
Reachability Sets of Parametrized Rings As

Regular Languages

Laurent Fribourg Hans Ols�en

LSV, E.N.S. Cachan & CNRS IDA, Link�oping University

61 av. Pdt Wilson, 94235 Cachan - France S-58183 Link�oping - Sweden

fribourg@lsv.ens-cachan.fr hanol@ida.liu.se

Abstract

We present here a method for deriving a regular language that characterizes the set

of reachable states of a given parametrized ring (made ofN of identical components).

The method basically proceeds in two steps: �rst one generates a regular language L

by inductive inference from a �nite sample of reachable states; second one formally

checks that L characterizes the whole set of reachable states.

1 Introduction

During these last years, several kinds of methods have been explored in order

to prove a property P about a ring of N identical �nite-state processes irre-

spective of its size N . They are essentially three. The �rst is by induction (see,

e.g., [20,19,13]), but often relies on human help for the introduction of appro-

priate `lemmas' or `invariants'. The second is by reduction to the veri�cation

problem for a �xed small size (e.g., N=2) (see, e.g., [10,17]), but works only

for restrictive classes of rings. The third is by abstraction (see, e.g., [8,18,15]):

an abstract model of the ring is provided depending on the property P to be

proved, then an invariant property is generated from which P follows. In this

kind of works, property P concerns the global state of the system. This state

is an N -tuple (q

1

; :::; q

N

), and viewed as a word q

1

:::q

N

de�ned on the alpha-

bet � of states of the individual components. The property P is expressed as

an inclusion relationship into a regular language. For example (see [8]), for

expressing the property of mutual exclusion algorithm for processes on a ring,

it su�ces to state that the con�gurations of the ring belong to the regular lan-

guage n

�

c n

�

where c (resp. n) means that the component is (resp. is not) in

the critical section. Such methods are approximate because they use abstrac-

tion, and are backward-oriented (or top-down) because they use the property

P to be proved as a starting point.

Article published in Electronic Notes in Theoretical Computer Science (1997) 1{12

Here in contrast, we are interested by exact and forward-oriented (or bottom-

up methods), i.e., computation methods which start from the initial state.

Regular languages will be used here, not to express abstract properties of the

system, but to characterize the exact set of reachable states. This fourth kind

of method is originally due to Dijkstra [9]. Our aim is to mechanize Dijkstra's

method. The main problem is to reproduce Dijkstra's \guess" of regular lan-

guages resulting from the iterative (unlimited) application of various system

transitions. In order to achieve such a goal, we use classical automatic meth-

ods of inductive inference that proceed by generalization over �nite samples

of examples. We also provide a (mechanizable) equality test allowing to check

that the result of the inductive inference step is correct.

2 Preliminaries

In the following the transitions of the concurrent system will be modelized

as rewrite rules. We assume given an alphabet � of letters, and an alphabet

V (disjoint from �) of variable symbols. The variable symbols are X;Y with

possible indices. Words on (�[V)

�

will be denoted by lower case greek letters

�; �; �; ::: The empty word will be denoted �. A transition will be characterized

by a rewrite rule of the form �! � where � and � denotes words on (�[V)

�

. A

word � rewrites to �

0

viaR i� there exists a rule � ! � inR such that � = f(�)

and �

0

= f(�) for some substitution f (i.e., some mapping from V to �

�

). We

denote by

R

!

the one-step reduction relation de�ned by the set of transitions

R. We denote �

R

(L) the language generated from L by applying

R

!

, i.e.

the set: f�

0

j �

R

!

�

0

for some � 2 Lg. We denote by

R

�

!

(resp.

fR;idg

!

) the

reexive transitive closure (resp. reexive closure) of

R

!

. We denote by �

�

R

(L)

the language generated from L by applying

R

�

!

, i.e. the set: f�

0

j �

R

�

!

�

0

for some � 2 Lg. The set �

�

R

(L) is equivalently de�ned as

S

k�0

�

k

R

(L) where

�

k

R

(L) is de�ned by: �

0

R

(L) = L and �

k+1

R

(L) = �

R

(�

k

R

(L)).

We say that a language L is R-invariant i�: �

R

(L) � L. We say that R is

noetherian if there is no in�nite sequence of words �

1

; �

2

; �

3

; ::: of �

�

such that

�

1

R

!

�

2

R

!

�

3

R

!

::: The symbol R

�1

will denote the rewrite system obtained

by exchanging the lefthand side and righthand side of the rules of R. (We

have �

R

!

