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Abstract

We present a correct-by-design method of state-dependent control synthesis
for sampled switching systems. Given a target region R of the state space,
our method builds a capture set S and a control that steers any element of S
intoR. The method works by iterated backward reachability fromR. The method
is also used to synthesize a recurrence control that makes any state of R return
to R infinitely often. We explain how the synthesis method can be performed
in a compositional manner, and apply it to the synthesis of a compositional
control of a concrete floor-heating system with 11 rooms and up to 211 = 2048
switching modes.

1. Introduction

Control of switching systems. The importance of switching systems has grown
up considerably over the last years because of their ease of implementation
for controlling cyber-physical systems. A switching system is a family of sub-
systems, each having its own dynamics, characterized by a parameter u whose
values range over a finite set U (see [19]). However, when composing the sub-
systems together, the number of modes of the global system grows exponentially,
and the dynamics may become very complex. It is therefore essential to design
compositional analysis techniques in order to obtain effective control methods
for switching systems with formal correctness guarantees.

In this paper, we give a symbolic compositional method that allows to syn-
thesize a control of sampled switching systems that is guaranteed to satisfy
reachability. It can also be applied to achieve recurrence property: any trajec-
tory originating from R is controlled in order to make it return to R in bounded
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time. The method starts from a (rectangular) target region R of the state space.
It then generates an increasing sequence of extended rectangles {R(i)}i≥0 such
that any trajectory issued from R(i) can be controlled to reach R(i−1) in bounded
time. This approach relies on simple operations (extension and bisection) over
rectangular sets.

We explain how this basic method can be used in a compositional manner.
The compositional procedure requires the system definition to be given under a
separate form, and involves a way of over-approximating the state components,
in order to make the control of the sub-systems independent of each other. Our
compositional synthesis method is generally able to find a guaranteed control in
a much shorter time than the classical centralized method. Sometimes, as ex-
emplified here on the 11-rooms example that we develop, our compositional
method is able to synthesize a guaranteed control while all known centralized
approach fails by exhausting computational resources.

Related Work. In symbolic analysis and control-synthesis methods for hybrid
systems, the method of backward reachability and the use of polyhedral sym-
bolic states, as used here, is classical (see e.g. [6, 11]). The use of partitioning the
state-space using bisection is also classical (see e.g. [14, 13]). The main original
contribution of this paper is to give a simple technique of over-approximation,
which allows one component to estimate the symbolic states of the other com-
ponents, in presence of partial information. This is similar in spirit to an
assume-guarantee (or contract-based) reasoning, where the controller synthe-
sis for each sub-system assumes that some safety properties are satisfied by the
other sub-systems [5, 7, 8, 9, 15, 21, 25, 26]. The present work is a contin-
uation of [9]. In contrast to [9], we do not need, for the mode selection of a
sub-system, to blindly explore all the possible modes selected by the other sub-
system. This yields a drastic improvement in efficiency. This approach allows
us to treat a real case study, which is intractable using a centralized approach.
This case study comes from [18], and we use the same decomposition of the
system into two parts. In contrast to the work of [18] which uses an on-line
and heuristic approach with limited guarantees, we use here an off-line formal
method which guarantees reachability and recurrence properties.

Implementation. In the discrete-time setting, with linear (or affine) mappings,
the methods of control synthesis both in the centralized and in the compositional
contexts have been integrated to the tool MINIMATOR [17, 10], written in
Octave [24]. In the continuous-time setting (which also allows nonlinear flows),
the methods have been integrated to the tool DynIBEX [2, 3], written in C++.
All the computation times given in the paper have been performed on a 2.80GHz
Intel Core i7-4810MQ CPU with 8GB of memory.

Plan. The structure of this paper is as follows. The centralized control approach
is given in Section 2. The compositional approach is described in Section 3.
The compositional approach is the applied in Section 4 on a real case study
of temperature control in a building with 11 rooms and 211 = 2048 switching
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modes of control. The method is extended in the continuous-time framework in
Section 5.

2. Centralized Switching Control

We first consider the centralized control in the discrete-time setting. The time t
then takes its values in N.

2.1. Control modes and control patterns

We consider a discrete-time system under the form:

x(t+ 1) = f(x(t), u)

where t is in N, x is a vector state variable, taking its values in Rn, and u takes
its value in the finite set U = {1, . . . , N} (called the set of modes).

It is often easier and/more efficient to slightly relax the control objective,
by only checking the objective after several applications of f in a row. We are
thus led to the notion of “control pattern”: A (control) pattern π of length k is
a sequence of size k of modes. The set of patterns of length k (resp. at most k)
is denoted by Πk (resp. Π≤k). For length k = 1, we have Π1 = U .

For a system defined by x(t + 1) = f(x(t), u) and a pattern π of length k,
one can recursively define x(t+ k) = f(x(t), π) with π ∈ Πk, by:

1. f(x(t), π) = f(x(t), u), if π is a pattern of length k = 1 of the form u ∈ U ,

2. f(x(t), π) = f(f(x(t), π′), u), if π = u ·π′ is a pattern of length k ≥ 2 with
u ∈ U and π′ ∈ Πk−1.

In the following, we fix an upper bound K ∈ N on the length of patterns.
The value of K can be seen as a maximum number of time steps, for which we
compute the future behaviour of the system (“horizon”).

We will achieve a desired global property P by using the following state-
dependent control-synthesis method: at initial time t0 = 0, select some pattern
π ∈ Πk1 for some 1 ≤ k1 ≤ K, depending on the value of x(t0); at time t1 =
t0+k1, select a new pattern in Πk2 for some 1 ≤ k2 ≤ K, depending on x(t1), and
so on indefinitely. In the centralized approach, the synthesis method consists
in covering (part of) state space Rn with a set of sub-rectangles; for each sub-
rectangle, a specific pattern is selected in order to achieve property P locally
from any point in that sub-rectangle.

2.2. Bisection and extension of rectangles

A closed interval will be denoted by [b] in order to denote the interval [b, b],
where b and b are two reals with b ≤ b. An n-dimensional rectangle R is thus a
Cartesian product of n intervals of the form [b1]× [b2]× · · · × [bn].

Given an interval [b] = [b, b], the bisection of [b] (of order 1), denotes the

set of intervals {[b, b+b2 ], [ b+b2 , b]}. Given a rectangle R = [b1] × · · · × [bn], the
bisection of r (of order 1) denotes the set B1 ∪ · · · ∪ Bn where Bi denotes the
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bisection (of order 1) of [bi], for 1 ≤ i ≤ n. The bisection of the n-dimensional
rectangle R is thus a set of 2n n-dimensional rectangles of identical size.

