
Compositional analysis of Boolean networks
using local fixed-point iterations

A. Le Coënt1, L. Fribourg2, and R. Soulat3

1 CMLA, ENS Cachan, CNRS, Université Paris-Saclay
61 av. du Président Wilson, 94235 Cachan cedex, France

adrien.le-coent@ens-cachan.fr
2 LSV, ENS Cachan, CNRS, Université Paris-Saclay

61 av. du Président Wilson, 94235 Cachan cedex, France
fribourg@lsv.ens-cachan.fr

3 Thales Research & Technology
1 av. Augustin Fresnel, 91767 Palaiseau, France

romain.soulat@thalesgroup.com

Abstract. We present a compositional method which allows to over-
approximate the set of attractors and under-approximate the set of basins
of attraction of a Boolean network (BN). This merely consists in replac-
ing a global fixed-point computation by a composition of local fixed-
point computations. Once these approximations have been computed, it
becomes much more tractable to generate the exact sets of attractors
and basins of attraction. We illustrate the interest of our approach on
several examples, among which is a BN modeling a railway interlocking
system with 50 nodes and millions of attractors.

1 Introduction

Boolean Networks (BNs) have been widely used to model biological systems [15].
The BN is a discrete model that comprises a number of nodes and correspond-
ing update rules. Classically, each node represents a gene and takes a value of 1
or 0, meaning that the gene is expressed or not. Each update rule represents
interactions between genes. BNs have also been used in industrial networks such
as railway yards [10]. The states of objects in a railway yard (railway interlock-
ing system) can be captured by means of Boolean variables. The control and
management of such systems can then be expressed under the form of rules of
BNs.

We consider here synchronous BNs, which means that the updates are per-
formed synchronously. Synchronous BNs can be considered as a class of de-
terministic finite state machines. Any sequence of consecutive states eventually
converges to a cycle of states, called an attractor. In biological systems, attractors
capture long-term behaviors of biological systems (e.g., growth, differentiation,
and apoptosis) [15]. In railway interlocking systems, attractors also convey im-
portant information.

2 A. Le Coënt, L. Fribourg, R. Soulat

Practically, all algorithms for computing attractors in Boolean networks face
a potential state-space explosion that must be addressed to handle large-scale
models. (The problem of finding attractors in BNs is NP-hard [1].) A common
approach is to use symbolic algorithms (Binary Decision Diagrams (BDDs) [3]
or SAT-based methods) which avoid representing explicit states and transitions.

Algorithms based on BDDs are usable to process BNs with up to a hun-
dred of state variables [17]. However for larger networks, BDDs become too
memory-consuming. Propositional decision procedures (SAT) do not suffer from
the potential space explosion of BDDs and can handle propositional satisfiability
with thousands of variables [8]. The approach in [9] relies on SAT-based bounded
model checking [2] to compute attractors. Those algorithms enable to scale up
hundreds of nodes with K (maximum indegree or maximum node connectivity)
≤ 3 (i.e., low maximum connectivity). However, in case of BNs with higher Ks,
a state explosion still occurs. The same phenomenon occurs when the number
of attractors Na increases, which makes the problem of finding attractors im-
practicable for the case studies that we consider here (for which Na increases
exponentially with the number n of state variables).

To expand the range of feasible BNs, partitioning-based attractor detection
algorithms have been published recently [12, 19]. Both works use a partitioning
strategy based on strongly connected component (SCC). Attractors are indepen-
dently detected in each block, and then combined to construct the attractors of
the original BN. Therefore better scalability can be achieved, but still for low
K (≤ 3). For BNs with large K, the size of the largest SCC is too large to be
analyzed within a reasonable time.

In order to overcome this problem, in [14], the authors propose a partition-
ing not based on SCC. They are thus able to find attractors for networks with
a number n of nodes up to 1000 and K = 5. Unfortunately the method gen-
erates only “steady states”, i.e, cyclic attractors of length 1, and ignores cyclic
attractors of greater length.

Here, we propose a method which uses the same kind of partitioning as
in [14] but we use a different algorithm for detecting the local attractors inside
each component: while [14] uses SAT-based bounded model checking methods
for finding local attractors, we use an “iterative reduction” method (similar
to [6], Sec. 11.2 and [7], Sec. VIII.B). For constructing the global attractors,
we first combine the results obtained by the local iterative reductions similarly
to [7]. This allows us to compute an over-approximation of the union of all the
attractors (not only the steady states). In a second step, starting from this over-
approximation, we then compute the exact set of all the attractors using global
fixed-point iterations.

We have implemented the method in Octave. Using this prototype, we are
able to find all the attractors of a BN with n = 50 and K = 6, which models a
portion of the New York City subway [11].

We also explain how our compositional method can be adapted to construct
(under-approximations of) basins of attraction.

Compositional analysis of Boolean networks 3

Plan
We explain how to find (a superset of) all the attractors in a compositional

way in Section 2 and (subsets of) basins of attraction in Section 3. We present
some experiments performed with a prototype implementation in Section 4. We
conclude in Section 5.

