
D. Miller and Z. Ésik (Eds.): Fixed Points
in Computer Science 2012 (FICS 2012)
EPTCS 77, 2012, pp. 39–46, doi:10.4204/EPTCS.77.6

c© M. Lange, E. Lozes
This work is licensed under the
Creative Commons Attribution License.

Model-Checking the Higher-Dimensional Modal µ-calculus

Martin Lange Etienne Lozes
School of Electr. Eng. and Computer Science, University of Kassel, Germany

The higher-dimensional modal µ-calculus is an extension of the µ-calculus in which formulas are
interpreted in tuples of states of a labeled transition system. Every property that can be expressed
in this logic can be checked in polynomial time, and conversely every polynomial-time decidable
problem that has a bisimulation-invariant encoding into labeled transition systems can also be defined
in the higher-dimensional modal µ-calculus. We exemplify the latter connection by giving several
examples of decision problems which reduce to model checking of the higher-dimensional modal
µ-calculus for some fixed formulas. This way generic model checking algorithms for the logic can
then be used via partial evaluation in order to obtain algorithms for theses problems which may
benefit from improvements that are well-established in the field of program verification, namely on-
the-fly and symbolic techniques. The aim of this work is to extend such techniques to other fields as
well, here exemplarily done for process equivalences, automata theory, parsing, string problems, and
games.

1 Introduction
The Modal µ-Calculus Lµ [6] is mostly known as a backbone for temporal logics used in program
specification and verification. The most important decision problem in this domain is the model checking
problem which is used to automatically prove correctness of programs. The model checking problem for
Lµ is well-understood by now. There are several algorithms and implementations for it. It is known
that model checking Lµ is equivalent under linear-time translations to the problem of solving a parity
game [8] for which there also is a multitude of algorithms available. From a purely theoretical point of
view, there is still the intriguing question of the exact computational complexity of model checking Lµ :
the best known upper bound for finite models is UP∩coUP [5], which is not entirely matched by the
P-hardness inherited from model checking modal logic.

Lµ can express exactly the bisimulation-invariant properties of tree or graph models which are de-
finable in Monadic Second-Order Logic [4], i.e. are regular. This means that for every such set L of trees
or graphs there is a fixed Lµ formula ϕL s.t. a tree or graph G is a model of ϕL iff it belongs to L. Thus,
any decision problem that has an encoding into regular and bisimulation-invariant sets of trees or graphs
can in principle be solved using model checking technology. In detail, suppose there is a set M and a
function f from the domain of M to graphs s.t. { f (x) | x ∈M} is regular and closed under bisimilarity.
By the result above there is an Lµ formula ϕM which defines (the encoding of) M. Now any model
checking algorithm for Lµ can be used in order to solve M.

Note that in theory this is just a reduction from M to the model checking problem for Lµ on a fixed
formula. Obviously reductions from any problem A to some problem B can be used to transfer algorithms
from B to A, and the algorithm obtained for A can in general be at most as good as the algorithm for B
unless it can be optimised for the fragment of B resulting from embedding A into it. However, there are
two aspects that are worth noting in this context.

• A reduction to model checking for a fixed formula can lead to much more efficient algorithms. A
model checking algorithm takes two inputs in general: a structure and a formula. If the formula is

http://dx.doi.org/10.4204/EPTCS.77.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

40 Model-Checking the Higher-Dim. µ-Calculus

fixed then partial evaluation can be used in order to optimise the general scheme, throw away data
structures, etc.

• Program verification is a very active research area which has developed many clever techniques
for evaluating formulas in certain structures including on-the-fly [8] and symbolic methods [2],
partial-order reductions, etc.

We refer to [1] for an example of this scheme of reductions to model checking for fixed formulas, there
being done for problems that are at least PSPACE-hard. It also shows how this can be used to solve com-
putation problems in this way. Since the data complexity (model checking with fixed formula) of Lµ is
in P, using this scheme for Lµ is restricted to computationally simpler problems which can nevertheless
benefit from developments in program verification. Furthermore, it is the presence of fixpoint operators
in such a logic which makes it viable to this approach: fixpoint operators can be used to express induc-
tive concepts—e.g. the derivation relation in a context-free grammar—and at the same time provide the
foundation for algorithmic solutions via fixpoint iteration for instance.