By bisection of these 2n n-dimensional rectangles, we obtain a bisection
of R of order 2 which contains 22n n-dimensional rectangles. More generally,
the bisection of R of order d is the set of 2dn n-dimensional rectangles of identical
size obtained by iterating the operation of bisection successively d times. Note
that the union of the elements of a bisection (of order d with d ≥ 1) is equal
to R.

In the following, we fix an upper bound D for the bisection order d. The
2dn rectangles of identical size resulting from the bisection of R at order d, are
called “sub-rectangles” of R. They are denoted by ri with i ∈ I(n, d) = [1; 2dn].
We have R =

⋃
i∈I(n,d) ri.

Given a non-negative real a ∈ R≥0 and an n-dimensional rectangle R =
[b1] × [b2] × · · · × [bn], the expression R ± a denotes the “extended” rectangle
[b1 − a, b1 + a]× · · · × [bn − a, bn + a].1 Given an extended rectangle R± a, the
2dn sub-rectangles of R ± a obtained by bisection of R ± a at order d, will be
denoted by rai with i ∈ I(n, d). We have R± a =

⋃
i∈I(n,d) r

a
i .

2.3. Reachability procedure

The properties that we consider are essentially reachability properties: given
a set S and a set R, we look for a control which steers any point x of S into R in a
bounded number of steps. We also consider recurrence properties, requiring that
once the state x of the system is in R at time t, the control will make it return
to R (within a finite number of steps) infinitely often. Actually, we consider
here a state set R given under the form of a rectangle, and we suppose that S
is given under the extended form R± a for some positive real a > 0. A typical
value for a is |R|/10 or |R|/100, where |R| denotes the length of the smallest
side of the rectangle R. The method consists in finding a bisection of R ± a
of order d such that all sub-rectangle of the form rai (with i ∈ I(n, d)) can be
mapped to R via some pattern πi of length no more than K. Our problem
is thus to find a control that makes any trajectory originating from a point of
R ± a reach R within at most K steps. Given an n-dimensional rectangle R,
and two positive reals a and ε, we formulate the (centralized) control synthesis
problem as follows:

Find d ≤ D (as small as possible) such that the property
Q(R, a, ε, d) defined below holds: for any i ∈ I(n, d), there is a
pattern πi ∈ Π≤K

1. f(rai , πi) ⊆ R, and

2. f(rai , π
′
i) ⊆ R± (a+ ε), for all nonempty prefix π′i of πi.

1Our technique could handle extended rectangles of R with different values of a for each
dimension, and different values for the lower and upper extensions. For the sake of simplicity,
we consider here extensions R ± a with the same value a of extension for all the dimensions
of R.
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a
ε

R

R± a
R± (a+ ε)

Figure 1: Schematic representation of Property Q(R, a, ε, d)

The first item requires that every trajectory originating from ri ± a reaches R
within K steps. The second item specifies that the intermediate states of the
trajectory lie in R± (a+ ε). Intuitively, ε represents the width of an additional
margin, aroundR±a, by which all the intermediate states are allowed to overflow
along a pattern of length ` ≤ K before reaching R. The property Q(R, a, ε, d)
is illustrated on Figure 1

Note that the patterns πi can have different lengths. A stronger version
of the problem consists in finding a set of patterns {πi}i∈I(n,d) with the addi-
tional property that they all have the same length ` ≤ K. This is called the
synchronous control synthesis problem. It is stated as follows:

Find d ≤ D (as small as possible) and 0 < ` ≤ K (as small as
possible) satisfying the property P (R, a, ε, d, `) defined by: for any
i ∈ I(n, d), there is a pattern πi ∈ Π` such that

1. f(rai , πi) ⊆ R, and

2. f(rai , π
′
i) ⊆ R± (a+ ε), for all nonempty prefix π′i of πi.

In the following, we focus on the synchronous synthesis problem2; we solve it
by designing a generate-and-test procedure PROC(R, a, ε), with fixed parame-
ters D and K, which terminates with failure if P (R, a, ε, d, `) fails to hold for
and 0 ≤ d ≤ D and any 0 < l ≤ K, and terminates with success otherwise, with
output (d∗, `∗) defined by:

• d∗ = min{0 ≤ d ≤ D | ∃0 < ` ≤ K. P (R, a, ε, d, `)};

• `∗ = min{0 < ` ≤ K | P (R, a, ε, d∗, `)}.

2.4. Recurrence as a special case of reachability

The recurrence problem consists in finding a control that forces all trajectory
starting from a given rectangle R to return to R within a finite number of steps.

2The “asynchronous” problem can be solved similarly, see [10].
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a(2)

a(1)

ε

R

R± a(1)

R± (a(1) + a(2))

Figure 2: Iterated control of R(1) = R±a(1) towards R, and R(2) = R(1)±a(2) towards R(1).

The problem can be solved by applying the procedure PROC(R, a, ε) in the limit
case where a = 0: The procedure fails if, for all 0 ≤ d ≤ D and all 0 < ` ≤ K,
Property P (R, 0, ε, d, `) does not hold; it succeeds if P (R, 0, ε, d, `) holds for some
d and `. Property P (R, 0, ε, d, `) expresses the fact that a controlled trajectory
starting at any point x ∈ R will return to R within at most K steps, without
going too far away from R.

In the following, we focus on the “pure” reachability problem, and as-
sume a > 0.

2.5. Iterated control synthesis

Given a rectangle R, and two positive reals a(1) and ε, suppose that the pro-
cedure PROC(R, a(1), ε) described in Section 2.3 succeeds with (d(1), `(1)) as out-
put. The control synthesis3 PROC(R1, a(2), ε) can then be applied with R(1) =
R ± a(1) as input argument, and some positive constant a(2). By iteration,
the application of PROC(R(i), a(i+1), ε), with R(i) = R(i−1) ± a(i) thus induces
at each step a control that steers R(i) to R(i−1), with R(i) = R + Σj≤ia

(j).
In the end, this synthesizes a control that steers R(i) to R via a sequence of i
patterns (πj)1≤j≤i. This is illustrated in Figure 2, for i = 2. The process can
be iterated until PROC(R(i), a(i+1), ε) fails.

2.6. Complexity

For each sub-rectangle ri of R and each π ∈ Π≤K , we have to solve the
inclusion test f(ri, π) ⊆ R. The resolution of such a test is a major objective
of the method of interval arithmetic [23, 14]. When f is affine, the inclusion
test can be done using the data structure of zonotopes [16, 12, 4] in O(n3)
(cf. [10]). Since I may contain 2nD elements (where D is the maximal depth of

3We assume that the procedure is re-applied with the same positive value for parameter ε
for the sake of simplicity.
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bisection), and Π≤K contains O(NK) elements, the generate-and-test procedure
PROC(R, a, ε) is in O(2nD ·NK).