�

0

i� �

0

R

�1

!

�.) The concatenation symbol is `.', but will be often

omitted in the following.

2

3 Parametrized Rings

We consider a system organized as a ring of N identical components, which

are �nite state automata. The set of states of each component is de�ned over

a �nite alphabet �. The global state of the ring will be characterized as a word

over �

N

. The i-th letter of the word corresponds to the state of the i-th compo-

nent. There will be two types of transitions a�ecting the states of the system.

The internal transitions are transitions which a�ect only one component at

a time. The external transitions are transitions which a�ect two contiguous

components at a time. (The 1st and N -th component are considered as con-

tiguous due to the ring structure.) We are interested in characterizing the

reachability set of the ring, that is the set of global states that are obtained by

applying repeatedly any sequence of transitions, starting from a given initial

state for the ring of length N . Actually, instead of reasoning on a ring of a

determinate length N , we will consider the union of all the rings for all length

N = 2; 3; 4; :::. Therefore we will reason on words of �

�

, rather than on words

of �

N

. The initial state will be characterized not by a word of length N , but

by a regular language L

init

(e.g., of the form a

0

b

+

0

). An internal transition will

be characterized by a rewrite rule of the form (XaY) ! (Xa

0

Y), where a

(resp. a

0

) denote the state of the modi�ed component of the ring before (resp.

after) application of the transition. An external transition will be character-

ized by a couple of rewrite rules hr; r

0

i, where r is a rewrite rule of the form

(XabY) ! (Xa

0

b

0

Y) and r

0

is the rewrite rule (bXa) ! (b

0

Xa

0

). In r, letters

a; b (resp. a

0

; b

0

) denote the states of two modi�ed contiguous components of

the ring before (resp. after) application of the transition. In r

0

, the letters a; b

(resp. a

0

; b

0

) denote the states of the last and �rst components before (resp.

after) application of the transition. The set of rewrite rules associated to the

concurrent system will be denoted by R. The reachability set of the system is

thus formalized as �

�

R

(L

init

).

Note 1 An array of N identical components can be modelized similarly to

a ring using internal and external transitions. The di�erence is that exter-

nal transitions will simply consist of rules of the form: (XabY) ! (Xa

0

b

0

Y).

(There will be no additional rules of the form: (bXa)! (b

0

Xa

0

) since the �rst

and last elements of an array are not in communication.)

4 Generating Regular Languages

A basic underlying claim here is that the reachability sets of the parametrized

rings (or arrays) can be often expressed as regular languages. In order to

construct e�ectively such regular languages, one will appeal to methods of

inductive inference (or generalization) for regular languages. Typically, one

proceeds as follows:

3

(1) generate a �nite set S

<k

of words of length than k that correspond to the

reachable states for rings of length less than k.

(2) use a generalization method for constructing a regular language L from

S

<k

.

In order to generate S

<k

in step 1, one can consider the set L

<k

init

of words

of L

init

of length less than k, and construct the set �

�

R

(L

<k

init

). (This set is

�nite and made of words of length less than k since the rules of R are length-

preserving.)

In step 2, as a generalization method, one can either use a general synthe-

sis procedure by inductive inference (see [2,4]; cf. [3,5]), or one may apply a

method more adapted to ring problems as developed in [12]. Let us briey

explain the latter method. One constructs the �nite set cont(S

<k

) of couples

of letters that are contiguous in words of S

<k

, i.e.:

cont(S

<k

) = f(a; b) j �:a:b:�

0

2 S for some �; �

0

2 �

�

g

One constructs also the �nite set cont

0

(S

<k

) of couples of last and �rst letters

of words of S

<k

, i.e.:

cont

0

(S

<k

) = f(a; b) j b:�:a 2 S for some � 2 �

�

g

One then constructs the language L

local

(S

<k

) of words where every couple of

contiguous letters belongs to cont(S

<k

), i.e.:

� 2 L

local

(S

<k

) i�

8a; b 2 � 8�; �

0

2 �

�

: � = �:a:b:�

0

=) (a; b) 2 cont(S

<k

).

Likewise, one constructs the language L

0

local

(S

<k

) of words whose last and �rst

letters form a couple belonging to cont

0

(S

<k

), i.e.:

� 2 L

0

local

(S

<k

) i�

8a; b 2 � 8�; �

0

2 �

�

: � = b:�:a =) (a; b) 2 cont

0

(S

<k

).