Here we consider an extension of Lµ , the Higher-Dimensional Modal µ-Calculus L ω
µ , and in-

vestigate its usefulness regarding the possibility to obtain algorithmic solutions to various decision or
computation problems which may benefit from techniques originally developed for program verification
purposes only. It is known that L ω

µ captures the bisimulation-invariant fragment of P. We will sketch how
the L ω

µ model checking problem can be reduced to Lµ model checking via a simple product construction
on transition systems. Thus we can obtain—in principle—an algorithm for every problem that admits
a polynomial-time solution and a bisimulation-invariant encoding into graphs. The reduction from L ω

µ
to Lµ is compatible with on-the-fly or BDD-based model checking techniques, thus transferring such
algorithms from Lµ first to L ω

µ and then on to such decision problems.

2 The Higher-Dimensional Modal µ-Calculus

Labeled Transition Systems. A labeled transition system (LTS) is a graph whose vertices and edges
are labeled with sets of propositional variables and labels respectively. Formally, an LTS over a set
Σ= {a,b, . . .} of edge labels and a set P= {p,q, . . .} of atomic propositions is a tuple M= (S,s0,Δ,ρ)
such that s0 ∈ S, Δ ⊆ S×Σ×S and ρ : S→P(P). Elements of S are called states, and we write s a

−→ s′
when (s,a,s′) ∈ Δ. The state s0 ∈ S is called the initial state of M.

We will mainly consider finite transition systems, i.e. transition systems (S,s0,Δ,ρ) such that S is a
finite set. Infinite-state transition systems arising from program verification are also of interest, but their
model checking techniques differ from the ones of finite LTS and cannot be handled by our approach
(see more comments on that point in the conclusion).

Syntax. We assume infinite sets Var= {x,y, . . .} and Var2 = {X ,Y, . . .}, of first-order and second-order
variables respectively. For tuples of first-order variables x = (x1, . . . ,xn) and y = (y1, . . . ,yn), with all xi
distinct, x← y, denotes the function κ : Var→Var such that κ(xi) = yi, and κ(z) = z otherwise. It is called
a variable replacement.

The syntax of the higher-dimensional modal µ-calculus L ω
µ is reminiscent of that of the ordinary

modal µ-calculus. However, modalities and propositions are relativized to a first-order variable, and it
also features the replacement modality {κ}. Formulas of L ω

µ are defined by the grammar

ϕ ,ψ := p(x) | X | ¬ϕ | ϕ ∧ψ | 〈a〉xϕ | µX .ϕ | { x← y}ϕ

M. Lange, E. Lozes 41

where x,y ∈ Var, κ : Var→Var is a variable replacement with finite domain, a ∈ Σ, and X ∈ Var2. We
require that every second-order variable gets bound by a fixpoint quantifier µ at most once in a formula.
Then for every formula ϕ there is a function fpϕ which maps each second-order variable X occurring
in ϕ to its unique binding formula fpϕ(X) = µX .ψ . Finally, we allow occurrences of a second-order
variable X only under the scope of an even number of negation symbols underneath fpϕ(X).

A formula is of dimension n if it contains at most n distinct first-order variables; we write L n
µ to

denote the set of formulas of dimension n. Note that L 1
µ is equivalent to the standard modal µ-calulus:

with a single first-order variable x, we have p(x) ≡ p, {x←x}ψ ≡ ψ and 〈a〉xψ ≡ 〈a〉ψ for any ψ .
As usual, we write ϕ ∨ψ , [a]xϕ , and νX .ϕ to denote ¬(¬ϕ ∧¬ψ), ¬〈a〉x¬ϕ , ¬µX .¬ϕ ′ respectively

where ϕ ′ is obtained from ϕ by replacing every occurrence of X with ¬X . Other Boolean operators like
⇒ and⇔ are defined as usual.

Note that {κ} is an operator in the syntax of the logic; it does not describe syntactic replacement of
variables. Consider for instance the formula

νX .
∧

p∈P
p(x)⇒ p(y) ∧

∧

a∈Σ
[a]x〈a〉yX ∧ {(x,y)←(y,x)}X .

As we will later see, this formula characterizes bisimilar states x and y. In this formula, the operational
meaning of {x,y←y,x}X can be thought as “swapping the players’ pebbles” in the bisimulation game.

