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Abstract. We investigate an extension of conjunctive regular path queries
in which path properties and path relations are defined by visibly push-
down automata. We study the problem of query evaluation for extended
conjunctive visibly pushdown path queries and their subclasses, and give
a complete picture of their combined and data complexity. In particular,
we introduce a weaker notion called extended conjunctive reachability
queries for which query evaluation has a polynomial data complexity.
We also show that query containment is decidable in 2-EXPTIME for
(non-extended) conjunctive visibly pushdown path queries.

1 Introduction

Querying is the central mechanism for extracting information from a knowl-
edge or data base. Queries have therefore been extensively studied in the fields
of knowledge representation and database theory. Some of the most important
foundational issues regarding queries and their decision problems like query eval-
uation or query containment concern the decidability, computational complexity
and — related to that — expressive power of querying languages.

Graph-structured data [14] and their querying problems occur in many ap-
plication areas such as semi-structured data the semantic web social networks
transportation networks biological networks program analysis etc [2]. A well-
established logical formalism for querying graph-structured data is the one of
conjunctive regular path queries [8, 5, 7]. In this formalism, queries can express
conditions on paths in the data-graph by regarding them as words over the al-
phabet of relation names; it is then possible to ask for instance whether or not
there is a path whose associated word belongs to a certain regular language. This
formalism has been extended, to context-free languages [10], regular relations [4],
and later to rational ones [3], yielding extended conjunctive regular path queries.
This extension allows to express rich queries, like the existence of two paths of
the same length.

In the formalism used by Barceló et al. [4], no two atoms in a non-extended
query may use the same path variable. Intuitively, this makes queries easier and
less expressive: they merely express reachability properties on graphs. We there-
fore suggest a new 2-dimensional nomenclature for such queries, distinguishing
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path from reachability queries on one hand, and extended from non-extended
queries on the other.

path query reachability query
non-extended CPQ CRQ
extended ECPQ ECRQ

Path queries may contain multiple occurrences of path variables, reachability
queries may not. Extended queries speak about relations, non-extended ones
about languages. In the notation of Barceló et al.’s [4], their conjunctive path
queries correspond to CRQ in our setting, and their extended conjunctive path
queries are the same as ours, i.e. ECPQ.

This paper deals with issues of decidability and computational complexity of
extended conjunctive path queries over visibly pushdown languages (ECPQ[VPL]).
Visibly pushdown languages [13, 1] form an interesting class that lies between
the regular and context-free ones because it basically has the same closure and
decidability properties as the regular ones. Our contributions regarding the de-
cidability and complexity of query evaluation and containment are the following.

1. We show that ECPQ[VPL] query evaluation is undecidable.
2. We show that, for CPQ[VPL] and ECRQ[VPL] queries, query evaluation is

P-complete w.r.t. data complexity, thus only a bit more expensive than it is
for regular queries (NLOGSPACE).

3. We give upper and lower bounds for the combined complexity of query eval-
uation for each subclass of queries.

4. We consider the query containment problem; this problem is already unde-
cidable for extended queries in the regular case [9]. So we focus on CRQ[VPL]
queries. We show that query containment is decidable among these queries,
with a complexity upper bound of 2-EXPTIME, close to the EXPSPACE-
complete [5] complexity of query containment for CRQ[REG] queries [8, 5]).

2 Preliminaries

Let N denote the set of non-negative integers. As usual, Σ denotes a finite
alphabet, Σ∗ is the set of all finite words over Σ, ε is the empty word. We
assume a fixed alphabet Σ for the rest of this paper and note that the concepts
introduced herein are to be understood with respect to this alphabet but do not
depend on its actual content for as long as |Σ| ≥ 2.

Visibly-Pushdown Relations Let ⊥ be a new symbol not occurring in Σ, and let
Σ⊥ := Σ ∪ {⊥}. Let w = (w1, . . . , wk) ∈ (Σ∗)k, where wi = ai,1 · · · ai,|wi| (and

all ai,j ∈ Σ). We define the string [w] ∈ (Σk
⊥)∗ by [w] := b1 · · · bn, where n is the

maximum of all |wi|, and bj := (bj,1, . . . , bj,k), with bj,i = ai,j if j ≤ |wi|, and
bj,i =⊥ if j > |wi|. Intuitively, [w] is obtained by aligning all wi to the left, and
padding the unfilled space with ⊥ symbols.



