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1. Introduction

The problem of computing �xpoints for arithmetical programs has been investigated

from the seventies in an imperative framework. A typical application was to check

whether or not array bounds were violated. A pionneering work in this �eld is the

work by Cousot-Halbwachs (Cousot, 78). The subject has known a renewal of inter-

est with the development of logic programming and deductive databases with arith-

metical constraints. Several new applications were then possible in these frame-

works: proof of termination of logic programs (Van Gelder, 90)(Plumer, 90)(Ver-

schaetse, 91), compilation of recursive queries in temporal databases (Baudinet,

91)(Kabanza, 90), veri�cation of safety properties of concurrent systems (Halb-

wachs, 93). However almost all these works are interested in �nding not the least

�xpoint but rather an approximation of it using some techniques of Abstract Inter-

pretation (convex hull, widening, ...). A notable exception is the work of (Revesz,

90) and of (Chomicki, 88) whose procedures allow to compute least �xpoints, but

for very restrictive classes of programs, viz. programs with no or at most one

incremental argument. In this paper we are interested in �nding the least �xed

points for Datalog programs having all their arguments incremented by the recur-

sive clauses. The arguments of the programs can be seen as counters. By applying

a clause from-right-to left (in a forward/bottom-up manner), one increments all the

the arguments providing that the constraints of the clause body are satis�ed. The

problem of computing least �xed-points for such programs is closely related, as will

be explained, to the problem of characterizing the set of the reachable markings

(\reachability set") of Petri nets. The main di�erence is that the variables of our

programs take their values on Z instead of N as in the case of Petri nets. We will
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see however that some transformation rules by \decomposition" de�ned for Petri

nets, such as Berthelot's post-fusion rule (Berthelot, 86), still apply to our programs

with Z-counters. The fact that we manipulate variables taking their values on Z

rather than on N will allow us to encode in a simple way the important extension

of Petri nets with inhibitors. As an example, we will see how to prove the mutual

exclusion property of a Petri net modelling a system of readers and writers where

the number of processes is parametric. We also show how our method allows us

to treat the reachability problem for a special class of Petri nets, called BPP-nets,

thus generalizing a result of (Esparza, 95).

The plan of this paper is as follows. In section 2 we give some preliminaries.

Section 3 recalls some basic facts about Petri nets. Section 4 gives the basic rules of

our decompositional method. Section 5 compares our approach with relevant work.

Section 6 shows that our method allows us to solve the reachability problem for the

special class of Basic Parallel Process nets. Section 7 gives a further generalized

form of our basic decomposition rule. Section 8 brie
y discusses the compilation

into an arithmetic formula and our implementation. We conclude in section 9.

2. Preliminaries

Our aim in this paper is to express the least �xed-point of a certain class of logic

programs as a linear integer arithmetic expression (a Presburger formula). We

consider programs of the form:

p(x

1

; : : : ; x

m

)  B(x

1

; : : : ; x

m

):

r

1

: p(x

1

+ k

1;1

; : : : ; x

m

+ k

1;m

)  x

i

1;1

> a

1;1

; : : : ; x

i

1;m

1

> a

1;m

1

;

p(x

1

; : : : ; x

m

):

.

.

.

r

n

: p(x

1

+ k

n;1

; : : : ; x

m

+ k

n;m

)  x

i

n;1

> a

n;1

; : : : ; x

i

n;m

n

> a

n;m

n

;

p(x

1

; : : : ; x

m

):

where B(x

1

; : : : ; x

m

) is a linear integer relation, k

i;j

; a

i;l

2 Z are integer constants

and r

j

is simply the name of the j:th recursive clause. We will usually denote

by x the vector hx

1

; : : : ; x

m

i, by k

r

j

the vector hk

j;1

; : : : ; k

j;m

i and by #

r

j

(x) the

constraint x

i

j;1

> a

j;1

; : : : ; x

i

j;m

j

> a

j;m

j

. Usually the constants a

i;l

are equal to

zero.

One can see these programs as classical programs with counters expressed un-

der a logic programming or Datalog form. These programs have thus the power

of expressivity of Turing machines. In the following we will refer to this class of

programs as (Datalog) programs with Z-counters. The motivation for studying this

class is mainly because syntactically it is restricted enough to allow simple decom-

position rules to be formulated and since there are no terms other than integers

one can work within an arithmetic context. At the same time these programs are

expressive enough to be interesting.
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We introduce a convenient description of the execution of programs with Z-

counters in a bottom-up manner. Let � = fr

1

; : : : ; r

n

g. A string w 2 �

�

is

called a path, and is interpreted as a sequence of applications of the clauses in a

bottom-up manner. Given some point x, the point reached by applying the path

w is denoted xw. Formally: xw = x+ k

w

, where k

w

is de�ned by:

k

"

= 0

k

r

j

w

= k

r

j

+ k

w

Note that the expression xw does not take the constraints in the bodies of the

clauses into account. We say that a path w is applicable at a point x, if all constraints

along the path are satis�ed, and we write #

w

(x). Formally:

#

"

(x) , true

#

r

j

w

(x) , #

r

j

(x) ^ #

w

(xr

j

)

The expression #

w

(x) is said to be the constraint associated to path w at point x.

It is easily seen that #

w

(x) can be put under the form x

i

1

> a

0

1

; : : : ; x

i

m

0

> a

0

m

0

.

As an example, consider the two clauses (borrowed from an example given later on):

r

3

: p(x

2

+ 1; x

3

� 1; x

4

; x

5

+ 1; x

6

; x

7

)  x

3

> 0; p(x

2

; : : : ; x

7

):

r

5

: p(x

2

; x

3

; x

4

; x

5

� 1; x

6

+ 1; x

7

)  x

5

> 0; p(x

2

; : : : ; x

7

):

The constraint #

r

3

r

5

(x) associated with r

3

r

5

is #

r

3

(x) ^ #

r

5

(xr

3

), that is x

3

>

0 ^ x

5

+ 1 > 0, i.e.: x

3

> 0 ^ x

5

> �1.

A point x

0

is reachable from a point x by a path w if xw = x

0

and w is applicable

at x:

x

w

! x

0

, xw = x

0

^ #

w

(x)

A point x

0

is reachable from a point x by a language L � �

�

if there exists a path

w 2 L such that x

0

is reachable from x by w:

x

L

! x

0

, 9w 2 L : x

w

! x

0

We usually write x

L

1

! x

00
L

2

! x

0

, instead of x

L

1

! x

00

^ x

00
L

2

! x

0

. From the

de�nitions above, we immediately get:

Proposition 1 For any path w 2 �

�

and and any languages L

1

; L

2

� �

�

. We

have:

1. x

L

1

+L

2

! x

0

, x

L

1

! x

0

_ x

L

2

! x

0

2. x

L

1

L

2

! x

0

, 9 x

00

: x

L

1

! x

00
L

2

! x

0

3. x

w

�

! x

0

, 9 n � 0 : x

0

= x+ n � k

w

^ 8 0 � n

0

< n : #

w

(x+ n

0

� k

w

)
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In part 3 of the proposition, when n = 0, we have x = x

0

, and the expression

8 0 � n

0

< n : #

w

(x + n

0

� k

w

) is vacuously true. Actually, the universally quan-

ti�ed variable n

0

can always be eliminated from this expression. This is because

the constraints #

w

(x) are necessarily of the form x � a

w

, where x � a

w

denotes

a conjunction of the form x

i

1

> a

0

1;w

; : : : ; x

i

m

0

> a

0

m

0

;w

. Thus, #

w

(x + n

0

� k

w

)

is x + n

0

� k

w

� a

w

. It is easy to see that, for n > 0, the universally quanti�ed

expression 8 0 � n

0

< n : x+ n

0

� k

w

> a

w

is equivalent to x+ (n� 1) � k

�

w

> a

w

where k

�

w

is the vector obtained from k

w

by letting all nonnegative components

be set to zero. For example if #

w

(x) is x

1

> 0 ^ x

2

> 0, and k

w

is h2;�3i , then

8 0 � n

0

< n : x+ n

0

� k

w

> a

w

is

8 0 � n

0

< n : x

1

+ n

0

� 2 > 0 ^ x

2

+ n

0

� (�3) > 0

, x

1

+ (n � 1) � 0 > 0 ^ x

2

+ (n � 1) � (�3) > 0

, x

1

> 0 ^ x

2

� 3n+ 3 > 0.

As a consequence, from part 3 of the proposition, it follows that, given a �nite

sequence of transitions w, the relation x

w

�

! x

0

is actually an existentially quan-

ti�ed formula of Presburger arithmetic having x and x

0

as free variables. More

generally suppose that L is a language of the form L

1

:::L

s

where L

i

is either a

�nite language or a language of the form w

�

i

, then, by proposition 1, it follows

that the relation x

L

! x

0

can be expressed as an existentially quanti�ed formula of

Presburger arithmetic having x and x

0

as free variables. We call such a language L

a 
at language (because Kleene's star operator `*' applies only to strings w).

