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Abstract This paper considers large discrete-time lin-
ear systems obtained from discretized partial differen-
tial equations, and controlled by a quantized law, i.e., a
piecewise constant time function taking a finite set of
values. We show how to generate the control by, first,
applying model reduction to the original system, then
using a “state-space bisection” method for synthesizing
a control at the reduced-order level, and finally comput-
ing an upper bound on the deviations between the con-
trolled output trajectories of the reduced-order model
and those of the original model. The effectiveness of
our approach is illustrated on several examples of the
literature.
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1 Introduction

We focus here on switched control systems, a class of
hybrid systems recently used with success in various
domains such as automotive industry and power elec-
tronics. While these models are usually used for (low di-
mensional) ordinary differential equations (ODEs) con-
trolled with a piecewise constant function, it is also pos-
sible to use these models for control of mechanical sys-
tems. Indeed, the dynamics of most mechanical systems
can be modeled by partial differential equations, and
the spacial discretization of such systems leads to high
dimensional ODEs. Controlled with a piecewise con-
stant function on the boundary, and written in a proper
way (the state space representation), one obtains high
dimensional switched control systems. Several strate-
gies have been developed to design control laws for such
systems; however the associated algorithms are very ex-
pensive and require a limited state space dimension, so
that a model order reduction is required in order to
synthesize a controller at the reduced-order level. Here,
the invariance analysis [15,14,16] is used to synthesize
controllers, an offline and an online procedure are pro-
posed to apply the controller to the full-order system.
Offline and online controls are developed, and the com-
putation of upper bounds of the error induced by the
reduction allows to guarantee the effectiveness of the
controller. Note that this paper is an extension of the
conference paper [26], it includes some missing parts,
more test cases, and the applications belong to the field
of mechanics.
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Comparison with related work. Model order re-
duction techniques for hybrid or switched systems are
classically used in numerical simulation in order to con-
struct, at the reduced level, trajectories which cannot
be computed directly at the original level due to com-
plexity and large size dimension [4,10]. Model reduction
is used in order to perform set-based reachability anal-
ysis in [21]. Isolated trajectories issued from isolated
points are not constructed, but (an over-approximation
of) the infinite set of trajectories issued from a dense set
of initial points. This allows to perform formal verifica-
tion of properties such as safety. In both approaches,
the control is given as an input of the problem. In con-
trast here, the control is synthesized using set-based
methods in order to achieve by construction properties
such as convergence and stability.

The problem of control synthesis for hybrid and
switched systems has been widely studied and vari-
ous tools exist. The Multi-Parametric Toolbox (MPT
3.0 [23]) for example solves optimal control problems
using operations on polytopes. Most approaches make
use of Lyapunov or the so-called “multiple Lyapunov
functions” to solve the problem of control synthesis for
switched systems - see for example [38]. The approxi-
mate bisimulation approach abstracts switched systems
under the form of a discrete model [17,18] under cer-
tain Lyapunov-based stability conditions. The latter
approach has been implemented in PESSOA [27] and
CoSyMA [30]. The approach used in this paper avoids
using Lyapunov functions and relies on the notion of
“(controlled) invariant” [9].

While the latter approaches are mostly used for the
control of low order ODEs, the control of mechanical
systems can be realized using the control theory ap-
proach, where a continuous control law is guessed and
proved to be efficient on the continuous PDE model
[37,5]. The damping of vibration with piezoelectric de-
vices is in particular a widely developed branch of the
control of mechanical systems. The shunting of piezo-
electric devices with electric circuits permits to con-
vert the vibration energy into electric energy, which is
then dissipated in the electric circuits [20]. Note that
this approach can be active or passive, depending on
the electric energy furnished to the electric circuit. A
switched control approach is developed in [11,32], the
piezoelectric device is shunted on several electric cir-
cuits, but only one is selected at a time depending on
the state of the mechanical system. This approach is
called semi-active since the electric circuits are passive
but the switching requires energy. In the present paper,
the approach is fully active.

Plan.

In Section 2, we give some preliminaries on switched
control systems and their link with PDEs and mechan-
ical systems. In Section 3, we introduce some elements
of control theory and the state-space bisection method.
In Section 4, we explain how to construct a reduced
model, apply the state-space bisection method at this
level, and compute upper bounds to the error induced
at the original level. In Section 5, we propose two meth-
ods of control synthesis allowing to synthesize (either
offline or online) a controller at the reduced-order level
and apply it to the full-order system. In Section 6, we
apply our approach to several examples of the litera-
ture. In section 7, we extend our method to the use of
observers. We conclude in Section 8.

2 Background

We consider systems governed by Partial Differential
Equations (PDEs) having actuators allowing to impose
forces on the boundary; these systems can represent
transient thermal problems, vibration problems... By
applying the right external force at the right time, one
can drive the system to a desired operating mode. Our
goal here is to synthesize a law which, given the state
of the system, computes the boundary force to apply.

In order to illustrate our approach, we use the ex-
ample of the heat equation:

∂T

∂t
(x, t)− α∆T (x, t) = 0 ∀(t, x) ∈ [0, T ]×Ω

T (x, ·) = T d(x, ·) ∀x ∈ ∂ΩT
∂T

∂x
(x, ·).n = ϕd(x, ·) ∀x ∈ ∂Ωϕ

T (x, 0) = T0(x)

(1)

Discretized by finite elements, the nodal tempera-
tures {T} are computed with respect to time, and the
system becomes:{
CFE ˙{T}+KFE{T} = {F d}
{T (0)} = {T0}

(2)

The purpose is then to compute the forces {F d} with
respect to time such that the temperature field verifies
some desired properties.