An alphabet Σ′ is a visibly pushdown alphabet if it is partitioned into push,
pop, and no-op symbols. A visibly-pushdown automaton [13, 1] (VPA) is a non-
deterministic pushdown automaton whose stack action (push, pop, no-op) is
determined by the input letter they read, according to its type push, pop or
no-op. A k-ary relation R ⊆ (Σ∗)k is called a visibly pushdown relation if (Σk)⊥
is a visibly pushdown alphabet and {[w] | w ∈ R} is recognised by a VPA.

DB-Graphs A Σ-labeled db-graph (db-graph for short) is a directed graph G =
(V,E), where V is a finite set of nodes, and E ⊆ V × Σ × V is a finite set of
directed edges with labels from Σ. A path ρ between two nodes v0 and vn in
G with n ≥ 0 is a sequence v0a1v1 . . . vn−1anvn with (vi, ai+1, vi+1) ∈ E for
0 ≤ i < n. We define the label λ(ρ) of the path ρ by λ(ρ) := a1 · · · an.

Extended Conjunctive Path Queries We generalise the definition of extended
conjunctive regular path queries [4] to visibly pushdown relations. Fix a count-
able set of node variables and a countable set of path variables. Let k ≥ 1. A
k-dimensional extended conjunctive visibly pushdown path query Q is an expres-
sion of the form

Ans(z, χ)←
∧

1≤i≤m

(xi, πi, yi),
∧

1≤j≤l

Rj(ωj) , (1)

such that m ≥ 1, l ≥ 0, and

1. there is a fixed partition of the alphabet (Σ⊥)k into push, pop, and no-op
symbols

2. each Rj is a k-dimensional visibly pushdown relation
3. x = (x1, . . . , xm) and y = (y1, . . . , ym) are tuples of (not necessarily distinct)

node variables,
4. π = (π1, . . . , πm) is a tuple of distinct path variables,
5. ω1, . . . , ωl are tuples of path variables, such that each ωj is a tuple of vari-

ables from π, of the same arity as Rj ,
6. z is a tuple of node variables among x, y, and
7. χ is a tuple of path variables among those in π.

The expression Ans(z, χ) is the head, and the expression to the right of ← is
the body of Q. If z and χ are the empty tuple (i. e., the head is of the form
Ans()), Q is a Boolean query. The relational part of Q is

∧
1≤i≤m(xi, πi, yi), and

the labeling part is
∧

1≤j≤lRj(ωj). We denote the set of node variables in Q by
nvar(Q). The size of the query is defined as m+

∑
1≤i≤n |Ri|, where |Ri| denotes

the size (number of states and transitions) of the VPA representing the relation
Ri.

ECPQ[VPL] will denote the class of all extended conjunctive visibly push-
down path queries, and CPQ[VPL] will denote the class of queries of dimension
k = 1. A query is called an extended reachability query if ωi ∩ ωj = ∅ for i 6= j,
in other words if every path variable occurs at most in one relation constraint.
In that case, we abbreviate R(x,y) for (x,ω,y) ∧R(omega). ECRQ[VPL] will



denote the class of extended visibly pushdown reachability queries. Finally, we
write ECPQ[REG] for the class of extended conjunctive regular path queries,
i.e. extended path queries where all relations are regular.

Example 1. Let L0 := {anbn ∈ Σ∗ | n ≥ 0}, L = L∗0, and R = {(w1, w2) ∈
L × L | w1 6= w2}. The query Ans(x, y) ← (x, π, y) ∧ L∗(π) is a CRQ[VPL]
query. The query Ans(x, y)← (x, π1, y)∧ (x, π2, y)∧R(π1, π2) is an ECRQ[VPL]
query that would be hard to express as a CRQ[VPL] query or an ECPQ[REG]
query. Finally, the query Ans(x, y)← (x, π1, y)∧(x, π2, y)∧(x, π3, y3)∧R(π1, π2)∧
R(π1, π3) ∧R(π2, π3) is an ECPQ[VPL] query.