Given a program with B(x) as a base case and recursive clauses labelled by �, the

least �xed-point of its immediate consequence operator (see (Ja�ar, 87)(Kanellakis,

90)), which is also the least Z-model of the program, may be expressed as:

lfp = f x

0

j 9x : B(x) ^ x

�

�

! x

0

g

Our aim is to characterize the membership relation y 2 lfp as an arithmetic for-

mula having y as a free variable. For solving this problem, it su�ces actually to

characterize the relation x

�

�

! x

0

as an arithmetic formula having x and x

0

as

free variables. In order to achieve this, our approach here is to �nd a 
at language

L � �

�

, such that the following equivalence holds: x

�

�

! x

0

, x

L

! x

0

. This

gives us an arithmetic characterization of the least �xed-point. The language L is

constructed by making use of decomposition rules on paths. Such rules state that,

if a path v links a point x to a point x

0

via �

�

, then v can be reordered as a path

w of the form w = w

1

w

2

� � �w

s

such that w

1

; w

2

; � � � ; w

s

belong to some restricted

languages. Such a \decompositional approach" is well known in Petri-net theory

(see, e.g., (Yen, 96)). The rest of the paper is mainly devoted to describe the de-

composition rules that we use and their applications for solving the reachability

problem with Petri nets and some of their extensions.
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3. The Reachability Problem for Petri Nets

3.1. Petri nets as programs with Z-counters

There is a close connection between the class of programs with Z-counters and

Petri nets, and more precisely, between the computation of the least �xed-point of

programs with Z-counters and the \reachability problem" for Petri nets. Let us

�rst give an informal explanation of what a Petri net is. (This is inspired from

(Esparza, 94).) A Petri net is characterized by a set of places (drawn as circles),

a set of transitions (drawn as bars), and for each transition � , a set of weighted

input-arcs going from a subset of places (\input-places") to � , and a set of weighted

output-arcs going from � to a subset of places (\output-places"). A marking is a

mapping of the set of places to the set N of nonnegative integers. The number

assigned to a place represents the number of tokens contained by this place. A

marking enables a transition � if it assigns all the input places of � with a number

greater than or equal to the weight of the corresponding input-arc. If the transition

is enabled, then it can be �red, and its �ring leads to the successor marking, which

is de�ned for every place as follows: the number of tokens speci�ed by the weight

of the corresponding input-arc is removed from each input place of the transition,

and the number of tokens speci�ed by the weight of the corresponding output place

is added to each output place. (If a place is both an input and an output place,

then its number of tokens is changed by the di�erence of weights between the cor-

responding output and input arcs.)

The reachability problem for a Petri net consists in characterizing the set of all

the markings that are \reachable" from a given initial marking, that is the set

of markings that can be produced by iteratively �ring all the possible enabled

transitions. Let us explain how the reachability problem of a Petri net with n

transitions and m places can be encoded as a Datalog program with Z-counters.

Each place �

i

of the Petri net is represented by a variable x

i

, and its value encodes

the number of tokens at that place. As a base case relation B(x), one take the

equation x = a

0

where a

0

denotes the initial marking; each transition �

j

in the net

is represented by a recursive clause r

j

of the program as follows:

head constants: For each place �

i

, the constant k

j;i

is equal to the weight of the

output-arc going from �

j

to �

i

, minus the weight of the input arc going from �

i

to �

j

.

body constraints: For each input place �

i

of transition �

j

, there is a constraint in

the clause r

j

of the form x

i

> a

j;i

� 1 where a

j;i

is equal to the weight of the

input arc going out from �

i

to �

j

. (No other constraints occur in the clause.)

Each clause of the program encodes the enabling condition of the corresponding

Petri net transition. The above program therefore encodes the reachability prob-

lem for the considered Petri net: a tuple y belongs to the least �xed-point of the

program i� it corresponds to a marking reachable from the initial one via the �ring

of a certain sequence of Petri net transitions. In other words the least �xed-point
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of the recursive program coincides with the set of the reachable markings (\reach-

ability set") of the Petri net.

Note that the class of Datalog programs with Z-counters is more general than the

class of above programs encoding the reachability problem for Petri nets. From a

syntactical point of view, the di�erence is that, with programs encoding the reach-

ability problem, all the variables take their values on the domainN of non-negative

integers while the domain for programs with Z-counters is Z. From a theoretical

point of view, programs with Z-counters have the power of Turing machines while

(programs coding for the reachability problem of) Petri nets have not. We will

come back to this issue in the forthcoming subsection.

3.2. 0-tests

There are many extensions to the Petri-net formalism, one of which allows inhibitors

or 0-tests. In such extensions, the transitions may be conditioned by the fact that

some input place contains 0 token. This test is materialized by the existence of

an \inhibitor-arc" (represented as circle-headed arcs) from the place to the tran-

sition. Petri-nets with inhibitors are naturally encoded as Datalog programs with

Z-counters by adding a constraint x

i

= 0 in the body of clause r

j

whenever there

is an inhibitor arc from place i to transition j. When the input place is known to

be bounded (i.e., the place can never contain more than a �xed number of tokens

during the evolution of the Petri net con�guration), it is well-known that one can

simulate such a 0-test using conventional Petri nets. For example, if the bound of

the inhibitor place is known to be 1, it is easy to add a \complementary place" to

the net whose value is 0 (resp. 1) when the inhibitor place is 1 (resp. 0). Instead

of testing the inhibitor place to 0, it is equivalent to test if the complementary

place contains (at least) one token. Such a simulation is not possible when the

place is unbounded. Actually Petri nets with inhibitor places can simulate Turing

machines, so there is no hope to simulate such an extension while keeping inside

the class of Petri nets.

On the other hand, within our framework where the variables of the program can

take negative values, it is easy to simulate 0-tests. We encode inhibitor arcs by

replacing a constraint x

j

= 0 by x

0

j

> 0 where x

0

j

is a newly introduced variable.

This new variable x

0

j

is to be equal to 1�x

j

. The variable x

0

j

is introduced as a new

argument into p. Its initial value a

00

j

is set to 1 � a

0

j

, where a

0

j

denotes the initial

value of x

j

. Within each recursive clause r

i

of the program, the new argument x

0

j

is

incremented by �k

i;j

(where k

i;j

denotes the value the variable x

j

is incremented

by r

i

). Formally, if we denote the newly de�ned predicate by p

0

, we have in the least

Z-model of the union of the programs de�ning p and p

0

: p(x) , 9x

0

j

p

0

(x; x

0

j

).
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3.3. Parametric initial markings

Recall that the least �xed-point of the encoding program (i.e., the reachability set

of the corresponding Petri net) can be expressed as follows:

lfp = f x

0

j 9x : B(x) ^ x

�

�

! x

0

g

Here B(x) is x = a

0

where a

0

denotes the initial marking of the Petri net, that is

a priori a tuple of nonnegative constants. Our aim is to characterize the relation

y 2 lfp as an arithmetical formula having y as a free variable. It is however often

interesting to reason more generically with some parametric initial markings, i.e.,

initial markings where certain places are assigned parameters instead of constant

values. This de�nes a family of Petri nets, which are obtained by replacing succes-

sively the parameters with all the possible positive or null values.

One can easily encode the reachability relation for a Petri net with a parametric

initial marking via a program with Z-counter by adding the initial marking pa-

rameters as extra arguments of the encoding predicate. For the sake of notation

simplicity however, we will not make such extra predicate arguments appear explic-

itly in the following. (The parameters will just appear in the base clause associated

with the initial marking.) In the case of a Petri net with an initial marking con-

taining a tuple of parameters, say q, our aim will be to characterize the relation

y 2 lfp as an arithmetical formula having y and q as free variables.

3.4. Example

We illustrate the encoding of Petri-nets with inhibitors and parametric initial mark-

ings by an example.

Example: We consider here a Petri net implementing a simple readers-writers

protocol. (This is inspired from (Ajmone, 95), p.17.) This Petri net has six places

encoded by the variables x

2

; x

3

; x

4

; x

5

; x

6

; x

7

and six transitions encoded by the

recursive clauses r

1

; r

2

; r

3

, r

4

; r

5

; r

6

. (It will be clear later on why the enumeration

of places x

i

starts with i = 2.) Place x

5

represents the number of idle processes.

Place x

6

(resp. x

7

) the number of candidates for reading (resp. writing). Place

x

4

(resp. x

3

) represents the number of current readers (resp. writers). Place x

2

is

a semaphore for guaranteeing mutual exclusion of readers and writers. Only one

inhibitor arc exists in the net, connecting x

4

to r

1

. The Petri net is represented

on �gure 1. (The weights of the arcs are always equal to 1, and do not appear

explicitly on the �gure.) Only two places are initially marked: x

2

and x

5

. The

latter contains a parametric number of tokens, de�ned by the parameter q, while

the former contains one token. The program P encoding this Petri-net is the

following:
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x5

x6

x7

x4

x3

x2

r
1

r

r

rr

r
5

2
4

3

6

idle processes

readers waiting

writers waiting

current readers

current writers

semaphore

Figure 1

p(x

2

; x

3

; x

4

; x

5

; x

6

; x

7

)  x

2

= 1; x

3

= 0; x

4

= 0; x

5

= q;

q � 0; x

6

= 0; x

7

= 0:

r

1

: p(x

2

� 1; x

3

+ 1; x

4

; x

5

; x

6

; x

7

� 1)  x

2

> 0; x

7

> 0; x

4

= 0;

p(x

2

; : : : ; x

7

):

r

2

: p(x

2

; x

3

; x

4

+ 1; x

5

; x

6

� 1; x

7

)  x

2

> 0; x

6

> 0;

p(x

2

; : : : ; x

7

):

r

3

: p(x

2

+ 1; x

3

� 1; x

4

; x

5

+ 1; x

6

; x

7

)  x

3

> 0;

p(x

2

; : : : ; x

7

):

r

4

: p(x

2

; x

3

; x

4

� 1; x

5

+ 1; x

6

; x

7

)  x

4

> 0;

p(x

2

; : : : ; x

7

):

r

5

: p(x

2

; x

3

; x

4

; x

5

� 1; x

6

+ 1; x

7

)  x

5

> 0;

p(x

2

; : : : ; x

7

):

r

6

: p(x

2

; x

3

; x

4

; x

5

� 1; x

6

; x

7

+ 1)  x

5

> 0;

p(x

2

; : : : ; x

7

):