For example, one may want to impose that the tem-
perature in a particular node stays within a given tem-
perature range. Usually, the quantities of interest one
wants to control are given in discrete points, which are
for example sensor measurements, or they are given as
local averaging. Here, we consider the case where the
quantities of interest can be directly extracted from the
nodal values with a matrix called output matrix (see
equation (3)).
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We consider a particular kind of actuators; the force
applied only takes a finite number N of values. For ex-
ample, in equation (1) for the case of a room heated
with a heater, the flux ϕd is equal to 0 when the heater
is turned off and equal to a positive value when it is
turned on. The control systems associated to such be-
haviors are called switched control systems, and this is
exactly the framework we place ourselves in. In control
theory, such dynamical systems are written under the
following form, called state-space representation:

Σ :
{
ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t), (3)

The n-vector x is called the state of the system, the
p-vector u is the control input, the m-vector y is the
output of the system, A is an n×n-matrix, B an n×p-
matrix, and C an m×n matrix. Writing the discretized
equation (2) under this form is straightforward by mul-
tiplying the first line by C−1

FE (which is invertible), and
the state vector is then {T}. In the case of higher order
PDEs (for example in the case of the wave equation),
we merely need to enlarge the state vector to take the
first derivative of the nodal values in it.

3 Some Elements of Control Theory

An algorithm of control synthesis for switched control
systems has been developed in [14,16]. This algorithm,
called state-space decomposition algorithm, allows the
computation of control laws for low dimensional Ordi-
nary Differential Equations.

In order to use this algorithm for the control of high
dimensional discretized PDEs, we first give some pre-
liminary notions and results of control theory.

3.1 Preliminaries

As we place ourselves in the framework of switched con-
trol systems, the control variable u of a given system
Σ takes its values in a finite set U . The elements of
U are called the switching modes. The algorithm de-
veloped allows to compute a law u(x) that permits to
verify some desired properties. This means that, know-
ing the state x of the system, one knows the switching
mode to apply in order to verify the given properties.
Such a law is thus called state-dependent. Note that the
switching modes are applied during a time τ , and thus
the law u(x) gives the switching modes to apply at the
times kτ with k ∈ N. The type of control law we want
to apply can be schematized in Figure 1.

The entries of the problem are the following:

Fig. 1 Scheme of a switched control system

1. a subset Rx ⊂ Rn of the state space, called interest
set,

2. a subset Ry ⊂ Rm of the output space, called objec-
tive set.

The objective is to find a law u(·) which, for any initial
state x0 ∈ Rx, stabilizes the output y in the set Ry.
The set Rx is in fact the set of all the initial conditions
considered, and the set Ry is a target set, where we
want the output to stabilize. The sets Rx and Ry are
given under the form of boxes, i.e. interval products of
Rn and Rm respectively.

We now introduce some notations and definitions re-
quired to present the algorithm. We will use x(t, x, u) to
denote the point reached by Σ at time t under switch-
ing mode u ∈ U from the initial condition x. This gives
a transition relation →τ

u defined for x and x′ in Rn by:
x →τ

u x′ iff x(τ, x, u) = x′. Given a set X ⊂ Rn, we
define the successor set of a set X ⊂ Rn of states under
switching mode u as:

Postu(X) = {x′ | x→τ
u x
′ for some x ∈ X}.

As the systems considered are linear, the set Postu(X)
is the result of the affine transformation AdX + Bdu,
where Ad = eAτ , Bd =

∫ τ
0 e

A(τ−t)Bdt. Likewise, we
define the output successor set of a set X ⊂ Rn of states
under switching mode u as:

Postu,C(X) = {Cx′ | x→τ
u x
′ for some x ∈ X}.

An input pattern named Pat is defined as a finite
sequence of switching modes. A k-pattern is an input
pattern of length at most k. The successor set of X ⊂
Rn using Pat ≡ (u1 · · ·uk) is defined by

PostPat(X) = {x′ | x→τ
u1
· · · →τ

uk
x′, x ∈ X}.

The mapping PostPat is itself an affine transforma-
tion. The output successor set of X ⊂ Rn using Pat ≡
(u1 · · ·uk) is defined by

PostPat,C(X) = {Cx′ | x→τ
u1
· · · →τ

uk
x′, x ∈ X}.
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3.2 State-Space Decomposition Algorithm

With these definitions and notations, we are now able
to present the algorithm of control synthesis. It relies
on the decomposition of the set Rx. Given the sets Rx
and Ry, and a maximum length of input pattern K, it
returns a set ∆ of the form {(Vi, Pati)}i∈I where I is
a finite set of indexes. Every Vi is a subset of Rx and
every Pati is a k-pattern, such that:

(a)
⋃
i∈I Vi = Rx,

(b) for all i ∈ I: PostPati(Vi) ⊆ Rx,
(c) for all i ∈ I: PostPati,C(Vi) ⊆ Ry.

The algorithm thus returns several sets Vi that cover
Rx, and every Vi is associated to a pattern Pati that
sends Vi in Rx, and the output in Ry. The set Rx is
thus decomposed in several sets, and for each one, we
have one control law: ∀x ∈ Vi, u(x) = Pati. Therefore,
for two initial conditions in a set Vi, we apply the same
input pattern. The fact that we use set based opera-
tions has a key role which allows us to consider sets of
initial conditions, and this is how we manage to obtain
a law u(x). In the following, when a decomposition ∆

is successfully obtained , we denote by u∆ the induced
control law.

Fig. 2 Scheme of the bisection algorithm. The real boxes are
hypercubes in n dimensions, they are represented here by rect-
angles.

The idea of the algorithm is the following: if we have
an initial nodal vector {T} belonging to a set Rx =
[Tmin, Tmax]n, we want to apply a pattern that keeps
{T} in Rx: the nodal temperatures, after application
of the pattern, will still belong to Rx = [Tmin, Tmax]n.
In this purpose, we look for a pattern Pat that sends
the whole set Rx in itself, such as in Figure 2(a). If we
manage to do so, then, from any initial condition {T} in
Rx, we can apply Pat, and the nodal temperatures are
sent in Rx, and we can thus reapply Pat infinitely. The
temperature is stabilized in Rx. But as it is difficult to
find a pattern that sends the whole set Rx in itself, we
bisect Rx in sub-sets, and look for patterns which send

the subsets in Rx, such as in Figure 2(b). We then have
several patterns that send a partition of Rx in Rx. Fur-
thermore, when looking for stabilizing patterns, we add
the more restrictive constraint that the corresponding
output of the images of the sets are sent in Ry, so that
the output of the system reaches a smaller target set.
The proofs of the efficiency of the decomposition algo-
rithm and the control induced by the decomposition are
given in [14,16,15].

