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Abstract. Petri nets have been proposed as a fundamental model for
discrete-event systems in a wide variety of applications and have been
an asset to reduce the computational complexity involved in solving a
series of problems, such as control, state estimation, fault diagnosis, etc.
Many of those problems require an analysis of the reachability graph
of the Petri net. The basis reachability graph is a condensed version of
the reachability graph that was introduced to efficiently solve problems
linked to partial observation. It was in particular used for diagnosis which
consists in deciding whether some fault events occurred or not in the
system, given partial observations on the run of the system. However
this method is, with very specific exceptions, limited to bounded Petri
nets. In this paper, we introduce the notion of basis coverability graph
to remove this requirement. We then establish the relationship between
the coverability graph and the basis coverability graph. Finally, we focus
on the diagnosability problem: we show how the basis coverability graph
can be used to get an efficient algorithm.

Introduction

The marking reachability problem is a fundamental problem of Petri nets (PNs)
which can be stated as follows: Given a net system 〈N,M0〉 and a marking M ,
determine if M belongs to the reachability set R(N,M0). It plays an important
role since many other properties of interest can be solved by reduction to this
problem. The marking reachability problem has been shown to be decidable
in [11] and was shown to be EXPSPACE-hard in [15].

In the case of bounded PNs, i.e., net systems whose reachability set is finite,
a straightforward approach to solve this problem consists in constructing the
reachability graph, which provides an explicit representation of the net behavior,
i.e., its reachability set and the corresponding firing sequences of transitions.
However, albeit finite, the reachability graph may have a very large number
of nodes due to the so called state space explosion that originates from the
combinatorial nature of discrete event systems. For this reason, practically efficient
approaches, which do not require to generate the full state space, have been



explored. We mention, among others, partial order reduction techniques, such as
the general approaches based on stubborn sets [18] and persistent sets [8] or the
Petri net approaches based on unfolding [13] and maximal permissive steps [2].

In the case of unbounded PNs, whose reachability set is infinite, the authors
of [9] have shown that a finite coverability graph may be constructed which
provides a semi-decision procedure (necessary conditions) for the marking reach-
ability problem. It provides an over-approximation of both the reachability set
and the set of firing sequences. As was the case for the reachability graph, this
approach is not efficient and improvements to the basic algorithm have later been
proposed [14].

Recently some of us have proposed a quite general approach that exploits the
notion of basis marking to practically reduce the computational complexity of
solving the reachability problem for bounded nets. This method has originally
been introduced to solve problems of state estimation under partial observation [7]
but has later been extended to address fault diagnosis [4], state-based opacity [17]
and general reachability problems [10].

The approach in [10] considers a partition of the set of transitions T = Te∪Ti:
Te is called set of explicit transitions and Ti is called set of implicit transitions.
The main requirement is that the subnet containing only implicit transitions
be acyclic. The firing of implicit transitions is abstracted and only the firing
of explicit transitions need to be enumerated. The advantage of this technique
is that only a subset of the reachability space — i.e., the set of the so-called
basis markings — is enumerated. All other markings are reachable from a basis
marking by firing only implicit transitions and can be characterized by the integer
solutions of a system of linear equations. In a certain sense, this hybrid approach
combines a behavioral analysis (limited to the the firing of transitions in Te) with
a structural analysis (which describes the firing of transitions in Te).

The objective of this paper is mainly to show that the approach of [10] can
be generalized to unbounded nets. We define a basis coverability graph where the
firing of implicit transitions is abstracted, thus reducing the number of nodes
of the standard coverability graph. In addition, we show how this approach can
be applied to study the diagnosability of Petri nets in the logic framework of
[16]. Diagnosability is achieved in a system where transitions can be observable
or not is one can deduce from the observations that a specified faulty transition
was fired. In this case, we consider as implicit the set of unobservable transitions.
However, since the firing of unobservable faulty transitions need to be recorded,
we further extend the approach of [10] by considering that there may exists a
subset of implicit transitions (called relevant transitions) which, albeit abstracted,
need to be handled with special care. In terms of computational cost, relevant
transitions are in between observable and implicit transitions.

The paper is structured as follows. In Section 1, we recall some usual definitions
for Petri Nets and their coverability graph. In Section 2, we introduce the notion
of basis coverability graph and establish some of its properties. In Section 3 we
give the definitions of the diagnosability of a Petri Net. Finally in Section 4 we



study unbounded Petri nets and show how to use the basis coverability graph for
the diagnosability analysis.

1 Background on Petri nets and Coverability Graph

1.1 Petri Nets

In this section the formalism used in the paper is recalled. For more details on
Petri nets the reader is referred to [12].

Definition 1. A Petri net (PN) is a structure N = (P, T, Pre, Post), where
P is a set of m places; T is a set of n transitions; Pre : P × T → N and
Post : P × T → N are the pre– and post– incidence functions that specify the
arcs. We also define C = Post− Pre as the incidence matrix of the net.

A marking is a vector M : P → N that assigns to each place of a PN a
nonnegative integer number of tokens. A net system (NS) 〈N,M0〉 is a PN N
with an initial marking M0. A transition t is enabled at M iff M ≥ Pre(· , t) and
may fire yielding the marking M ′ = M + C(· , t). One writes M [σ〉 to denote
that the sequence of transitions σ = tj1 · · · tjk is enabled at M , and M [σ〉 M ′ to
denote that the firing of σ yields M ′. One writes t ∈ σ to denote that a transition
t is contained in σ. The length of the sequence σ (denoted|σ|) is the number of
transitions in the sequence, here k.

The set of all sequences that are enabled at the initial marking M0 is denoted
L(N,M0), i.e., L(N,M0) = {σ ∈ T ∗ | M0[σ〉}. Given k ≥ 0, the set of all
sequences of length k is written T k. A marking M is reachable in 〈N,M0〉 iff there
exists a firing sequence σ such that M0 [σ〉 M . The set of all markings reachable
from M0 defines the reachability set of 〈N,M0〉 and is denoted R(N,M0).