To replace the constraint x

4

= 0, we introduce the new variable x

1

and construct

a new program P

0

de�ned in such a way that x

1

= 1�x

4

, holds in the least model

of P

0

, and replace x

4

= 0 by x

1

> 0 in clause r

1

. We get:
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p

0

(x

1

; x

2

; x

3

; x

4

; x

5

; x

6

; x

7

)  x

1

= 1� x

4

; x

2

= 1;

x

3

= 0; x

4

= 0; x

5

= q;

q � 0; x

6

= 0; x

7

= 0:

r

1

: p

0

(x

1

; x

2

� 1; x

3

+ 1; x

4

; x

5

; x

6

; x

7

� 1)  x

2

> 0; x

7

> 0; x

1

> 0;

p

0

(x

1

; : : : ; x

7

):

r

2

: p

0

(x

1

� 1; x

2

; x

3

; x

4

+ 1; x

5

; x

6

� 1; x

7

)  x

2

> 0; x

6

> 0;

p

0

(x

1

; : : : ; x

7

):

r

3

: p

0

(x

1

; x

2

+ 1; x

3

� 1; x

4

; x

5

+ 1; x

6

; x

7

)  x

3

> 0;

p

0

(x

1

; : : : ; x

7

):

r

4

: p

0

(x

1

+ 1; x

2

; x

3

; x

4

� 1; x

5

+ 1; x

6

; x

7

)  x

4

> 0;

p

0

(x

1

; : : : ; x

7

):

r

5

: p

0

(x

1

; x

2

; x

3

; x

4

; x

5

� 1; x

6

+ 1; x

7

)  x

5

> 0;

p

0

(x

1

; : : : ; x

7

):

r

6

: p

0

(x

1

; x

2

; x

3

; x

4

; x

5

� 1; x

6

; x

7

+ 1)  x

5

> 0;

p

0

(x

1

; : : : ; x

7

):

We have the following equivalence:

p(x

2

; x

3

; x

4

; x

5

; x

6

; x

7

) , 9x

1

: p

0

(x

1

; x

2

; x

3

; x

4

; x

5

; x

6

; x

7

)

We would like to prove that, for this protocol, there is always at most one current

writer (i.e. x

3

= 0 _ x

3

= 1), and that reading and writing can never occur at the

same time (i.e.: x

3

= 0 _ x

4

= 0). Formally, we must prove:

p

0

(x

1

; x

2

; x

3

; x

4

; x

5

; x

6

; x

7

) ) (x

3

= 0 _ x

3

= 1)

p

0

(x

1

; x

2

; x

3

; x

4

; x

5

; x

6

; x

7

) ) (x

3

= 0 _ x

4

= 0)

The classical methods of veri�cation of Petri nets by invariants (see, e.g., (Brams,

83)(Peterson, 81)) are able to prove the �rst implication: by analysing the tran-

sitions without taking into account the guards, they generate a set of linear com-

binations �

7

i=1

�

i

x

i

of x

1

; :::; x

7

, which are left invariant by any transition r

j

(1 �

j � 6)

1

. Among the generated invariants, there is the formula x

2

+ x

3

= 1.

Since the variables x

2

and x

3

take only positive or null values, it follows im-

mediately that x

3

must be 0 or 1. The second property of \mutual exclusion"

(x

3

= 0 _ x

4

= 0) is more di�cult to establish. (See however (Meltzer, 95) for

a recent method extending the classical methods with invariants for dealing with

such mutual exclusion properties.) We will see in this paper how our method of

construction of least �xed-points allows us to solve this problem (see section 8).

4. Construction of Least Fixed-points

The transformations we are going to present, only concern the recursive clauses.

Since these clauses all have the same form (i.e. no reordering or sharing of variables,
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and all recursive calls are exactly the same) we will represent a program by an

\incrementation matrix" whose j:th row is the vector k

j

of coe�cients of the j:th

recursive clause of the program, and the constraints and the name of the clause are

written to the right of the corresponding row of the matrix.

Example: The program P

0

of example 3.4 is represented by:

0 �1 1 0 0 0 �1 x

2

> 0; x

7

> 0; x

1

> 0 : r

1

�1 0 0 1 0 �1 0 x

2

> 0; x

6

> 0 : r

2

0 1 �1 0 1 0 0 x

3

> 0 : r

3

1 0 0 �1 1 0 0 x

4

> 0 : r

4

0 0 0 0 �1 1 0 x

5

> 0 : r

5

0 0 0 0 �1 0 1 x

5

> 0 : r

6

x

1

x

2

x

3

x

4

x

5

x

6

x

7

Without loss of understanding, we will also call \program" the set � of the labels

r

1

; ::; r

n

of the recursive clauses.

4.1. Decomposition rules

As explained before, the method we use to compute the reachability set consists

in showing that any path can be reordered into some speci�c \simpler" form. In

this paper we present in detail only two transformation rules. (The de�nition of

some other rules is given besides in appendix A.) The rules are stated in the form:

x

�

�

! x

0

, x

L

1

L

2

���L

s

! x

0

. We say that �

�

decomposes as L

1

L

2

� � �L

s

. Each lan-

guages L

i

(1 � i � s) denotes here either a �nite language or a language of the form

�

�

i

where �

i

is a label for a new \simpler" program. Programs �

i

are \simpler"

than the original program (labeled by �) by either containing a fewer number of

recursive clauses, or by letting more variables invariant. (From a syntactic point of

view, a variable is invariant when the corresponding column in the incrementation

matrix is null.)

Formally, we de�ne the dimension of a program with Z-counters as a couple

(m;n) where n is the number of clauses of the program, and m is the number of

non invariant variables of the program (i.e. the number of non null columns in the

corresponding incrementation matrix). We also de�ne an order on these dimensions

as follows: The dimension (m

1

; n

1

) is lower than (m

2

; n

2

) i� m

1

< m

2

, or m

1

= m

2

and n

1

< n

2

. Each transformation rule thus decomposes the original language �

�

into either �nite languages (for which the reachability problem is solvable in the

existential fragment of Presburger arithmetic, see section 2) or into languages as-

sociated with programs of lower dimension. There are two kinds of \elementary"

programs with a basic dimension. The �rst kind consists in programs of dimension

(1; n), i.e. programs made of n clauses, r

1

; : : : ; r

n

with all but one column being

null. As will be seen later on (see section 4.1.1, remark 3), the reachability problem
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for such programs can be easily solved and expressed in the existential fragment of

Presburger arithmetic. The second kind of elementary programs are programs of

dimension (m; 1), i.e., programs made of a single clause, say r

1

. In this case the

expression x

�

�

! x

0

reduces to x

r

�

1

! x

0

, which can be also expressed in the existen-

tial fragment of Presburger arithmetic (see section 2). Therefore the decomposition

process must eventually terminate either successfully, thus leading to a character-

ization of the reachability relation in Presburger arithmetic, or it terminates with

failure because no decomposition rule can be applied.

In keeping with a former approach (Fribourg, 94), we will consider two types of

decomposition rules: monotonic and cyclic rules. The monotonic decompositions

are based on the fact that some clauses of a program may be applied all at once

at some point during a computation, while the cyclic decompositions exploit that

there is some �xed sequences of clause �rings that can be repeated. We �rst present

one monotonic decomposition rule, then one cyclic rule.

4.2. Monotonic decomposition rule

The �rst decomposition rule is called monotonic clause. This decomposition applies

when there is a clause whose coe�cients in the head are all nonegative or nonposi-

tive. Thus, the monotonic clause is stated in two versions: one increasing, and one

decreasing. For the purposes of this paper, we only state the increasing version (the

decreasing one being symmetric). This rule applies to a program whose matrix is

of the form:

.

.

. #

r

:::

: r

:::

+ : : : + #

r

l

: r

l

.

.

. #

r

:::

: r

:::

x

1

x

m

This means that, in the program, we have 8j : k

l;j

� 0. In such a case, clause r

l

can be \prioritized" before all the rest of the clauses: given a path w starting at a

point x where #

r

l

(x) holds, one can always reorder w so that all the clauses r

l

are

applied �rst. Formally we have:

Proposition 2 Let r

l

2 � be a clause such that 8j : k

l;j

� 0. Then:

x

�

�

! x

0

, x

(��fr

l

g)

�

r

�

l

(��fr

l

g)

�

! x

0

Proof: Since k

r

l

is a vector made of nonnegative coe�cients k

l;j

, we have:

#

r

j

(x) ) #

r

j

(x + k

r

l

), i.e. #

r

j

(x) ) #

r

j

(xr

l

), for all r

j

2 �. The constraint

#

r

j

is thus invariant under the application of r

l

. Therefore, if x

0

is reachable from

x by some path w = w

1

r

l

w

2

, and #

r

l

(x) holds, then also the path w

0

= r

l

w

1

w

2

is

applicable, so all the applications of r

l

can be pushed to the beginning, and thus x

0

must be reachable from x by some path w

00

= r

l

� � �r

l

w

3

where w

3

2 (�� fr

l

g)

�

.
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Clearly, if x

0

is reachable from x by any path w 2 �

�

containing r

l

, then r

l

must

occur somewhere for the �rst time. At that point #

r

l

must hold, so, by the above,

x

0

is reachable by some path w

0

2 (�� fr

l

g)

�

r

�

l

(� � fr

l

g)

�

.

Remark 1

As seen in the proof, the requirement that all the coe�cients k

l;j

should be

nonnegative is unnecessarily strong. It is enough that #

r

j

(x) ) #

r

j

(xr

l

) holds

for every clause r

j

2 �, which means that r

l

preserves all the constraints of �.