We will sometimes require formulas to be in positive normal form. Such formulas are built from
literals p(x), ¬p(x) and second-order variables X using the operators ∧, ∨, 〈a〉x, [a]x, µ , ν , and {κ}. A
formula is closed if all second-order variables are bound by some µ .

With Sub(ϕ) we denote that set of all subformulas of ϕ . It also serves as a good measure for the
size of a formula: |ϕ | := |Sub(ϕ)|. Another good measure of the complexity of the formula ϕ is its
alternation depth adϕ , i.e the maximal alternation of µ and ν quantifiers along any path in the syntactic
tree of its positive normal form.

Semantics. A first-order valuation v over a LTS M is a mapping from first-order variables to states,
and a second order valuation is a mapping from second order variables to sets of first-order valuations:

Val ! Var → S
Val2 ! Var2 → P(Val)

We write v[x 0→ s] to denote the first-order valuation that coincides with v, except that xi ∈ x is
mapped to the corresponding si ∈ s. We use the same notation V [X 0→ P] for second-order valuations.
The semantics of a formula ϕ of L ω

µ for a LTS M and a second-order valuation V is defined as a set of
first-order valuations by induction on the formula:

!p(x)"V
M

! {v : p ∈ ρ(v(x))}
!¬ϕ"V

M
! Val− !ϕ"V

M

!ϕ ∧ψ"V
M

! !ϕ"V
M
∩ !ψ"V

M

!〈a〉xϕ"V
M

! {v : ∃s. v(x) a
−→ s and v[x 0→ s] ∈ !ϕ"V

M
}

!X"V
M

! V (X)
!µX .ϕ"V

M
! LFP λP ∈P(Val). !ϕ"V [X 0→P]

M

!{ x← y}ϕ"V
M

! {v : v[x 0→ v(y)] ∈ !ϕ"V
M
}

We simply write !ϕ"M to denote the semantics of a closed formula. We write M,v " ϕ if v ∈ !ϕ"M,
and M " ϕ if M,v0 " ϕ , where v0 is the constant function to s0. Two formulas are equivalent, written

42 Model-Checking the Higher-Dim. µ-Calculus

ϕ ≡ ψ , if !ϕ"M = !ψ"M for any LTS M. As with the normal modal µ-calculus, it is a simple exercise
to prove that every formula is equivalent to one in positive normal form.
Proposition 1. For every ϕ ∈L ω

µ there is a ψ in positive normal form such that ϕ ≡ψ and |ψ |≤ 2 · |ϕ |.

Reduction to the Ordinary µ-Calculus. Here we consider L ω
µ as a formal language for defining

decision problems. Algorithms for these problems can be obtained from model checking algorithms for
Lµ on fixed formulas using partial evaluation. In order to lift all sorts of special techniques which have
been developed for model checking in the area of program verification we show how to reduce the L ω

µ

model checking problem to that of L 1
µ , i.e. the ordinary µ-calculus.

Let us assume a fixed non-empty finite subset V of first-order variables. A formula ϕ of L ω
µ with

fv(ϕ)⊆V can be seen as a formula ϕ̂ of L 1
µ over the set of the atomic propositions P×V and the action

labels Σ×V ∪ (V →V). We write px instead of (p,x) for elements of P×V , and equally ax for elements
from Σ×V . Then ϕ 0→ ϕ̂ can be defined as the homomorphism such that p̂(x)! px, 〈̂a〉xϕ ! 〈ax〉ϕ̂ , and
̂{ x← y}ϕ ! 〈 x← y〉ϕ̂ .

We call an LTS higher-dimensional when it interprets the extended propositions px and modalities
〈ax〉 and 〈κ〉 introduced by the formulas ϕ̂ , and ground when it interprets the standard propositions and
modalities. For a ground LTS M and a formula ϕ , we thus need to define the higher-dimensional LTS
over which ϕ̂ should be interpreted: we call it the V -clone of M, and write it cloneV (M). Roughly
speaking, cloneV (M) is the asynchronous product of |V | copies of M. More formally, assume M =
(S,s0,Δ,ρ); then cloneV (M) = (S′,s′0,Δ′,ρ ′) is defined as follows.