Let π : T ∗ → Nn be the function that associates with the sequence σ ∈ T ∗ a
vector y ∈ Nn, called the firing vector of σ. In particular, y = π(σ) is such that
y(t) = k iff the transition t is contained k times in σ.

A PN having no directed circuits is called acyclic. Given k ∈ N, a place p of
an NS 〈N,M0〉 is k-bounded if for all M ∈ R(N,M0), M(p) ≤ k. It is bounded if
there exists k ∈ N such that p is k-bounded. An NS is bounded (resp. k-bounded)
iff all of its places are bounded (resp. k-bounded).

A sequence is repetitive iff it can be repeated indefinitely (i.e. σ is repetitive
in the marking M iff M [σ〉M ′ with M ′ ≥M). There are two kinds of repetitive
sequences: a repetitive sequence is stationary if it does not modify the marking (i.e.
M [σ〉M), it is increasing otherwise. Remark that an NS containing an increasing
sequence can not be bounded.

Example 1. Consider the NS of Figure 1, the sequence t1, is increasing in the
initial marking M0 = [2, 0, 0, 0, 0]. Firing t1 k times in M0 leads to the marking
M1 = [2, k, 0, 0, 0]. Therefore the place p2 is not bounded. However, every other
place is 2-bounded.
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Fig. 1. A net system. Circles are places and rectangles are transitions. In the initial
marking, p1 has two tokens represented by the two black dots.

Definition 2. Given a net N = (P, T, Pre, Post), and a subset T ′ ⊆ T of its
transitions, let us define the T ′−induced subnet of N as the new net N ′ =
(P, T ′, P re′, Post′) where Pre′, Post′ are the restrictions of Pre, Post to T ′. The
net N ′ can be thought as obtained from N removing all transitions in T \ T ′. Let
us also write N ′ ≺T ′ N .

1.2 Coverability Graph

For a bounded NS 〈N,M0〉, one can enumerate the elements of the reachability
set R(N,M0) and establish the transition function between the markings. The
resulting graph is called Reachability Graph. If the NS is not bounded, this con-
struction does not terminate. Instead, an usual method is to build the Coverability
Graph which is a finite over-approximation of the reachability set and of the net
language [9]. We will define in this section the coverability graph of an NS which
if the NS is bounded is equal to the reachability graph of this NS.

An ω-marking is a vector from the set of places to N∪{ω}, where ω should be
thought of as ”arbitrarily large”: for all k ∈ N, we have k < ω and ω± k = ω. An
ω-marking M is (resp. strictly) covered by an ω-marking M ′, written M ≤M ′
(resp. M �M ′) iff for every place p of the net, M(p) ≤M ′(p) (resp. and there
exists at least one place p such that M(p) < M ′(p)).

Definition 3. Given an NS 〈N,M0〉, the associated coverability graph
CG〈N,M0〉 = (M,M0, ∆) is defined in the following manner.

We first define inductively a temporary set Mt of pairs of ω-markings and
set of ω-markings and the temporary transition function ∆t by:

– (M0, {M0}) ∈Mt and
– (M ′, B′) ∈Mt iff there exists (M,B) ∈Mt and t ∈ T such that
• either M [t〉M ′, B′ = B ∪ {M ′} and for all M ′′ ∈ B,M ′ 6M ′′;
• or, for M t such that M [t〉M t, there exists M ′′ ∈ B such that M t M ′′.

For every such M ′′, let p1, . . . , pk be the set of places such that for all
j, M t(pj)  M ′′(pj), then ∀j,M ′(pj) = ω. For every place p such that
M ′(p) 6= ω, M ′(p) = M t(p). Moreover B′ = B ∪ {M ′}.

In both cases, ((M,B), t, (M ′, B′)) ∈ ∆t.
We then define M = {M | ∃B, (M,B) ∈ Mt} and given M and M ′ in M,

(M, t,M ′) ∈ ∆ iff there exists B,B′ such that ((M,B), t, (M ′, B′)) ∈ ∆t.



The temporary graph built here is equivalent to the coverability tree of [5].
They proved in [9] that the coverability tree (and thus our temporary graph)
terminates in a finite number of steps.
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Fig. 2. Left: the coverability graph of the NS in Figure 1. Right: The BCG of the NS
in Figure 1 where Ti = {t2, t3, t4, t6} and Ts = {t6}. The firing vectors are omitted on
the edges.

Example 2. The coverability graph of the NS in Figure 1 is shown in Figure 2.
The firing of t1 at the initial marking adds a token to the second place, reaching
a marking strictly greater than the initial marking in this place and equal
everywhere else. Correspondingly in the coverability graph an ω appears in the
second component of the marking to show that there is a repetitive sequence
enabled by the system which increases the number of tokens in the second place.

A marking M is ω-covered by an ω-marking Mω, denoted M ≤ω Mω if
for every place p such that Mω(p) 6= ω, Mω(p) = M(p). Using this definition



and the coverability graph, we define the coverability set of an NS which is an
over-approximation of the reachability set.

Definition 4. Given an NS 〈N,M0〉, let M be the set of ω-markings of its
coverability graph, the coverability set of 〈N,M0〉 is

CS(N,M0) = {M ∈ Nm | ∃Mω ∈M,M ≤ω Mω}

t1 t2
2

Fig. 3. A Petri net where the coverability set strictly subsumes the reachability set.
Transition t2 is unobservable.

Example 3. The coverability set of the NS in Figure 1 is equal to its reachability
set. This is not the case however for the NS in Figure 3 where the reachability
set is {(k, 2r) | k, r ∈ N} while the coverability set is {(k, r) | k, r ∈ N}. We
however clearly see that the coverability set subsumes the reachability set. The
coverability graph of this NS is represented in Figure 4.
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Fig. 4. Left: the coverability graph of the NS in Figure 3. Right: The BCG of the NS
in Figure 3 where Ti = {t2} and Ts = ∅. The firing vectors are omitted on the edges.

We will use the rest of this section to recall a few known applications of the
coverability graph and the coverability set. All those results can be found in [5].
First, as claimed earlier, the coverability set subsumes the reachability set.