Remark 1. Since visibly pushdown languages are closed under intersection, every
CPQ[VPL] query is equivalent to a CRQ[VPL] query.

Query Evaluation and Query Containment The evaluation Q(G) of a query Q
over a db-graph G is intuitively obtained by interpreting all variables as quan-
tified existentially, and path constraints as constraints on the words formed by
the labels along the paths. Formally, for every db-graph G, every ECPQ[VPL]
query Q (of the form described in (1)), every mapping σ from the node variables
of Q to nodes in G, and every mapping µ from the path variables of Q to paths
in G, we write G, σ, µ |= Q if

1. µ(πi) is a path from σ(xi) to σ(yi) for every 1 ≤ i ≤ m,
2. for each ωj = (πj1 , . . . , πjk), 1 ≤ j ≤ l, the tuple (λ(µ(πj1)), . . . , λ(µ(πjk)))

belongs to the relation Rj .

We define the output of Q on G as

Q(G) := {
(
σ(z), µ(χ)

)
| G, σ, µ |= Q }.

The query Q is contained in the query Q′ if Q(G) ⊆ Q′(G) for all db-graphs G.
The problem of query evaluation is: given a Boolean query Q and a db-graph

G over the same underlying alphabet, decide whether or not Q(G) = {()}, or in
other words, whether there are σ, µ such that G, σ, µ |= Q. We distinguish the
combined complexity from the data complexity. The former considers both Q and
G to be the input, the latter considers the query to be fixed and measures the
complexity of query evaluation only in terms of the size of the db-graph G. For
complexity considerations we focus on the decision problem of query evaluation
for Boolean queries, but in general, when this problem is decidable, it is possible
to compute a representation of the output of a query.

3 The Complexity of Evaluating CPQ[VPL] Queries

We address the problem of evaluation of both CPQ[VPL] and CRQ[VPL] queries
w.r.t. combined and data complexity. First note that, since every CPQ[VPL]
query can be converted into a CRQ[VPL] query, the data complexity of query
evaluation is the same for these two formalisms. It can also be noticed that, for a



given db-graph G, a CRQ[VPL] query Q, and a mapping σ, the model-checking
problem G, σ |= Q can be solved in polynomial time. Indeed, for two variables
x, y, the language L(σ(x), σ(y)) of all paths from σ(x) to σ(y) is recognized by
a NFA of size |G|, and G satisfies the atom (x, L, y) iff L ∩ L(σ(x), σ(y)) is not
empty. Since G, σ |= Q can be decided in polynomial time, the data complexity
of query evaluation is PTIME – the enumeration of all possible σ takes time
O(|G||nvars(Q)). This upper bound is actually tight.

Theorem 1. Evaluating CRQ[VPL] queries is P-complete (data complexity).

Proof. For a natural number n let bin(n) denote its binary representation using

a special symbol to mark the end of the code, e.g. bin(13) = 1101$. Let
←−
bin(n)

be its representation in reverse order using different symbols, i.e.
←−
bin(13) =

$′1′0′1′1′. Finally, let # be an extra symbol. It is not hard to see that the
language L0 described recursively by

L′0 = set + or {bin(n)L′0
←−
bin(n) | n ∈ N} +(

and {bin(n)L′0
←−
bin(n) | n ∈ N}

)2
as well as L0 := #L′0 is a VPL over the visibly pushdown alphabet with push-
symbols $, 1, 0, pop-symbols $′, 1′ 0′ and no-op symbols #, set, or, and.

We present a logspace reduction from the Circuit Value Problem, known to be
P-complete [12], to the problem of evaluating the query Ans()← (x, π, x)∧L0(π).
We informally describe how to turn a circuit C into a db-graph GC . W.l.o.g. we
can assume that every internal gate in C has fan-in exactly 2, and is identified
by a unique number i.