Example 1. Let us consider the example of a two-room apartment, heated by
one heater in each room (adapted from [13]). In this example, the objective is
to control the temperature of both rooms. There is heat exchange between both
rooms and with the environment. The continuous dynamics of the system is
given by the equation:

˙(
T1
T2

)
=

(
−α21 − αe1 − αfu1 α21

α12 −α12 − αe2 − αfu2

)(
T1
T2

)
+

(
αe1Te + αfTfu1
αe2Te + αfTfu2

)
.

Here T1 and T2 are the temperatures of the rooms, and the state of the system
corresponds to T = (T1, T2). The control mode variable u1 (respectively u2)
can take the values 0 or 1, depending whether the heater in room 1 (respectively
room 2) is switched off or on (hence U1 = U2 = {0, 1}). Hence, here n = 2 and
N = 4. The temperature Te corresponds to the temperature of the environment,
and Tf to the temperature of the heaters when turned on. The values of the
parameters are as follows: α12 = 5 × 10−2, α21 = 5 × 10−2, αe1 = 5 × 10−3,
αe2 = 5× 10−3, αf = 8.3× 10−3, Te = 10 and Tf = 35.

We suppose that the heaters can be switched periodically at sampling instants
τ , 2τ , ... (here, τ = 5 minutes). By integration of the continuous dynamics
between t and t+ τ , the system can be easily put under the discrete-time form:(

T1
T2

)
(t+ 1) = f

((
T1
T2

)
(t),

(
u1
u2

))
.

where f is an affine function.
Given a target rectangle for T = (T1, T2) of the form R = [18.5, 22] ×

[18.5, 22], the control-synthesis problem is to find a rectangular capture set S
(as large as possible) such that one can steer any state T of S to R (“reachabil-
ity”), and then make any T of R return to R infinitely often (“recurrence”).

Let D = 1 (the depth of bisection is at most 1), and K = 4 (the maximum
length of patterns is 4). Let us look for a centralized controller which will steer
all the trajectories starting at the rectangle S = [18.5 − A, 22] × [18.5 − A, 22]
to R, then makes the trajectories return to R infinitely often. The procedure
PROC(R(i), a(i), ε) is iterated successfully 15 times with the following inputs:
ε = 0.5, and a(i) is set to the maximum value in {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}
for which PROC(R(i), a(i), ε) succeeds. In the end, we find S = R ± A with
A = Σ15

i=0a
(i) = 53, i.e. S = [−35, 22]× [−35, 22]. Any element of S can thus be

driven to R within 15 control patterns of length (at most) 4, i.e., within 15×4 =
60 units of time. Since each unit of time is of duration τ = 5 minutes, any
trajectory starting from S reaches R within 60×5 = 300 minutes. Furthermore,
the recurrence property holds for R: Once the trajectory x(t) has entered R,
it returns to R under control patterns of length (at most) 4, i.e., every 4× 5 =
20 minutes. Using our implementation, the iteration computation of PROC
takes 4.14s of CPU time.
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Figure 3: Simulations of the centralized reachability controller for three different initial condi-
tions plotted in the state space plane (left); simulation of the centralized reachability controller
for the initial condition (12, 12) plotted within time (right).

These results are consistent with the simulation given in Figure 3 for the
time evolution of (T1, T2) starting from (12, 12). Simulations of the control,
starting from (T1, T2) = (12, 19) and (T1, T2) = (22, 12) are also given in the
state space plane in Figure 3.

3. Compositional Control

3.1. Separate systems

From now on, we suppose that the discrete-time system:

x(t+ 1) = f(x(t), u),

where x is a vector state variable of dimension n and u is a mode in U =
{1, . . . , N}, can be expressed under the separate form:

x1(t+ 1) = f1(x1(t), x2(t), u1) x2(t+ 1) = f2(x1(t), x2(t), u2)

where x1 (resp. x2) is the first (resp. second) component of the state vector x,
and takes its values in Rn1 (resp. Rn2), and where u1 (resp. u2) is the first
(resp. second) component of the control mode, and takes its values in the finite
set U1 (resp. U2). We will often write x for (x1, x2), u for (u1, u2), and n
for n1 + n2. We will also abbreviate the set U1 × U2 as U . Let N1 (resp. N2)
by the cardinality of U1 (resp. U2), so that N = N1 ·N2 is the cardinality of U .

For k ≥ 1, we denote by Πk
1 (resp. Πk

2) the set of sequences of k elements

of U1 (resp. U2). Given two positive integers K1 and K2, we denote by Π≤K1

1

(resp. Π≤K2 ) the set
⋃

1≤k≤K1
Πk

1 (resp.
⋃

1≤k≤K2
Πk

2). A pattern u ∈ Πk is thus

of the form (u11, u
1
2) · · · (uk1 , uk2) with (u11 · · ·uk1) ∈ Πk

1 and (u12 · · ·uk2) ∈ Πk
2 .
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We denote with (f(x, π))|1 ∈ Rn1 and (f(x, π))|2 ∈ Rn2 the first and second
components of f(x, π) ∈ Rn1 × Rn2 = Rn respectively. We have: f(x, π) =
((f(x, π))|1, (f(x, π))|2).

Finally, we suppose that the target rectangle R is of the form R1×R2: R is
a product of n closed intervals of reals, and R1 (resp. R2) is a product of n1
(resp. n2) closed intervals of reals. Then R1±a (resp. R2±a) denotes the product
of n1 (resp. n2) extended intervals (and we have R± a=(R1 ± a)× (R2 ± a)).

3.2. Compositional synthesis

We consider a discrete-time system

x(t+ 1) = f(x(t), u)

that can be written in separate form as

x1(t+ 1) = f1(x1(t), x2(t), u1) x2(t+ 1) = f2(x1(t), x2(t), u2).

Our basic idea for synthesizing a control in a compositional manner is to find
a procedure of the form PROC1(R1, a, ε) which outputs a pair (d1, `1), and a
procedure of the form PROC2(R2, a, ε) which outputs a pair (d2, `2), such that

1. for all i1 ∈ I(n1, d1), there exists π1 ∈ Π`1
1 such that for all x2 ∈ R2 ± a,

there exists π2 ∈ Π`1
2 such that for all prefix π′1 (resp. π′2) of π1 (resp. π2),

(f(rai1 × {x2}, (π
′
1, π
′
2)))|1 ⊆ R1 ± (a+ ε)

(f(rai1 × {x2}, (π1, π2)))|1 ⊆ R1.