Proposition 1. Let 〈N,M0〉 be an NS, R(N,M0) ⊆ CS(N,M0).

The coverability graph can be used to determine if an NS is bounded.

Proposition 2. Given an NS 〈N,M0〉,

– a place p is k-bounded ⇔ for each marking M of CG〈N,M0〉, M [p] ≤ k.
– the marked net is bounded ⇔ no node of CG〈N,M0〉 contains the symbol ω



Repetitiveness can be partially checked on the coverability graph.

Proposition 3. Given an NS 〈N,M0〉, a marking M and a non-empty sequence
σ′ of transitions enabled by M ,

– σ is repetitive ⇒ there exists a directed cycle in the coverability graph whose
arcs form σ starting in an ω marking Mω such that Mω ≥ω M .

– σ is stationary ⇐ there exists a directed cycle starting in M in the graph
that does not pass through markings containing ω and whose arcs form σ.

The coverability graph can also be used to test whether a transition can
eventually be fired by the NS. A transition t is dead if there is no reachable
marking enabling it, it is quasi-live otherwise. It is live if for all reachable markings
M , there is a marking M ′ reachable from M enabling it. A marking is dead if
every transition is dead from this marking.

Proposition 4. Consider a marked net 〈N,M0〉, its coverability graph and an
observable transition t.

1. Transition t is dead ⇔ no arc labelled t belongs to the graph.
2. Transition t is quasi-live ⇔ an arc labelled t belongs to the graph.
3. Transition t is live ⇒ an arc labelled t belongs to each ergodic component of

the graph.
4. A marking M is dead ⇐ one ω-marking Mω of the coverability graph ω-

covering M has no output arc.

2 Basis coverability graph

2.1 Building the basis coverability graph

While the reachability/coverability graph has many applications, one of its
downside is its size. For bounded NS, the authors of [4, 6] introduced the notion
of basis reachability graph which keeps most of the information relevant for
partially observed systems of the reachability graph while decreasing, in some
cases exponentially, the size of the graph. Their goal at the time was to study
diagnosis. They then generalised this approach to study reachability (regardless
of labeling on transitions) in [10]. The idea of the basis reachability graph is to
select a set of transitions called ”implicit” in [10] (and unobservable in [4]) that
will be abstracted and to only represent the ”explicit” transitions that can be
fired (possibly after some implicit transition) in a given marking. In this section,
we will describe how to apply this idea to unbounded NS and how to build instead
a Basis Coverability Graph (BCG). When the NS is bounded, the BCG is equal
to the basis reachability graph.

Given a set of transitions T of a PN, we denote Ti ⊆ T and Te = T \ Ti the
sets of implicit and explicit transitions respectively. Let Ci (Ce) be the restriction
of the incidence matrix to Ti (Te) and ni and ne, respectively, be the cardinality
of the above sets of transitions. Given a sequence σ ∈ T ∗, Pi(σ), resp., Pe(σ),
denotes the projection of σ over Ti, resp., Te.



We will sometimes need the following assumptions.

A1: The Ti-induced subnet is acyclic.
A2: Every sequence containing only implicit transitions is of finite length.

Remark that for bounded NS, the first assumption, which is an usual requirement
for problems such as diagnosis of discrete event systems, implies the second one.

When the partition between implicit and explicit transitions is not given, one
can always choose a partition respecting the two assumptions above (for example
Te = T ). The authors of [10] discuss how to choose an appropriate partition for
the basis reachability graph and how this choice affects the cardinality of the set
of markings of the graph.

Definition 5. Given a marking M and an explicit transition t ∈ Te, let

Σ(M, t) = {σ ∈ T ∗i |M [σ〉M ′, M ′ ≥ Pre(·, t)}

be the set of explanations of t at M , and let

Y (M, t) = π(Σ(M, t))

be the e-vectors (or explanation vectors), i.e., firing vectors associated with the
explanations.

Thus Σ(M, t) is the set of implicit sequences whose firing at M enables t.
Among the above sequences we will select those whose firing vector is minimal and
those who are minimal while containing a transition among a chosen set Ts ⊆ Ti
which will be called the set of relevant transitions. This second category is used
to solve problems where it may be necessary to keep track of the occurrence
of a subset of implicit transitions. In particular it will be used in the section
about diagnosis later in this paper. As they are transitions we want to take
into account yet are not fully explicit, relevant transitions are more costly than
implicit transitions yet not as much as explicit transitions as we will see later.
The firing vector of these sequences are called (Ts-) minimal e-vectors.

Definition 6. Given a marking M , a transition t ∈ Te and a set of relevant
transitions Ts ⊆ Ti, let

Σmin(M, t) = {σ ∈ Σ(M, t) | @ σ′ ∈ Σ(M, t) : π(σ′) � π(σ)}

be the set of minimal explanations of t at M , and

ΣTs

min(M, t) = {σ ∈ Σ(M, t) | σ ∩ Ts 6= ∅ ∧ @ σ′ ∈ Σ(M, t) :
σ ∩ Ts = σ′ ∩ Ts ∧ π(σ′) � π(σ)}

the set of Ts-minimal explanations of t at M .

Remark that for two sets of relevant transitions Ts ⊆ Ti and T ′s ⊆ Ti, if
Ts ⊆ T ′s, for every marking M and explicit transition t ∈ Te, Σ

Ts

min(M, t) ⊆



Σ
T ′s
min(M, t). We will now build the BCG with a construction similar to the one

of the coverability graph. From a given marking, instead of choosing a transition
and creating the marking obtained by firing this transition, we will fire a sequence
composed of a minimal explanation of an explicit transition followed by the
explicit transition in question. In other words, we skip all the intermediary
markings that were reached by the firing of the implicit transitions. Moreover, in
order to determine which places are labelled by ω, instead of only remembering
the markings encountered, the temporary construction keeps pairs of marking
encountered and of the e-vector of the minimal sequence fired from that marking.
From these pairs, one can reconstruct every marking that could have been reached.