It can be seen that L

local

(S

<k

) and L

0

local

(S

<k

) are regular languages. Finally

one considers a third regular language L

global

that is speci�c of the ring system

under consideration. A typical example is a regular language expressing a mu-

tual exclusion property of the form n

�

:c:n

�

(cf: introduction). The language L

synthesized by our method is the intersection L

local

(S

<k

)\L

0

local

(S

<k

)\L

global

.

An example of application of this method is given in section 7.

We will suppose in the following that we are given a procedure, called guess,

that, from R and a regular language L

init

as inputs, generates regular lan-

guages as candidates for �

�

R

(L

init

). The (nondeterministic) output of such a

procedure will be denoted guess(L

init

; R). Once a regular language has been

generated, we will perform an equality test in order to formally verify that the

language coincides with the reachability set of the system. If it is not the case,

then the procedure guess is called again until the output language satisfy the

equality test. This is explained in the next section.

4

5 Testing Regular Languages

Our test is based on the following property:

Proposition 1 Let L and L

0

be two sets of words over �

�

, and R a rewrite

system. Suppose that R

�1

is noetherian. Then:

L

0

= �

�

R

(L) i� L

0

= �

R

(L

0

) [L.

PROOF.

Let us show L

0

= �

�

R

(L) =) �

R

(L

0

) [L � L

0

.

Since, by de�nition, �

�

R

(L) is a superset of L, it su�ces to show: L

0

=

�

�

R

(L) =) �

R

(L

0

) � L

0

. So suppose L

0

= �

�

R

(L) and x 2 �

R

(L

0

), and

let us show that x 2 L

0

. We have: x 2 �

R

(L

0

) i� x

0

R

!

x for some x

0

2 L

0

=

�

�

R

(L). Since x

0

2 �

�

R

(L), we have: x

0

2 �

k

R

(L) for some k � 0. Therefore:

x 2 �

k+1

R

(L). Hence x 2 �

�

R

(L), i.e. x 2 L

0

, q.e.d.

Let us show now L

0

= �

�

R

(L) =) L

0

� �

R

(L

0

) [L.

Suppose L

0

= �

�

R

(L) and x 2 L

0

, and let us show that x 2 �

R

(L

0

) [L. Since

x 2 �

�

R

(L), we have: x 2 �

k

R

(L) for some k � 0. Either k = 0 or k > 0. In

case k = 0, we have: x 2 �

0

R

(L), i.e.: x 2 L. In case k > 0, we have: x

0

R

!

x

for some x

0

2 �

k�1

R

(L). Therefore x

0

2 �

�

R

(L) = L

0

. It follows: x 2 �(L

0

). In

both cases, we have: x 2 �(L

0

) [L, q.e.d.

We have thus shown: L

0

= �

�

R

(L) =) L

0

= �

R

(L

0

) [L. This means that

�

�

R

(L) is a solution in L

0

of equation L

0

= �

R

(L

0

) [L. Let us now show that

this solution is unique, i.e.: L

0

1

= �

R

(L

0

1

)[L^ L

0

2

= �

R

(L

0

2

)[L imply L

0

1

= L

0

2

.

By symmetry, it su�ces to show that L

0

1

= �

R

(L

0

1

) [L ^ L

0

2

= �

R

(L

0

2

) [L

imply L

0

1

� L

0

2

, i.e. the following proposition prop(x):

L

0

1

= �

R

(L

0

1

) [L ^ L

0

2

= �

R

(L

0

2

) [L ^ x 2 L

0

1

=) x 2 L

0

2

.

Let us prove prop(x) by noetherian induction on x. Suppose that x 2 L

0

1

,

and let us show that x 2 L

0

2

. Since x 2 L

0

1

and L

0

1

= �

R

(L

0

1

) [L, then

either x belongs to L or to �

R

(L

0

1

). If x belongs to L, then x belongs to

L

0

2

(= �

R

(L

0

2

) [L), and we are done. If x belongs to �

R

(L

0

1

), then x

0

R

!

x

for some x

0

2 L

0

1

. By induction hypothesis (since R

�1

is noetherian), we have

prop(x

0

), therefore: x

0

2 L

0

2

. It follows that x belongs to �

R

(L

0

2

), hence to L

0

2

(because L

0

2

= �

R

(L

0

2

) [L). This achieves the proof of prop(x).