Algorithms 1 and 2 show the main functions used by
the state-space decomposition algorithm. At the begin-
ning, the function “Bisection” calls sub-function “Find-
Pattern” in order to get a k-pattern Pat such that
PostPat(Rx) ⊆ Rx and PostPat,C(Rx) ⊆ Ry. If it suc-
ceeds, then it is done. Otherwise, it divides Rx into 2n
sub-boxes V1, . . . , V2n of equal size. If for each Vi, Find -
Pattern gets a k-pattern Pati such that PostPati(Vi) ⊆
Rx and PostPati,C(Vi) ⊆ Ry, it is done. If, for some Vj ,
no such input pattern exists, the function is recursively
applied to Vj . It ends with success when a successful
decomposition of (Rx, Ry, k) is found, or failure when
the maximal degree d of bisection is reached. The main
function Bisection(W,Rx, Ry, D,K) is called with Rx
as input value for W , d for input value for D, and k as
input value for K; it returns either 〈{(Vi, Pati)}i, T rue〉
with⋃
i

Vi = W,⋃
i

PostPati(Vi) ⊆ Rx,⋃
i

PostPati,C(Vi) ⊆ Ry

when it succeeds, or 〈 , False〉 when it fails. Function
Find Pattern(W ,Rx,Ry,K) looks for a K-pattern Pat

for which PostPat(W ) ⊆ Rx and PostPat,C(W ) ⊆ Ry :
it selects all the K-patterns by increasing length order
until either it finds such an input pattern Pat (out-
put: 〈Pat, True〉), or none exists (output: 〈 , False〉).

4 Model Order Reduction

The main drawback of the previous state-space decom-
position algorithm is the computational cost, with a
complexity in O(2ndNk), with n the state-space dimen-
sion, d the maximum degree of decomposition, N the
number of modes and k the maximum length of re-
searched patterns. It is thus subject to the curse of
dimensionality. In practice, the dimension n must be
lower than 15 for acceptable computation times. Thus,
by directly applying the bisection algorithm to a dis-
cretized PDE, the number of degrees of freedom is lim-
ited to 15 for a first order PDE, and even less for a
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Algorithm 1: Bisection(W,Rx, Ry, D,K)
Input: A box W , a box Rx, a box Ry, a degree D of

bisection, a length K of input pattern
Output: 〈{(Vi, Pati)}i, T rue〉 with

⋃
i
Vi = W ,⋃

i
PostPati

(Vi) ⊆ Rx and⋃
i
PostPati,C(Vi) ⊆ Ry, or 〈 , False〉

1 (Pat, b) := Find Pattern(W,Rx, Ry,K)
2 if b = True then
3 return 〈{(W,Pat)}, T rue〉
4 else
5 if D = 0 then
6 return 〈 , False〉
7 else
8 Divide equally W into (W1, . . . ,W2n )
9 for i = 1 . . . 2n do

10 (∆i, bi) := Bisection(Wi,Rx,Ry,D − 1,K)
11 return (

⋃
i=1...2n ∆i,

∧
i=1...2n bi)

Algorithm 2: Find Pattern(W,Rx, Ry,K)
Input: A box W , a box Rx, a box Ry, a length K of

input pattern
Output: 〈Pat, True〉 with

,PostPat(W ) ⊆ Rx,PostPat,C(W ) ⊆ Ry and
UnfPat(W ) ⊆ S, or 〈 , False〉 when no input
pattern maps W into Rx and CW into Ry

1 for i = 1 . . .K do
2 Π := set of input patterns of length i
3 while Π is non empty do
4 Select Pat in Π
5 Π := Π \ {Pat}
6 if PostPat(W ) ⊆ Rx and PostPat,C(W ) ⊆ Ry

then
7 return 〈Pat, True〉

8 return 〈 , False〉

higher order PDE written in state-space representation.
The use of a Model Order Reduction (MOR) is thus un-
avoidable.

We choose here to use projection-based model order
reduction methods [4]. Given a full-order system Σ, an
interest set Rx ⊂ Rn and an objective set Ry ⊂ Rm, we
construct a reduced-order system Σ̂ using a projection
π of Rn to Rnr . If π ∈ Rn×n is a projection, it verifies
π2 = π, and π can be written as π = πLπR, where
πL ∈ Rn×nr , πR ∈ Rnr×n and nr = rank(π). The
reduced-order system σ̂ is then obtained by the change
of variable x̂ = πRx:

Σ̂ :
{ ˙̂x(t) = Âx̂(t) + B̂u(t),
yr(t) = Ĉx̂(t),

with

Â = πRAπL, B̂ = πRB, Ĉ = CπL.

The projection π can be constructed by multiple
methods: Proper Orthogonal Decomposition [12,25],

balanced truncation [7,3,29,8], balanced POD [39]...
We use here the balanced truncation method, widely
used in the control community and particularly adapted
to the models used here, written under state-space rep-
resentation.

The objective is now to compute a decomposition at
the low order level, and apply the induced reduced con-
trol to the full order system. In order to ensure that the
reduced control is effective, we introduce the following
notations:

– x̂(t, x̂, u) denotes the point reached by Σ̂ at time t
under mode u ∈ U from the initial condition x̂.

– y(t, x, u) denotes the output point reached by Σ at
time t under mode u ∈ U from the initial condition
x.

– yr(t, x̂, u) denotes the output point reached by Σ̂ at
time t under mode u ∈ U from the initial condition
x̂.

When a control u is applied to both full-order and
reduced-order systems, an error between the output
trajectories y(t, x, u) and yr(t, πRx, u) is unavoidable,
and we denote it by ey(t, x, u). A first tool to ensure
the effectiveness of the reduced-order control is to com-
pute a bound on ‖ey(t, x, u)‖. A second source of error
is the deviation between πRx(t, x, u) and x̂(t, πRx, u),
which we denote by ex(t, x, u). Computing a bound
on ‖ex(t, x, u)‖ will also be necessary. Before estab-
lishing these error bounds, we first briefly describe the
balanced truncation method. We then present how we
compute a reduced-order control and apply it to the
full-order system.