2 Attractors

2.1 Concrete functions

A synchronous Boolean Control Network (BCN) is a discrete-time dynamical
system subject to the rules

x(t+ 1) = f(x(t), u(t)) (1)

where x is a vector of n Boolean variables (called state), u is a vector of m
Boolean variables (called control input), and f is a vector of n Boolean functions
on these variables and inputs. We denote by S the set of all possible instantiations
of variables x (S = {0, 1}n). We denote by U the set of all possible instantiations
of inputs u (U = {0, 1}m).

In the following, we will consider that a BCN can be decomposed into two
systems of the form

x1(t+ 1) = f1(x1(t), x2(t), u1(t)) (2)

x2(t+ 1) = f2(x1(t), x2(t), u2(t)) (3)

where x1 and x2 are vectors of respectively n1 and n2 Boolean variables with
n = n1 + n2, u1 and u2 are vectors of respectively m1 and m2 Boolean inputs
with m = m1 +m2, and f1 and f2 are vectors of respectively n1 and n2 Boolean
functions on these variables and inputs. We denote by S1 the set of all possible
instantiations of variables x1 (S1 = {0, 1}n1), and by S2 the set of all possible
instantiations of variables x2 (S2 = {0, 1}n2). Likewise, we denote by U1 the set
of all possible instantiations of inputs u1 (U1 = {0, 1}m1), and by U2 the set of
all possible instantiations of inputs u2 (U2 = {0, 1}m2).

Remark: The way of finding interesting splittings of the system into two
sub-systems is beyond the scope of this paper. It can be done using the method
of [14].

A BN is a BCN without control inputs:

x(t+ 1) = f(x(t)). (4)

For the sake of simplicity, we will focus in the sequel of this section on BN.
The definitions of f , f1 and f2 can naturally be “lifted” to the powerset level.

We will use the same notation f for the functions and their lifted versions. For

4 A. Le Coënt, L. Fribourg, R. Soulat

X ∈ 2S , we have: f(X) = {f(x) | x ∈ X}. Likewise, given a set X1 ∈ 2S1 and a
set X2 ∈ 2S2 , we have for i = 1, 2: fi(X1, X2) = {fi(x1, x2) | x1 ∈ X1, x2 ∈ X2}.

In the rest of the paper, all the fixed-point results will concern functions
lifted at the powerset level.

We have:

Proposition 2.1. Suppose: F× ⊆ X ⊆ S. Then F× =
⋂
k≥0 f

k(X).

Proof. Suppose F× ⊆ X ⊆ S. Then
⋂
k≥0 f

k(F×) ⊆
⋂
k≥0 f

k(X) ⊆
⋂
k≥0 f

kS.

Hence: F× ⊆
⋂
k≥0 f

k(X) ⊆ F×. It follows: F× =
⋂
k≥0 f

k(X). �

As already mentioned, since a BN is subject to deterministic rules (applied
here synchronously) and since the number of elements is finite (equal to 2n),
every derivation from an arbitrary element ends to a cycle. The set of elements
composing this cycle is called an attractor. We have:

Proposition 2.2. The union of the attractors of the BN is equal to F×.

2.2 Abstract functions

We are going to give a method for computing an over-approximation (i.e., a
superset) of F×. This will be done by constructing the greatest fixed-point of
an “abstraction” f̃ of f . Let S̃ = (S1, S2).

Definition 2.3. The function f̃ : 2S1 × 2S2 → 2S1 × 2S2 is defined for all
X1 ∈ 2S1 and X2 ∈ 2S2 , by:

f̃(X1, X2) = (f1(X1, X2), f2(X1, X2))

= {(f1(x1, x2), f2(w1, w2)) | x1 ∈ X1, x2 ∈ X2, w1 ∈ X1, w2 ∈ X2}.

At the concrete (resp. abstract) level, we consider the finite lattice of functions
from 2S to 2S (resp. from 2S1 × 2S2 to 2S1 × 2S2). We say that two abstract
functions ϕ and ψ are ordered, and write ϕ ≤a ψ if for any (X1, X2) ∈ 2S1 ×2S2 :
ϕ(X1, X2) = (Y1, Y2), ψ(X1, X2) = (Z1, Z2) with Yi ⊆i Zi for i = 1, 2, where ‘⊆i’
denotes the inclusion ordering between elements of 2Si . Likewise, we say that
two concrete functions f and g are ordered, and write f ≤c g if f(X) ⊆c g(X)
where ‘⊆c’ denotes the inclusion ordering between elements of 2S . Without loss
of understanding, we will omit the indices of symbols ‘≤’ and ‘⊆’. Context will
make it clear. The identity function at the abstract (resp. concrete) level will be
denoted by Ida (resp. Idc). Note that, abstract functions and concrete functions
are monotonic since they are lifted at the powerset level. We have (see [7]):

Definition 2.4. The abstraction function α : 2S → 2S1 × 2S2 and the con-
cretization function γ : 2S1 × 2S2 → 2S are defined as follows:

– for all X ∈ 2S = 2S1×S2 ,

α(X) = (π1(X), π2(X)),

where πi is (the lift of) the i-th projection of S to Si (i = 1, 2).