We have thus shown the uniqueness of the solution in L

0

of equation L

0

=

�

R

(L

0

)[L. Since �

�

R

(L) is a solution of such an equation, we have: L

0

= �

�

R

(L)

i� L

0

= �

R

(L

0

) [L.

ut

5

Proposition 1 holds even if L and L

0

are not regular languages. The important

point is that, when L and L

0

are known regular languages, equation L

0

=

�

R

(L

0

) [L can be mechanically veri�ed. This is because one can construct

a transducer whose output language is �

R

(L

0

) when L

0

is given as an input

language (see [14]). Therefore �

R

(L

0

) is a regular language, and the equation

L

0

= �

R

(L

0

) [L is a just an equality between regular languages. Testing this

equality, one will be able to detect that a (candidate) regular language L

0

output by guess is actually the sought solution (viz., L

0

= �

�

R

(L)).

Note 2 Suppose that R

�1

is noetherian and �

�

(L) regular. Then, from propo-

sition 1 and the fact that regular languages are enumerable, it follows that the

regular language characterizing �

�

(L) is e�ectively constructible: it su�ces

to start enumerating the set of all the regular languages L

1

; L

2

; ::: and stop for

i such that �

R

(L

i

) = L

i

[L.

Suppose now that the inverse system R

�1

is not noetherian. We are then

led to consider a subset R

0

of R such that R

0�1

is noetherian, as well as its

complementary part R

00

� RnR

0

. In order to generate �

�

R

(L), we will interleave

synthesis of languages corresponding to the application of

R

0�

!

on the one

hand, and generation of languages corresponding to one-step application of

R

00

!

on the other hand. More precisely: we start with a language L

0

set to

L

init

, then construct L

0

0

� �

R

00

(L

0

) [L

0

(L

0

0

is regular because L

0

is regular

and �

R

00

(L

0

) can be seen as an output of a transducer); we then synthesize

L

1

such that L

1

= �

�

R

0

(L

0

0

), and iterate the process until one gets a language

L

i

that is R-invariant. This can be recapitulated as follows:

L

init

� L

0

fR

00

;idg

!

L

0

0

R

0�

!

L

1

fR

00

;idg

!

L

0

1

R

0�

!

L

2

fR

00

;idg

!

:::

This procedure can be seen as a form of alternate and accelerated bottom-up

computation: it is \alternate" because it interleaves application of R

00

- and

R

0

-rules, and is \accelerated" because one constructs in one step the result of

applying the reexive-transitive closure

R

0�

!

of

R

0

!

. As inputs the procedure

has the initial language L

init

, and the partition R

0

] R

00

of R. As output, it

gives a regular language equal to �

�

R

(L

init

). We call such a procedure AABUP

(for `Alternate Accelerated Bottom-UP Evaluation'). It is de�ned formally as:

i := 0; L

i

:= L

init

while L

i

non invariant by R � R

0

[R

00

:

do

L

0

i

:= �

R

00

(L

i

) [L

i

repeat L

00

:= guess(L

0

i

; R

0

) until �

R

0

(L

00

) = L

00

[L

0

i

L

i+1

:= L

00

i := i+ 1

od

return L

i

6

Note that the test of (non)invariance of L

i

by R in the while-loop reduces

to a test of (non)invariance of L

i

by R

00

(except at the initialisation for i=0)

because L

i

is equal to �

�

R

0

(L

i�1

) by construction, and is thus invariant by R

0

.

Note also that procedure AABUP is not guaranteed to terminate. There are

two sources of nontermination. First, the repeat-loop does not terminate when,

for some i, �

�

R

0

(L

0

i

) is not regular. Second, the while-loop does not terminate

when, for no i > 0, L

i

is R

00

-invariant.

Let us �nally point out an optimization. It happens sometimes that some

transitions of R are unnecessary (or redundant) because the rest of the tran-

sitions su�ce to generate the whole set of reachable states. One can easily

prove (a posteriori) the redundancy of a subset of transitions, say U , of R by

constructing the reachability set S via R nU , then testing the invariance of S

via U afterwards.

In the two subsequent sections, we apply the above procedure for computing

the reachability set of an array example given in [14], and a ring example given

by Dijkstra [9].

6 MUX Array

The MUX example [14] is as follows. Each element of � (i.e., each state of an

array component) is a couple of the form [q

1

; q

t

] where: q

1

is 0,1 or 2 (0 stands

for `waiting', 1 for `idle', 2 for `in critical section'), q

t

is 0 or 1 (0 stands for

`empty', 1 for `with token').