4.1 The Balanced Truncation

Applying the balanced truncation consists in balanc-
ing then truncating the system. Balancing the system
requires finding balancing transformations which diag-
onalize the controllability and observability gramians of
the system in the same basis.

The controllability and observability gramians Wc

and Wo of the system Σ are respectively the solutions
of the dual (infinite-time horizon) Lyapunov equations

AWc +WcA
> +BB> = 0 (4)

and

A>Wo +WoA+ C>C = 0 (5)

The balancing transformations πR and πL are then
computed as follows [8]:

1. Compute the Cholesky factorization Wc = UU>
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2. Compute the eigenvalue decomposition of U>WoU

U>WoU = Kσ2K>

where the entries in σ are ordered by decreasing
order

3. Compute the transformations
πR = σ−

1
2K>U−1

πL = UKσ−
1
2

One can then verify that
πRWcπ

>
R = π>LWoπL = σ

and σ contains the Hankel singular values of the system.
Computing the balancing transformations for large

scale systems derived for example from discretized par-
tial differential equations are usually very expensive -
even sometimes irrelevant - and many advances have
been carried out in order to solve the Lyapunov equa-
tions and compute the transformations with approxi-
mate methods, often based on Krylov subspace meth-
ods (see for example [3,31,7]).

4.2 Error Bounding

4.2.1 Error bounding for the output trajectory

Here, a scalar a posteriori error bound for ey is given
(mainly inspired from [21]). The error bound εy can
be computed from simulations of the full and reduced-
order systems. The computation time for simulations is
negligible compared with that of the bisection method
to generate the decompositions.

Computing an upper bound of ‖ey(t, x, u)‖ is equiv-
alent to seeking the solution of the following (optimal
control) problem:
εy(t) = sup

u∈U,x0∈Rx

‖e(t, x0, u)‖

= sup
u∈U,x0∈Rx

‖y(t, x0, u)− yr(t, πRx0, u)‖.

Since the full-order and reduced-order systems are lin-
ear, one can use a superposition principle and the error
bound can be estimated as εy(t) ≤ εx0=0(t) + εu=0(t)
where εx0=0

y is the error of the zero-state response, given
by (see [21])
εx0=0
y (t) = max

u∈U
‖u‖ · ‖ey(t, x0 = 0, u)‖

= max
u∈U
‖u‖ · ‖y(t, 0, u)− yr(t, 0, u)‖,

and εu=0
y is the error of the zero-input response, given

by
εu=0
y (t) = sup

x0∈Rx

‖ey(t, x0, u = 0)‖

= sup
x∈Rx

‖y(t, x0, 0)− yr(t, πRx0, 0)‖.

Using some algebraic manipulations (see [21]), one
can find a precise bound for εx0=0

y and εu=0
y :

εx0=0
y (t) ≤ ‖u(·)‖[0,t]

∞

∫ t

0
‖
[
C −Ĉ

] [ etA
etÂ

][
B

B̂

]
‖dt, (6)

εu=0
y (t) ≤ sup

x0∈Rx

‖
[
C −Ĉ

] [ etA
etÂ

][
x0
πRx0

]
‖. (7)

The first error bound (6) always increases with time
whereas the second bound (7) can either increase or de-
crease. These properties are used to compute a guaran-
teed bound. For all j ∈ N (j corresponds to the length
of the pattern applied), we have:
εy(jτ) ≤ εjy
with

εjy = ‖u(·)‖[0,jτ ]
∞

∫ jτ

0
‖
[
C −Ĉ

] [ etA
etÂ

][
B

B̂

]
‖dt

+ sup
x0∈Rx

‖
[
C −Ĉ

] [ ejτA
ejτÂ

][
x0
πRx0

]
‖. (8)

Furthermore, we have:
∀t ≥ 0, εy(t) ≤ ε∞y
with
ε∞y = sup

t≥0
εy(t). (9)

This bound exists when the modulus of the eigenval-
ues of eτA and eτÂ is strictly inferior to one, which we
suppose here.

4.2.2 Error bounding for the state trajectory

Denoting by j ∈ N the length of the pattern applied,
the following results holds:

x(t = jτ, x, u) = ejτAx+
∫ jτ

0
eA(jτ−t)Bu(t)dt,

x̂(t = jτ, πRx, u) = ejτÂπRx+
∫ jτ

0
eÂ(jτ−t)B̂u(t)dt,

Using an approach similar to the construction of
the bounds (6) and (7), we obtain the following bound,
which depends on the length j of the pattern applied:

‖πRx(t = jτ, x, u)− x̂(t = jτ, πRx, u)‖ ≤ εjx, (10)
with

εjx = ‖u(·)‖[0,jτ ]
∞

∫ jτ

0
‖
[
πR −Inr

] [ etA
etÂ

][
B

B̂

]
‖dt

+ sup
x0∈Rx

‖
[
πR −Inr

] [ ejτA
ejτÂ

][
x0
πRx0

]
‖. (11)

Remark: in order to simplify the reading, the notation
|Pat| will often be used in the following to denote the
length of the pattern Pat.
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5 Reduced Order Control

Two procedures are proposed for synthesizing reduced-
order controllers: (i) an offline procedure, consisting in
computing a complete sequence of control inputs for a
given initial condition; (ii) an online procedure, where
the patterns are computed through online projection of
the full-order state. We describe these approaches in
the following subsections.

5.1 Offline Procedure

Suppose that we are given a system Σ, an interest set
Rx, and an objective set Ry. The reduced-order sys-
tem Σ̂ of order nr, obtained by balanced truncation, is
written under the form of equation (3):

Σ̂ :
{ ˙̂x(t) = Âx̂(t) + B̂u(t),
yr(t) = Ĉx̂(t),

where Â = πRAπL ∈ Rnr×nr , B̂ = πRB ∈ Rnr×p,
Ĉ = CπL ∈ Rm×nr .