Definition 7. Given an NS 〈N,M0〉 verifying Assumption (A1) and a set of
relevant transition Ts ⊆ Ti, the associated basis coverability graph (BCG) with
relevant transitions Ts BCG

Ts

〈N,M0〉 = (M,M0, ∆) is defined in the following
manner.

We first define inductively a temporary setMt of pairs of ω-markings and set
of pairs of ω-markings and firing vectors and the temporary transition function
∆t by:

– (M0, ∅) ∈Mt and
– (M ′, B′) ∈ Mt iff there exists (M,B) ∈ Mt, t ∈ Te and σ ∈ Σmin(M, t) ∪
ΣTs

min(M, t) with M [σt〉Mn, where B′ = B ∪ {(M,π(σ))} and
• either Mn = M ′ and for all (M ′′, π) ∈ B, M [σ1〉M1 and M ′′[σ2〉M2 with
π(σ1) ≤ π(σt) and π(σ2) ≤ π, we have M1 6M2;

• or there exists (M ′′, π) ∈ B, M [σ1〉M1 and M ′′[σ2〉M2 with π(σ1) ≤ π(σt)
and π(σ2) ≤ π such that M1 M2. Then let p1, . . . , pk be the places such
that ∀i,M1(pi) > M2(pi). Let M̃ be the marking obtained from M by
replacing the number of tokens of the places pi by ω. We repeat the tests
from the marking M̃ until no new place can be modified. Let p1, . . . , pn
be the places of M where an ω was added in this process. Then for every
place p, if p ∈ {p1, . . . , pn}, M ′(p) = ω, otherwise M ′(p) = Mn(p).

In both cases ((M,B), (π(σ), t), (M ′, B′)) ∈ ∆t.
We then define M = {M | ∃B, (M,B) ∈ Mt} and given M and M ′ in M,

(M, (π(σ), t),M ′) ∈ ∆ iff there existsB,B′ such that ((M,B), (π(σ), t), (M ′, B′)) ∈
∆t.

The markings of the BCG are called basis markings.

This construction does not require to check every implicit sequence of transitions.
Indeed, it only focuses on the firing vectors which can be more efficiently analysed.
This is only possible thanks to Assumption (A1), or more precisely thanks to
Theorem 3.8 of [4] which requires (A1) (this is the result used every time
Assumption (A1) is required in the following). This results implies that due to
the acyclicity of the implicit net, the implicit transitions of an explanation that are
not part of the minimal explanation can be postponed after the explicit transition.
This gives an important leeway on the order in which the implicit transitions
have to be in. Removing the Assumption (A1) would allow the construction of



a variant of the BCG defined here, but its construction would be more costly
as we would need to consider the minimal explanations instead of their e-vector
and the variant may construct more states than the one built here.

We denote the projection of a sequence σ = (σ1, t1) . . . (σk, tk) . . . of the BCG
on its second component by Pt(σ) = t1 . . . tk . . . .

Example 4. Let us first consider the NS in Figure 3 with Ti = {t2} and no
relevant transition and the associated coverability graph and BCG in Figure 4.
In order to fire t1, firing t2 is not required. As a consequence, the firing of the
transition t2 is never used in the construction of the BCG.

As another example, we represent the BCG of the NS in Figure 1 (for
Ti = {t2, t3, t4, t6} and Ts = {t6}) in Figure 2. For readability the firing vectors
on the edges are omitted in the figure. This BCG has 11 less states than the
coverability graph.

Choosing Ts = {t6} adds the states {1, ω, 0, 0, 0} and {0, ω, 0, 0, 1} and the
edges affecting those states. The edge from {2, ω, 0, 0, 0} to {0, ω, 0, 0, 1} corre-
sponds to the {t6}-minimal explanation t2t2t3t4t6 of t5 which is not a minimal
explanation.

2.2 Properties of the basis coverability graph

We will list here some of the properties of the BCG. We will first give a few results
on the size of the BCG compared to the coverability graph and under variations
of the sets of explicit, implicit and relevant transitions. Then we will define the
notion of basis coverability set and show it is a better approximation of the
reachability set than the coverability set. Finally, we will see how the properties
of boundedness, repetitiveness and liveness translate from the coverability graph
to the BCG.

The BCG was introduced in order to gain in efficiency compared to the
coverability graph. The first property to mention is thus that the BCG is always
smaller than or equal to the coverability graph. This is formally proved in the
following.

Proposition 5. Given an NS 〈N,M0〉 verifying Assumption (A1) with set of
implicit transitions Ti, for any set of relevant transitions Ts ⊆ Ti it holds that
every basis marking M of BCGTs

〈N,M0〉 is a marking of CG〈N,M0〉.

Proof. As any marking of the BCG is reachable from M0, we will show the result
by induction on the length of a path reaching this marking. Let M be a marking
of BCGTs

〈N,M0〉 and σ a sequence such that M0[σ〉M .

If |σ| = 0, M = M0 which is a marking of CG〈N,M0〉.
Given n ∈ N, suppose that the property is true for every marking reached

by a path of length at most n. If |σ| = n + 1, there exists a sequence σ1
and a transition (e, t) of BCGTs

〈N,M0〉 such that σ = σ1(e, t), let M1 such that

M0[σ1〉M1, then by hypothesis M1 belongs to CG〈N,M0〉. Moreover, as there
is a transition M1[(e, t)〉M in the BCG, there exists a minimal explanation



σ′ = t1, . . . tn ∈ Σmin(M1, t) ∪ ΣTs

min(M1, t) such that π(σ′) = e and one of the
two conditions for a BCG transition between M1 and M is validated. If it is
the first condition, there is a path M1[t1〉M2 . . . [tn〉Mn[t〉M in CG〈N,M0〉, thus
M is a marking of CG〈N,M0〉. If it is the second condition, assume the process
ends in a single round. Then there exists a marking M< either encountered while
reading σ in the BCG or reachable by a subset of a minimal explanation that
is smaller than a marking M> reachable from M1. As all the markings of the
BCG encountered along σ1 be longs to the coverability graph, using Assumption
(A1) there is a path in the coverability graph from M< to an ω-marking Mω

>

with Mω
> ≥ω M> and as the process occurs only once, the only places where Mω

>

contains an ω and M> does not are the places where M> is strictly greater than
M<. By firing the transitions corresponding to the firing vector e that are left
after reaching M> in the coverability graph from Mω

> we reach M . The same
idea works if the process requires multiple rounds, however, in order to visit
every states that are covered and covering, one may need to extend the run. As
a consequence, M is a marking of CG〈N,M0〉 ut

How much is gained depends on the partition between implicit, explicit and
relevant transitions. For example, if every transition is explicit, the BCG is
exactly equal to the coverability graph. On the contrary, increasing the number
of implicit transitions reduce the size of the BCG.