Remark 2

It is clear that the languages involved in the right-part of the equivalence in

proposition 2, viz. (�� fr

l

g)

�

and r

�

l

, are of lower dimension than � provided

that � contains more than one clause. (If � contains only one clause, say

r

1

, then the program is elementary and, as already pointed out, the relation

x

r

�

1

! x

0

is characterizable as an existentially quanti�ed Presburger formula.)

Remark 3

Consider an elementary program � of dimension (1; n). It means that all the

columns of its incrementation matrix are null except one, say the h-th column.

So the l-th row is monotonic (increasing if k

l;h

� 0, or decreasing if k

l;h

� 0), for

any 1 � l � n. Therefore one can apply the monotonic rule, thus decomposing

program � into fr

l

g and � � fr

l

g. For the same reasons, the monotonic rule

applies again to the latter program��fr

l

g. By iteratively applying the rule, one

can thus decompose the reachability problem via �

�

into reachability problems

via r

�

1

, r

�

2

, ..., r

�

n

. It follows that one can characterize the reachability problem

via �

�

in the existential fragment of Presburger arithmetic.

Other monotonic decomposition rules are given in appendix A.

4.3. Cyclic decomposition rule

The cyclic decomposition rule that we consider applies to matrices of the general

form (after possible reordering among clauses r

1

; :::; r

n

):

� : : : � + � : : : � � � � : r

1

.

.

.

� : : : � + � : : : � � � � : r

l

+ : : : + �1 + : : : + x

j

> 0 : r

l+1

.

.

.

+ : : : + �1 + : : : + x

j

> 0 : r

n

x

j

9

>

>

=

>

>

;

R

0

9

=

;

R

where R and R

0

are sets of rules such that � = R ] R

0

, the constraints of all the

clauses in R are exactly x

j

> 0 and x

j

does not occur in the constraints of any rule

in R

0

. Formally this means
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1. 8r

i

2 R : k

i;h

� 0 for h 6= j

1

0

. 8r

i

2 R

0

: x

j

does not occur in #

r

i

(x)

2. 8r

i

2 R

0

: k

i;j

� 0

3. 8r

i

2 R : k

i;j

= �1

4. 8r

i

2 R : #

r

i

(x) � x

j

> 0

Under conditions 1; 1

0

; 2; 3; 4, given a path w starting at a point where x

j

is greater

than 0, one can reorder w so that all the R-clauses are applied �rst (similarly to the

situation of the monotonic transformation), but now such a priority of application

for the R-clauses must end at some point: this is because, here, the coe�cients k

i;j

(l+1 � i � n) are not positive or null, but equal to �1. So the value of x

j

decreases

at each application of an R-clause until x

j

becomes null. At this stage, no R-clause

is applicable, and an R

0

-clause r

i

(1 � i � l) must be applied. The j-th coordinate

of the newly generated tuple is then equal to k

i;j

. If k

i;j

is strictly positive, then

any of the \highest priority" R-clauses can be applied again a number of times

equal to k

i;j

until x

j

becomes null again. This shows that any path w of �

�

can be

reordered into a path whose core is made of repeated \cyclic sequences" of the form

r

i

w with w 2 R

k

i;j

. (As usual, the expression R

k

denotes the set of paths in R

�

of length k.) Note that these \cyclic sequences" let x

j

invariant, and are applied

when x

j

= 0. To summarize, the strategy of application of the clauses here is to

apply R-clauses in priority, whenever they are applicable (i.e., when x

j

> 0), until

x

j

becomes null.

Remark 4

Actually, requirements 1 and 1

0

that all the coe�cients k

i;h

should be nonnega-

tive (for h 6= j), and x

j

should not occur in the R

0

-constraints, are unnecessarily

strong. It is enough that, under condition x

j

> 0, rules of R \commute" with

those of R

0

in the following sense: x

j

> 0 ^ x

R

0

R

! x

0

) x

RR

0

! x

0

.

Remark 5

Requirement 4 can be also relaxed: a similar decomposition holds when the

constraints of the R-clauses are not atomic (i.e., not equal to x

j

> 0) but

contain other guards (i.e., when #

r

i

(x) ) x

j

> 0).

Before stating formally the cyclic decomposition rule, we introduce and brie
y

comment on some notation used in the formal statement of the rule. The expression

r

i

R

k

denotes the set fr

i

w j w 2 R

k

g. The expression R

0<�<k

denotes the set of

paths w in R

�

of length greater than 0 and less than k. If r

i

R

k

represents a set

of cyclic sequences, the expression r

i

R

0<�<k

thus represents the set of pre�xes of

such sequences. (The pre�x reduced to r

i

is discarded by the notation, and appears

in the rule statement as an element of R

0

.) The language (

S

r

i

2R

0

r

i

R

k

i;j

)

�

also

appears in the rule statement. The program associated with this language is made

of recursive clauses of the form: p(x+ k

r

i

w

) #

r

i

w

(x); p(x):, where w is in R

k

i;j

.

The dimension of such a program is less than the dimension of � because it lets

one more variable, viz. x

j

, invariant (The x

j

column in the corresponding incre-

mentation matrix is null.)
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Proposition 3 Let R;R

0

� � be sets of (labels of) clauses such that � = R]R

0

,

and let x

j

be a variable such that:

1. x

j

> 0 ^ x

R

0

R

! x

0

) x

RR

0

! x

0

2. 8r

i

2 R

0

: k

i;j

� 0

3. 8r

i

2 R : k

i;j

= �1

4. 8r

i

2 R : #

r

i

(x) ) x

j

> 0

Then we have

A

x

j

� 0 ^ x

�

�

! x

0

)

x

R

�

R

0�

! x

0

_

9x

00

: x

R

�

! x

00
�

�

! x

0

^ x

00

j

= 0

B

x

j

= 0 ^ x

�

�

! x

0

)

x

�

S

r

i

2R

0

r

i

R

k

i;j

�

�

�

"+

S

r

i

2R

0

r

i

R

0<�<k

i;j

�

R

0�

! x

0

where x

j

is let invariant by all the paths in

�

S

r

i

2R

0

r

i

R

k

i;j

�

�

.

C

x

�

�

! x

0

,

x

R

0�

R

�

R

0�

! x

0

_

9x

00

: x

R

0�

R

�

! x

00

�

S

r

i

2R

0

r

i

R

k

i;j

�

�

�

"+

S

r

i

2R

0

r

i

R

0<�<k

i;j

�

R

0�

! x

0

^

x

00

j

= 0

where x

j

is let invariant by all the paths in

�

S

r

i

2R

0

r

i

R

k

i;j

�

�

.

Before proving this proposition, let us stress that part C of the proposition pro-

vides us with a decomposition rule that reduces the reachability problem via �

�

to several reachability problems via languages which are of lower dimensions. The

sublanguages are R

0�

, R

�

, (" +

S

r

i

2R

0

r

i

R

0<�<k

i;j

) and (

S

r

i

2R

0

r

i

R

k

i;j

)

�

. Lan-

guages R

0�

and R

�

have fewer clauses than �

�

(and at least as many variables kept
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invariant), so they are of lower dimension. The language ("+

S

r

i

2R

0

r

i

R

0<�<k

i;j

) is

�nite. As already pointed out, the language (

S

r

i

2R

0

r

i

R

k

i;j

)

�

is of lower dimension

than �

�

because it leaves a new variable (viz., x

j

) invariant.

Proof: The �rst statement, A, of the proposition states that any point x

0

reach-

able from a point x such that x

j

� 0, is reachable either by a path consisting of a

sequence of applications of clauses of R only followed by a sequence of applications

of clauses of R

0

only, or x

0

is reachable via a point x

00

(with x

00

j

= 0), which is itself

reachable from x by a sequence of applications of clauses of R only. We prove this

by induction on the length n of the paths. The case when n = 0 is trivial. The

induction hypothesis is the following implication: For all v 2 �

�

such that jvj < n,

(x

j

� 0 ^ x

v

! x

0

) (x

v

0

! x

0

_ 9x

00

: x

v

00

! x

00
v

000

! x

0

^ x

00

j

= 0)), for some

v

0

2 R

�

R

0�

, v

00

2 R

�

, v

000

2 �

�

such that jv

0

j = jv

00

v

000

j = jvj. Suppose now that

x

j

� 0^x

w

! x

0

hold for some x, x

0

and w 2 �

�

such that jwj = n, and let us prove

D: (x

w

0

! x

0

_ 9x

000

: x

w

00

! x

000 w

000

! x

0

^x

000

j

= 0) for some w

0

2 R

�

R

0�

, w

00

2 R

�

and w

000

2 �

�

such that jw

0

j = jw

00

w

000

j = jwj. If no R-clause appears in w, then

w 2 R

0�

so clearly w 2 R

�

R

0�

, and D follows by choosing w

0

as w. Otherwise some

clause of R must occur in w for the �rst time. Then w = w

1

r

i

w

2

for some w

1

2 R

0�

,

r

i

2 R and w

2

2 �

�

. If x

j

= 0 we choose x

000

= x, w

00

= " and w

000

= w

1

r

i

w

2

,

which again proves D. Therefore assume x

j

> 0. By precondition 2, all the clauses

of R

0

make x

j

increase, so x

j

> 0 is invariant for all the paths in R

0�

. By repeated

use of precondition 1, w

1

r

i

may then be replaced by some r

0

i

w

0

1

such that r

0

i

2 R,

w

0

1

2 R

0�

and jw

0

1

j = jw

1

j, so x

r

0

i

! x

00

w

0

1

w

2

! x

0

holds for some x

00

. By precondition

3, all the clauses in R decrease x

j

by one, so either x

00

j

= 0, in which case we choose

w

00

as r

0

i

and w

000

as w

0

1

w

2

for proving D, or x

00

j

> 0 still holds. Since jw

0

1

w

2

j < jwj,

by the induction hypothesis, x

v

0

! x

0

_ 9x

000

: x

00
v

00

! x

000
v

000

! x

0

^ x

000

j

= 0,

holds for some v

0

2 R

�

R

0�

, v

00

2 R

�

, v

000

2 �

�

and jv

0

j = jv

00

v

000

j = jw

0

1

w

2

j, and

therefore x

r

0

i

v

0

! x

0

_ 9x

000

: x

r

0

i

v

00

! x

000 v

000

! x

0

^ x

000

j

= 0. Thus D holds, since

r

0

i

v

0

2 R

�

R

0�

, r

i

v

00

2 R

�

and jr

i

v

0

j = jr

i

v

00

v

000

j = jwj. The slightly stronger result

that jw

0

j = jw

00

w

000

j = jwj, will be used below.