Every input gate that is set to 0 becomes a single node . Every input gate
that is set to 1 becomes a node set . The OR-gate with number i and the
AND-gate with number i are translated as the filled nodes below

orbin(i)

orbin(i)
←−−−
bin(i)

←−−−
bin(i)

andbin(i)

←−−−bin(i) and
bin(i)

←−−−
bin(i)

assuming the non-filled nodes represent the nodes associated to the inputs of
these gates, and the gray node is a local auxiliary node. Additionally, we append
a loop labeled with # to the output gate of the circuit. Note that this is a
logspace reduction.

Now we have Q0(GC) = true iff there is a path starting and ending in the
output gate’s node that traverses through the graph such that in every OR-gate
node it continues to one successor, and in every AND-gate node it traverses first
through one input gate and then, after coming back to it goes through the other
successor. The path can only traverse through input gates that are 1. Thus, this
is the case iff the circuit evaluates to 1. ut

We now consider the combined complexity of query evaluation. Note that
even if a CPQ[VPL] query can be converted into an equivalent CRQ[VPL] query,



the original query might be exponentially more concise, so the two families of
queries might have different combined complexities – and indeed, they do. Con-
sider first evaluating a CRQ[VPL] query Q. Since G, σ |= Q can be decided in
polynomial time and σ can be guessed in polynomial time, query evaluation is
in NP. Moreover, query evaluation is NP-hard for basic conjunctive queries [6].
As a consequence, CRQ[VPL] query evaluation is NP-complete wrt combined
complexity. The situation is rather different for CPQ[VPL] queries.

Theorem 2. Evaluating CPQ[VPL] queries is EXPTIME-complete (combined
complexity).

Proof. The emptiness of the intersection of a family of VPAs is EXPTIME-
complete due to the EXPTIME-completeness of the emptiness problem of a
familiy of tree automata. We show that this is also equivalent to CPQ[VPL]
query evaluation upto logspace reductions. Assume first a fixed query Q in the
form of a conjunct of k queries Q1, . . . , Qk with Qi of the form (xi, πi, yi) ∧
Li,1(πi) ∧ · · · ∧ Li,n(πi). Then, for every db-graph G and mapping σ, G, σ |= Q
iff L(σx, σy) ∩ Li,1 ∩ . . . Li,n 6= ∅ for all i = 1, . . . , k, which shows the upper
bound. Conversely, if L1, . . . , Ln is a family of visibly pushdown languages, and
if G is the graph restricted to a single node with a self loop labeled with Σ, then
G |= (x, π, x) ∧ L1(π) ∧ · · · ∧ Ln(π) iff L1 ∩ · · · ∩ Ln 6= ∅. ut

4 The Complexity of Evaluating ECPQ[VPL] Queries

We now address the complexity of evaluating extended queries. We just saw that
reachability and path queries are equally expressive in the non-extended case.
In the extended setting, however, reachability and path queries have important
differences. Let us first consider the richest language of extended path queries.

Theorem 3. Evaluating ECPQ[V PL] is undecidable for dimension 2 and two
path constraints (data and combined complexity).

In other words, there is a rquery Q ∈ ECPQ[VPL] containing two two-
dimensional relations R1, R2 ⊆ (Σ2

⊥)∗, such that query evaluation for Q is unde-
cidable. Note that according to the definition of ECPQ[VPL], Σ2

⊥ is partitioned
into the same visibly pushdown alphabet for R1 and R2, and note moreover that
the query Q is fixed.

Proof. We claim that there are two visibly pushdown languages L1, L2 over
two visibly pushdown alphabet Σ1, Σ2 containing the same symbols, but with
different associated operations, such that the word problem for L0 := {w |
there is v with wv ∈ L1∩L2} is undecidable. Indeed, it is folklore that for every

Turing machine M , there are pushdown languages L1, L2 such that L1 ∩ L2 is
the set of runs of M coded as words, and L0 can be defined as the set of inputs
accepted by a universal Turing machine M .