2. for all i2 ∈ I(n2, d2), there exists π2 ∈ Π`2
2 such that for all x1 ∈ R1 ± a,

there exists π1 ∈ Π`2
1 such that for all prefix π′1 (resp. π′2) of π1 (resp. π2),

(f({x1} × rai2 , (π
′
1, π
′
2)))|2 ⊆ R2 ± (a+ ε)

(f({x1} × rai2 , (π1, π2)))|2 ⊆ R2.

where (raik)ik∈I(nk,dk) (for k ∈ {1, 2}) are the sub-rectangles resulting from the
bisection of Rk ± a at order dk, and the sets of the form (f(rai1×{x2}, (π

′
1, π
′
2)))|1

stand for the corresponding sets {(f((x1, x2), (π′1, π
′
2)))|1 | x1 ∈ ri1 ± a}.

The partition I(n1, d1) (resp. I(n2, d2)) thus induces a control that ensures
that x1 (resp. x2) will reach R1 (resp. R2) every `1 (resp. `2) steps. Hence
the repeated application of the concurrent control on R1 and R2 ensures that
(x1, x2) will reach R1 ×R2 within at most ` steps, where ` is the least common
multiple of `1 and `2. We have:

∀(x1, x2) ∈ (R1 ± a)× (R2 ± a). ∃π ∈ Π≤K1×K2 .

f(x1, x2, π
′) ⊆ (R1 ± (a+ ε))× (R2 ± (a+ ε)) ∀π′ prefix of π.

f(x1, x2, π) ⊆ R1 ×R2.

9



The concurrent application of the controls induced by PROC1 and PROC2 is thus
analogous to the direct application of a centralized procedure PROC. The ad-
vantage of the compositional approach is that the complexity of PROC1 and
PROC2 is much lower than the complexity of the centralized procedure PROC
(see Section 2.6). The existence of such a compositional approach however
requires that the first and second components x1 and x2 be “weakly interdepen-
dent”: the existence of pattern π1 has to depend on i1 only (regardless the value
of i2), and, symmetrically the existence of pattern π2 has to only depend on i2
(regardless the value of i1). In order to formalize this notion of “weak inter-
dependence”, we define an approximation Xi1(a, π1) of the first component of
f(rai1×r

a
i2
, (π1, π2)) depending on i1 and π1 only, and symmetrically, an approx-

imation Xi2(a, π2) of the second component of f(rai1 × r
a
i2
, (π1, π2)) depending

on i2 and π2 only.
Let πk1 (resp.πk2 ) denote the prefix of length k of π1 (resp. π2), and π1(k)

(resp. π2(k)) the k-th element of pattern π1 (resp. π2).

Definition 1. Consider an index i1 ∈ I(n1, d1) (resp. i2 ∈ I(n2, d2)) and
a pattern π1 ∈ Π`1

1 (resp. π2 ∈ Π`2
2 ). The approximate first-component (resp.

second-component) sequence (Xk
i1

(a, π1))0≤k≤`1 (resp. (Xk
i2

(a, π2))0≤k≤`2) is
defined as follows:

• X0
i1

(a, π1) = rai1 (resp. X0
i2

(a, π2) = rai2) and

• Xk
i1

(a, π1) = f1(Xk−1
i1

(a, π1), R2 ± (a + ε), π1(k)) for 1 ≤ k ≤ `1 (resp.

Xk
i2

(a, π2) = f2(R1 ± (a+ ε), Xk−1
i2

(a, π2), π2(k)) for 1 ≤ k ≤ `2).

Definition 2. We refine Property P (R, a, ε, d, `) as follows: for 0 ≤ d1 ≤ D1

and 0 < `1 ≤ K1, we define P1(R1, a, ε, d1, `1) as: for any i1 ∈ I(n1, d1), there
exists a pattern π1 ∈ Π`1

1 such that

1. X`1
i1

(a, π1) ⊆ R1, and

2. Xk
i1

(a, π1) ⊆ R1 ± (a+ ε) for 1 ≤ k ≤ `1 − 1.

Similarly, we define P2(R2, a, ε, d2, `2) by: for all i2 ∈ I(n2, d2), there exists
π2 ∈ Π`2

2 such that

1. X`2
i2

(a, π2) ⊆ R2, and

2. Xk
i2

(a, π2) ⊆ R2 ± (a+ ε) for 1 ≤ k ≤ `2 − 1.

In the sequel, we write I1 and I2 for the sets I(n1, d1) and I(n2, d2), respec-
tively. When P1(R1, a, ε, d1, `1) (resp. P2(R2, a, ε, d2, `2)) holds, we write π1

ik

(resp. π2
ik

) for an element π1 ∈ Π`1 (resp. π2 ∈ Π`2) satisfying both conditions
of P1(R1, a, ε, d1, `1) (resp. P2(R2, a, ε, d2, `2)).

Figure 4 illustrates property P1(R1, a, ε, d1, `1) for `1 = 2, with a pattern
π1 = u1 · v1, and a given sub-rectangle rai1 . Property P1(R1, a, ε, d1, `1) holds
here because X1

i1
(a, π1) ⊆ R1 ± (a+ ε) and X2

i1
(a, π1) ⊆ R1.
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a

ε

R = R1 ×R2

R± a
R± (a+ ε)

u1

v1

rai1X1
i1

(a,π1) X2
i1

(a,π1)

u1

v1

Figure 4: Illustration of P1(R1, a, ε, d1, `1) with `1 = 2, and π1 = u1·v1. The dark grey squares
correspond to the centralized case, where both dimensions are controlled. The hatched strips
represent the compositional case, where only one dimension is controlled, and all possible
behaviours are considered for the second dimension.

Lemma 3. Suppose that P1(R1, a, ε, d1, `1) and P2(R2, a, ε, d2, `2) both hold.
Then for all i1 ∈ I1 and i2 ∈ I2, and all 1 ≤ k ≤ min{`1, `2}, it holds

(f((rai1 × r
a
i2), (πki1 , π

k
i2)))|1 ⊆ Xk

i1(a, πi1)

(f((rai1 × r
a
i2), (πki1 , π

k
i2)))|2 ⊆ Xk

i2(a, πi2)

Proof. For m ∈ {1, 2}, write Pmi1,i2(k) for the property that is always true when
k > min{`1, `2}, and that is defined as

(f((rai1 × r
a
i2), (πki1 , π

k
i2)))|m ⊆ Xk

im(a, πim)

for k ≤ min{`1, `2}.
Assuming that both P1(R1, a, ε, d1, `1) and P2(R2, a, ε, d2, `2) hold, we show

by induction on k that

∀i1 ∈ I1. ∀i2 ∈ I2. P 1
i1,i2(k) ∧ P 2

i1,i2(k).