The second statement, B, says that if x

0

is reachable from some point x such that

x

j

= 0, then x

0

is reachable by a sequence of repeated cycles r

i

R

k

i;j

, where r

i

2 R

0

,

possibly followed by a pre�x r

i

R

0<�<k

i;j

of a cycle and �nally by a sequence of

applications of clauses of R

0

only. It is obvious that the paths r

i

R

k

i;j

keep x

j

= 0

invariant since r

i

increases x

j

by k

i;j

, and all clauses of R decreases x

j

by one,

so r

i

followed by k

i;j

applications of R-clauses sums up to zero. The statement is

proved by induction. Again the base case when n = 0 is trivial. The induction

hypothesis is the following implication: for all v 2 �

�

such that jvj < n, x

j

=

0 ^ x

v

! x

0

) x

LR

0�

! x

0

, where L =

�

S

r

i

2R

0

r

i

R

k

i;j

�

�

�

" +

S

r

i

2R

0

r

i

R

0<�<k

i;j

�

.

Suppose that x

j

= 0 ^ x

w

! x

0

hold for some x, x

0

and w 2 �

�

such that jwj = n,

and let us prove x

LR

0�

! x

0

. Since x

j

= 0, by precondition 4, no clause of R can

be applied, so the �rst clause application must be some r

i

2 R

0

, and therefore

w = r

i

w

1

for some w

1

2 �

�

. Thus x

j

= 0 ^ x

r

i

! x

00
w

1

! x

0

holds for some x

00

. If

k

i;j

= 0, then x

00

j

= 0. Since jw

1

j < jwj, by the induction hypothesis, x

00 LR

0�

! x

0



16

holds, so x

r

i

LR

0�

! x

0

. This proves x

LR

0�

! x

0

, since r

i

L � L. Therefore as-

sume k

i;j

> 0, in which case x

00

j

> 0 must hold. But by the proof of case A of

the proposition, if x

00

j

> 0 ^ x

00
w

1

! x

0

holds, then either E1: x

00

w

0

1

! x

0

or

E2: 9x

000

: x

00

w

00

1

! x

000

w

000

1

! x

0

^ x

000

j

= 0 must hold for some w

0

1

2 R

�

R

0�

,

w

00

1

2 R

�

and w

000

1

2 �

�

such that jw

0

1

j = jw

00

1

w

000

1

j = jw

1

j. Assume that E2 holds.

Then jw

00

1

j = k

i;j

must hold and, since jw

000

1

j < jwj, by the induction hypothesis,

x

000 LR

0�

! x

0

, so x

r

i

w

00

1

LR

0�

! x

0

, which proves x

LR

0�

! x

0

, since r

i

w

00

1

L � L. Sup-

pose now that E2 does not hold. By E1, w

0

1

= uu

0

for some u 2 R

�

and u

0

2 R

0�

.

Furthermore, juj < k

i;j

must hold, since otherwise w

00

1

could be chosen as u, and

E2 would hold. Therefore r

i

uu

0

2

�

"+

S

r

i

2R

0

r

i

R

0<�<k

i;j

�

R

0�

� LR

0�

, and again,

x

LR

0�

! x

0

holds.

The third statement, C, follows by simply combining A and B, and by noting

that if x

j

< 0, by precondition 4, only R

0

-clauses can be applied. Either we reach

the end point, or we reach some point where x

j

� 0, and then cases A and B of

the proposition apply.

Remark 6:

In the special case where the constraints of R-clauses are atomic (i.e., all equal

to x

j

> 0), it is easy to show that the application of R-clauses is commutative.

Therefore, we have for all r

i

in R

0

x

00
r

i

R

k

! x

000

) x

00

r

i

S

m

1

+m

2

+:::+m

n�l

=k

r

m

1

l+1

r

m

2

l+2

���r

m

n�l

n

! x

000

Hence we need not consider all the paths of r

i

R

k

, but only those of the form

r

i

r

m

1

l+1

r

m

2

l+2

� � �r

m

n�l

n

, where m

1

+m

2

+ : : :+m

n�l

= k. (Actually, the ordering

on r

l+1

, r

l+2

, : : : r

n

is arbitrary.)

Remark 7:

In the special case where the constraints of R-clauses are atomic (i.e., all equal

to x

j

> 0), let us also notice that, for all clause w 2 r

i

R

k

, the associated

constraint #

w

(x

00

) is equal to #

r

i

(x

00

): This is trivial if k =0; in the case where

k > 0, constraint #

w

(x

00

) is equal to #

r

i

(x

00

)^x

00

j

+ k > 0^ :::^x

00

j

+ 1 > 0, and

reduces to #

r

i

because x

00

j

is equal to 0 (see statement C of proposition 3). In

other words, one can always drop the constraints relevant to x

j

within clauses

of r

i

R

k

. One can see that x

j

-constraints can be dropped also in the general

case where constraints of R-clauses are not atomic.

Example: Consider the matrix in example 4, representing the program for the

protocol of example 3.4. Let us in proposition 3 choose R = fr

5

; r

6

g and R

0

=

fr

1

; r

2

; r

3

; r

4

g, and let x

j

= x

5

. We see that this matrix conforms to the spe-

cial case discussed above where the decomposition of proposition 3 is applicable.

We have: k

1;5

= 0, k

2;5

= 0, k

3;5

= 1 and k

4;5

= 1. Thus, r

1

R

k

1;5

= r

1

,

r

2

R

k

2;5

= r

2

, r

3

R

k

3;5

= r

3

r

5

+ r

3

r

6

and r

4

R

k

4;5

= r

4

r

5

+ r

4

r

6

. Furthermore:
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" +

S

r

i

2R

0

r

i

R

0<�<k

i;5

= " + r

1

R

0<�<0

+ r

2

R

0<�<0

+ r

3

R

0<�<1

+ r

4

R

0<�<1

= ".

By proposition 3.C, we have:

x

(r

1

+r

2

+r

3

+r

4

+r

5

+r

6

)

�

! x

0

,

x

(r

1

+r

2

+r

3

+r

4

)

�

(r

5

+r

6

)

�

(r

1

+r

2

+r

3

+r

4

)

�

! x

0

_

9x

00

: x

(r

1

+r

2

+r

3

+r

4

)

�

(r

5

+r

6

)

�

! x

00

^

x

00

(r

1

+r

2

+r

3

r

5

+r

3

r

6

+r

4

r

5

+r

4

r

6

)

�

(r

1

+r

2

+r

3

+r

4

)

�

! x

0

^ x

00

5

= 0

and all the paths in (r

1

+r

2

+r

3

r

5

+r

3

r

6

+r

4

r

5

+r

4

r

6

)

�

keep x

5

= 0 invariant. The

matrix M

0

of the program corresponding to the set of clauses fr

1

; r

2

; r

3

; r

5

; r

3

r

6

;

r

4

r

5

; r

4

r

6

g is shown below:

0 �1 1 0 0 0 �1 x

2

> 0; x

7

> 0; x

1

> 0 : r

1

�1 0 0 1 0 �1 0 x

2

> 0; x

6

> 0 : r

2

0 1 �1 0 0 1 0 x

3

> 0; x

5

> �1 : r

3

r

5

0 1 �1 0 0 0 1 x

3

> 0; x

5

> �1 : r

3

r

6

1 0 0 �1 0 1 0 x

4

> 0; x

5

> �1 : r

4

r

5

1 0 0 �1 0 0 1 x

4

> 0; x

5

> �1 : r

4

r

6

x

1

x

2

x

3

x

4

x

5

x

6

x

7

Thus, (r

1

+ r

2

+ r

3

+ r

4

)

�

and (r

5

+ r

6

)

�

involves fewer clauses than the original

program, while (r

1

+ r

2

+ r

3

r

5

+ r

3

r

6

+ r

4

r

5

+ r

4

r

6

)

�

involves the same number of

clauses but lets one more variable, viz. x

5

, invariant. (The corresponding column

in the incrementation matrix is null.)

5. Comparison with Related Work

5.1. Comparison with Berthelot's work

As can be seen in the example, in the matrix M

0

corresponding to the set of cyclic

sequences, the constraint x

5

> �1 is systematically satis�ed since it is applied, by

proposition 3, to a point of coordinate x

5

= 0 and x

5

is kept invariant. So an obvious

optimization, for the treatment of the matrix, will be to remove the null column as

well as the guard x

5

> �1 (cf. Remark 7). In terms of Petri nets, this corresponds to

remove the place x

5

and to perform the \fusion" of transitions r

2

; r

3

; r

4

(which have

x

5

as an output place) and transitions r

5

; r

6

(which have x

5

as an input place). The

resulting Petri net is represented in �gure 2. This kind of optimization can be done

generally, under the preconditions of proposition 3. An analogous transformation of

Petri nets is called post-fusion transformation in (Berthelot, 86). Our version of the

cyclic decomposition can thus be seen as a variant of Berthelot's post-fusion rule.