Compositional analysis of Boolean networks 5

– for all X1 ∈ 2S1 and X2 ∈ 2S2 ,

γ(X1, X2) = X1 ×X2 = {(x1, x2) | x1 ∈ X1, x2 ∈ X2}.

The abstraction function α “separates” an element of 2S , i.e., a set X of n-
vectors of bits into two elements X1 and X2 of 2S1 and 2S2 respectively, i.e.,
into a set of n1-vectors and a set of n2-vectors with n = n1 + n2. Conversely,
the concretization function γ “gathers” two elements X1 and X2 of 2S1 and 2S2

into an element of 2S = 2S1×S2 .
It is easy to show that the function αfγ : 2S1 × 2S2 → 2S1 × 2S2 coincides

with the definition of f̃ given in Definition 2.3, i.e: f̃ = αfγ. We have:

Proposition 2.5. γα ≥ Idc, i.e., for all X ∈ 2S: γ(α(X)) ⊇ X.

Proof. Let X ∈ 2S . Write α(X) = (X1, X2). If x = x1x2 ∈ X then x1 ∈ X1 and
x2 ∈ X2, thus x ∈ γ(X1, X2) = γα(X).

Intuitively, this inclusion expresses the fact that by separating the arguments
at the abstract level, we lose the information of interdependence between these
arguments. The functions f , f̃ , α and γ satisfy basic properties of Abstract
Interpretation (see [7]):

Lemma 2.6. We have:

1. αγ ≤ Ida, i.e., for all (X1, X2) ∈ 2S1 × 2S2 : α(γ(X1, X2)) ⊆ (X1, X2).
2. fγ ≤ γf̃ , i.e., for all (X1, X2) ∈ 2S1 × 2S2 : fγ(X1, X2) ⊆ γf̃(X1, X2).

Proof. 1. Write (Y1, Y2) = αγ(X1, X2). Assume yi ∈ Yi for i = 1, 2. Then
∃y ∈ γ(X1, X2) : yi = πi(y) for i = 1, 2. Since y ∈ X1 × X2, yi ∈ Xi for
i = 1, 2. We have shown Yi ⊆ Xi for i = 1, 2, i.e.: (Y1, Y2) ⊆ (X1, X2).

2. Since Idc ≤ γα by Proposition 2.5 and f̃ = αfγ, we have: γf̃ = γαfγ ≥ fγ.
�

Remark. In general we do not have αγ(X1, X2) = (X1, X2) because, in the
case X1 = ∅, we have αγ(∅, X2) = α(∅ × X2) = (∅, ∅) which is distinct from
(X1, X2) when X2 6= ∅.

Let us write the greatest fixed-point gfp(f̃) of f̃ as (F×1 , F
×
2).

Proposition 2.7. We have:

1. gfp(f) ≤ γ gfp(f̃), i.e.: F× ⊆ F×1 × F
×
2 .

2. F× =
⋂
k≥0 f

k(F×1 × F
×
2).

This proposition is a consequence of Theorem 2.8 that is given below. The pair
(F×1 , F

×
2) can be thus used as a ‘seed’ for the computation of the greatest fixed-

point F× of f : one starts the iteration of f from F×1 × F
×
2 instead of starting

from S. It may be easier to compute F× starting from F×1 × F
×
2 rather than S

because |F×1 × F
×
2 | is sometimes much smaller than |S| = 2n.

For a given integer ` ≥ 1, let us define g and g̃ by: g = f ` and g̃ = αgγ.
Let us write the greatest fixed-point of g̃ as (G×1 , G

×
2). We have:

6 A. Le Coënt, L. Fribourg, R. Soulat

Theorem 2.8. For all integer ` ≥ 1:

1. F× = G×.
2. G× ⊆ G×1 ×G

×
2 .

3. F× =
⋂
k≥0 f

k(G×1 ×G
×
2) =

⋂
k≥0 g

k(G×1 ×G
×
2).

4. G×1 ×G
×
2 ⊆ F

×
1 × F

×
2 .

Proof. 1. We have: F× =
⋂
k≥0 f

k(S) =
⋂
k≥0 f

k`(S) = G×.
2. By Lemma 2.6.3 with g in place of f , we have: gγ ⊆ γg̃. One can then prove

by induction on k: for all k ≥ 0, gkγ(S̃) ⊆ γg̃k(S̃). Passing to the limit and
using γS̃ = S1 × S2 = S, it follows: G× ⊆ G×1 ×G

×
2 .

3. By items 1 and 2, we have: F× ⊆ G×1 × G
×
2 ⊆ S. It follows by by Proposi-

tion 2.1: F× =
⋂
k≥0 f

k(G×1 ×G
×
2).

4. Using f̃ = αfγ and γα ⊇ Idc (Proposition 2.5), we can prove by induction on
`: f̃ ` ⊇ αf `γ, for ` ≥ 0. Passing to the limit, we have: (F×1 , F

×
2) ⊇ (G×1 , G

×
2).