Now we reduce this problem to the problem of evaluating a fixed ECPQ[VPL]
query. Let Σ′ := Σ ∪ {$, ]} with the two symbols not occurring in Σ. A symbol



($, a) of (Σ′⊥)2 is a push (resp. pop, remain) symbol if a is a push (resp. pop,
remain) symbol in L1. Similarly, (#, a) is a push (resp. pop, remain) symbol if a
is a push (resp. pop, remain) symbol in L2. w = a1 . . . an ∈ Σ∗. The fixed query
we consider is Q =

Ans()← (x, π, y) ∧ (x, π$, x) ∧ (y, π#, y) ∧ (L1 × $∗)(π, π$) ∧ (L2 ×#∗)(π, π#).

Now, for every db-graph G of the form

. . .
a1

$
a2 a3 an

Σ ∪ {]}

it is not hard to see that w ∈ L0 iff Q(G) = true. ut

We now turn our attention to extended reachability queries. Evaluating an
ECRQ[VPL] query of dimension k over a db-graph G is equivalent to evaluating
a CRQ[VPL] query over Gk, which shows by Theorem 1 that the combined com-
plexity of evaluating ECRQ[VPL] queries also is in EXPTIME. The same remark
shows that the problem is in PTIME w.r.t. data complexity, and even P-complete
by Theorem 1. For the combined complexity, we have get EXPTIME-hardness.
The proof relies on EXPTIME-hardness of the following decision problem VpaD-
faISect.

– INPUT: a VPA A, and arbitrarily many DFAs A1, . . . ,An
– QUESTION: is L(A) ∩ L(A1) ∩ · · · ∩ L(An) empty?

Lemma 1. VpaDfaISect is EXPTIME-hard.

Proof. By a reducton the problem to decide whether or not the intersection
of the languages of given top-down tree automata (TA) A1, . . . ,An over some
alphabet Σ is empty. This is known to be EXPTIME-hard [15]. For the sake of
simplicity we assume that all the TA share a common state space Q, transition
function δ and acceptance set F ⊆ Q. The n different TA are then simply given
by n different initial states qI1 , . . . , q

I
n. W.l.o.g. we furthermore assume that the

underyling alphabet Σ has binary symbols a,b and a unique leaf symbol c, and
that trees have height (number of nodes) at least 2.

Next we consider a particular encoding of trees t with node labels of the

form Σ ×Qn as a word rep(t) over the alphabet Σ̂ = {
−−−→
(x, y),

←−−−
(x, y) | x, y ∈ Σ or

x, y ∈ Q}. This can easily be done by induction on the structure of t. If t is the
single-leaf tree with Σ-label c and any label from Qn then rep(t) is the empty
word. If t is of the form

x q1, . . . , qn

yp1, . . . , pn z r1, . . . , rn

and t′ and t′′ are the left and right subtrees starting with y and z respectively,
then we have

rep(t) =
−−→(
x
y

)−−−→(
q1
p1

)
. . .

−−−→(
qn
pn

)
rep(t′)

←−−−(
qn
pn

)
. . .

←−−−(
q1
p1

)←−−(
x
y

)−−→(
x
z

)−−−→(
q1
r1

)
. . .

−−−→(
qn
rn

)
rep(t′′)

←−−−(
qn
rn

)
. . .

←−−−(
q1
r1

)←−−(
x
z

)



It should be clear that the language {rep(t) | t is a Σ × Qn-labelled tree } is
recognisable by a VPA B over the visibly pushdown alphabet with push-symbols

of the form
−−→
(·, ·), pop-symbols of the form

←−−
(·, ·) and no internal symbols. It uses

Σ̂ as the stack alphabet and can then easily check the symmetries in the given
word. It needs n + 1 states to check that the length of each segment encoding
a node label is n + 1 while it pushes such an encoding onto the stack, and one

more state in which it pops such an encoding and compares it to the
←−−
(·, ·)-parts

of the word.
It remains to be seen that on such words a DFA Bi can check whether or

not the labelling in the i-th component of the state tuple forms an accepting
run of the TA Ai on the tree given by the Σ-labels. We describe its behaviour
informally, using the term segment to denote each part of length n + 1 in such
a word that enocdes the labels of two consecutive nodes in the tree.

1. It discards if the symbol at position i+1 of the entire word is not of the form−−−→
(qIi , ·), i.e. the run does not start in the initial state. Otherwise it continues.