Proposition 6. consider an NS 〈N,M0〉 verifying Assumption (A1) and two
sets of implicit transitions Ti and T ′i with T ′i ⊆ Ti. For any set of relevant
transitions Ts such that Ts ⊆ T ′i , every basis marking of the BCG of 〈N,M0〉 with
implicit transitions Ti is a basis marking of the BCG of 〈N,M0〉 with implicit
transition T ′i .

Proof. We call C and C ′ the two BCG with implicit sets of transitions Ti and
T ′i . We will show that any basis marking M of C is a basis marking of C ′ by
induction on the length n of the sequence reaching it. If n = 0, M = M0 and
belongs to C ′. Else, there is a sequence σ = σ1(e, t) (with e a firing vector of
implicit transition and t an explicit transition) and a basis marking M0 such
that M [σ1〉M0[(e, t)〉M in C. By induction hypothesis, M0 is a basis marking of
C ′. Let σ′ be a minimal explanation of t with π(σ′) = e. σ′ = σ0t0σ1 . . . tkσk+1

where for all i ≤ k + 1 the transitions ti are explicit transitions and the σi
are sequences of implicit transitions with respect to T ′i . Due to Assumption
(A1), we can assume without loss of generality that the σi, i ≤ k, are minimal
explanations of ti. Therefore there exists basis markings in C ′, M1, . . .Mk, such
that M0[(π(σ0), t0)〉M1 . . . [(π(σk), tk)〉Mk[(π(σk+1), t)〉M . Thus M belongs to
C ′. ut

With a similar proof, we can show that turning implicit transitions into
relevant transitions increases the number of markings.

Proposition 7. Consider an NS 〈N,M0〉 verifying Assumption (A1) with set of
implicit transitions Ti. For any two sets of relevant transitions Ts, T

′
s ⊆ Ti with

Ts ⊆ T ′s, every basis marking of BCGTs

〈N,M0〉 is a basis marking of BCG
T ′s
〈N,M0〉.
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Fig. 5. Left: the BCG of the NS in Figure 3 with t1 and t2 explicit. Right: the BCG of
the NS in Figure 3 with t1 relevant and t2 explicit. The firing vectors are omitted on
the edges.

Relevant transitions are in between explicit and implicit transitions in terms
of cost. This is strict as seen for example on the NS in Figure 3 when choosing t2
explicit and ts either explicit or relevant (the associated BCG are represented in
Figure 5). Here, making the transition relevant instead of explicit removes one
basis marking. In fact, on this example making t1 relevant or implicit does not
change anything contrary to what was seen in Example 4.

Let us now discuss about the importance of the gain of the BCG construction
through an example.

Example 5. Consider the NS in Figure 6, transitions t0, ti and tend being explicit

while the others are implicit. The BCG has exactly (s+3)(s+2)
2 basis markings,

thus is quadratic in s and does not depend on r or k. However, the coverability

graph has at least
∑s
j=0

(
r+j
j

)k
markings (this is the number of markings reached

while never firing t0). Thus is among others exponential in k. Moreover, as this
is without firing t0, this only describes a part of the coverability graph that do
not contain any ω.

We will now give some results showing that the BCG can effectively be used
in many cases instead of the coverability graph. As a first step, we will show that
the BCG can be used to define a set of markings that are an over-approximation
of the reachability set. We denote by Ri(N,M) the set of markings reachable
from M using only implicit transitions in the Petri net N . Given an ω-marking
Mω and a marking M , Mω =ω M iff for every place p such that Mω(p) 6= ω,
Mω(p) = M(p).

Definition 8. Given an NS 〈N,M0〉 with m places and a set of implicit tran-
sitions Ti, let Ts ⊆ Ti be a set of relevant transitions and let V be the set of
basis markings of BCGTs

〈N,M0〉. The basis coverability set of 〈N,M0〉 with relevant
transitions Ts is

BCSTs(N,M0) = {M ∈ Nm | ∃Mω ∈ V,∃Mu
ω ∈ Ri(N,Mω),Mu

ω ≥ω M}

This set can be easily computed for NS verifying (A1). For every possible
choice of Ts, the basis coverability set is an over-approximation of the reachability
set.
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Fig. 6. A Petri net where the BCG has exponentially less states than the coverability
graph. s is the number of tokens contained in this place in the initial marking and there
is r + 1 places in each of the parallel lines.

Proposition 8. Given an NS 〈N,M0〉 with set of implicit transitions Ti verifying
Assumption (A1) and a set of relevant transitions Ts ⊆ Ti, it holds R(N,M0) ⊆
BCSTs(N,M0).

Proof. Let σ be a sequence such that M0[σ〉M in the NS. We will proceed by
induction on the length of σ.

If |σ| = 0, M = M0 which is a marking of the BCG.
Given n ∈ N, supposing that the property is true for every marking reached

by a path of length at most n. For |σ| = n+ 1, σ = σ1t. Let M0[σ1〉M1. By the
induction hypothesis there exists a basis marking M b

ω and an ω-marking Mu
ω

such that Mu
ω ∈ Ri(N,M b

ω) and Mu
ω ≥ω M1.