Hence: G×1 ×G
×
2 ⊆ F

×
1 × F

×
2 .

�

It can be interesting to perform the computation of F×, starting from G×1 ×G
×
2

rather than F×1 ×F
×
2 , because |G×1 ×G

×
2 | may be much smaller than |F×1 ×F

×
2 |.

Note that, for ` = 1, g coincides with f , G× with F×, and G×i with F×i (i = 1, 2).
Hence Proposition 2.7 is an immediate consequence of Theorem 2.8.

2.3 Example

We will illustrate our approach with the example 6.2 of [4], which is a BN given
by the rules:

A(t+ 1) = 1 ∧H(t),
B(t+ 1) = A(t) ∧ (A(t) ∨ C(t)),
C(t+ 1) = I(t),
E(t+ 1) = 1 ∧ C(t) ∧ (C(t) ∨ F (t)),
F (t+ 1) = E(t) ∧ (E(t) ∨G(t)),
G(t+ 1) = 1 ∧ (B(t) ∨ E(t)),
H(t+ 1) = F (t) ∧ (F (t) ∨G(t)),
I(t+ 1) = H(t) ∧ (H(t) ∨ I(t)).

This corresponds to state variable x = (A,B,C,E, F,G,H, I) and S =
{0, 1}8. The system is split in two as follows: x1 = (A,F,G,H, I), x2 = (B,C,E),
S1 = {0, 1}5, S2 = {0, 1}3.

Computation of F×1 × F
×
2

In order to compute gfp(f̃)= (F×1 , F
×
2), we use a strategy related to the appli-

cation of Bekić-Leszczy lowski theorem (see [16]). Roughly speaking, we compute
at step i an intermediate fixed-point F1,i+1 starting from the current value F1,i

of the 1st component using the current value F2,i of the 2nd component as a
parameter. Then, we compute a new intermediate fixed-point F2,i+1 starting

Compositional analysis of Boolean networks 7

from F2,i using F1,i+1 as a parameter, and so on alternatively until stabilization.
We have:

F1,0 = S1,
F2,0 = S2.

F1,1 = {00000, 00001, 00010, 00011, 00100, 00101, 00110, 00111, 01000, 01001,
01010, 01011, 01100, 01101, 01110, 01111, 10000, 10001, 10010, 10011, 10100,
10101, 10110, 10111, 11000, 11001, 11010, 11011, 11100, 11101, 11110, 11111},

F2,1 = {000, 001, 010, 011, 101, 111}.

F1,2 = {00000, 00010, 00100, 00110, 01000, 01010, 01011, 01100, 01101,
01110, 01111, 10000, 10010, 10100, 10110, 11000, 11010, 11011, 11100, 11101,
11110, 11111},

F2,2 = F2,1.

F1,3 = F1,2.

Hence F×1 × F
×
2 = F1,2 × F2,1 has 22× 6 = 132 elements. The computation

of (F×1 , F
×
2) is obtained in 2 iterations and 0.87 seconds of CPU time using our

prototype implementation (see Section 4). The computation of F× by iteration
of f starting from F×1 × F×2 is then obtained in 11 iterations and takes 0.11
seconds of CPU time.

Computation of G×1 ×G
×
2 , with g = f2

We have:

G1,0 = S1,
G2,0 = S2.

G1,1 = {00000, 00001, 00100, 00101, 00110, 00111, 01010, 01011, 01110,
01111, 10000, 10100, 10110, 11000, 11010, 11100, 11110},

G2,1 = {000, 001, 011, 101}.

G1,2 = {10000, 11000, 11010, 01011, 01010, 01111, 00100, 10100, 10100},
G2,2 = G2,1.

G1,3 = G1,2.

Hence G×1 × G
×
2 = G1,2 × G2,1 has only 9 × 4 = 36 elements. This shows

that the over-approximation G×1 × G×2 of F× is much finer than F×1 × F×2 .
The computation of (G×1 , G

×
2) is obtained in 2 iterations and 0.84 seconds of

CPU time with our prototype implementation. The fixed point F× of f is then
obtained from G×1 × G

×
2 via 11 applications of f , which takes 0.10 seconds of

CPU time. This yields:
F× = {01111 · 001, 00100 · 011, 01010 · 011, 01011 · 101, 10100 · 000, 10000 ·

101, 10100 · 101, 11000 · 101, 11010 · 101}
where each element of F× is an instance of x = x1 · x2 = AFGHI · BCE. It

8 A. Le Coënt, L. Fribourg, R. Soulat

is easy to see that all the elements of F× here belong to a unique attractor of
length 9 (i.e., F× is of the form {σ1, . . . , σ9} with f(σi) = σi+1 for 1 ≤ i ≤ 8,
and f(σ9) = σ1).

By comparison, the global computation of F× by iterated application of f to
S takes 12 iterations and 0.92 seconds of CPU time. On such a small example,
the compositional approach does not bring a significant difference with the global
approach, neither in terms of number of iterations nor in terms of computation
time.