• The states are valuations of the variables in V by states in S, e.g S′ =V → S, and s′0 is the constant
function λx ∈V.s0.

• The atomic proposition px is true in those new states, which assign x to an original state that
satisfies p, e.g. ρ ′(v) = {px : p ∈ ρ(v(x))}.

• The transitions contain labels of two kinds. First, there is an ax-edge between two valuations v and
v′, if there is an a-edge between v(x) and v′(x) in the original LTS M:

v ax−→ v′ iff ∃t.v(x) a
−→ t and v′ = v[x 0→ t].

For the other kind of transitions we need to declare the effect of applying a replacement to a valu-
ation. Let v :V→S be a valuation of the first-order variables in V , and κ :V→V be a replacement
operator. Let tκ(v) be the valuation such that tκ(v)(x) = v(κ(x)). Then we add the following
transitions to Δ′.

v κ
−→ v′ iff v′ = tκ(v)

Note that the relation with label κ is functional for any such κ , i.e. every state in cloneV (M) has
exactly one κ-successor. Hence, we have 〈κ〉ψ ≡ [κ]ψ over cloned LTS.
Theorem 2. Let V be a finite set of first-order variables, let M = (S,s0,Δ,ρ) be a ground LTS, and let
ϕ be a L ω

µ formula such that fv(ϕ)⊆V . Then

M |= ϕ iff cloneV (M) |= ϕ̂.

The proof goes by straightforward induction on ϕ and is therefore ommitted – see also the chapter
on descriptive complexity in [3] for similar results. The importance of Thm. 2 is based on the fact that it
transfers many model checking algorithms for the modal µ-calculus to L 1

µ , for example on-the-fly model
checking [8], symbolic model checking [2] with BDDs or via SAT, strategy improvement schemes [9],
etc.

M. Lange, E. Lozes 43

3 Various Problems as Model Checking Problems
The model checking algorithms we mentioned can be exploited to solve any polynomial-time problem
that can be encoded as a model checking problem in L ω

µ . By means of examples, we now intend to show
that these problems are quite numerous.

Process Equivalences. The first examples are process equivalences encountered in process algebras.
We only consider here strong simulation equivalence and bisimilarity, and let the interested reader think
about how to encode other process equivalences, like weak bisimilarity for instance.

Let us first recall some standard definitions. Let M = (S,s0,Δ,ρ) be a fixed LTS. A simulation is a
binary relation R⊆ S×S such that for all (s1,s2) in R,

• for all p ∈ P: p ∈ ρ(s1) iff p ∈ ρ(s2);

• for all a ∈ Σ and s′1 ∈ S, if s1
a
−→ s′1, then there is s′2 ∈ S such that s2

a
−→ s′2 and (s′1,s′2) ∈ R.

Two states s,s′ are simulation equivalent, s # s′, if there are simulations R,R′ such that (s,s′) ∈ R and
(s′,s) ∈ R′. A simulation R is a bisimulation if R = R−1; we say that s,s′ are bisimilar, s ∼ s′, if there
is a bisimulation that contains (s,s′). We say that two valuations are bisimilar, v ∼ v′, if for all x ∈ Var,
v(x) ∼ v′(x).

Proposition 3. [7] L ω
µ is closed under bisimulation: if v ∈ !ϕ" and v∼ v′, then v′ ∈ !ϕ".

Let us now explain how these process equivalences can be decided by the model checking algorithms:
the following formula captures valuations v such that v(x) ∼ v(y)

νX .
∧

p∈P
p(x)⇔ p(y) ∧

∧

a∈Σ
[a]x〈a〉yX ∧ {(x,y)←(y,x)}X

whereas the following formula captures valuations v such that v(x) # v(y)

νX
(
νY.

∧

p∈P
p(x)⇔ p(y) ∧

∧

a∈Σ
[a]x〈a〉yY

)
∧ {(x,y)←(y,x)}X .

Automata Theory. A second application of L ω
µ is in the field of automata theory. To illustrate this

aspect, we pick some language inclusion problems that can be solved in polynomial-time.
A non-deterministic Büchi automaton can be viewed as a finite LTS A = (S,s0,Δ,ρ) where ρ in-

terprets a predicate final. Remember that a run on an infinite word w ∈ Σω in A is accepting if it visits
infinitely often a final state. The set of words L(A)⊆ Σω that have an accepting run is called the language
accepted by A.