We denote by R̂x the projection of Rx. Given the in-
terest set R̂x, the objective set Ry and a maximal length
of researched pattern K, the application of the state-
space decomposition algorithm to the reduced system
returns, when it succeeds, a decomposition ∆̂ of the
form {V̂i, Pati}i∈I , with I a finite set of indices, such
that:

1.
⋃
i∈I V̂i = R̂x,

2. for all i ∈ I: PostPati(V̂i) ⊆ R̂x,
3. for all i ∈ I: PostPati,Ĉ(V̂i) ⊆ Ry.

The decomposition ∆̂ induces a control u∆̂ on R̂x.
Applied on the reduced-order system Σ̂, the control u∆̂
keeps x̂ in R̂x and sends yr in Ry. This control can be
applied to the full-order system in two steps: a sequence
of patterns is computed on the reduced-order system,
and it is then applied to the full order system:

(a) Let x0 be an initial condition in Rx. Let x̂0 = πRx0
be its projection belonging to R̂x, x̂0 = πRx0 is the
initial condition for the reduced system Σ̂: x̂0 be-
longs to V̂i0 for some i0 ∈ I; thus, after applying
Pati0 , the system is led to a state x̂1; x̂1 belongs to
V̂i1 for some i1 ∈ I; and iteratively, we build, from
an initial state x̂0, a sequence of states x̂1, x̂2, . . . ob-
tained by application of the sequence of k-patterns
Pati0 , Pati1 , . . . (steps (1), (2) and (3) of Figure
3).

(b) The sequence of k-patterns is computed for the re-
duced system Σ̂, but it can be applied to the full-
order system Σ: we build, from an initial point x0,
a sequence of points x1, x2,. . . by application of

the k-patterns Pati0 ,Pati1 ,. . . (steps (4), (5) and
(6) of Figure 3). Moreover, for all x0 ∈ Rx and for
all t ≥ 0, the error ‖y(t, x0, u) − yr(t, πRx0, u)‖ is
bounded by ε∞y , as defined in equation(9).

Fig. 3 Diagram of the offline procedure for a simulation of
length 3.

This procedure thus allows, for any system Σ of the
form (3), and given an interest set Rx and an objective
set Ry, to send the output of the full-order system in
the set Ry+ε∞y . More precisely, if Σ̂ is the projection by
balanced truncation of Σ, let ∆̂ be a decomposition for
(R̂x,Ry,k) w.r.t. Σ̂. Then, for all x0 ∈ Rx, the induced
control u∆̂ applied to the full-order system Σ in x0 is
such that for all j > 0, the output of the full-order
system y(t) returns to Ry + ε∞y after at most k τ -steps.

Here, Ry + ε∞y denotes the set containing Ry with
a margin of ε∞y . If Ry is an interval product of the
form [a1, b1] × · · · × [am, bm], then Ry + ε∞y is defined
by [a1 − ε∞y , b1 + ε∞y ]× · · · × [am − ε∞y , bm + ε∞y ].

Remark: Here, we ensure that y(t, x0, u) is in Ry+
ε∞y at the end of every pattern, but an easy improve-
ment is to ensure that y(t, x0, u) stays in a safety set
Sy ⊃ Ry at every step of time kτ . Indeed, as explained
in [14], we can ensure that the unfolding of the output
trajectory stays in a given safety set Sy. The unfold-
ing of the output of a set is defined as follows: given a
pattern Pat of the form (u1 · · ·um), and a set X ⊂ Rn,
the unfolding of the output of X via Pat, denoted by
Unf Pat,C(X), is the set

⋃m
i=0 Xi with:

– X0 = {Cx|x ∈ X},
– Xi+1 = Postui+1,C(Xi), for all 0 ≤ i ≤ m− 1.

The unfolding thus corresponds to the set of all the
intermediate outputs produced when applying pattern



8 Adrien Le Coënt et al.

Pat to the states of X. In order to guarantee that
y(t, x0, u) stays in Sy, we just have to make sure that
yr(t, πRx0, u) stays in the reduced safety set Sy − ε∞y .
We thus have to add, in the line 6 of Algorithm 2, the
condition: “and Unf Pat,C(W ) ⊂ Sy − ε∞y ”.

5.2 Online Procedure

Up to this point, the procedure of control synthesis
consists in computing a complete sequence of patterns
on the reduced order model Σ̂ for a given initial state
x0, and applying the pattern sequence to the full-order
model Σ. The entire control law is thus computed of-
fline. While the decomposition is always performed of-
fline, one can however use the decomposition ∆̂ on-
line as follows: let x0 be the initial state in Rx and
x̂0 = πRx0 (step (1) of Figure 4) its projection belong-
ing to R̂x, x̂0 belongs to V̂i0 for some i0 ∈ I; we can thus
apply the associated pattern Pati0 to the full-order sys-
tem Σ, which yields a state x1 = x(|Pati0 |τ, x0, Pati0)
(step (2) of Figure 4), the corresponding output is sent
to y1 = y(|Pati0 |τ, x0, Pati0) ∈ Ry + ε

|Pati0 |
y ; in or-

der to continue to step (3), we have to guarantee that
πRx(|Pati|τ, x, Pati)) belongs to R̂x for all x ∈ Rx and
for all i ∈ I. As explained below, this is possible us-
ing the computation of an upper bound to the error
‖πRx(|Pati|τ, x, Pati) − x̂(|Pati|τ, πRx, Pati)‖ and a
reinforcement of the procedure for taking into account
this error.

Let ε|Pat|x be the upper bound to

‖πRx(|Pat|τ, x, Pat)− x̂(|Pat|τ, πRx, Pat)‖,

as defined in equation (11). We modify the Algorithms 1
and 2, which become “Bisection Dyn” and “Find Patt-
ern Dyn” (Algorithms 3 and 4), they are computed
with an additional input εx = (ε1

x, . . . , ε
k
x), k being the

maximal length of the patterns. With such an addi-
tional input, we perform an ε-decomposition. Given a
system Σ, two sets Rx and Ry respectively subsets of
Rn and Rm, a positive integer k, and a vector of errors
εx = (ε1

x, . . . , ε
k
x), application of the ε-decomposition

returns a set ∆ of the form {Vi, Pati}i∈I , where I is
a finite set of indexes, every Vi is a subset of Rx, and
every Pati is a k-pattern such that:

(a’)
⋃
i∈I Vi = Rx,

(b’) for all i ∈ I: PostPati(Vi) ⊆ Rx − ε
|Pati|
x ,

(c’) for all i ∈ I: PostPati,C(Vi) ⊆ Ry.