When k = 1, by definition of the separate form, we have

(f((rai1 × r
a
i2), (π1

i1 , π
1
i2)))|1 = f1(rai1 , r

a
i2 , πi1(1)),

and by definition of X1
i1

(a, πi1),

X1
i1(a, πi1) = f1(X0

i1(a, πi1), R2 ± (a+ ε), πi1(1))

= f1(rai1 , R2 ± (a+ ε), πi1(1)).

Since rai2 ⊆ R2 ± (a + ε), we have (f((rai1 × r
a
i2

), (π1
i1
, π1
i2

)))|1 ⊆ X1
i1

(a, πi1), for
any i1 ∈ I1 and i2 ∈ I2. The proof that (f((rai1 × r

a
i2

), (π1
i1
, π1
i2

)))|2 ⊆ X1
i2

(a, πi2)
is similar.
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Assuming that our induction hypothesis holds for some integer k ≥ 1,
we prove it at step k + 1. First, if k + 1 > min{`1, `2}, the result is trivial.
Now, assume k + 1 ≤ min{`1, `2} (hence also k ≤ min{`1, `2}). We have

(f((rai1 × r
a
i2), (πk+1

i1
, πk+1
i2

)))|1 =
(
f(f((rai1 × r

a
i2), (πki1 , π

k
i2)),

(πi1(k + 1), πi2(k + 1)))
)
|1

= f1
(
[f((rai1 × r

a
i2), (πki1 , π

k
i2))]|1,

[f((rai1 × r
a
i2

), (πki1 , π
k
i2

))]|2, πi1(k + 1)
)

⊆ Xk+1
i1

(a, πi1).

The last inclusion can be shown as follows: first note that [f((rai1×r
a
i2

), (πki1 , π
k
i2

))]|1 ⊆
Xk
i1

(a, πi1) by induction hypothesis. Moreover, we have:

[f((rai1 × r
a
i2), (πki1 , π

k
i2))]|2 ⊆ R2 ± (a+ ε)

because [f(rai1×r
a
i2

), (πki1 , π
k
i2

))]|2 ⊆ Xk
i2

(a, πi1) (which follows from our induction

hypothesis), and Xk
i2

(a, πi1) ⊆ R2 ± (a+ ε) (by assumption P2(R2, a, ε, d2, `2)).
Hence

f1([f((rai1 × r
a
i2), (πki1 , π

k
i2))]|1, [f((rai1 × r

a
i2), (πki1 , π

k
i2))]|2, πi1(k + 1))

⊆ f1(Xk−1
i1

(a, πi1), R2 ± (a+ ε), πi1(k + 1)) = Xk+1
i1

(a, πi1)

The proof for P 2
i1,i2

(k + 1) is similar. �

Theorem 4. Suppose that P1(R1, a, ε, d1, `1) and P2(R2, a, ε, d2, `2) both hold,
and that `1 ≤ `2 (the other case being symmetric). Then for any x1 ∈ R1 ± a,
there exists π1 ∈ Π`2

1 such that for any x2 ∈ R2 ± a, there exists π2 ∈ Π`2
2 such

that

(f(x1, x2, (π
k
1 , π

k
2 )))|1 ∈ R1 ± (a+ ε) for all 1 ≤ k ≤ `2

(f(x1, x2, (π
k
1 , π

k
2 )))|1 ∈ R1 for all k ∈ `1 · N, 1 ≤ k ≤ `2

(f(x1, x2, (π
k
1 , π

k
2 )))|2 ∈ R2 ± (a+ ε) for all 1 ≤ k ≤ `2

(f(x1, x2, (π1, π2)))|2 ∈ R2

Proof. By application of Lemma 3 and Property P1(R1, a, ε, d1, `1), we have:

x1(k) ∈ (f((rai1 × r
a
i2), (πki1 , π

k
i2)))|1 ⊆ R1 ± (a+ ε) for k ≤ `1 − 1

x1(`1) ∈ (f((rai1 × r
a
i2), (π`1i1 , π

`1
i2

)))|1 ⊆ R1

In case `1 = `2, Lemma 3 and P2(R2, a, ε, d2, `2) give the symmetric inclusions
on the other dimension, and the theorem holds. If `2 > `1, we write `2 = α·`1+β
with 0 ≤ β < `1. Lemma 3 and P2(R2, a, ε, d2, `2) give

x2(k) ∈ (f((rai1 × r
a
i2), (πki1 , π

k
i2)))|2 ⊆ R2 ± (a+ ε) for k ≤ `1

12



In order to prove the last two properties, we have to prove x2(k) ∈ R2±(a+ε)
for `1 + 1 ≤ k ≤ `2 − 1, and x2(k) ∈ R2 for k = `2.

Since x1(`1) ∈ R1, we have x1(`1) ∈ ri′1 for some i′1 ∈ I1. Let us apply

πi′1 to x1(`1). Since x2(`1) ∈ R2 ± (a + ε), we have x1(`1 + 1) ∈ X1
i′1

(a, πi′1);

moreover, X1
i′1

(a, πi′1) ⊆ R1±(a+ε) by P1(R1, a, ε, d1, `1). It follows: x1(`1+1) ∈
R1±(a+ε). This implies x2(`1+1) ∈ X`1+1

i1
(a, πi′1). Now, since X`1+1

i1
(a, πi′1) ⊆

R2 ± (a+ ε) (by P2(R2, a, ε, d2, `2)), we have: x2(`1 + 1) ∈ R2 ± (a+ ε).
By iterating this argument k ≤ `1 times (as long as `1 + k ≤ `2), we have:

x1(`1 + k) ∈ R1 ± (a + ε) if k ≤ `1 − 1, and x1(2`1) ∈ R1 on the one hand;
x2(`1 + k) ∈ R2 ± (a+ ε) for 1 ≤ k ≤ `1 on the other hand.

By iterating the same reasoning α times, we have: x1(k) ∈ R1 ± (a+ ε) for
1 ≤ k ≤ α`1 − 1, and x1(α`1) ∈ R1 on the one hand; x2(`1 + k) ∈ R2 ± (a+ ε)
for 1 ≤ k ≤ α`1.