2. On a −→· -segment it remembers the symbol
−−−→
(q, p) at position i + 1. If this

segment is followed by another −→· -segment then it discards this information
and continues. Otherwise the second components in this segment encode the
label of a leaf node, and Bi discards if p 6∈ F . Otherwise it continues.

3. On a ←−· -segment it remembers the symbols
←−−−
(q, p) and

←−−−
(a, b) at positions

n+ 1− i and n+ 1. If this segment is followed by another←−· -segment then it
discards this information because this segment encodes the labels on a node
and its right child. Otherwise this segment is followed by a −→· -segment, and
these two encode the labels on a node with Σ-label a and its two children.
Bi then also reads the symbol

−−−→
(q′, r) at position i of this successor segment

and discards if q 6= q′ or (p, r) 6∈ δ(q, a). Otherwise it continues reading the
next segment.

It should be clear that each Bi only needs polynomial size in Ai and n. Moreover,
we get that L(B) ∩

⋂n
i=1 L(Bi) 6= ∅ iff there is a word rep(t) in this intersection

which encodes a Σ×Qn-labelled tree such that the (i+ 1)-st components of the
labels form an accepting run of the TA Ai on the tree given by the Σ-labels.
This is the case iff

⋂n
i=1 L(Ai) 6= ∅. ut

Theorem 4. Evaluating ECRQ[VPL] queries is EXPTIME-hard (combined com-
plexity).

Proof. By a reduction from VpaDfaISect. Let A be a VPA and A1, . . . ,An
be n DFAs. We then construct a db-graph GA1,...,An

as their disjoint union and
add a self-loop labeled with a new symbol starti to every starting state in Ai as
well as a self-loop labeled with a new symbol end to each of its final states. Then
consider the n-ary relation

Rn =


 start1

...
startn


w

...
w


 end

...
end

 | w ∈ L(A)

 .



Note that it can be recognised by a VPA A′ of linear size in the size of A. Then
L(A) ∩

⋂n
i=1 L(Ai) 6= ∅ iff GA1,...,An

|=
∧n
i=1(xi, πi, yi) ∧Rn(π1, . . . , πn). ut

5 Query Containment

We now consider the problem of query containment. For ECRQ[REG] (extended
conjunctive regular reachabilty queries), Freydenberger and Schweikardt showed
that this problem is undecidable. In the remainder, we focus on query contain-
ment for CRQ[VPL] queries where no path variables occur in the head. That is,
we consider the problem Q1 ⊆ Q2 for two CRQ[VPL] queries Q1, Q2 of the form
Qh =

Ans(z1, . . . , zn)←
∧

i=1...mh

(xh,i, Lh,i, yh,i).

Note that the distinguished variables z1, . . . , zn are the same for the two queries.
We assume that these are the only variables shared by the queries – the non-
distinguished variables are assumed properly renamed. We also assume that the
languages Lh,i are recognised by VPAs working with a fixed visibly pushdown
alphabet Σ. The set Vi := nvars(Qi) is the set of all variables of Qi. A tuple
G = (V,E, σ) is a canonical candidate of Q1 if σ : V1 → V and G is the union
of m1 cycle-free paths π1, . . . , πn, one for each conjunct of Q1, such that πi goes
from σ(xi) to σ(yi). A canonical candidate of Q1 is a canonical model of Q1

if moreover λ(πi) ∈ L1,i. In particular, if G is a canonical model of Q1, then
σ(z) ∈ Q1(G). The following result has been proved in several places, see for
instance [11].

Lemma 2. Q1 ⊆ Q2 iff for all canonical model G = (V,E, σ) of Q1, there is
σ′ : V2 → V such that G, σ′ |= Q2 and σ(z) = σ′(z) for all distinguished variables
z.

We now follow the automata-based approach [5] for deciding query contain-
ment. The main idea of this approach is that canonical db-graphs can be rep-
resented by means of words. To every canonical db-graph G = (V,E, σ), we
associate the word wG := $d1w1d

′
1$d2w2d

′
2$ . . . $dm1wm1d

′
m1

$ where the new
symbol $ 6∈ Σ acts as a separator and d1, d

′
1, . . . , dm1

, d′m1
range over D1 := 2V1 .

