zentrum für Informatik, 2010. doi: 10.4230/LIPIcs.FSTTCS.2010.133.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual Symposium
on Foundations of Computer Science (FOCS’77), p. 46–57. IEEE Comp. Soc. Press, 1977. doi:
10.1109/SFCS.1977.32.

[QS82] J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems in CESAR. In
Proceedings of the 5th International Symposium on Programming (SOP’82), LNCS 137, p. 337–351.
Springer, 1982. doi: 10.1007/3-540-11494-7 22.

[TW12] N. Troquard and D. Walther. On satisfiability in atl with strategy contexts. In Proceedings of the 13th
European Conference in Logics in Artificial Intelligence (JELIA’12), LNCS 7519, p. 398–410. Springer,
2012. doi: 10.1007/978-3-642-33353-8 31.

[WHY11] F. Wang, C.-H. Huang, and F. Yu. A temporal logic for the interaction of strategies. In Proceedings of
the 22nd International Conference on Concurrency Theory (CONCUR’11), LNCS 6901, p. 466–481.
Springer, 2011. doi: 10.1007/978-3-642-23217-6 31.

[WLWW06] D. Walther, C. Lutz, F. Wolter, and M. Wooldridge. ATL satisfiability is indeed EXPTIME-complete.
Journal of Logic and Computation, 16(6):765–787, 2006. doi: 10.1093/logcom/exl009.

http://www.doi.org/10.1007/978-3-642-36742-7_11
http://www.doi.org/10.1007/978-3-642-32940-1_15
http://www.doi.org/10.4230/LIPIcs.FSTTCS.2010.133
http://www.doi.org/10.1109/SFCS.1977.32
http://www.doi.org/10.1007/3-540-11494-7_22
http://www.doi.org/10.1007/978-3-642-33353-8_31
http://www.doi.org/10.1007/978-3-642-23217-6_31
http://www.doi.org/10.1093/logcom/exl009

	Introduction
	Definitions
	with strategy contexts
	Quantified ATL

	From ATL-sc to QCTL
	Model checking
	Satisfiability

	Turn-based case
	Bounded action alphabet
	Memoryless strategies
	Results for Strategy Logic
	Memoryless strategies

	Conclusion