• if t is implicit, as Mu
ω ≥ω M1, t is enabled by Mu

ω and the marking reached by
firing t in Mu

ω , let’s call it Mu,2
ω , verifies Mu,2

ω ≥ω M and Mu,2
ω ∈ Ri(N,M b

ω).
• if t is explicit, let σt such that M b

ω[σt〉Mu
ω . Since σt is an explanation of t, there

thus exist a minimal explanation σmin such that π(σmin) ≤ π(σt) and a sequence
σe ∈ T ∗i such that π(σmin) + π(σe) = π(σt). Let Ms ≤ω M b

ω such that Ms[σt〉M1

and Mf the marking such that Ms[σmint〉Mf . Using Assumption (A1), Mf [σe〉M .
By construction of the BCG, there exists a basis marking M b

2 reachable with
transition (π(σmin), t) from M b

ω such that M b
2 ≥ω Mf . Moreover, as Mf [σe〉M ,

triggering σe in M b
2 leads to a marking M2

ω such that M2
ω ≥ω M . ut

The following result characterizes a monotonicity property of the basis cover-
ability set with respect to the corresponding set of relevant transitions. It is a
direct corollary of Proposition 7.

Corollary 1. Given an NS 〈N,M0〉 verifying Assumption (A1) with set of
implicit transitions Ti. For any two sets of relevant transitions Ts and T ′s such
that Ts ⊆ T ′s ⊆ Ti, BCSTs(N,M0) ⊆ BCST ′s(N,M0).

The inclusion can be strict. Indeed, let us observe the NS of Figure 3 with
t2 implicit. The BCG with Ts = ∅ has two basis markings [0, 0] and [ω, 0]. The



associated basis coverability set is {[n, 2m] | n,m ∈ N}, which is equal to the
reachability set. However, the BCG with Ts = {t2} has the two previous basis
markings plus [ω, ω]. Therefore its basis coverability set is {[n,m] | n,m ∈ N},
which is equal to the coverability set. In fact the basis coverability set is always
a better approximation than the coverability set.

Proposition 9. Given an NS 〈N,M0〉 verifying Assumption (A1) with set
of implicit transitions Ti and a set of relevant transitions Ts ⊆ Ti, it holds
BCSTs(N,M0) ⊆ CS(N,M0).

Proof. Let M ∈ BCS(N,M0). By definition, there exists M ′ ≥ω M and Mb state
of the BCG with M ′ ∈ Ri(N,Mb). By Proposition 5, Mb is a state of CG〈N,M0〉.
Let σ be an implicit sequence such that Mb[σ〉M ′. By definition of Ri and of the
coverability graph there exists a state Mc of CG〈N,M0〉 such that Mb[σ〉Mc in
the CG and Mc ≥M ′. Thus Mc ≥M . Therefore M ∈ CS(N,M0). ut

We now show how the results relative to the coverability graph recalled in
the previous section (namely Propositions 2 and 3) can be transposed on the
BCG. As those results hold for every choice of set of relevant transitions Ts ⊆ Ti,
this set is omitted for the rest of the section.

Proposition 10. Given an NS 〈N,M0〉 with set of implicit transitions Ti veri-
fying Assumptions (A1) and (A2),

– a place p is k-bounded ⇒ for each basis marking M of the BCG M [p] ≤ k.
– p is not k-bounded ⇒ there exists a basis marking Mω and an ω-marking
Mu ∈ Ri(N,Mω) with Mu(p) > k;

– the NS is bounded ⇔ no basis marking of the BCG contains the symbol ω.

Proof. – The first item holds as this implication is true for every marking of
the coverability graph according to Proposition 2 and Proposition 5 which
claims that the markings of the BCG are markings of the coverability graph.

– Suppose that p is not k-bounded. There thus exists a marking M ∈ R(N,M0)
with M(p) > k. As R(N,M0) ⊆ BCS(N,M0) according to Proposition 8,
there exists a basis marking Mω and an ω-marking Mu ∈ Ri(N,Mω) such
that Mu ≥ω M . Thus Mu(p) > k.

– For the third item, the left to right implication is once again due to Proposi-
tion 5 and the fact that the equivalence holds when considering the coverability
graph as stated in Proposition 2.
For the right to left implication, suppose that no ω appears in the BCG. Then
BCS(N,M0) is finite as in every basis marking, which are also markings
reachable in the NS, there is finitely many sequences of implicit transitions
enabled thanks to assumption (A2). Therefore, according to Proposition 8 the
reachability set R(N,M0) is finite. This implies that the NS is bounded. ut

The reverse implication of the first item is false. Indeed, observe the NS of Figure 3,
the two basis markings of the BCG are [0, 0] and [ω, 0], however the second place
is not bounded by 0, in fact it is not bounded at all. In this respect, the BCG



may not explicitly show all the informations that appears in the coverability
graph. The second item shows the stronger requirement, using the implicit reach,
that is needed to get the reverse implication.

Proposition 11. Given an NS 〈N,M0〉 with set of implicit transitions Ti veri-
fying Assumption (A1), a non-empty sequence σ′ of explicit transitions and a
marking M

– there exists a repetitive sequence σ with Pe(σ) = σ′ enabled by M ⇒ there ex-
ists k ∈ N, two basis markings M1

ω, M2
ω and two ω-markings M i

u ∈ Ri(N,M i
ω),

i ∈ {1, 2}, such that:

• M ≤ω M i
u, i ∈ {1, 2};

• there is a path starting in M1
ω and ending in M2

ω in the BCG whose arcs,
projected on the second component, form σ′;

• there is a directed cycle starting in Mω in the BCG whose arcs, projected
on the second component, form (σ′)k.

– there exists a directed cycle starting in Mω in the BCG that does not pass
through markings containing ω and whose arcs, projected on the second
component, form σ′ where Mω is a basis marking such that M ∈ Ri(N,Mω)
⇒ there exists a stationary sequence σ with Pe(σ) = σ′ enabled by M .