The set R of transitions is: fr

1

; r

2

; r

3

; r

4

; r

5

; r

6

g. Transitions r

1

; r

2

; r

3

; r

4

; r

5

are internal while r

6

is external. They are de�ned as follows:

r

1

: (X[0; 0]Y)! (X[1; 0]Y)

r

2

: (X[0; 1]Y)! (X[1; 1]Y)

r

3

: (X[2; 0]Y)! (X[0; 0]Y)

r

4

: (X[2; 1]Y)! (X[0; 1]Y)

r

5

: (X[1; 1]Y)! (X[2; 1]Y)

r

6

: (X[0; 1][1; 0]Y)! (X[0; 0][1; 1]Y)

The language of initial states L

init

is: [0; 1][0; 0]

+

. In the following, we will

use an expression of the form, say, [f0; 1g; q

t

][0; 0]

+

as an abbreviation for

[0; q

t

][0; 0]

+

[[1; q

t

][0; 0]

+

.

As for R

0

we take the set fr

1

; r

3

; r

4

; r

5

; r

6

g. As for R

00

, we take the set fr

2

g. It is

not di�cult to see that R

0�1

is noetherian. (But r

2

introduces nontermination

because the sequence (r

2

r

5

r

4

)

�1

creates a cycle.) We have:

L

0

= L

init

� [0; 1][0; 0]

+

.

7

L

0

0

� �

R

00

(L

0

) [L

0

= [f0; 1g; 1][0; 0]

+

.

As for L

1

, one synthesizes (using, e.g., inductive inference method of [5]):

L

1

= [f0; 1; 2g; 1][f0; 1g; 0]

+

[[f0; 1g; 0]

+

[f0; 1; 2g; 1][f0; 1g; 0]

�

In order to verify L

1

= �

�

R

0

(L

0

0

), one tests whether L

1

= �

R

0

(L

1

) [L

0

0

. We

have: �

R

0

(L

1

) = [f0; 1g; 0]

�

[1; 1][f0; 1g; 0]

�

[1; 0][f0; 1g; 0]

�

[[f0; 1g; 0]

�

[1; 0][f0; 1g; 0]

�

[1; 1][f0; 1g; 0]

�

[[f0; 1g; 0]

�

[f0; 2g; 1][f0; 1g; 0]

+

[[f0; 1g; 0]

+

[f0; 2g; 1][f0; 1g; 0]

�

So L

1

= �

R

0

(L

1

)][1; 1][0; 0]

+

. Hence L

1

= �

R

0

(L

1

)[L

0

0

(because [1; 1][0; 0]

+

�

L

0

0

� L

1

). Therefore L

1

= �

�

R

0

(L

0

0

). Besides L

1

is R-invariant, i.e. �

R

(L

1

) �

L

1

, because R = R

0

[R

00

, �

R

0

(L

1

) � L

1

(as seen above) and �

R

00

(L

1

) =

[1; 1][f0; 1g; 0]

+

[[f0; 1g; 0]

+

[1; 1][f0; 1g; 0]

�

� L

1

. Therefore: L

1

= �

�

R

(L

init

).

As a recapitulation, we have: L

init

� L

0

fR

00

;idg

!

L

0

0

R

0�

!

L

1

= �

�

R

(L

init

) .

7 Dijkstra's Ring

Dijkstra's ring [9] can be modelized as follows. Each element of � (i.e., each

state of a ring component) is a triple of the form [q

1

; q

t

; q

b

] where: q

1

is 0,1 or

2 (0 stands for `waiting', 1 for `idle', 2 for `in critical section'), q

t

is 0 or 1 (0

stands for `empty', 1 for `with token'), q

b

is 0 or 1 (0 stands for `white', 1 for

`black').

The set R of transitions is: fr

1

; r

2

; r

3

; r

4

; r

0

4

; r

5

; r

0

5

; r

6

; r

0

6

; r

7

; r

8

; r

0

8

g. Transitions

r

1

; r

2

; r

3

and r

7

are internal while couples hr

4

; r

0

4

i, hr

5

; r

0

5

i, hr

6

; r

0

6

i and hr

8

; r

0

8

i

correspond to external transitions. They are de�ned as follows:

r

1

: (X[1; 0; 1]Y)! (X[0; 0; 1]Y)

r

2

: (X[0; 1; q

b

]Y)! (X[2; 1; q

b

]Y)

r

3

: (X[2; q

t

; q

b

]Y)! (X[1; q

t

; q

b

]Y)

r

4

: (X[q

1

; q

t

; 0][1; 0; 0]Y)! (X[q

1

; q

t

; 1][0; 0; 0]Y)