The i-th block of wG contains $diwid
′
i$ if di = σ−1(σ(x1,i)), d

′
i = σ−1(σ(y1,i)),

and wi labels the path associated to the atom (x1,i, L1,i, y1,i). In the extended
visibly pushdown alphabet Σ ∪ {$} ∪ D1, the symbols $ and D1 are considered
no-op symbols.

Lemma 3. Let Q1 be a query of size n. Then L(Q1) := {wG | G is a canonical
model of Q1} is recognised by a VPA with 2O(n logn) states.

Proof. Let Lpart be the language of words w over Σ ∪ {$} ∪D1 such that the set
of D1 symbols of w define a partition of D1. Then Lpart is recognised by an NFA
that guesses the partition P of V1 and then checks that the set of D1 symbols of



w is P . Since there are 2O(|V1| log(|V1|)) different partitions of V1, the automaton
is of size 2O(n logn).

Let {x}↑ denote the set of D1 symbols d such that x ∈ d. The language
Lquery := ${x1}↑L1,1{y1}↑$ . . . ${xm1}↑L1,m1{ym1}↑$ is recognised by a VPA
with O(|Q1|) states. Since L(Q1) = Lpart ∩ Lquery, this shows the result. ut

Let G = (V,E, σ) be a canonical db-graph of Q1, and let σ′ : V1 ∪ V2 → V
be an extension of σ. The pair (G, σ′) can be represented as a word wG,σ′ over
the alphabet Σ ∪ $ ∪ D2 with D2 := 2V1∪V2 following the same idea as before,
except that now symbols d ∈ D2\1 := 2V2\V1 can occur anywhere – a variable
x ∈ V2\V1 can be mapped to a node σ′(x) that is not in the image of σ. Let π2→1

be the substitution that sends d ∈ D2 to d ∩ V1 if d ∩ V1 6= ∅, ε otherwise. Note
that if L is definable by a VPA, then π2→1(L) is definable by a VPA, because
π2→1 only changes or erases no-op symbols.

Let L(Q2|Q1) be the set of words wG,σ′ such that G, σ′ |= Q2 and G is a
canonical candidate for Q1. Then, by virtue of Lemma 3, Q1 ⊆ Q2 iff L(Q1) ⊆
π2→1(L(Q2|Q1)).

Example 2. Consider the query Q1 whose unique canonical model is the graph
G such that wG = ${x1}aa{y1}${x2}cc{y2}${y1}b{x2}$. Let Q2 be the query
(x, abc, z). Then G, σ′ |= Q2 for σ′ such that wG,σ′ =

${x1}a{x}a{y1}${x2}c{z}c{y2}${y1}b{x2}$,

so Q1 ⊆ Q2 (assuming G is the unique canonical model of Q1).

As seen in the example above, it is not straightforward to recognise L(Q2|Q1)
with a VPA, because checking the atom (x, L, y) requires an L-path to be guessed
that might be coded in different blocks, in any order, and the extremities of this
path can be at intermediate positions inside some blocks. This motivates the
following definition.

Definition 1. A jumping visibly pushdown automaton (JPA) over a visibly
pushdown alphabet Σ is a tuple A = (Q,Γ, δ, qI , F, J) such that (Q,Γ, δ, qI , F )
is a VPA and J ⊆ Q is a set of jumping states.

Intuitively, a JPA reads a word on a tape from left to right managing the stack
as usual, but when it enters a jumping state, the head of the tape can instanta-
neously move to any position, while erasing the content of the stack. Formally,
a configuration of the run of a jumping VPA over a nested word w ∈ Σ∗ is a
tuple (q, s, i) ∈ Q×Γ ∗×{1, . . . , |w|}; it is accepting if q ∈ F . The configuration
(q, s, i) leads to the configuration (q′, s′, i′), (q, s, i) `w (q′, s′, i′), if there is a
transition from (q, a, α, q′) ∈ δ such that a is the i-th symbol of w, α is some
stack action that transforms s into α(s), and either i′ = i+ 1 and s′ = α(s), or
q′ ∈ J and s′ = ⊥. A nested word w is accepted if (qI ,⊥, 1) `∗w (q, s, i) for some
accepting configuration (q, s, i).