The language inclusion problem L(A) ⊆ L(B) is PSPACE-hard for arbitrary Büchi automata and
therefore unlikely to be definable in L ω

µ . In the restricted case of B being deterministic, it becomes
solvable in polynomial time. Remember that a Büchi automaton is called deterministic if for all a ∈ Σ,
for all s,s1,s2 ∈ S, if s a

−→ s1 and s a
−→ s2, then s1 = s2.

Let us now encode the language inclusion problem L(A)⊆ L(B) as a L ω
µ model checking problem.

To shorten a bit the formula, we assume that B is moreover complete, i.e. for all s ∈ S, for all a ∈ Σ, there
is at least one s′ such that s a

−→ s′. Let us introduce the modality 〈synch〉ϕ !
∨
a∈Σ〈a〉x〈a〉yϕ . Consider

the formula

ϕincl ! 〈synch〉∗νZ1.
(
final(x)∧¬final(y)∧µZ2.〈synch〉

(
Z1∨ (¬final(y)∧Z2)

))

44 Model-Checking the Higher-Dim. µ-Calculus

Let MA,B be the LTS obtained as the disjoint union of A and B with initial states sA of A and sB of B
respectively. Then L(A) is included in L(B) if and only if MA,B,v 6" ϕincl where v(x) = sA and v(y) = sB.
Indeed, this formula is satisfied if there is a run rA of A and a run rB of B reading the same word w ∈ Σω
such that rA visits a final state of A infinitely often, whereas rB eventually stops visiting the final states of
B. Since B is deterministic, no other run r′B could read w, thus w ∈ L(A)\L(B).

The same ideas can be applied to parity automata. A parity automaton is a finite automaton where
states are assigned priorities; it can be seen as an LTS (S,s0,Δ,ρ) where ρ interprets priority predicates
prtyk in such a way that ρ(s) is a singleton {prtyk} for all s ∈ S. A word w ∈ Σω is accepted by a parity
automaton if there is a run of w such that the largest priority visited infinitely often is even. Consider the
formulas prty≤m(x) = prty0(x)∨ . . .∨prtym(x) and

ϕn,m = 〈synch〉∗νZ.〈synch′〉+
(
prtyn(x)∧〈synch′〉+(prtym(y)∧Z)

)

where 〈synch′〉+ϕ is a shorthand for µZ.〈synch〉prty≤n(x)∧ prty≤m(y)∧ (ϕ ∨Z). Then ϕn,m asserts that
there are two runs rA and rB of two parity automata A and B recognizing the same word w such that the
highest priorities visited infinitely often by rA and rB are respectively n and m. Since L(A) 6⊆ L(B) if and
only there is an even n and an odd m such that MA,B |= ϕn,m, this gives us again a decision procedure for
the language inclusion problem of parity automata when B is deterministic complete.

Parsing of Formal Languages. A third application of L ω
µ is in the field of parsing for formal, namely

context-free languages. To each finite word w, we may associate its linear LTS Mw. For instance, for
w = aab, Mw is the LTS a a b . Let us now consider a context-free grammar G,
and define a formula that describes the language of G. To ease the presentation, we assume that G
is in Chomsky normal form, but a linear-size formula would be derivable for an arbitrary context-free
grammar as well. The production rules of G are thus of the form either Xi→XjXk or Xi→a, for X1, . . . ,Xn
the non-terminals of G. Let us pick variables x,y and z, intended to represent respectively the initial
the final, and an intermediate position in the (sub)word currently parsed. To every non-terminal Xi, we
associate the recursive definition:

ϕi =µ
∨

Xi→a
〈a〉x x∼ y ∨

∨

Xi→XjXk

{z←x}〈−〉∗z
(
({y←z}ϕ j)∧ ({x←z}ϕk)

)

where x∼ y is the formula characterizing bisimilarity and 〈−〉∗zϕ is µZ.ϕ ∨
∨
a∈Σ〈a〉zZ. If v(x) and v(y)

are respectively the initial and final states of Mw, then Mw,v " ϕi is equivalent to w being derivable in G
starting with the symbol Xi.