Since x(α`1) ∈ R1, we have x(α`1) ∈ riα1 for some iα1 ∈ I1. By application
of (the prefix of) πiα1 , we have: x1(k) ∈ R1 ± (a + ε) and x2(k) ∈ R2 ± (a + ε)
for α`1 + 1 ≤ k ≤ α`1 + β = `2, and x2(α`1 + β) = x2(`2) ∈ R2. �

As in the centralized case (see Section 2), it is easy to construct a generate-
and-test procedure PROC1(R1, a, ε) that terminates with failure if:

∀0 ≤ d1 ≤ D. ∀1 ≤ `1 ≤ K1. ¬P1(R1, a, ε, d1, `1),

and terminates with success otherwise, then outputing (d∗1, `
∗
1) defined by:

d∗1 = min{d1 ∈ {0, 1, . . . , D} | ∃`1 ∈ {1, . . . ,K1}. P1(R1, a, ε, d1, `1)}
`∗1 = min{`1 ∈ {1, . . . ,K1}. P1(R1, a, ε, d

∗
1, `1)}.

Likewise, we can construct a generate-and-test procedure PROC2(R2, a, ε) which
terminates with failure if

∀0 ≤ d2 ≤ D. ∀1 ≤ `2 ≤ K2. ¬P2(R2, a, ε, d2, `2)

and terminates with success otherwise, with an output (d∗2, `
∗
2) defined similarly.

Using the same reasoning as in the centralized case (see Section 2), one
can see that the complexity of PROC1(R1, a, ε) and PROC2(R2, a, ε) are in
O(2n1DNK1

1 ) and O(2n2DNK2
2 ) respectively. This generally yields a drastic

cut down with respect to the complexity of the centralized approach, which is
in O(2nDNK) with n = n1 + n2, N = N1N2 and K ≥ max{K1,K2}.

Theorem 4 allows us to implement the method as far as we are able to com-
pute the results of applying mappings f1 and f2 to symbolic states represented
by rectangles. When f1 and f2 are affine, the results can be easily computed us-
ing the data structure of “zonotopes” [12]. The method has been implemented
in the case of affine mappings, using the system MINIMATOR [17, 10].

Remark 1. In the compositional context, the selection of an appropriate value
for ε is for the moment performed by hand, and is the result of a compromise:
if ε is too small, then f1(ri1 , R2, π1(1)) ⊆ R1 ± ε for no π1 ∈ Π`1 ; if ε is too
large, then f1(X`1

i1
, R2 ± ε, π1(`1)) ⊆ R1 for no π1 ∈ Π`1 .
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Example 2. Consider again the specification of a two-room apartment given
in Example 1. Notice that it can be written in separate form as

T1(t+ 1) = f1(T1(t), T2(t), u1) T2(t+ 1) = f2(T1(t), T2(t), u2)

We consider the compositional control synthesis problem where the first (resp. sec-
ond) state component corresponds to the temperature of the first (resp. second)
room T1 (resp. T2), and the first (resp. second) control mode component corre-
sponds to the heater u1 (resp. u2) of the the first (resp. second) room.

Set R = R1 × R2 = [18.5, 22]× [18.5, 22]. Let D = 3 (the depth of bisection
is at most 3), and K1 = K2 = 10 (the maximum length of patterns is 10). The
parameter ε is set to value 1.5◦C. We look for a compositional controller which
steers any temperature state in S = S1×S2 = [18.5−a, 22]× [18.5−a, 22] to R,
then makes the trajectories return to R infinitely often.

Using our implementation, the computation of the control synthesis takes
220s of CPU time. The method iterates 8 times the control synthesis procedure
PROC(R, a, ε) with ε = 1.5, and a ∈ {0.5, 1}. We find S = [18.5 − A, 22] ×
[18.5 − A, 22] with A = Σia

(i) = 6.5, i.e. S = [12, 22] × [12, 22]. This means
that any element of S can be driven to R within 8 control patterns of length
(at most) 10, i.e., within 8 × 10 = 80 units of time. Since each unit of time
is of duration τ = 5 minutes, any trajectory starting from S reaches R within
80× 5 = 400 minutes. The trajectory is then guaranteed to always stay (at each
discrete time t) in R± ε = [17, 23.5]× [17, 23.5].

These results are consistent with the simulation given in Figure 5 showing
the time evolution of (T1, T2) starting from (12, 12). Simulations of the control
are also given in the state-space plane, in Figure 5, for initial states (T1, T2) =
(12, 12), (T1, T2) = (12, 19) and (T1, T2) = (22, 12).

Not surprisingly, the performance guaranteed by the compositional approach
(a = 6.5, reachability of R in 400 minutes) are worse than those guaranteed
by the centralized approach of Example 1 (a = 53.5, reachability of R in 300
minutes). On the other hand, the CPU computation time in the composi-
tional approach (220s) is here worse than the CPU time of the centralized ap-
proach (4.14s). This relative inefficiency is due to the small size of the example,
and the stronger properties of decentralized control.

4. Case Study

This case study, proposed by the Danish company Seluxit, aims at control-
ling the temperature of an eleven rooms house, heated by geothermal energy.
The continuous dynamics of the system is the following:

d

dt
Ti(t) =

n∑
j=1

Adi,j(Tj(t)− Ti(t)) +Bi(Tenv(t)− Ti(t)) +Hv
i,j .vj (1)

Variables Ti represent the temperatures of the rooms. The matrix Ad con-
tains the heat transfer coefficients between the rooms, while matrix B contains

14



Figure 5: Simulations of the compositional reachability controller for three different initial
conditions plotted in the state space plane (left); simulation of the compositional reachability
controller for the initial condition (12, 12) plotted within time (right).

the heat transfer coefficients between the rooms and the external temperature
(this temperature is set to Tenv = 10◦C for the computations). The control
matrix Hv contains the effects of the control on the room temperatures, and
the control variable is here denoted by vj . We have vj = 1 (resp. vj = 0) if
the heater in room j is turned on (resp. turned off). We thus have n = 11 and
N = 211 = 2048 switching modes.

Note that the matrix Ad is parameterized by the open of closed state of the
doors in the house. In our case, the average between closed and open matrices
was taken for the computations. The exact values of the coefficients are given
in [18]. The controller has to select which heater(s) to turn on in the eleven
rooms. Due to a limitation of the capacity supplied by the geothermal device,
the 11 heaters cannot be running at the same time. In our case, we limit to 4
the number of heaters that can be running at the same time.

We consider the compositional control synthesis problem where the first
(resp. second) state component corresponds to the temperatures of rooms 1 to 5
(resp. 6 to 11), and the first (resp. second) control mode component corresponds
to the heaters of rooms 1 to 5 (resp. 6 to 11). Hence n1 = 5, n2 = 6, N1 = 25,
and N2 = 26. We impose that at most two heaters are switched on at the same
time in the first sub-system, and at most two in the second sub-system.