Berthelot also de�ned some other transformations like pre-fusion. It is possible to

give in our framework a counterpart also for this transformation (see appendix A).
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Figure 2

The point that should be stressed here is that our cyclic decomposition rules are

more general than Berthelot's rules because they apply to general programs with

Z-counters where variables take their values on Z (instead of N as in the case of

Petri nets). This allows us in particular to encode 0-tests as already seen. In section

7 we will see that our cyclic decomposition rule can also, under certain conditions,

be generalized one step further by allowing R-transitions to pick up more than one

token from place x

j

. (For rules r

i

2 R, coe�cients k

i;j

will be allowed to be less

than �1.)

5.2. Comparison with related work in constraint databases

Our decomposition can be seen as a means of eliminating redundant paths (proof

derivations) leading from a fact to another fact. This issue of eliminating redun-

dancy during bottom-up execution of Datalog or logic programs (with constraints)

has given rise to two di�erent kind of methods: static methods and dynamic ones.

In the static approach, basic rules of transformation are applied to the program

itself in order to narrow its bottom-up tree of derivations. This is applicable when

the program satis�es certain properties for which su�cient syntactic criteria exist:

e.g., boundedness (Naughton, 87), commutatitivity (Ramakrishnan, 89), splittabil-

ity (Nilsson, 82)(Lassez, 83). In the dynamic approach, redundant derivations are

eliminated during the execution of the program. For example, (Vieille, 89) discusses

the run-time detection and elimination of redundant subgoals and redundant parts

of SLD-derivation trees. In (Helm, 89) redundant derivations are removed during

bottom-up execution by, �rst, unfolding the original program (see (Tamaki, 84))

according to a strategy de�ned by a control language, then eliminating redundant
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unfolded clauses. In the dynamic approach, the detection of redundancy basically

relies on various enhancements of the classical notion of \subsumption" (cf. (Love-

land, 78)(Maher, 88)). Our work here belongs to the static approach. One of the

decomposition rules of our system (see the rule of \strati�cation", proposition 5,

appendix A) is thus a commutativity rule in the sense of (Ramakrishnan, 89). The

main originality of our system lies in the subset of cyclic rules, which do not simply

rearrange clauses of the original program, but create new clauses by \fusion" of

old ones. This fusion can be interpreted as a restricted form of unfolding as in the

work of (Helm, 89), but here, the strategy of unfolding is �xed by the rule, and its

correctness always guaranteed without need for dynamic tests of subsumption. Let

us �nally mention that dynamic tests of subsumption can still be easily integrated

within our method. For example, we will see in section 8 how tests of invariance

(analogous to the subsumption tests used in bottom-up evaluation of constraint

databases (Maher, 93)) are added to the basic decomposition procedure in order to

optimize the construction of the least �xed-point.

6. Application to BPP-Nets

Since programs with Z-counters are Turing equivalent it is clear that the decom-

position process cannot always succeed. Even for Petri nets it is known that nets

with more than four places, in general do not have a a reachability set expressible

in linear arithmetic (Hopcroft, 79). In this section we consider a subclass of Petri

nets for which the decomposition process is guaranteed to succeed in generating a


at language.

Recently an interesting subset of Petri nets has been introduced and investigated:

BPP-nets. A Petri net is a BPP-net if every transition has at most

2

one input

place and removes exactly one token from that one place. BPP stands for Basic

Parallel Process: this is a class of CSS process de�ned in (Christensen, 93); the

reachability problem for BPP-nets is NP-complete (Esparza, 95). When one en-

codes the reachability problem for BPP-nets, using the method of section 3, one

obtains a program such that, for any clause r

i

2 �, all the coe�cients of the head

are nonnegative except (maybe) one, which is equal to �1. For all clause r

i

, if such

a negative coe�cient, say k

i;h

, exists, then the constraint of r

i

is atomic and equal

to x

h

> 0. We call such a clause r

i

a BPP-clause. Let us assume given a BPP-net

� (i.e., a set of BPP-clauses), and consider the following property

Prop(�): �

�

can be decomposed into a sequence L

1

:::L

s

such that, for all 1 �

i � s, the language L

i

is either �nite, or of the form w

�

i

for some path w

i

, or of the

form �

�

i

for some BPP-net �

i

.

By iterative application of this proposition, one generates eventually a 
at de-

composition of the given BPP-net �. (The process terminates because all our rules

of decomposition transform a program into programs of lower dimension.) Let us
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now prove Prop(�).

Proof: If there exists a clause r

i

in � such that all the coe�cients of its head are

nonnegative, the monotonic (increasing) decomposition rule is applied, and �

�

is

decomposed into (��fr

i

g)

�

r

�

i

(��fr

i

g)

�

. If there are still such clauses in ��fr

i

g,

we apply again the monotonic rule, and so on until one gets a sequence made only

of expressions of the form r

�

j

and expressions of the form �

0�

, where �

0

denotes the

subset of clauses of � having at least one negative coe�cient. By assumption, every

clause of �

0

must then contain exactly one negative coe�cient (equal to �1) and

its constraint must be atomic. In order to prove Prop(�), it then su�ces to prove

Prop(�

0

). Assume that �

0

is nonempty (otherwise, the property is trivial), and let

us show that the cyclic decomposition rule applies to �

0

. We have to determine

which sets of rules to take as for R, R

0

and which variable to take as for x

j

in order

to apply proposition 3. As for x

j

we choose a variable such that column j of the

matrix contains an element equal to �1 (which must exist). As R we take all the

clauses r

i

such that k

i;j

= �1, and as R

0

we take �

0

� R.

Let us show that R can be decomposed under a 
at form. Since all the clauses

r

i

2 R have the same atomic constraint x

j

> 0 and all the coe�cients k

i;j

are

equal (to �1), one easily sees that all the rules in R commute as required for the

strati�cation decomposition of proposition 5 (see appendix A). So by repeatedly

applying this decomposition, R

�

can be 
attened. (Actually, if R is made of l

clauses r

i

1

; ::; r

i

l

, R

�

can be decomposed into the 
at form r

�

i

1

:::r

�

i

l

.)

If R

0

is empty, then �

0

is R, and can thus be put under a 
at form. Assume

therefore that R

0

is nonempty. Thus, for every r

i

2 R

0

we have k

i;j

� 0, and

therefore conditions 1; 1

0

; 2; 3; 4 of the specialized case of section 4.2 are satis�ed, so

the cyclic decomposition applies. By equivalence C of proposition 3, reachability

by �

0�

is reduced to reachability as:

x

�

0�

! x

0

,

x

R

0�

R

�

R

0�

! x

0

_

9x

00

: x

R

0�

R

�

! x

00

�

S

r

i

2R

0

r

i

R

k

i;j

�

�

�

"+

S

r

i

2R

0

r

i

R

0<�<k

i;j

�

R

0�

! x

0

^

x

00

j

= 0

where x

j

is let invariant by all the paths in

�

S

r

i

2R

0

r

i

R

k

i;j

�

�

.

Clearly R

0

is still of the form corresponding to a BPP-net. Besides R

�

can be put

under a 
at form, and "+

S

r

i

2R

0

r

i

R

0<�<k

i;j

is �nite. In order to achieve the proof

of Prop(�

0

), it then su�ces to show that

S

r

i

2R

0

r

i

R

k

i;j

corresponds to a BPP-net,

that is: for any clause w 2

S

r

i

2R

0

r

i

R

k

i;j

, all the coe�cients k

w;j

are nonnegative

except (maybe) one, which is equal to �1; besides, if such a negative coe�cient,
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say k

w;h

, exists, the constraint of w is atomic and equal to x

h

> 0. Let us consider

those rows of matrix �

0

which are involved in

S

r

i

2R

0

r

i

R

k

i;j

:

+ : : : + k

i;h

+ : : : + k

i;j

+ : : : +

+ : : : + + + : : : + �1 + : : : +

.

.

.

+ : : : + + + : : : + �1 + : : : +

x

h

x

j

#

r

i

: r

i

2 R

0

x

j

> 0

x

j

> 0

9

=

;

R

By composition of these rows, any clause w in

S

r

i

2R

0

r

i

R

k

i;j

, has a vector of

coe�cients k

w

of the form: h+; :::;+; l

h

;+; :::;+; 0;+; :::;+i with l

h

� k

i;h

, and

a constraint #

w

(x) equal to #

r

i

(x) (see remark 7). If k

i;h

is nonnegative, then all

the coe�cients of w are non negative (since l

h

� k

i;h

). If k

i;h

= �1, then #

r

i

is of

the form x

h

> 0, and so is #

w

(since #

w

= #

r

i

); besides all the coe�cients of w are

nonnegative (except perhaps, l

h

, which may be equal to �1). In any case, clause w

is a BPP-clause, and

S

r

i

2R

0

r

i

R

k

i;j

corresponds to a BPP-net. This completes the

proof of Prop(�

0

), hence of Prop(�).

Thus, for BPP-nets, the decomposition process is guaranteed to terminate suc-

cessfully and one obtains an existentially quanti�ed Presburger arithmetic formula

having y as a free variable for characterizing the fact that y belongs to the reacha-

bility set. This yields a new proof of the fact that the reachability set for BPP-nets

is a semilinear set (Esparza, 95). Note that Esparza's proof makes use of the notion

of \siphon", and is completely di�erent from our method. Note also that our result

is actually more general since our decomposition succeeds for BPP-nets without

any assumption on the initial markings: our decomposition process shows that the

relation x

�

�

! x

0

is an existentially quanti�ed Presburger formula having x and x

0

as free variables (that is, fhx; x

0

i j x

�

�

! x

0

g is a semilinear set (see (Ginsburg, 66))

while the result of Esparza states that fx

0

j a

0 �

�

! x

0

g is a semilinear set, for any

tuple of constants a

0

).