String Problems. Model Checking for L ∞
µ can even be useful for computation (as opposed to deci-

sion) problems. Consider for example the Longest Common Subword problem: given words w1, . . . ,wm
over some alphabet Σ, find a longest v that is a subword of all wi. This problem is NP-complete for
an unbounded number of input words. Thus, we consider the problem restricted to some fixed m, and
it is possible to define a formula ϕmLCSW ∈ L m

µ such that model checking this formula on a suitable
representation of the wi essentially computes such a common subword.

For the LTS take the disjoint union of all Mwi for i = 1, . . . ,m, and assume that each state in Mwi
is labeled with a proposition pi which makes it possible to define m-tuples of states in which the i-th
component belongs to Mwi . Now consider the formula

ϕmLCSW := νX .
m∧

i=1
pi(xi)∧

∨

a∈Σ
〈a〉1 . . . 〈a〉mX

M. Lange, E. Lozes 45

Note that ϕmLCSW is unsatisfiable for any m≥ 1. Thus, a symbolic model checking algorithm for instance
would always return the empty set of tuples when called on this formula and any LTS. However, on
an LTS representing w1, . . . ,wm as described above it consecutively computes in the j-th round of the
fixpoint iteration, all tuples of positions h1, . . . ,hm such that the subwords in wi from position hi− j to hi
are all the same for every i= 1, . . . ,m. Thus, it computes, in its penultimate round the positions inside the
input words in which the longest common substrings end. Their starting points can easily be computed
by maintaining a counter for the number of fixpoint iterations done in the model checking run.

In the same way, it is possible to compute the longest common subsequence of input wordsw1, . . . ,wm.
A subsequence of w is obtained by deleting arbitrary symbols, whereas a subword is obtained by delet-
ing an arbitrary prefix and suffix from w. The Longest Common Subsequence problem is equally known
to be NP-complete for unbounded m. For any fixed m, however, the following formula can be used to
compute all longest common subsequences of such input words using model checking technology in the
same way as it is done in the case of the Longest Common Subword problem.

ϕmLCSS := νX .
m∧

i=1
pi(xi)∧

∨

a∈Σ
〈a〉x1〈−〉

∗
x1 . . . 〈a〉xm〈−〉

∗
xmX

where 〈−〉∗xiψ stands for µY.ψ ∨
∨

a∈Σ
〈a〉xiY .

Games. The Cat and Mouse Game is played on a directed graph with three distinct nodes c, m and t as
follows. Initially, the cat resides in node c, the mouse in node m. In each round, the mouse moves first.
He can move along an edge to a successor node of the current one or stay on the current node, then the
cat can do the same. If the cat reaches the mouse, she wins; otherwise, if the mouse reaches the target
node t, he wins; otherwise, the mouse runs forever without being caught nor reaching the target node: in
that case, the cat wins. The problem of solving the Cat and Mouse Game is to decide whether or not the
mouse has a winning strategy for a given graph.

Note that this problem is not bisimulation-invariant under the straight-forward encoding of the di-
rected graph as an LTS with a single proposition t to mark the target node. Consider for example the
following two, bisimilar game arenas.

t t

Clearly, if the cat and mouse start on the two separate leftmost nodes then the mouse can reach the target
first. However, these nodes are bisimilar to the left node of the right graph, and if they both start on this
one then the cat has caught the mouse immediately.

Thus, winning strategies cannot necessarily be defined in L ∞
µ . However, it is possible to define them

when a new atomic formula eq(x,y) expressing that x and y evaluate to the same node, is being added to
the syntax of L ∞

µ (standard model checking procedures can be extended to handle the equality predicate
eq as well).

ϕCMG := µX .(t(x)∧¬eq(x,y))∨〈−〉x(¬eq(x,y))∧ [−]yX)

We have v |= ϕCMG if and only if the mouse can win from position v(x) when the cat is on position v(y)
initially.

46 Model-Checking the Higher-Dim. µ-Calculus

4 Conclusion
We have considered the modal fixpoint logic L ω

µ for a potential use in algorithm design and given ex-
amples of problems which can be defined in L ω

µ . The combination of fixpoint quantifiers and modal
operators has been proved to be very fruitful for obtaining algorithmic solutions for problems in auto-
matic program verification. The examples boost the idea of using successful model checking technology
in other areas too.