r

0

4

: ([1; 0; 0]X[q

1

; q

t

; 0])! ([0; 0; 0]X[q

1

; q

t

; 1])

r

5

: (X[1; 1; 1][q

1

; 0; q

b

]Y)! (X[1; 0; 0][q

1

; 1; q

b

]Y)

r

0

5

: ([q

1

; 0; q

b

]X[1; 1; 1])! ([q

1

; 1; q

b

]X[1; 0; 0])

r

6

: (X[q

1

; q

t

; 0][q

0

1

; 0; 1]Y)! (X[q

1

; q

t

; 1][q

0

1

; 0; 1]Y)

r

0

6

: ([q

0

1

; 0; 1]X[q

1

; q

t

; 0])! ([q

0

1

; 0; 1]X[q

1

; q

t

; 1])

r

7

: (X[1; 1; 0]Y)! (X[2; 1; 0]Y)

r

8

: (X[q

1

; q

t

; 1][1; 0; 0]Y)! (X[q

1

; q

t

; 1][0; 0; 0]Y)

r

0

8

: ([1; 0; 0]X[q

1

; q

t

; 1])! ([0; 0; 0]X[q

1

; q

t

; 1])

where q

1

; q

0

1

stand 0,1 or 2, and q

b

; q

t

stand for 0 or 1.

The language of initial states L

init

is: [1; 1; 0][1; 0; 0]

+

.

8

As for R

0

we take the set fr

1

; r

3

; r

4

; r

0

4

; r

5

; r

6

; r

0

6

g. As for R

00

, we take the set

fr

0

5

g. As for redundant transitions, we take fr

7

; r

8

; r

0

8

g. It is not di�cult to see

that R

0�1

is noetherian.

Initially i = 0; L

0

= L

init

. The rule r

0

5

cannot be applied to L

0

, therefore

L

0

0

= L

0

. In order to generate L

1

, let us apply our synthesis method based on

contiguity constraints (see section 4). As a sample S

<k

, we take �

�

R

0

(L

<5

init

).

The set cont

0

(S

<k

) associated with S

<k

is made of the following couples:

([1; 0; 0]; [1; 1; 0]); ([0; 0; 0]; [1; 1; 0]); ([0; 0; 0]; [1; 1; 1]); ([1; 0; 0]; [1; 1; 1]);

([0; 0; 0]; [1; 0; 0]); ([1; 0; 0]; [1; 0; 0]); ([0; 1; 0]; [1; 0; 0]); ([0; 0; 0]; [1; 0; 1]);

([1; 0; 0]; [1; 0; 1]); ([0; 1; 0]; [1; 0; 1]); ([0; 0; 1]; [1; 0; 1]); ([0; 1; 1]; [1; 0; 1]);

([1; 0; 1]; [1; 0; 1]); ([0; 0; 1]; [0; 0; 0]); ([0; 1; 1]; [0; 0; 0]); ([1; 0; 1]; [0; 0; 0]);

([0; 1; 1]; [0; 0; 1]); ([0; 0; 1]; [0; 0; 1]); ([1; 0; 1]; [0; 0; 1]); ([0; 0; 0]; [0; 0; 1]);

([1; 0; 0]; [0; 0; 1]); ([0; 1; 0]; [0; 0; 1]); ([2; 1; 0]; [1; 0; 0]); ([2; 1; 0]; [1; 0; 1]);

([2; 1; 0]; [0; 0; 1]); ([2; 1; 1]; [1; 0; 1]); ([2; 1; 1]; [0; 0; 0]); ([2; 1; 1]; [0; 0; 1]);

([1; 1; 0]; [1; 0; 0]); ([1; 1; 0]; [1; 0; 1]); ([1; 1; 0]; [0; 0; 1]); ([1; 1; 1]; [1; 0; 1]);

([1; 1; 1]; [0; 0; 0]); ([1; 1; 1]; [0; 0; 1]):

As for L

1

we take: L

local

(S

<k

) \ L

0

local

(S

<k

) \ L

global

where L

global

is:

1

([f0; 1; 2g; 0; f0; 1g])

�

: [f0; 1; 2g; 1; f0; 1g] : ([f0; 1; 2g; 0; f0; 1g])

�

Such a language L

1

can be expressed under the form: L

1

1

[L

2

1

, where L

1

1

is

de�ned by: � [1; 0; 0]

�

[f0; 1; 2g; 1; 0] ,

and L

2

1

by: f�; [0; 0; 0]g � [1; 0; 0]