Lemma 4. L(Q2|Q1) is recognised by a JPA with O(|Q1|+ |Q2|) states.



Proof. We first assume that Q2 contains only one atom (x, L, y). Let A =
(Q,Σ, δ, qI , F ) be the VPA representing L. We informally define a JPA B that
accepts wG,σ′ iff G, σ′ |= (x, L, y). In the first step, the automaton jumps any-
where in the word. Then it checks that the symbol it reads is a D2 symbol d that
contains x, and start running A. When it meets a D2 symbol d, it may jump
anywhere else provided the next symbol it will read is a D2 symbol d′ such that
d ∩ d′ ∩ V1 6= ∅. It accepts when it reads a symbol d that contains y.

Clearly, if wG,σ′ is accepted by B, the piece of wG over which B ran corre-
sponds to a path satisfying the atom (x, L, y). Conversely, assume that G, σ′ |=
(x, L, y). Then there is a word w1w2 . . . wn in L and blocks indices i1, . . . , in
such that w1 is a suffix of the word of i1th block of wG,σ′ , w2, . . . , wn−1 are
the words of the blocks i2, . . . , in−1, and wn is a prefix of the word of the inth
block. To ensure that an accepting run of A over w1w2 . . . wn can be mimicked
by an accepting run of B, it must be checked that the wi are well nested, so that
it does not harm to erase the stack when jumping. For k = 2, . . . n − 1, wk is
well-nested because it belongs to the visibly pushdown language L1,ik , and w1

and wn are also well-nested because they are prefixes of well-nested words of L
and L1,in respectively.

Let us assume now that Q2 is
∧n
i=1(xi, Li, yi), and let Bi be the JPA as-

sociated to the ith atom following the previous construction. Then we define
B as the automaton that executes B1, then B2, . . . , then Bn. Clearly |B| =
O(|B1|+ · · ·+ |Bn|) and L(B) =

⋂n
i=1 L(Bi), which shows the result. ut

Observe now that if a JPA has an accepting run over a word w, then it has
an accepting run over w with at most |J | jumps, where J is its set of jumping
states. This leads to the following result.

Lemma 5. For every JPA A with n states, there is a VPA B such that L(A) =
L(B) and |B| = 2O(n logn).

Proof. Let A be a fixed JPA. Observe that if A has an accepting run over a
word w, then it has an accepting run with at most |J | jumps, where J is the
set of jumping states. Indeed, if during a run A jumps in jumping state q from
position i1 to position j1 and later from i2 to j2 in the same jumping state q,
then a shorter run is obtained by jumping from i1 to j2 directly.

Consider a sequence S = (q1, q
′
1)(q2, q

′
2) . . . (q|S|, q

′
|S|) of |S| ≤ n pairs of

set of states of A. We say that S is accepting if q1 is the initial state, q′|S| is

accepting, and q′i = qi+1 ∈ J for each i = 1, . . . , |S|−1. There are thus 2O(n logn)

accepting sequences. For a fixed sequence S, and for each i = 1, . . . , |S|, there
is a VPA AS,i with O(n) states that accepts a word w iff w contains a factor
w′ and there is a run of A from qi to q′i over w′. There is also a VPA AS that
accepts

⋂n
i=1 L(AS,i) and such that |AS | = 2O(n logn). Let B be the automaton

that accepts
⋃
{L(AS) | S is an accepting sequence}. Then L(B) = L(A) and

|B| = 2O(n logn).

To sum up, Lemmas 4 and 5 show that L(Q2|Q1) can be recognised by
a VPA of exponential size, and so can L(Q1) (Lemma 3). Language inclusion



between two VPAs can be decided in exponential time, so the inclusion L(Q1) ⊆
L(Q2|Q1) can be decided in 2-EXPTIME.

Theorem 5. Containment for CRQ[VPL] queries is decidable in 2-EXPTIME.
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