Remark: We have described here a method which computes attractors for a
system split into two sub-systems. The extension to more than two sub-systems
is straightforward.

3 Basins of attraction

We now reintroduce the set U of control variables.

3.1 Concrete functions

Given a stationary point σ of f (i.e., an element σ of S = S1 × S2 such that
f(σ, u) = σ for some u ∈ U), it is interesting to compute the basin of attraction
of σ, i.e.: the set of elements x such that f(· · · f(f(x, u1), u2), . . . , uk) . . .) = σ
for some k > 0 and (u1, u2, . . . , uk) ∈ Uk.

Classically, backward reachability procedures are used (see, e.g., [18]) to com-
pute basins of attraction. Let us define the predecessor operator. For all X ⊆ S:

p(X) = {y ∈ S | ∃u ∈ U : f(y, u) ∈ X}.

As usual, we define pk(X) by: p0(X) = X and pk+1(X) = p(pk(X)) for k ≥ 0.
Since σ is a stationary point, the sequence {pi({σ})}k≥0 is increasing. When the
fixed-point p∗({σ}) is reached, at step j (i.e. pj+1({σ}) = pj({σ})), we have:
p∗({σ}) =

⋃
k≥0 p

k({σ}) = pj({σ}). Since {σ} ⊆ p({σ}), the set p∗({σ}) is, by
Kleene fixed-point theorem, the least fixed-point of p containing σ; it coincides
with the smallest prefixed-point of p containing σ, i.e., the smallest set X ∈ 2S

containing σ such that ∀x ∈ X∃u ∈ U f(x, u) ∈ X. We have:

Proposition 3.1. The basin of attraction of σ is equal to

p∗({σ}) =
⋃
k≥0

pk({σ}).

The counterpart of Proposition 2.1 is:

Proposition 3.2. Suppose: {σ} ⊆ X ⊆ p∗({σ}). Then: p∗({σ}) =
⋃
k≥0 p

k(X).

The proof is analogous to that of Proposition 2.1.

Compositional analysis of Boolean networks 9

3.2 Abstract functions

We now focus on systems of the form (2)-(3), i.e. that can be decomposed in
two parts, this along S and along U . A stationary point σ is of the form (σ1, σ2)
with σ1 ∈ S1 = {0, 1}n1 , σ2 ∈ S2 = {0, 1}n2 . Let σ̃ = ({σ1}, {σ2}).

We are going to introduce two abstractions p̃X2
(X1) and p̃X1

(X2) of p. We
will then compute least fixed-points, denoted by p̃∗S2

({σ1}) and p̃∗S1
({σ2}), of

p̃S2(·) and p̃S1(·) containing {σ1} and {σ2} respectively. We will show that
p̃∗(σ̃) = (p̃∗S2

({σ1}), p̃∗S1
({σ2})) satisfies {σ} ⊆ γp̃∗(σ̃) ⊆ p∗({σ}). Hence, by

Proposition 3.2, the basin of σ can be obtained by iteratively applying p to
γp̃∗(σ̃) instead of {σ}. This may reduce the computation time of the basin of σ.

We introduce the following (controlled) abstract predecessor operators:

p̃X2(X1) = {y1 ∈ S1| ∃u1 ∈ U1, ∀x2 ∈ X2, f1(y1, x2, u1) ∈ X1}, (5)

p̃X1(X2) = {y2 ∈ S2| ∃u2 ∈ U2, ∀x1 ∈ X1, f2(x1, y2, u2) ∈ X2}. (6)

We denote by p̃∗S2
({σ1}) and p̃∗S1

({σ2}) the least fixed-points obtained by
iterative application of p̃S2

(·) and p̃S1
(·) starting from {σ1} and {σ2} respectively.

Finally, we write p̃∗(σ̃) = (p̃∗S2
({σ1}), p̃∗S1

({σ2})).

Lemma 3.3. For all (X1, X2) ∈ 2S1 × 2S2 , we have γ(p̃S2
(X1), p̃S1

(X2)) ⊆
pγ(X1, X2).

Proof. Let w = (w1, w2) ∈ γ(p̃S2
(X1), p̃S1

(X2)). We know that:

∃u1 ∈ U1, ∀x2 ∈ S2, f1(w1, x2, u1) ∈ X1

and
∃u2 ∈ U2, ∀x1 ∈ S1, f2(x1, w2, u2) ∈ X2.

In particular:
∃u1 ∈ U1, f1(w1, w2, u1) ∈ X1

and
∃u2 ∈ U2, f2(w1, w2, u2) ∈ X2.

Hence:

∃u = (u1, u2) ∈ U, f((w1, w2), u) = (f1(w1, w2, u1), f2(w1, w2, u2)) ∈ X1 ×X2,

i.e. w ∈ pγ(X1, X2). �

Theorem 3.4. We have:

1. {σ} ⊆ γp̃∗(σ̃) ⊆ p∗({σ}).
2. p∗({σ}) =

⋃
k≥0 p

k(γp̃∗(σ̃)).