�

	 �

0

f�; [0; 0; 0] [1; 0; 0]

�

g ,

with the constraint that the last and �rst triples of every element of L

2

1

form

a couple belonging to cont

0

(S

<k

), and the following de�nitions for �;�

0

;	:

� = ([1; 0; 0]

�

f[1; 0; 1]; [0; 0; 1]g

+

[0; 0; 0])

�

�

0

= ([0; 0; 0] [1; 0; 0]

�

f[1; 0; 1]; [0; 0; 1]g

+

)

�

	 = [f0; 1; 2g; 1; 0] [1; 0; 0]

�

f[1; 0; 1]; [0; 0; 1]g

+

[[f0; 1; 2g; 1; 1] f[1; 0; 1]; [0; 0; 1]g

�

The expression 	 corresponds to the process in possession of the token. (The

second component of its �rst triple is equal to `1'.) The expression � (resp.

�

0

) corresponds to the processes located at the left (resp. right) of the process

in possession of the token.

One can show: L

1

= �(L

1

)][1; 1; 0][1; 0; 0]

+

. Hence: L

1

= �(L

1

)[L

0

0

(because

[1; 1; 0][1; 0; 0]

+

� L

0

0

� L

1

). Therefore L

1

= �

�

R

0

(L

0

0

).

We have to run once more the while-loop of AABUP because L

1

is not let in-

variant byR

00

(viz., r

0

5

). After (one-step) application of r

0

5

to L

1

, one generates a

new language L

0

1

, which is de�ned as L

1

, except that the couple of last and �rst

triples in L

2

1

may be in addition ([1; 0; 0]; [0; 1; 0]). By reapplying the synthesis

method, one generates a candidate language L

2

for �

�

R

0

(L

0

1

) that is de�ned as

in L

0

1

, except that now the couple of last and �rst triples in L

2

1

may also be

1

L

global

expresses a mutual exclusion property: it says that one and only one triple

[q

1

; q

t

; q

b

] (corresponding to the component with token) has a component q

t

equal

to 1.

9

([1; 0; 0]; [0; 1; 1]), ([0; 0; 0]; [0; 1; 0]), ([0; 0; 0]; [0; 1; 1]), ([1; 0; 0]; [2; 1; 0]),

([1; 0; 0]; [2; 1; 1]), ([0; 0; 0]; [2; 1; 0]), ([0; 0; 0]; [2; 1; 1]).

Then one can show: L

2

= �(L

2

)] [0; 1; 0][1; 0; 0]

+

. Hence: L

2

= �(L

2

) [

L

0

1

(because [0; 1; 0][1; 0; 0]

+

� L

0

1

� L

2

). Therefore L

2

= �

�

R

0

(L

0

1

). Since

furthermore L

2

is let invariant by R

00

as well as the redundant transitions

r

7

; r

8

; r

0

8

, we have: L

2

= �

�

R

(L

init

). As a recapitulation, we have:

L

init

� L

0

fR

00

;idg

!

L

0

0

R

0�

!

L

1

fR

00

;idg

!

L

0

1

R

0�

!

L

2

= �

�

R

(L

init

) .

8 Final Remarks

This work bears some resemblances with [14]. In both works parametrized

rings (or arrays) are modelized using the same kind of rewrite systems. Also

regular languages are used for characterizing the result of applying the reexive-

transitive closure

R

�

!

of a reduction relation

R

!

. A �rst di�erence is that, in

[14], computations are done backwards instead of forwards as here. This di�er-

ence is not essential: we can also proceed backwards here by simply changing

R into R

�1

, and changing L

init

into :P , where P is the property to be proved

(see, e.g., [16], p. 189). A more important di�erence is that, here, we use an

\accelerated" form of computation by trying to guess in one step the result of

applying

R

�

!

(instead of iterating

R

!

until stabilization as in [14]). On the

other hand in [14], the work is extended from linear structures such as rings

or arrays to tree structures.

As a future work, we plan to implement procedure AABUP, and to identify

some restricted subclasses of parametrized rings for which the procedure al-

ways terminates. Note besides that our method is not speci�c to parametrized

rings but can be applied a priori to any kind of concurrent systemsmodelizable

by rewrite systems. It would be interesting in particular to apply the method

to systems whose reachability sets are known to be always regular such as

pushdown automata [6,11], communicating automata with lossy channels [1]

and quasi-stable channels [7].