Remark 8:

The requirement that, in a BPP-clause r

i

, the constraint should be atomic

(equal to x

h

> 0) in case there is a negative coe�cient k

i;h

, is essential here to

our proof of semi-linearity of the reachability set. Otherwise, it is not possible

to apply the postfusion rule (because r

i

does not commute in general with R-

clauses). Actually, the result of semi-linearity does not extend to programs with

non atomic constraints: (Hopcroft, 79) gives a vector addition system (VAS)

corresponding to a Datalog program with Z-counters made of 5 clauses having

nonnegative coe�cients (except one equal to �1) and non atomic constraints,

for which the reachability set is not semi-linear.

7. A Generalized Form of the Decomposition Cyclic Rule

The cyclic decomposition rule presented above, can be given a more general for-

mulation, which makes it applicable even when the coe�cient k

i;j

of R-rule r

i

is
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less than �1. We illustrate this general formulation by considering a 3-clauses pro-

gram of a typical form and vizualizing its associated least �xpoint. The program is

de�ned by the base case vector h30; 19;�57i and the incrementation matrix:

�2 �1 3 x

1

> 0 : r

1

�1 �2 4 x

2

> 0 : r

2

4 3 �7 x

3

> 0 : r

3

x

1

x

2

x

3

Its least �xpoint is represented in �gure 3, under the form of the set of all its

applicable paths. All horizontal (resp. vertical, transversal) segment of a path

corresponds to the application of the �rst (resp. second,third) recursive rule. The

orientation of the �gures in terms of r

1

, r

2

and r

3

is:

6

-




�

r

1

r

3

r

2

Let us choose x

j

to be x

3

, R

0

to be fr

1

; r

2

g and R to be fr

3

g. A priori, propo-

0 5 10 15 20 25 30 35 40
0

5

10

15

20

0

5

10

15

20

Figure 3

sition 3 does not apply because k

3;3

, viz. �7, is not equal to �1. We are going

to explain however that an analogous decomposition applies, and that, similarly

to what part C of proposition 3 says, we have: h30; 19;�57i

(r

1

+r

2

+r

3

)

�

! x

0

)
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h30; 19;�57i

(r

1

+r

2

)

�

r

�

3

L(r

1

+r

2

)

�

! x

0

where L is a counterpart of the sequences of

cyclic sequences (

S

r

i

R

k

i

)

�

(�+

S

r

i

R

0<�<k

i

).

Compare the language expression (r

1

+ r

2

)

�

r

�

3

L(r

1

+ r

2

)

�

with �gure 3. The

lower left part of the �gure is a planar area where 2 rules only are applicable (one

coordinate, viz. x

3

, remains always less than or equal to zero), and is therefore

included into a fr

1

; r

2

g-plane, which corresponds to the initial sublanguage (r

1

+

r

2

)

�

. After a while, x

3

> 0 becomes true, and a number of transversal moves r

3

apply, which is captured by the sublanguage r

�

3

. As is seen in the �gure, the r

3

-

moves soon cease. After the last application of r

3

, it must hold that 0 � x

3

>

�7 (since r

3

is not applicable, but was applicable immediately before, and the

application of r

3

makes x

3

decreased by 7). At this point, only r

1

and r

2

can be

applied. Since r

1

makes x

3

increase by 3, and r

2

by 4, we must have: 4 � x

3

> 0,

when x

3

becomes strictly greater than zero for the �rst time. Now, in keeping

with the �ring strategy of proposition 3, clause r

3

should be �red as soon as it

is applicable. In the �gure, the set of points reached by such a strategy is the

\ceiling" of the cone (we move upwards as soon as we can).

3

The coordinate x

3

of

a reordered path is thus led to take cyclically 11 values, those between 4 and �6.

These values can be considered as states of a deterministic �nite state automaton

de�ning the language L of reordered paths. The transitions of such an automaton

are completely de�ned by our strategy of clause �ring, which gives priority to clause

r

3

whenever it is applicable (i.e., when x

3

> 0). From any state, 4 � x

3

> 0, there

is only one arrow going out, labeled r

3

, and the next state is x

3

� 7. From any

state 0 � x

3

> �7, there are two arrows going out, one labeled r

1

for which the

next state is x

3

+ 3, and one labeled r

2

for which the next state is x

3

+ 4. The

automaton is shown in �gure 4. The construction is identical to that of (Clausen,

1 2

4 3

-4

-6 -5

0

-1

-2

-3

r 3

r 3

r 1

r 1

r 1

r 1

r 1

r 2

r 2

r 2

r 2

r 2

r 1

r 1

r 2

r 2

r 3

r 3

Figure 4
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89) for solving the linear diophantine equation:

3m

1

+ 4m

2

� 7m

3

= 0

which expresses the fact that any path consisting of m

1

, m

2

and m

3

applications

of r

1

-,r

2

- and r

3

-clauses, respectively, lets x

3

invariant. It is easy to see that every

cycle in the automaton yields a solution to the equation above.

Let us denote by L

s;t

the language of paths leading from state s to state t. It

should be clear now that one can always reorder paths as follows:

h30; 19;�57i

(r

1

+r

2

+r

3

)

�

! x

0

) h30; 19;�57i

(r

1

+r

2

)

�

r

�

3

L(r

1

+r

2

)

�

! x

0

where L is

S

4�s;t>�7

L

s;t

. This is because, �rst, as already seen, we use (r

1

+r

2

)

�

paths or r

�

3

until one reaches a state 4 � s > �7 in the automaton (that is, x

3

= s).

Then the clauses are �red according to the strategy de�ned by the automaton

until no more r

3

clauses are still to be �red. From that point on one walks in the

(r

1

+ r

2

)

�

-plane, leaving the automaton at some state 4 � t > �7 (that is, x

3

= t

and x

3

r

i

> 4 for i = 1; 2). In �gure 3 this means following the \ceiling" of the

cone, and then \�lling it up" with fr

1

; r

2

g-planes. This informal explanation of

the example can be turned into a formal proof of the following generalization of

proposition 3.

Proposition 4 Let R;R

0

� � be a set of clauses such that � = R ] R

0

, and let

x

j

be a variable and c some �xed constant such that:

1. x

j

> c ^ x

R

0

R

! x

0

) x

RR

0

! x

0

2. 8r

i

2 R

0

: k

i;j

� 0

3. 8r

i

2 R : k

i;j

< 0

4. 8r

i

2 R : #

r

i

(x) ) x

j

> c

Then there exists a �nite set of languages L

s;t

, with b � s; t > a, where a =

minfk

i;j

+ c j r

i

2 Rg and b = maxfk

i;j

+ c j r

i

2 R

0

g, such that:

A

x

j

> c ^ x

�

�

! x

0

)

x

R

�

R

0�

! x

0

_

9x

00

: x

j

> c ^ x

R

�

! x

00 �

�

! x

0

^ b � x

00

j

> c

B

8b � s > a :

0

B

@

x

j

= s ^ x

�

�

! x

0

)

x

�

S

b�t>a

L

s;t

�

R

0�

! x

0

1

C

A



25

C

x

�

�

! x

0

,

x

R

0�

R

�

�

S

b�s;t>a

L

s;t

�

R

0�

! x

0

As can be seen on �gure 4, the languages L

s;t

are in general not of the form

L

1

L

2

� � �L

u

where L

i

is either �nite or of the form �

�

i

(with �

i

�nite), but may

contain nested `*'. For example the expression (r

1

r

3

(r

1

r

2

r

3

)

�

r

2

)

�

is a subset of the

language L

0;0

, while (r

1

r

3

r

2

+ r

1

r

2

r

3

)

�

is not. This means that proposition 4 may

not in general be applied iteratively. However, by applying other decompositions

such as monotonic rules, one can sometimes retrieve a language that can be ex-

pressed under such a \
at" form (without nesting of `*'). For a program with 3

recursive clauses and atomic constraints, as the one above, whose matrix has the

general form:

� � + x

1

> 0 : r

1

� � + x

2

> 0 : r

2

+ + � x

3

> 0 : r

3

x

1

x

2

x

3

we have shown that such a decomposition is always possible, which allows to solve

the problem of the arithmetical characterization of the least �xed-point (see (Fri-

bourg, 95)).

We can look back at the results stated in proposition 3, and interpret them as

a special case of the above automaton-based construction. Under the conditions

of proposition 3, the constant a = minfk

i;j

+ c j r

i

2 Rg is equal to �1. So the

states of the automaton range here from 0 to b. For each nonnull state, there is

one outgoing R-arc and some entering R

0

-arcs. For the null state s = 0, there is

one entering R-arc and some outgoing R

0

-arcs. The reordered paths, as de�ned by

part C of proposition 3, can now be constructed, using this specialized automaton,

as illustrated on �gure 5. Figure 6 gives a geometrical interpretation of the fact

all the cycles closely follow the hyper plane x

j

= 0.