Note that condition (b’) is a strengthening of con-
dition (b) in subsection 3.2. Accordingly, line 6 of Al-
gorithm 2 becomes in Algorithm 4:
6 if PostP at(W ) ⊆ Rx − εi

x and PostP at,C(W ) ⊆ Ry then

The new algorithms enable to guarantee that the
projection of the full-order system state πRx always
stays in R̂x, we can thus perform the online control
as follows:

Since PostPati0
(V̂i0) ⊆ R̂x − ε

|Pati0 |
x and πRx0 ∈

V̂i0 , we have PostPati0
(πRx0) ∈ R̂x − ε

|Pati0 |
x ; thus

πRx1 = πRx(|Pati0 |τ, x0, Pati0) belongs to R̂x, because
ε
|Pati0 |
x is a bound of the maximal distance between

x̂(|Pati0 |τ, πRx0, Pati0) and πRx(|Pati0 |τ, x0, Pati0);
since πRx1 belongs to R̂x, it belongs to Vi1 for some i1 ∈
I; we can thus compute the input pattern Pati1 , and
therefore, we can reapply the procedure and compute
an input pattern sequence Pati0 ,Pati1 ,. . . As for the
output, the yielded points y1 = y(|Pati0 |τ, x0, Pati0),
y2 = y(|Pati1 |τ, x1, Pati1), . . . belong respectively to
the sets Ry + ε

|Pati0 |
y ,Ry + ε

|Pati1 |
y ,. . .

Fig. 4 Diagram of the online procedure for a simulation of
length 3.

The main advantage of such an online control is that
the estimated errors ε|Pati0 |

y ,ε|Pati1 |
y ,. . . are dynamically

computed, and are smaller than the static bound ε∞y
used in the offline control. The price to be paid is the
strengthening of condition (b’). In the best case, i.e. if
the errors are low and the system is very contractive,
this can result in the same decomposition and computa-
tion time as in the offline procedure. But if the system
is not contractive enough or if the errors are too large,
this can lead to a more complicated decomposition, and
thus higher computation times, and in the worst case,
no successful decomposition at all.
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Algorithm 3: Bisection Dyn(W,Rx, Ry, D,K, εx)
Input: A box W , a box Rx, a box Ry, a length K of

pattern, a vector of errors εx, a degree D of
bisection

Output: 〈{(Vi, Pati)}i, T rue〉 with
⋃
i
Vi = W ,⋃

i
PostPati

(Vi) ⊆ Rx and⋃
i
PostPati,C(Vi) ⊆ Ry, or 〈 , False〉

1 (Pat, b) :=Find Pattern Online(W,Rx, Ry,K, εx)
2 if b = True then
3 return 〈{(W,Pat)}, T rue〉
4 else
5 if D = 0 then
6 return 〈 , False〉
7 else
8 Divide equally W into (W1, . . . ,W2n )
9 for i = 1 . . . 2n do

10 (∆i, bi) :=
Bisection Online(Wi,Rx,Ry,K,εx,D − 1)

11 return (
⋃
i=1...2n ∆i,

∧
i=1...2n bi)

Algorithm 4: Find Pattern Dyn(W,Rx, Ry,K, εx)
Input: A box W , a box Rx, a box Ry, a length K of

pattern, a vector of errors εx
Output: 〈Pat, True〉 with

,PostPat(W ) ⊆ Rx,PostPat,C(W ) ⊆ Ry and
UnfPat(W ) ⊆ S, or 〈 , False〉 when no
pattern maps W into Rx and CW into Ry

1 for i = 1 . . .K do
2 Π := set of patterns of length i
3 while Π is non empty do
4 Select Pat in Π
5 Π := Π \ {Pat}
6 if PostPat(W ) ⊆ Rx − εix and

PostPat,C(W ) ⊆ Ry then
7 return 〈Pat, True〉

8 return 〈 , False〉

6 Numerical Results

6.1 Thermal Problem on a Metal Plate

Fig. 5 Geometry of the square plate.

We consider here the problem of controlling the cen-
tral node temperature of a square metal plate, dis-
cretized by finite elements; this example is taken from
[22]. The square plate is subject to the heat equation:
∂T

∂t
(x, t)−α∆T (x, t) = 0. After discretization, the sys-

tem is written under its state-space representation (3).
The plate is insulated along three edges, while the right
edge is open. The left half of the bottom edge is con-
nected to a heat source. The exterior temperature is
set to 0◦C, the temperature of the heat source is ei-
ther 0◦C (mode 0) or 1◦C (mode 1). The heat transfers
with the exterior and the heat source are modeled by
a convective transfer. The full-order system state cor-
responds to the nodal temperatures. The output is the
temperature of the central node. The system is reduced
from n = 897 to nr = 2 (Figure 7) and nr = 3 (Figure
8). The interest set is Rx = [0, 0.15]897 and the objec-
tive set Ry = [0.06, 0.09]. The sampling time is set to
τ = 8 s. The geometry of the system is given in Figure
5. The decomposition obtained with the offline proce-
dure is given in Figure 6.

The decompositions and simulations have been per-
formed with MINIMATOR (an Octave code available
at https://bitbucket.org/alecoent/minimator red) on a
2.80 GHz Intel Core i7-4810MQ CPU with 8 GB of
memory. The decompositions were obtained in 5 sec-
onds for the case nr = 2 and in 2 minutes for the case
nr = 3.

Fig. 6 Decomposition of R̂x = πRRx in the plane (x̂1, x̂2) (for
nr = 2) with the offline procedure.