Let D = 1 (the bisection depth is at most 1), and K1 = K2 = 4 (the
maximum length of patterns is 4). The parameter ε is set to value 0.5◦C. The
sampling time is τ = 15 minutes.

We look for a compositional controller which steers any temperature state
in the rectangle S = [18 − a, 22]11 to R = [18, 22]11, with a as large as pos-
sible, ad then makes the temperature trajectories return to R infinitely of-
ten. Using our implementation, the computation of the control synthesis takes
around 20 hours of CPU time. The method iterates the control synthesis pro-
cedure PROC(R, a, ε) 15 times, with a ∈ {0.1, 0.2, 0.3} and ε = 0.5. We find
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Figure 6: Simulation of the Seluxit case study plotted with time (in min) for Tenv = 10◦C.

S = [18 − A, 22]11 with A = Σia
(i) = 4.2, i.e. S = [13.8, 22]11. This means

that any element of S can be driven into R within 15 control patterns of
length (at most) 4, i.e., within 15 × 4 = 60 units of time. Since each time
unit is of duration τ = 15 minutes, any trajectory starting from S reaches R
within 60 × 15 = 900 minutes. The trajectory is then guaranteed to stay in
R± ε = [17.5, 22.5]11. These results are consistent with the simulation given in
Figure 6 showing the time evolution of the temperature of the rooms, starting
from 1411.

4.1. Robustness Experiments

We performed the same simulations as in Figure 6, except that the envi-
ronment temperature is not fixed at 10◦C but follows scenarios of soft winter
(Figure 7) and spring (Figure 8). The environment temperature is plotted in
green in the figures. The spring scenario is taken from [18], and the soft win-
ter scenario is the winter scenario of [18] increased by 5 degrees. We see that
our controller, which is designed for Tenv = 10◦C still satisfies the properties
of reachability and recurrence. These simulations are very close those obtained
in [18].

5. Continuous-time case

In this section, we consider the case of continuous-time differential equations.
The time t now takes value in R≥0.
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Figure 7: Simulation of the Seluxit case study in the soft winter scenario.

Figure 8: Simulation of the Seluxit case study in the spring scenario.
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5.1. Reachability in continuous time

Consider the continuous-time system with finite control :

ẋ1(t) = f1(x1(t), x2(t), u1) (2)

ẋ2(t) = f2(x1(t), x2(t), u2) (3)

where x1 (resp. x2) is the first (resp. second) component of the state vector
variable, taking its values in Rn1 (resp. Rn2), and where u1 (resp. u2) is the first
(resp. second) component of the control mode, taking its values in the finite
set U1 (resp. U2). We still use notations of the previous sections, writing e.g. x
for (x1, x2) and u for (u1, u2). We abbreviate the continuous-time system under
the form:

ẋ(t) = f(x(t), u) (4)

where x is a vector state variable taking its values in Rn = Rn1 × Rn2 , and
where u is of the form (u1, u2), with u1 taking its values in U1 and u2 in U2.
We assume that, given an initial value x0, Equation (4) has a solution (e.g.,
assuming that the vector field f (resp. f1, f2) is Lipschtiz).

We define the reachable set of (4) from a set of initial states X0, at time t
(0 ≤ t ≤ τ) under control mode u:

Reachf (t,X0, u) = {Φ(t, x0, u) | x0 ∈ X0}.

where Φ(t, x, u) denotes the state x(t) reached at time t (0 ≤ t ≤ τ) starting
from the initial state x, under control mode u ∈ U .

We define the reachable set of (2) from a set of initial states X1 ⊆ Rn1 , at
time t (0 ≤ t ≤ τ) under control mode u1 ∈ U1 and perturbation X2 ⊆ Rn2 :

Reachf1(t,X1, X2, u1) = {Φ1(t, x1, X2, u1) | x1 ∈ X1}.

where Φ1(t, x1, X2, u1) is the set of states x1(t) reached at time t (t ≥ 0) from
the initial state x1, under control mode u1 and perturbation X2.

Symmetrically, we define the reachable set of (3) from a set of initial states
X2 ⊆ Rn2 , at time t (0 ≤ t ≤ τ) under control mode u2 ∈ U2 and perturbation
X1 ⊆ Rn1 : x

Reachf2(t,X1, X2, u2) = {Φ2(t,X1, x2, u2) | x2 ∈ X2}.

where Φ2(t,X1, x2, u2) is the set of states x2(t) reached at time t ≥ 0 from the
initial state x2, under control mode u2 and perturbation X1.

All the notions of reachable sets for modes are extended in the natural man-
ner to the notions of reachable sets for patterns. For example, for the pattern
π = u · v of length 2, and for 0 ≤ t ≤ τ , we define:

Reachf (t,X0, π) = Reachf (t,X0, u)

Reachf (τ + t,X0, π) = Reachf (t,X1, v) with X1 = Reachf (τ,X0, u).
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5.2. Compositional control

Recall that πk1 (resp. πk2 ) denotes the prefix of length k of π1 (resp.π2), and
π1(k) (resp. π2(k)) the k-th element of sequence π1 (resp. π2). We now give
the counterpart of Definition 1.

Definition 5. Consider an index i1 ∈ I(n1, d1) (resp. i2 ∈ I(n2, d2)) and
a pattern π1 ∈ Π`1

1 (resp. π2 ∈ Π`2
2 ). The approximate first-component sequence

{Y ki1(a, π1)}0≤k≤`1 is defined as follows:

Y 0
i1(a, π1) = rai1

Y ki1(a, π1) =
⋃

0≤t≤τ

Reachf1(t, Y k−1i1
(a, π1), R2 ± (a+ ε), π1(k)) for 1 ≤ k ≤ `1.

Similarly, the approximate second-component sequence {Y ki2(a, π2)}0≤k≤`2 is
defined by

Y 0
i2(a, π2) = rai2

Y ki2(a, π2) =
⋃

0≤t≤τ

Reachf2(t, R1 ± (a+ ε), Y k−1i2
(a, π2), π2(k)) for 1 ≤ k ≤ `2.

We define the property P1(R1, a, ε, d1, `1) as: for all i1 ∈ I(n1, d1), there exists
π1 ∈ Π`1

1 such that

Y ki1(a, π1) ⊆ R1 ± (a+ ε) for 1 ≤ k ≤ `1
Reachf1(`1τ, r

a
i1 , R2 ± (a+ ε), π1) ⊆ R1.

Likewise, we define the property P1(R1, a, ε, d1, `1) as: for all i1 ∈ I(n1, d1),
there exists π1 ∈ Π`1

1 such that

Y ki2(a, π2) ⊆ R2 ± (a+ ε) for 1 ≤ k ≤ `2
Reachf2(`2τ,R1 ± (a+ ε), rai2 , π2) ⊆ R2.