Proof. – Suppose that σ is repetitive from M . Due to Proposition 8, there
exists a basis marking M0

ω and an ω-marking M0
u with M0

u ≥ω M and
M0
u ∈ Ri(N,M0

ω). Let σ = σ1t1 . . . σntnσn+1 where the σi’s are sequences of
implicit transitions and the ti’s are explicit transitions. As the NS verifies (A1)
and by construction of the BCG, there exists a sequence σ1 = σ1

1t1 . . . σ
1
ntn

enabled by M0
ω where the σ1

i ’s are minimal explanations of the ti’s and
ending in a basis marking M1

ω such that there exists an ω-marking M1
u with

M1
u ≥ω M and M1

u ∈ Ri(N,M1
ω). This translates in the BCG into a sequence

(π(σ1
1), t1) . . . (π(σ1

n), tn) from M0
ω to M1

ω. This can be repeated, giving a
family of sequences (σj)j∈N, of basis markings (M j

ω)j∈N and of ω-marking
(M j

u)j∈N such that M j−1
ω [σj〉M j

ω, M j
u ≥ω M and M j

u ∈ Ri(N,M
j
ω). Due

to the finite number of basis markings, there exists k, k′, k < k′, such that
Mk
ω = Mk′

ω . There thus exists a directed cycle starting in Mk
ω whose arcs,

projected on the second component, form Pe(σ)k
′−k.

– Suppose that there exists a directed cycle starting in the basis marking Mω

in the BCG that does not pass through markings containing ω and whose
arcs, projected on the second component, form σ′. Using the Proposition 5,
Mω is a marking of CG〈N,M0〉. Moreover due to the construction of the BCG
there exists σ such that Pe(σ) = σ′ and a directed cycle starting in Mω in
CG〈N,M0〉 that does not pass through markings containing ω and whose arcs
form σ. Due to Proposition 3, this implies that σ is stationary. ut

A marking M is finitely dead if there exists a bound k such that every sequence
of transitions enabled by M does not contain an explicit transition and has a
length smaller than k.



Proposition 12. Consider an NS 〈N,M0〉 with set of implicit transitions Ti
verifying Assumptions (A1) and (A2), its BCG and an explicit transition t .

1. Transition t is dead⇔ there is no arc labelled by t′ in the BCG with Pt(t
′) = t.

2. Transition t is quasi-live ⇔ there is an arc labelled by t′ in the BCG with
Pt(t

′) = t.
3. Transition t is live ⇒ there is an arc labelled by t′ in each ergodic component

of the BCG with Pt(t
′) = t.

4. A basis marking Mω in the BCG has no output arc ⇒ any marking M with
Mω ≥ω M is finitely dead.

Proof. 1. ⇒ If an arc labelled (p, t) belongs to the BCG, then there is a basis
marking Mω by which it is enabled. Thanks to Proposition 5, this basis
marking is an ω-marking of the coverability graph. Moreover due to the
construction of the BCG, this implies that there is a sequence σt, with σ
implicit, enabled by Mω in CG〈N,M0〉. Thanks to Proposition 4 this implies
that t is not dead.
⇐ If t is not dead, then there exists a reachable marking M in the NS such
that t is enabled by M . Due to Proposition 8, there thus exists an ω-marking
Mu and a basis marking Mω such that Mu ≥ω M and Mu ∈ Ri(N,Mω). Let
σ such that Mω[σ〉Mu. σ is an explanation of t, there thus exists a minimal
explanation σ′ of t. Therefore (π(σ′), t) is enabled by Mω.

2. This item is equivalent to the previous one.
3. Suppose that t is live. According to Proposition 4, there thus exists an

arc labelled t in each ergodic component of CG〈N,M0〉. Let Mω be a basis
marking, due to Proposition 5, it is a marking of CG〈N,M0〉 too. There thus
exists a path σ = σ1t1, . . . , σntn in CG〈N,M0〉 enabled by Mω with tn = t.
Without loss of generalities thanks to the (A1) assumption, one can suppose
the sequences σi to be minimal explanations of ti. By construction of the
BCG, there thus exists a path σ′ = (π(σ1, t1) . . . (π(σn), tn) enable in Mω in
the BCG. As it is true for every marking Mω, there is an arc whose second
component is t in every ergodic component.

4. Let Mω be a basis marking with no output arc. Let M such that Mω ≥ω M ,
suppose there exists an explicit transition t and an implicit sequence σ such
that σt is enabled by M . As Mω ≥ω M , σt is enabled by Mω in CG〈N,M0〉,
which would imply by construction of the BCG that there exists an outgoing
arc labelled by (p, t) in Mω for some firing vector p, which is a contradiction.
Therefore any sequence enabled by M is only composed of implicit transitions.
As those sequences are finite due to (A2), this means that the number of
implicit transitions that can be fired is bounded. Thus M is finitely dead. ut

3 Diagnosability of Unbounded Net Systems

3.1 Definition of Diagnosability

In the following, we want to use the BCG to deal with the problem of fault
diagnosis where the goal is to detect the occurrence of a fault under partial



observation. To this aim, we associate a well precise physical meaning to implicit,
explicit, and relevant transitions. In more detail:

– Implicit transitions correspond to transitions that cannot be observed. They
are called silent or unobservable and could either model a regular (nominal)
behaviour or a faulty behaviour of the system.

– Conversely, explicit transitions model transitions that can be observed. Those
observable transitions are assumed to be a regular behaviour of the system

– The set of faulty transitions is chosen as the set of relevant transitions.

We denote the above three sets as Tu, To, and Tf , respectively and choose Te = To
and Ti = Tu.

In simple words, we may assume that observable transitions model events
whose occurrence is detected by the presence of a sensor. On the contrary,
unobservable transitions correspond to events to whom no sensor is associated.
Note that, in the general case, the same output signal may correspond to different
events (different transition firings). This can be easily modelled using the notion
of labeling function. L : T → L ∪ {ε} that assigns to each transition t ∈ T
either a symbol from a given alphabet of events L (if T ∈ To) or the empty
string ε (if T ∈ Tu). We extend naturally L to sequences of transitions with
L(σt) = L(σ)L(t). The observed word w of events associated with the sequence
σ is w = L(σ). Note that the length of a sequence σ is always greater than
or equal to the length of the corresponding word w (denoted |w|). In fact, if σ
contains k′ transitions in Tu then |σ| = k′ + |w|. Given a word w ∈ L∗, we write
P(w) =

∑
σ∈P−1

e (w) P(σ). Assuming (A2), this sum is finite.