Proof. 1. Ones proves that, for all k ≥ 0, {σ} ⊆
⋃
j≤k γ(p̃jS2

(X1), p̃jS1
(X2)) ⊆⋃

j≤k p
jγ(σ̃) by induction on k, using Lemma 3.3. Passing to the limit, it

follows: {σ} ⊆ γp̃∗(σ̃) ⊆ p∗({σ}), using γ(σ̃) = {σ}.

10 A. Le Coënt, L. Fribourg, R. Soulat

2. Since {σ} ⊆ γp̃∗(σ̃) ⊆ p∗({σ}) by item 1, it follows by Proposition 3.2:
p∗({σ}) =

⋃
k≥0 p

k(γp̃∗(σ̃)).
�

Remark:
Note that it is possible to extend the definitions (5) and (6) to the use of

sequences of control inputs using the following definitions:

p̃`1X2
(X1) = {y1 ∈ S1 | ∃u11 . . . u

`1
1 ∈ U

`1
1 ,∀u12 . . . u

`1
2 ∈ U

`1
2

π1f(. . . f(f((y1, S2), (u11, u
1
2)), (u21, u

2
2)) . . . , (u`11 , u

`1
2)) ∈ X1},

p̃`2X1
(X2) = {y2 ∈ S2 | ∃u12 . . . u

`2
2 ∈ U

`2
2 ,∀u11 . . . u

`2
1 ∈ U

`2
1

π2f(. . . f(f((S1, y2), (u11, u
1
2)), (u21, u

2
2)) . . . , (u`21 , u

`2
2)) ∈ X2}.

4 Experiments

The experiments presented here have been performed with our prototype written
in Octave. The computation times given below have been performed on an Intel
Core i7-4810MQ CPU running at 2.80GHz with 8GB of RAM memory.

4.1 Attractors

In industrial case studies, such as railway interlocking, it is important to show
that all the attractors are cycles of length 1 (stationary states). We have tested
our method on an example of a railway interlocking system taken from “NXSYS,
Signalling and Interlocking Simulator” [11]. The dynamics of the BN model of
the system is given in Appendix. This example has 28 variables and 22 param-
eters. The objective of the analysis is to show that for any valuation ν of the
parameters in {0, 1}22, all the attractors are stationary states. We divide the
system into 4 sub-systems as explained in Appendix. The computation of the
over-approximated set of attractors {F×1,ν × F×2,ν × F×3,ν × F×4,ν}ν∈{0,1}22 took
2 hours. The computation of the exact set of attractors A = {F×ν }ν∈{0,1}22
then took 12 more hours. The total number of attractors is |A| ' 24.106,
and we check that all the elements of A are stationary states. By compari-
son, for a single instantiation ν, the state-of-art program BNS (available at
https://people.kth.se/∼dubrova/bns.html) takes 0.02s, which seems to indicate
that BNS would take at least twice more time for computing the whole set of
attractors of the 222 instantiations of the problem.

4.2 Basins of attraction

We have experimented the compositional computation of basins of attraction on
small examples of the literature, e.g.:

Compositional analysis of Boolean networks 11

– regulation of the mammalian cell cycle [13] (9 variables, 1 input),
– Example 29 of [5] (5 variables and 2 control inputs).

We present here the example of the regulation of the mammalian cell cycle
[13], which dynamics is the following:

Y1(t+ 1) = (Ū(t) ∧ Ȳ3(t) ∧ Ȳ4(t) ∧ Ȳ9(t)) ∨ (Y5(t) ∧ Ū(t) ∧ Ȳ9(t)),

Y2(t+ 1) = (Ȳ1(t) ∧ Ȳ4(t) ∧ Ȳ9(t)) ∨ (Y5(t) ∧ Ȳ1(t) ∧ Ȳ9(t)),

Y3(t+ 1) = Y2(t) ∧ Ȳ1(t),

Y4(t+ 1) = (Y2(t) ∧ Ȳ1(t) ∧ Ȳ6(t) ∧ (Y7(t) ∧ Y8(t)))

∨(Y4(t) ∧ Ȳ1(t) ∧ Ȳ6(t) ∧ (Y7(t) ∧ Y8(t))),

Y5(t+ 1) = (Ū(t) ∧ Ȳ3(t) ∧ Ȳ4(t) ∧ (Ȳ9(t))

∨(Y5(t) ∧ (Y3(t) ∧ Y4(t)) ∧ Ū(t) ∧ Ȳ9(t)),

Y6(t+ 1) = Y9(t+ 1),

Y7(t+ 1) = (Ȳ4(t) ∧ Ȳ9(t)) ∨ Y6(t) ∨ (Y5(t) ∧ Ȳ9(t)),

Y8(t+ 1) = Ȳ7(t) ∨ (Y7(t) ∧ Y8(t) ∧ (Y6(t) ∨ Y4(t) ∨ Y9(t))),

Y9(t+ 1) = Ȳ6(t) ∧ Ȳ7(t).

For this example, it is known that there exists a stationary point σ (associated
to a sequence of inputs equal to 1), with σ = {100010100}.