Simulations of the offline and online methods are
given in Figures 7 and 8. We notice in Figure 7 that
the trajectory y (resp. yr) exceeds the objective set Ry
(resp. Ry+ε

|Pati|
y ) during the application of the second

pattern, yet the markers corresponding to the end of
input patterns do belong to objective sets. Comparing
the cases nr = 2 and nr = 3, we finally observe that
a less reduced model causes lower error bounds, and
thus a more precise control, at the expense of a higher
computation time.
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Fig. 7 For nr = 2, simulation of y(t) = Cx(t) and yr(t) = Ĉx̂(t) from the initial condition x0 = (0)897. (a): guaranteed offline
control; (b): guaranteed online control.

Fig. 8 For nr = 3, simulation of y(t) = Cx(t) and yr(t) = Ĉx̂(t) from the initial condition x0 = (0)897. (a): guaranteed offline
control; (b): guaranteed online control.

Fig. 9 Scheme of the vibrating beam.

6.2 Vibrating Beam

In this case study, which comes from a practical work
designed by Fabien Formosa [13], we apply our method

to vibration control of a cantilever beam. The objective
is to keep the tip displacement of the beam as close as
possible to zero. To stabilize the beam, a piezoelectric
patch applies a torque with the mechanism schemed
in Figure 9 at a distance xM from the blocked side of
the beam. The model retained is a finite element model
with classical beam elements. The beam equation is the
following:

mẅ(x, t) + EI
∂4w(x, t)
∂x4 = ∂Mu

∂x
δ(x− xM ) (12)

The torque Mu is chosen with the control variable u.
By applying the right torque at the right time, we hope
to stabilize the beam. In its finite element writing, the
system is:
MẄ +KW = Fu (13)
Using a modal decomposition
W (x, t) =

∑
i≤nmodes

ai(t)ϕi(x),



Control of Mechanical Systems Using Set Based Methods 11

we can write a reduced system of the form:
Mräi(t) + 2ζiȧi(t) +Krai(t) = Fr,u. (14)
Note that a modal damping is added in this step, it
permits to have a realistic behaviour of the beam since
it is subject to loss of energy. By rearranging the terms
of equation (14) into a first order ODE, we can write
the system under a state-space representation:

Σ :
{
ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t), (15)

where the output y is the tip displacement of the beam.
Henceforth, the state variable contains the variables ai
and ȧi. The dimension of the state-space is thus twice
the number of retained modes. In this way, the sys-
tem can be treated with the method developed here,
applying a balanced truncation to the system (15) and
building a reduced-order control.

Note that the intermediate model order reduction
by modal decomposition cannot actually be avoided,
because the direct rearrangement of system (13) into its
state-space representation leads to a matrix A possess-
ing some positive eigenvalues (instead of only negative
ones), and the calculation of balancing transformations
is then much more complicated, or even impossible.

The finite element model is composed of 60 elements
(thus 120 degrees of freedom to take the rotation into
account), we retain 20 modes for the modal decompo-
sition, and the system is reduced to nr = 4. Nine con-
trol modes are chosen to control the beam, including
the mode corresponding to a null torque. Two simula-
tions for different initial conditions and objective sets
are given in Figure 10. In the first one, several modes are
initially excited, whereas only the first mode is excited
in the second one. In both cases, the online procedure
is applied, and we manage to stabilize the tip displace-
ment relatively fast. The output of the full-order system
is stabilized in Ry + ε

|Pati|
y with ε

|Pati|
y w 0.2. The er-

rors ε|Pati|y can seem quite high compared to the tip dis-
placement, this comes from the hyperbolic nature of the
equations which rule this example. However, in a prac-
tical point of view, this is clear that the reduced-order
output fits well the behavior of the full-order system.

6.3 Vibrating Aircraft Panel

In order to verify the handling of higher dimensional
systems, we apply our method to the vibration control
of an aircraft panel. This example, taken from [24], con-
sists in stabilizing the panel as close as possible to the
equilibrium, which corresponds to a null displacement
inside the whole panel. In this purpose, seven piezoelec-
tric patches are glued on the panel, one is used for ex-
citing the panel (patch 1 of Figure 11), one is used as a

Fig. 11 Scheme of the vibrating aircraft panel.

sensor to evaluate the performance of the control (patch
2), one is used for the observation of modal states (patch
6), and three are used for vibration control (patches 3
to 5), the last patch being used to validate the recon-
struction (patch 7). For the numerical simulations, we
choose the measurements of the sensor patch as the
output of the system.

Just as the cantilever beam, we use a finite element
model reduced by modal decomposition then balanced
truncation. The system is written exactly in the same
way, but with shell elements, and thus six degrees of
freedom by node. The finite shell element model con-
sists of 57000 degrees of freedom. We retain 50 modes
for the modal decomposition, and the model is reduced
down to nr = 5 by balanced truncation. Seven control
modes are used for vibration control, it corresponds to
a null voltage applied on all the control patches, a posi-
tive constant voltage applied on each control patch (one
patch is subject to a voltage at a time), and a negative
constant voltage applied on each control patch. The
reader is referred to [24] for more information on the
exact functioning of the piezoelectric patches used in
this case study, and see for example [20,28] for more
general information on piezoelectric patches and their
use for structural damping. With the same hardware
configuration as in the previous example, the computa-
tion of a decomposition took nearly a week. A simula-
tion of the online procedure is given in Figure 12 and
13.

We observe that the response of the controlled full-
order system is better than the non-controlled one, the
main peaks observed in the non-controlled response are
avoided. Nevertheless, the stabilization is not as effi-
cient as one may expect. One can see that the reduced-
order system is however well stabilized. This points out
that the model reduction does not catch, in this case, all
the information needed for control purposes. While we
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Fig. 10 Simulations of vibration control of the cantilever beam for two different initial conditions and objective boxes. (a): several
modes excited; (b): first mode excited.

Fig. 12 Simulation of vibration control of the aircraft panel.

are currently investigating new model reduction tech-
niques, adapted to hyperbolic and non-linear systems,
we also think that in practice, the stabilization would
be better because of the smoothness appearing in the
applied torques in a real application.