Procedures PROC1(R1, a, ε), PROC2(R2, a, ε) and expressions I1, I2, πi1 , πi2
are defined exactly as in Section 3. We now give the counterpart of Lemma 3
(the proof being similar).

Lemma 6. Assume that PROC1(R1, a, ε) and PROC2(R2, a, ε) both terminate
with success, with respective outputs (d1, `1) and (d2, `2).

Then we have:

• in case `1 ≤ `2, for all t ∈ [(k − 1)τ, kτ ] (1 ≤ k ≤ `1):

Reachf (t, (rai1 × r
a
i2), (πki1 , π

k
i2))|1 ⊆ Y ki1(a, πi1) ⊆ R1 ± (a+ ε)

Reachf (t, (rai1 × r
a
i2), (πki1 , π

k
i2))|2 ⊆ Y ki2(a, πi2) ⊆ R2 ± (a+ ε)

Reachf (`1τ, (r
a
i1 × r

a
i2), (π`1i1 , π

`1
i2

))|1 ⊆ R1.
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• in case `2 ≤ `1, for all t ∈ [(k − 1)τ, kτ ] (1 ≤ k ≤ `2):

Reachf (t, (rai1 × r
a
i2), (πki1 , π

k
i2))|1 ⊆ Y ki1(a, πi1) ⊆ R1 ± (a+ ε)

Reachf (t, (rai1 × r
a
i2), (πki1 , π

k
i2))|2 ⊆ Y ki2(a, πi2) ⊆ R2 ± (a+ ε)

Reachf (`2τ, (r
a
i1 × r

a
i2), (π`2i1 , π

`2
i2

))|2 ⊆ R2.

Mutatis mutandis, Theorem 4 still holds in the continuous-time context
(the proof is similar to the proof in the discrete-time context).

This allows us to implement the method along the same lines as in the
discrete-time case, except that we apply the operator Reachf1 and Reachf2
on continuous time intervals of the form [k, (k + 1)τ ] instead of the map-
pings f1 and f2 at times kτ . We implemented the method using the sys-
tem DynIBEX [2, 3] which makes use of interval arithmetic [23] and Runge-
Kutta methods to compute (an over-approximation of) the application results
of Reachf1 and Reachf2 .

5.3. Application

We demonstrate the feasibility of our approach on a building ventilation
application adapted from [20]. The system is a four-room apartment subject
to heat transfer between the rooms, with the external environment, with the
underfloor, and with human beings. The dynamics of the system is given by
the following equation:

dTi
dt

=
∑

j∈N∗\{i}

aij(Tj − Ti) + δsibi(T
4
si − T

4
i )

+ ci max

(
0,
Vi − V ∗i
Vi − V ∗i

)
(Tu − Ti). (5)

The state of the system is given by the temperatures in the rooms Ti, for i ∈
N = {1, . . . , 4}. Room i is subject to heat exchange with different entities stated
by the indices N ∗ = {1, 2, 3, 4, u, o, c}. The heat transfer between the rooms is
given by the coefficients aij for i, j ∈ N 2, and the different perturbations are
the following:

• The external environment: it has an effect on room i with the coefficient
aio and the outside temperature To, varying between 27◦C and 30◦C.

• The heat transfer through the ceiling: it has an effect on room i with the
coefficient aic and the ceiling temperature Tc, varying between 27◦C and
30◦C.

• The heat transfer with the underfloor: it is given by the coefficient aiu
and the underfloor temperature Tu, set to 17◦C (Tu is constant, regulated
by a PID controller).
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• The perturbation induced by the presence of humans: it is given in room i
by the term δsibi(T

4
si −T

4
i ), the parameter δsi is equal to 1 when someone

is present in room i, 0 otherwise, and Tsi is a given identified parameter.

The control Vi, i ∈ N , is applied through the term ci·max(0,
Vi−V ∗i
Vi−V ∗i

)(Tu−Ti).
A voltage Vi is applied to force ventilation from the underfloor to room i, and the
command of an underfloor fan is subject to a dry friction. Because we work in a
switching-control framework, Vi can take only discrete values, which removes the
problem of dealing with a “max” function in interval analysis. In the experiment,
V1 and V4 can take the values 0V or 3.5V, while V2 and V3 can take the values
0V or 3V. This leads to a system of the form (4) with u(t) ∈ U = {1, . . . , 16},
the 16 switching modes corresponding to the different possible combinations of
voltages Vi. The system can be decomposed in sub-systems of the form (2)-(3).
The sampling period is τ = 10s.

The parameters Tsi , V
∗
i , V i, aij , bi, ci are given in [20] and have been

identified with a proper identification procedure detailed in [22]. Note that
here we have neglected the term

∑
j∈N δdijci,j · h(Tj − Ti) of [20], representing

the perturbation induced by the open or closed state of the doors between the
rooms. Taking a “max” function into account with interval analysis is actually
still a difficult task. However, this term could have been taken into account
with a proper regularization (smoothing).

The main difficulty of this example is the large number of modes in the
switching system, which induces a combinatorial issue. The centralized con-
troller was obtained with 704 sub-rectangles in 29 minutes, the compositional
controller was obtained with 16+16 sub-rectangles in 20 seconds. In both cases,
patterns of length 1 are used. The perturbation due to human beings has been
taken into account by setting the parameters δsi equal to the whole interval
[0, 1] for the decomposition, and the imposed perturbation for the simulation
is given Figure 9. The temperatures To and Tc have been set to the interval
[27, 30] for the decomposition, and are set to 30◦C for the simulation. A sim-
ulation of the controller obtained with the state-space bisection procedure is
given in Figure 10, where the control objective is to “stabilize” the temperature
[20, 22]2 × [22, 24]2 while never going out of [19, 23]2 × [21, 25]2.

6. Final Remarks

In this paper, we have proposed a compositional approach for control syn-
thesis of sampled switching systems in the discrete-time framework and applied
it to a real floor heating system. To our knowledge, this is the first time that
reachability and recurrence properties are guaranteed for a case study of this
size. We have also explained how the method extends to the continuous-time
framework. The method can be extended to take into account obstacles and
safety constraints.

Note that it is essential in our method that the components are sampled with
the same sampling period τ , and that their clocks are synchronized. It would
be interesting to investigate how the approach behaves when clocks are badly
synchronized or when they have different periods (see e.g., [1]).
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Figure 9: Perturbation (presence of humans) imposed within time in the different rooms.

Figure 10: Simulation of the centralized (left) and compositional (right) controllers from the
initial condition (22, 22, 22, 22).
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