8. Compilation into Arithmetic

We have an experimental implementation in SICSTUS-PROLOG currently contain-

ing seven decomposition rules, two of which are cyclic (cf. appendix A). Besides

the decomposition module, it contains a theorem prover for Presburger arithmetic

based on the decision procedure of (Boudet, 96). The system outputs a regular ex-

pression de�ning a 
at language (if the decomposition is successful) and constructs

a graph representation of the corresponding Presburger formula (see (Boudet, 96)).
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For the readers-writers protocol of �gure 1, our system �nds a 
at language L � �

�

such that x

�

�

! x

0

, x

L

! x

0

, which is:

L = r

�

5

r

�

6

r

�

2

r

�

1

r

�

2

r

�

4

(r

2

r

4

)

�

r

�

5

(r

2

r

4

)

�

r

�

5

r

�

6

r

�

2

r

�

1

r

�

2

r

�

3

(r

1

r

3

)

�

r

�

2

r

�

4

(r

1

r

3

)

�

(r

2

r

4

)

�

(r

1

r

3

)

�

r

�

2

r

�

5

r

�

6

(r

1

r

3

r

5

)

�

r

�

2

(r

4

r

6

)

�

(r

4

r

5

)

�

(r

1

r

3

r

5

)

�

(r

2

r

4

r

6

)

�

(r

1

r

3

r

5

)

�

(r

1

r

3

)

�

r

�

2

r

�

4

(r

1

r

3

)

�

(r

2

r

4

)

�

(r

1

r

3

)

�

r

�

5

r

�

6

r

�

2

r

�

1

r

�

2

r

�

4

(r

2

r

4

)

�

r

�

5

(r

2

r

4

)

�

r

�

5

r

�

6

r

�

2

r

�

1

r

�

2

The expression consists of 51 factors and was computed in 0.43 seconds on a

SPARC-10 machine. The decomposition was achieved by using 7 applications of

the cyclic post-fusion rule presented above, 10 applications of the strati�cation rule

and 1 application of monotonic guard (see appendix A).

Let us denote the above language L as w

�

1

w

�

2

� � �w

�

51

. When computing the least

�xed-point of a program, we are interested in the set lfp : fx

0

j 9x : B(x) ^

x

w

�

1

w

�

2

���w

�

51

! x

0

g. We are thus led to construct a sequence f�

i

(x)g

i=0;:::;51

of

relations de�ned by:

�

0

(x) , B(x)

�

i+1

(x) , 9x

00

: �

i

(x

00

) ^ x

00

w

�

i+1

! x

We have: x 2 lfp , �

51

(x). The decision procedure for Presburger arithmetic is

invoked to construct the sequence of �

i

s. Actually, a dynamic test of \invariance"

is added during the compilation process into arithmetic in order to check wether

the lfp has already been generated. That is, for each i (0 � i � 50), one checks

wether

8r 2 fr

1

; :::; r

6

g : �

i

(x) ^ #

r

(x) ) �

i

(xr):

If this is true, there is no need to continue, and this may signi�cantly reduce

the size of the �nal expression. This corresponds to the test of subsumption, as

used in constraint databases or bottom-up Constraint Logic Programming (see,

e.g., (Maher, 93)). In the present case of the 51 strings long expression, the least

�xed-point is thus reached after only 4 steps, and is thus given by

lfp = fx

0

j 9x : B(x) ^ x

r

�

5

r

�

6

r

�

2

r

�

1

! x

0

g

The corresponding arithmetical expression is (see appendix B):

lfp � �

4

(x) , x

1

= 1� x

4

^

((x

2

= 1 ^ x

3

= 0 ^ x

4

� 0) _

(x

2

= 0 ^ x

3

= 1 ^ x

4

= 0)) ^

x

5

� 0 ^ x

6

� 0 ^ x

7

� 0 ^

x

3

+ x

4

+ x

5

+ x

6

+ x

7

= q

It is easy to see that the mutual exclusion property, x

3

= 0 _ x

4

= 0, holds. Our

program constructs the arithmetical form of the least �xed-point in 1.1 second, and

proves the property in 0.5 second.
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Details on our integration of Boudet-Comon decision procedure for linear arith-

metic (coupled with bottom-up evaluation with subsumption) into the basic de-

composition process can be found in (Fribourg, 97).

9. Conclusion

We have developed a decompositional approach for computing the least �xed-points

of Datalog programs with Z-counters. As an application we have focused on the

computation of reachability sets for Petri nets. We have thus related some uncon-

nected topics such as Berthelot's transformation rules and Esparza's semilinearity

result for the reachability set of BPP-nets. We have also shown how these results

can be extended in several directions (BPP-nets with parametric initial markings,

post-fusion rule for Petri nets with input arcs picking up more than one token). Our

system implementation gives already promising results, as illustrated here on the

readers-writers protocol. Other experimental results in the �eld of parametrized

protocols and manufacturing systems are presented in (Fribourg, 97).
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Appendix A

We present here some other decomposition rules used in our system in addition

to the rules of monotonic clause and cyclic postfusion. The �rst rule is called

strati�cation. Exploiting some commutativity property (cf. (Ramakrishnan, 89)),

it states that some clauses can be applied before all the others.

Proposition 5 Let R;R

0

� � be sets of clauses such that � = R ] R

0

, and such

that x

R

0

R

! x

0

) x

RR

0

! x

0

. Then we have: x

�

�

! x

0

, x

R

�

R

0�

! x

0

Note that the condition x

R

0

R

! x

0

) x

RR

0

! x

0

reduces to check a �nite set of

inequalities among constants. The second decomposition rule is called monotonic

guard and comes in two versions: increasing and decreasing. It is essentially \con-

straint pushing" (Srivastava, 92) and applies when there is a single-signed column.

We present here only the decreasing version.

Proposition 6 Let R � � be a set of clauses and let x

j

be a variable such that:

1. 8r

i

2 � : k

i;j

� 0

2. 8r

i

2 R : #

r

i

(x) ) x

j

> c for some �xed constant c.

Then: x

�

�

! x

0

, (x

(��R)

�

! x

0

_ 9x

00

: x

�

0�

! x

00

�(��R)

�

! x

0

^ x

00

j

> c)

where �

0

is obtained from � by removing all constraints of the form x

j

> c from

every clause in R.
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Another cyclic decomposition rule is pre-fusion. In the post-fusion decomposition

the set � was divided into the sets R and R

0

. Intuitively, R \consumes" a resource

while R

0

is a \supplier". The idea of the post-fusion strategy was to \consume" as

soon as possible: clauses of R were �red as soon as their constraints were satis�ed,

thus having high priority. In contrast, the idea of pre-fusion is to focus on R

0

-clauses

and to \delay" their �ring as long as possible. For post-fusion it was not necessary

to distinguish the rules r

i

2 R

0

that strictly increase the variable x

j

, from those that

let x

j

invariant (that is, distinguish k

i;j

> 0 from k

i;j

= 0). For pre-fusion, instead

of R

0

we consider two sets R

0

and R

00

where R

0

are now those rules that strictly

increase the variable and R

00

are those that let it invariant. (Besides, coe�cients k

i;j

of clauses r

i

2 R

0

must be equal to +1, which is a restriction w.r.t. post-fusion.) We

wish to \delay" the application of R

0

-rules until immediately before the application

of an R-rule. For this to be possible, R

0

-rules must be permutable with R

00

-rules

that may occur between an R

0

-rule and an R-rule. This requirement is expressed

by the �rst precondition of proposition 7 below. Condition 4 essentially says that

R

00

-rules let the variable invariant. The rest of the preconditions are the same as

for post-fusion.

Proposition 7 Let R;R

0

; R

00

� � be disjoint sets of rules such that � = R ]

R

0

]R

00

, and let x

j

be a variable such that:

1. x

R

0

R

00

! x

0

) x

R

00

R

0

! x

0

2. x

j

> 0 ^ x

R

0

R

! x

0

) x

RR

0

! x

0

3. 8r

i

2 R

0

: k

i;j

= 1

4. 8r

i

2 R

00

: k

i;j

= 0

5. 8r

i

2 R : k

i;j

= �1

6. 8r

i

2 R : #

r

i

(x) ) x

j

> 0

Then we have:

A

x

j

� 0 ^ x

�

�

! x

0

)

x

(R

00

+R)

�

R

0�

! x

0

_

9x

00

: x

(R

00

+R)

�

! x

00
�

�

! x

0

^ x

00

j

= 0

B

x

j

= 0 ^ x

�

�

! x

0

)

x

(R

0

R+R

00

)

�

R

0�

! x

0

where x

j

is let invariant by all the paths in (R

0

R+R

00

)

�

.
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C

x

�

�

! x

0

,

x

(R

00

+R)

�

R

0�

! x

0

_

9x

00

: x

R

00�

R

0�

+(R

00

+R)

�

! x

00

(R

0

R+R

00

)

�

R

0�

! x

0

^

x

00

j

= 0

where x

j

is let invariant by all the paths in (R

0

R+R

00

)

�

.

Appendix B

Let us compute the �xed-point of the program P

0

of example 3.4 from the language

L = r

�

5

r

�

6

r

�

2

r

�

1

: : : of section 8, generated by our program. We get the sequence

(making arithmetic simpli�cations at each step):

�

0

(x) , B(x) , x

1

= 1� x

4

^ x

2

= 1 ^ x

3

= 0 ^

x

4

= 0 ^ x

5

= q ^ q � 0 ^

x

6

= 0 ^ x

7

= 0

�

1

(x) , 9x

00

: �

0

(x

00

) ^ x

00

r

�

5

! x , x

1

= 1� x

4

^ x

2

= 1 ^ x

3

= 0 ^

x

4

= 0 ^ x

5

� 0 ^ x

6

� 0 ^

x

7

= 0 ^ x

5

+ x

6

= q

�

2

(x) , 9x

00

: �
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One may easily check that 8r

i

2 fr

1

; : : : ; r

6

g : #

r

i

(x) ^ �

4

(x) ) �

4

(xr

i

). This

means that the �xed-point has been reached.

Notes

1. Coe�cients �

i

are found by solving the system h�

1

; :::; �

7

i:M = h0; :::;0i, where M is a matrix

whose j-th column (1 � j � 6) is vector k

r

j

.

2. The original de�nition states that every transition has exactly one input place, but it is con-

venient here to relax it somewhat.
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3. This incidentally shows that the set of points in the \ceiling" of the �gure must satisfy 4 �

x

3

> �7.
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