Let us explain how we compute the basin of attraction of σ with the com-
positional method.We split the system in two: x1 = (Y1, Y2, Y3, Y5) and x2 =
(Y4, Y6, Y7, Y8, Y9), S1 = {0, 1}4 and S2 = {0, 1}5. The fixed-points p̃∗S2

({σ1})
and p̃∗S1

({σ2}) are obtained in 2 iterations and 1.71 seconds of CPU time, with
sequences of control inputs of length lower than 5. The size of p̃∗(σ1, σ2) is
16× 21 = 336. By computing the iterated predecessors of γp̃∗(σ1, σ2) via p, we
find in 3.03 seconds and 3 iterations, that the basin of attraction is equal to
S. By comparison, the global computation of p∗(σ) takes 4.15 seconds and 4
iterations. On such a small example, the results of the two approaches in terms
of computation times and number of iterations are similar.

5 Final remarks

We proposed a compositional method based on local fixed-point iterations. The
method has been successfully applied to an example with 50 variables model-
ing a part of New York City subway, which allows us to identify more than 24
millions of attractors. We believe that such a finding of all the attractors would
be difficult using a global approach with state-of-the-art tools. Our current im-
plementation of the method is a simple prototype with explicit representation
of Boolean states. We are currently integrating symbolic structures (BDDs) to
the code in order to treat larger examples. One of our objectives is to find the
attractors of a real railway interlocking system provided by Thales.

12 A. Le Coënt, L. Fribourg, R. Soulat

Acknowledgement. We are most grateful to Philippe Schnoebelen for in-
sightful explanations on Abstract Interpretation and numerous comments on an
earlier draft of this paper.

This work is supported by Institut Farman (ENS Cachan) and by the French
National Research Agency through the “iCODE Institute project” funded by
the IDEX Paris-Saclay, ANR-11-IDEX-0003-02.

References

1. Tatsuya Akutsu, Sven Kosub, Avraham A Melkman & Takeyuki Tamura (2012):
Finding a periodic attractor of a Boolean network. Computational Biology and
Bioinformatics, IEEE/ACM Transactions on 9(5), pp. 1410–1421.

2. Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Masahiro Fujita & Yun-
shan Zhu (1999): Symbolic Model Checking Using SAT Procedures instead of
BDDs. In: DAC, pp. 317–320, doi:10.1145/309847.309942. Available at
http://doi.acm.org/10.1145/309847.309942.

3. Randal E Bryant (1986): Graph-based algorithms for boolean function manipula-
tion. Computers, IEEE Transactions on 100(8), pp. 677–691.

4. Daizhan Cheng & Hongsheng Qi (2010): A linear representation of dynamics of
Boolean networks. Automatic Control, IEEE Transactions on 55(10), pp. 2251–
2258.

5. Daizhan Cheng, Hongsheng Qi & Yin Zhao (2011): On Boolean control networks –
an algebraic approach. In: Proceedings of the 18th IFAC World Congress, Milano,
pp. 8366–8377.

6. P. Cousot (1999): The Calculational Design of a Generic Abstract Interpreter. In
M. Broy & R. Steinbrüggen, editors: Calculational System Design, NATO ASI
Series F. IOS Press, Amsterdam.

7. Patrick Cousot (2001): Compositional separate modular static analysis of programs
by abstract interpretation. In: Proc. SSGRR 2001 – Advances in Infrastructure for
Electronic Business, Science, and Education on the Internet, 6 – 10.

8. Martin Davis & Hilary Putnam (1960): A Computing Procedure for Quantification
Theory. J. ACM 7(3), pp. 201–215, doi:10.1145/321033.321034. Available at
http://doi.acm.org/10.1145/321033.321034.

9. Elena Dubrova & Maxim Teslenko (2011): A SAT-based algorithm for finding at-
tractors in synchronous boolean networks. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics (TCBB) 8(5), pp. 1393–1399.

10. Wan Fokkink, Paul Hollingshead, J Groote, S Luttik & J van Wamel (1998): Verifi-
cation of interlockings: from control tables to ladder logic diagrams. In: Proceedings
of FMICS, 98, pp. 171–185.

11. Bernard S. Greenberg: NXSYS, Signaling and Interlocking Simulator. Available at
http://www.nycsubway.org/wiki/NXSYS, Signalling and Interlocking Simulator.

12. W. Guo, G. Yang, W. Wu, L. He & M. Sun (2014): A Parallel Attractor Finding
Algorithm Based on Boolean Satisfiability for Genetic Regulatory Networks. PLoS
ONE 9(4).

13. Gal Hochma, Michael Margaliot, Ettore Fornasini & Maria Elena Valcher (2013):
Symbolic dynamics of Boolean control networks. Automatica 49(8), pp. 2525–2530.

14. C. Hong, J. Hwang, K.-H. Cho & I. Shin (2015): A Parallel Attractor Finding
Algorithm Based on Boolean Satisfiability for Genetic Regulatory Networks. PLoS
ONE 10(12).