Acknowledgement

We have bene�ted from numerous helpful discussions with Alberto Pettorossi

and Maurizio Proietti on regular languages, and with Alain Finkel and Philippe

Schnoebelen on concurrent systems. We are also grateful to David Lesens for

having pointed out reference [14] to us during the INFINITY workshop.

10

References

[1] P. Abdulla and B. Jonsson. \Verifying Programs with Unreliable Channels",

Proc. 8th Annual IEEE Symp. of Logic in Computer Science, 1993, pp. 160-

170.

[2] D. Angluin. \Inference of Reversible Languages", J. ACM 29:3, 1982, pp. 741-

765.

[3] D. Angluin and C. Smith. \Inductive Inference: Theory and Methods",

Computing Surveys 15:3, 1984, pp. 237-269.

[4] A.W. Biermann. \Fundamental Mechanisms in Machine Learning and Inductive

Inference", Fundamentals of AI, LNCS 232, Springer-Verlag, 1986, pp. 133-169.

[5] A.W. Biermann and J.A. Feldman. \On the Synthesis of Finite-State Machines

from Samples of their Behaviours", IEEE Trans. Comput. C-21, 1972, pp. 592-

597.

[6] A. Bouajjani, J. Esparza and O. Maler. \Reachability Analysis of Pushdown

Automata: Application to Model-Checking", CONCUR'97, LNCS 1243,

Springer-Verlag, 1997.

[7] G. C�ec�e and A. Finkel. \Programs with Quasi-Stable Channels Are E�ectively

Recognizable", CAV'97, LNCS 1254, Springer-Verlag, 1997, pp. 304-315.

[8] E.M. Clarke, O. Grumberg and S. Jha. \Verifying Parametrized Networks Using

Abstraction and Regular Languages", Proc. CONCUR'95, LNCS 962, Springer-

Verlag, 1995, pp. 395{407.

[9] E.W. Dijkstra. \Invariance and Non-Determinacy", in Mathematical Logic and

Programming Languages, C.A.R. Hoare and J.C. Sheperdson (eds.), Prentice

Hall International, 1985, pp. 157{165.

[10] E. Emerson and K.S. Namjoshi. \Reasoning about Rings", Proc. 22nd ACM

Symp. on Principles of Programming Languages, San Francisco, 1995.

[11] A. Finkel, B. Willems and P. Wolper. \A Direct Symbolic Approach to

Model Checking Pushdown Systems", Pre-proceedings of In�nity'97, UPMAIL

Technical Report 148, July 1997, pp. 30-40.

[12] L. Fribourg and H. Ols�en. \Reachability Sets of Parametrized Rings As Regular

Languages", Pre-proceedings of In�nity'97, UPMAIL Technical Report 148,

July 1997, pp. 115-138.

[13] S. Graf and H. Saidi. \Verifying Invariants Using Theorem Proving", CAV'96,

LNCS 1102, Springer-Verlag, 1996, pp. 196-207.

[14] Y. Kesten, O. Maler, M. Marcus, A. Pnueli and E. Shahar. \Symbolic Model

Checking with Rich Assertional Languages", CAV'97, LNCS 1254, Springer-

Verlag, 1997, pp. 424-435.

[15] D. Lesens, N. Halbwachs and P. Raymond. \Automatic Veri�cation of

Parametrized Linear Networks of Processes", Proc. 24th ACM Symp. on

Principles of Programming Languages, 1997, Paris, pp. 346-357.

11

[16] N. Halbwachs. \About Synchronous Programming and Abstract Interpreta-

tion ", SAS'94, LNCS, Springer-Verlag, 1994, pp. 179-192.

[17] J. Li, I. Suzuki and M. Yamashita. \Fair Petri Net Languages and Structural

Induction for Rings of Processes". Theoretical Computer Science 135, 1994, pp.

377-404.

[18] C. Norris Ip and D.L. Dill. \Verifying Systems with Replicated Components in

Mur'", CAV'96, LNCS 1102, Springer-Verlag, 1996, pp. 147-158.

[19] S. Rajan, N. Shankar and M.K. Srivas. \An Integration of Model Checking with

Automated Proof Checking", Proc. Computer-Aided Veri�cation 95, LNCS 939,

Springer-Verlag, 1995, pp. 84{97.

[20] P. Wolper and V. Lovinfosse. \Verifying Properties of Large Sets of Processes

with Network Invariants", Intl. Workshop on Automatic Veri�cation Methods

for Finite State Systems, LNCS 407, Springer-Verlag, 1989, pp. 68-80.

12