The goal of diagnosis is to detect whether a faulty event occurred in the
system. We denote by Tf ⊆ Tu the set of faulty transitions. A sequence σ is faulty
if there exists t ∈ Tf such that t ∈ σ, otherwise it is correct. An observed word w
is surely faulty (resp. correct) iff every sequence σ with L(σ) = w is faulty (resp.
correct) sequences, otherwise it is ambiguous. An NS system is diagnosable iff
all faults can be detected after a finite delay.

Definition 9. An NS 〈N,M0〉 is diagnosable if for every faulty sequence σ
enabled by M0, there exists n ∈ N such that for all sequences σ′ ∈ Tn with σσ′

enabled by M0, L(σσ′) is surely faulty.

Example 6. Consider again the NS in Figure 1,where the labelling function L is
such that L(t1) = b,L(t2) = a,L(t3) = L(t4) = ε and L(t5) = L(t6) = c. Thus, t3
and t4 are unobservable. Transition t5 being observable, the Tu−induced subnet
is acyclic.

Choosing Tf = {t3}, the infinite sequence σf = t1t2t3(t5)3 is faulty and its
observed word bac3 is surely faulty, so the fault can be detected here. However, the
sequences σf = t1t2t3(t1)∗ are faulty but their observed word bab∗ is ambiguous
as it can also correspond to the correct sequences t1t2(t1)∗ too. Thus this NS is
not diagnosable.



3.2 Diagnosability Analysis

Diagnosability was proven decidable [3, 1]. To do so, the authors of [3] gave a
characterisation of diagnosability using a tool called Verifier Net. The verifier net
is obtained by a composition (related to a parallel composition of the studied NS
and its T \ Tf -induced subnet with synchronisation on the observable transitions.

Definition 10. Given an NS 〈N,M0〉, let 〈N ′,M ′0〉 be the T \Tf -induced subnet
of 〈N,M0〉 (prime are used to differentiate states and transitions of N ′ from
those of N). We build the verifier net (VN) 〈Ñ , M̃0 of 〈N,M0〉 with Ñ =
(P̃ , T̃ , P̃ re, P̃ ost) where:

– P̃ = P ∪ P ′,
– T̃ = (T ′o × To) ∪ (T \ Tf × {λ}) ∪ ({λ} × T ),
– for t ∈ T, t′ ∈ T ′ \ Tf , p ∈ P , and p′ ∈ P ′, we have

• P̃ re(p, (λ, t)) = Pre(p, t) and P̃ ost(p, (λ, t)) = Post(p, t),
• P̃ re(p′, (t′, λ)) = Pre(p′, t′) and P̃ ost(p′, (t′, λ)) = Post(p′, t′),
• if L(t) = L(t′) 6= ε, P̃ re(p′, (t′, t)) = Pre(p′, t′) and P̃ ost(p′, (t′, t)) =
Post(p′, t′), P̃ re(p, (t′, t)) = Pre(p, t) and P̃ ost(p, (t′, t)) = Post(p, t).

All unspecified values are equal to 0.

Theorem 1 ([3]). An NS 〈N,M0〉 verifying Assumption (A1) is diagnosable iff
there does not exist any cycle in the coverability graph of the VN which (1) starts
from an ω-marking reachable by a faulty sequence and (2) is associated with a
repetitive sequence in the associated VN.

We will now use this characterisation to formulate a similar one using the BCG
instead of the coverability graph. A sequence of the BCG is called faulty if one
of the minimal e-vector used activated a transition of Tf (i.e. the corresponding

sequence belongs to Σ
Tf

min).

Theorem 2. An NS 〈P,M0〉 verifying Assumptions (A1) and (A2) is diagnos-
able iff there does not exist any cycle in the BCG with relevant set of transitions
Tf of the VN which (1) starts from a basis marking reachable by a faulty sequence
and (2) is associated with a repetitive sequence in the associated VN.

Proof. We will show that the existence of such a cycle in the BCG is equivalent
to the existence of this cycle in the coverability graph.

Supposing there exists a cycle associated with a firable repetitive sequence
σ ∈ T ∗ in the associated VN that starts from a basis marking Mω reached by a
faulty sequence in the BCG with relevant set of transition Tf of the VN, then by
Proposition 5, Mω is an ω-marking of the coverability graph and by construction
of the BCG, there exists a directed cycle starting in Mω in the coverability graph
whose arcs form σ.

Now suppose that there is a firable repetitive sequence σ = σ1t1 . . . σntn
in the VN that is associated to a cycle starting from an ω-marking reached
by a faulty sequence in the coverability graph of the VN. There thus exists a
marking M of the VN such that σ is repetitive starting in M . Because of the



assumption (A2), σ contains at least one observable transition. According to
Proposition 11, there thus exists a basis marking Mω and an ω-marking Mu such
that Mu ∈ Ri(N,Mω), Mu ≥ω M and there is a k ∈ N and a directed cycle
starting in Mω whose arcs, projected on the second component, form Po(σ)k.
Moreover, as M is reached by a faulty sequence σ′ = σ′1t

′
1 . . . σ

′
nt
′
nσ
′
n+1, one can

choose Mω to be reached by a sequence that used a minimal explanation from

Σ
Tf

min: if σ′i is faulty, one can choose the minimal explanation of ti to belong in

Σ
Tf

min.
Consequently the characterisation of Theorem 1 and Theorem 2 are equivalent

and can both be used to solve diagnosability. ut

Conclusion

In this paper, we introduced the notion of basis coverability graph which provides
an abstracted representation of the coverability graph. We established multiple
properties of the basis coverability graph, especially how it can be used to
approximate the reachability set efficiently. We then gave an application of the
basis coverability graph with the diagnosability analysis problem. We showed how
the basis reachability graph can be employed to efficiently replace a previously
known characterisation of the diagnosability of an unbounded NS. The logical
next step would be to implement the algorithms obtained and compare their
efficiency with other algorithms ([1] for example) on case studies.
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