Compositional analysis of Boolean networks 13

15. Stuart Alan Kauffman (1993): The origins of order : self organization and
selection in evolution. Oxford university press, New York. Available at
http://opac.inria.fr/record=b1077782.

16. Viktor Kuncak & K. Rustan M. Leino (2004): On computing the fix-
point of a set of boolean equations. cs.PL/0408045. Available at
http://arxiv.org/abs/cs.PL/0408045.

17. Aurélien Naldi, Denis Thieffry & Claudine Chaouiya (2007): Decision Diagrams for
the Representation and Analysis of Logical Models of Genetic Networks. In: Com-
putational Methods in Systems Biology, International Conference, CMSB 2007,
Edinburgh, Scotland, September 20-21, 2007, Proceedings, pp. 233–247.

18. Andrew Wuensche et al. (1998): Discrete dynamical networks and their attractor
basins. Complexity International 6, pp. 3–21.

19. Yin Zhao, Jongrae Kim & Maurizio Filippone (2013): Aggregation algorithm to-
wards large-scale Boolean network analysis. Automatic Control, IEEE Transactions
on 58(8), pp. 1976–1985.

Appendix: Railway Interlocking System

Railway Interlocking is one part of a complete railway system that ensures the
safety of all trains and passengers. Given the routes that trains wish to travel
along and current train positions (among other information), the Interlocking
computes a safe environment for trains (mainly signals indications, and switches
positions).

A part of the railway interlocking functioning can be translated to boolean
equations. In this example, we have taken the boolean variables and equations
associated with protection, movement command and locking of two railway
switches while abstracting away all the timed components of those systems.
Computing the attractors allows to find what states those switches will reach
upon reception of a new command.

The dynamics of the system tested in Section 4.1 is given by the rules:

23NLP = !23RLP (OR (AND 23ANN 23ANS) (AND 23BNN 23BNS) 18PBS 23NL)
23RLP = !23NLP (OR (AND 23RN 23RS) 23RL)
23ANS = (OR 16PBS 16XR) !23RS !23RWK
23BNS = (OR 25ANS 25RS) !23RN !23RWK
23ANN = (OR 25BNN 25RN) !23RS !23RWK
23BNN = (OR 32XS 32PBS) !23RN !23RWK
23RS = 25ANS !23ANS !23BNN !23NWK
23RN = 25BNN !23ANS !23BNN !23NWK
23NWZ = (OR (AND 23NWZ !23RWZ) (AND 23NLP 23LS))
23RWZ = (OR (AND 23RWZ !23NWZ) (AND 23RLP 23LS))
23NWC = (AND 23NWZ 23NWP)
23RWC = (AND 23RWZ 23RWP)
23NWK = 23NWC (OR 23NLP !23LS)
23RWK = 23RWC (OR 23RLP !23LS)
25ANS = (OR 22PBS 28ZS 22XS 22XR) !25RS !25RWK
25BNS = (OR 23ANS 23RS) !25RN !25RWK

14 A. Le Coënt, L. Fribourg, R. Soulat

25ANN = (OR 23BNN 23RN) !25RS !25RWK
25BNN = (OR 34XS 34PBS) !25RN !25RWK
25RN = 23BNN !25ANS !25BNN !25NWK
25RS = 23ANS !25ANS !25BNN !25NWK
25NLP = !25RLP (OR (AND 25ANN 25ANS) (AND 25BNN 25BNS) 28XS 25NL)
25RLP = !25NLP (OR (AND 25RN 25RS) 25RL)
25NWZ = (OR (AND 25NWZ !25RWZ) (AND 25NLP 25LS))
25RWZ = (OR (AND 25RWZ !25NWZ) (AND 25RLP 25LS))
25NWC = (AND 25NWZ 25NWP)
25RWC = (AND 25RWZ 25RWP)
25NWK = 25NWC (OR 25NLP !25LS)
25RWK = 25RWC (OR 25RLP !25LS)

The left-hand sides of these equations correspond to the 28 state variables.
The other expressions appearing in the right-hand sides correspond to the 22
parameters.

The system is split into 4 sub-systems as follows:

– For sub-system 1, the state variables are: 23NLP, 23RLP, 23ANS, 23BNS,
23ANN, 23BNN, 23RS and 23RN.
The parameters are: 18PBS, 23RL, 16PBS, 16XR, 32XS, 32PBS and 23NL.

– For sub-system 2, the state variables are: 23NWZ, 23RWZ, 23NWC, 23RWC,
23NWK and 23RWK.
The parameters are: 23LS, 23NWP and 23RWP.

– For sub-system 3, the state variables are: 25ANS, 25BNS, 25ANN, 25BNN,
25RN, 25RS and 25NLP.
The parameters are: 22PBS, 28ZS, 22XS, 22XR, 34XS, 34PBS, 28XS and
25NL.

– For sub-system 4, the state variables are: 25RLP, 25NWZ, 25RWZ, 25NWC,
25RWC, 25NWK and 25RWK.
The parameters are: 25RL, 25LS, 25NWP and 25RWP.