The use of model checking algorithms on fixed formulas does not provide a generic recipe that
miraculously generates efficient algorithms, but it provides the potential to do so. The next step on this
route towards an efficient algorithm for some problem P requires partial evaluation on a model checking
algorithm and the formula ϕP defining P. This usually requires manual tweaking of the algorithm and
is highly dependent on the actual ϕP. Thus, future work on this direction would consist of consequently
optimising L ω

µ model checking algorithms for certain definable problems and testing their efficiency in
practice.

On a different note, L ω
µ is an interesting fixpoint calculus for which the model checking problem

over infinite-state transition systems has not been quite studied so far. The most prominent result in this
area is the decidability of L 1

µ over pushdown LTS [10]. However, model checking L ω
µ — or even just

L k
µ for some k ≥ 2 — seems undecidable for pushdown LTS. It is questionable whether model checking

of L ω
µ is decidable for any popular class of infinite-state transition systems.

References
[1] R. Axelsson & M. Lange (2007): Model Checking the First-Order Fragment of Higher-Order Fixpoint Logic.

In: Proc. 14th Int. Conf. on Logic for Programming, Artificial Intelligence, and Reasoning, LPAR’07, LNCS
4790, Springer, pp. 62–76, doi:10.1007/978-3-540-75560-9_7.

[2] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill & L. J. Hwang (1992): Symbolic Model
Checking: 1020 States and Beyond. Information and Computation 98(2), pp. 142–170, doi:10.1016/
0890-5401(92)90017-A.

[3] E. Grädel, P. G. Kolaitis, L. Libkin, M. Marx, J. Spencer, M. Y. Vardi, Y. Venema & S. Weinstein (2007):
Finite Model Theory and its Applications. Springer-Verlag, doi:10.1007/3-540-68804-8.

[4] D. Janin & I. Walukiewicz (1996): On the Expressive Completeness of the Propositional µ-Calculus with
Respect to Monadic Second Order Logic. In: CONCUR, pp. 263–277, doi:10.1007/3-540-61604-7_60.

[5] M. Jurdziński (1998): Deciding the winner in parity games is in UP∩co-UP. Inf. Process. Lett. 68(3), pp.
119–124, doi:10.1016/S0020-0190(98)00150-1.

[6] D. Kozen (1983): Results on the Propositional µ-calculus. TCS 27, pp. 333–354, doi:10.1007/
BFb0012782.

[7] M. Otto (1999): Bisimulation-invariant PTIME and higher-dimensional µ-calculus. Theor. Comput. Sci.
224(1-2), pp. 237–265, doi:10.1016/S0304-3975(98)00314-4.

[8] C. Stirling (1995): Local Model Checking Games. In: Proc. 6th Conf. on Concurrency Theory, CONCUR’95,
LNCS 962, Springer, pp. 1–11, doi:10.1007/3-540-60218-6_1.

[9] J. Vöge & M. Jurdziński (2000): A Discrete Strategy Improvement Algorithm for Solving Parity Games. In:
CAV, pp. 202–215, doi:10.1007/10722167_18.

[10] Igor Walukiewicz (1996): Pushdown Processes: Games and Model Checking. In: CAV, pp. 62–74, doi:10.
1007/3-540-61474-5_58.

http://dx.doi.org/10.1007/978-3-540-75560-9_7
http://dx.doi.org/10.1016/0890-5401(92)90017-A
http://dx.doi.org/10.1016/0890-5401(92)90017-A
http://dx.doi.org/10.1007/3-540-68804-8
http://dx.doi.org/10.1007/3-540-61604-7_60
http://dx.doi.org/10.1016/S0020-0190(98)00150-1
http://dx.doi.org/10.1007/BFb0012782
http://dx.doi.org/10.1007/BFb0012782
http://dx.doi.org/10.1016/S0304-3975(98)00314-4
http://dx.doi.org/10.1007/3-540-60218-6_1
http://dx.doi.org/10.1007/10722167_18
http://dx.doi.org/10.1007/3-540-61474-5_58
http://dx.doi.org/10.1007/3-540-61474-5_58

	1 Introduction
	2 The Higher-Dimensional Modal -Calculus
	3 Various Problems as Model Checking Problems
	4 Conclusion