7 Extension to Output Feedback Control

So far, we designed reduced state-dependent controllers
for switched control systems, permitting to stabilize the
output of the system in a given objective set Ry. Dur-
ing a real online use, one is only supposed to know a
part of the state of the system, such as measurements
of sensors. We now want to take these partial measure-
ments into account, by adding an intermediate step in
the online use, namely, observation. We suppose that
only the output of the system is known online. In the

next sub-section, we introduce the principle of observa-
tion and give some preliminary results justifying the use
of observers for switched control systems, allowing us to
adapt our algorithms to the use of observers. We then
present some numerical results of the use of observers
with model order reduction. The whole approach with
model order reduction is schemed in Figure 14, but as
we do not have any proof for the efficiency of the use of
observers with model order reduction, we only provide
some numerical simulations. We are currently working
on the establishment an error bound taking into ac-
count the projection error and the observation error,
that will permit to construct a guaranteed reduced ob-
server based control.
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Fig. 13 Enlargement of Figure 13 on the time interval [0, 0.2].

Fig. 14 Principle of the output feedback control

7.1 Partial observation

Having defined the state-space bisection algorithm for
switched control systems with output, we now add the
constraint that the system is partially observed. The
objective is to design an output feedback controller using
the state-space bisection algorithm introduced above.

We recall that the switched system Σ is written un-
der the following form:

Σ :
{
ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t).

We suppose that during an online use, one is only
supposed to know y(t) (we suppose that y can be mea-
sured in real time, that is at every time t). If just this
partial information of the state is known, we cannot
directly apply our state-dependent controller synthesis
method. An intermediate step must be introduced: the
reconstruction of the state. The reconstruction is made
with the help of an observer: it is an intermediate sys-
tem that provides an estimate of the state of the system
Σ from the measurements of the output y and the input
u of the system Σ. In fact, this means that we want to
design an output feedback law for the system Σ with
the help of an observer. In this paper, we retain the
Luenberger observer [40,2,1] to reconstruct the state of
Σ, it is subject to the following equation:
˙̃x = Ax̃− L(u)(Cx̃− y) +Bu, L(u) ∈ Rn×m (16)

Obviously, the observer does not reconstruct exactly
the state x of the system Σ, we thus introduce the re-
construction error η(t) = ‖x(t) − x̃(t)‖. Our goal is to
control the system Σ with this estimate x̃: we apply a
law u(x̃). One can note that the method relies on the
convergence of the observer x̃ to the state x, this aspect
is developed in the following section.

The entries of the control problem we retain are then
the following:

– an interest set Rx ⊂ Rn,
– an objective set Ry ⊂ Rm,
– an initial, a priori known, reconstruction error η0.

With the method given below, the outputs of the
problem are the following:

– a decomposition of Rx w.r.t. η0 and the dynamics
of Σ,

– a procedure to choose u knowing x̃,
– and the guarantee that, for any pattern Pat, if x0 ∈
Rx and η(0) ≤ η0, then
x(|Pat|τ, x0, Pat) ∈ Rx and y(|Pat|τ, x0, Pat) ∈
Ry.

Let us now introduce some hypotheses and impor-
tant results to ensure the efficiency of the method.

7.2 Convergence of the observer

The properties of the Luenberger observer depend on
the choice of the matrices L(u) appearing in (16). A
crucial assumption in what follows is that it is possible
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to choose L(·) in such a way that the modes of the Lu-
enberger observer share a common non-strict quadratic
Lyapunov functions, i.e., there exists a positive definite
matrix P such that:

∀u, P (A+ L(u)C) + (A+ L(u)C)>P ≤ 0. (17)

The dynamics of the original switched system and
of the Luenberger switch observer can be grouped in
the augmented system( ˙̃x
ẋ

)
=
(
A− L(u)C L(u)C

0 A

)(
x̃

x

)
+
(
Bu

Bu

)
.

Define e(t) = x(t)− x̃(t) and η(t) = e(t)TPe(t). By
definition e(·) satisfies

ė = (A− L(u)C)e (18)

and assumption (17) implies that η is non-increasing
along all trajectories. The patterns in u(·) will be chosen
in order to guarantee that not only η decreases, but
actually converges to zero.

An assumption which may be motivated by the tech-
nical constraints of the system under consideration is
the existence of a dwell-time, that is, a positive con-
stant τ such that two subsequent discontinuities of u(·)
have a distance of at least τ (recall that u(·) is assumed
to be piecewise constant). The dwell-time condition not
only reflects technological constraints, but is also useful
in the asymptotic analysis of the switched system (3).
The basic result that we will use is a simplified version
of [36, Theorem II.5], which states that under the dwell-
time hypothesis, and by choosing properly the patterns,
one can manage to make η(t) converge to 0. (For fur-
ther asymptotic results of linear switched systems with
a common non-strict quadratic Lyapunov function, see
[6,33].)

The strategy suggested by the previous theorem is
the following:

– identify u∗,1, . . . , u∗,m such that

∩mj=1Ker(A− L(u∗,j)C) = (0);

– impose that each pattern takes all values u∗,1, . . . ,
u∗,m.

Under these constraints the solution e of (18) is
guaranteed to converge to the origin (monotonically
with respect to the norm induced by the positive matrix
P ).

In the case of the metal plate we will see that it is
sufficient to take m = 2 and that the constraint that
each pattern passes trough the two values u∗,1, u∗,2 is
not a heavy obstacle in the implementation of the pro-
posed algorithm. As a result, we will obtain a strategy
u(x̃) that, under the assumption that the initial state

x(0) and the initial estimation x̃(0) are in Rx and sat-
isfy η(0) < η0, the trajectory x(t, x(0), u) and the esti-
mated trajectory, denoted by x̃(t, x̃(0), u), are such that
the evaluation of x(·) after each pattern is again in Rx
and x(t, x(0), u)− x̃(t, x(0), u)→ 0 as t→ +∞.

7.3 Observer based decomposition

We present here the adaptations of the algorithms tak-
ing the observation into account. The observer based
decomposition algorithm takes η0 as a new input. Given
a system Σ, two sets Rx ⊂ Rn and Ry ⊂ Rm, a posi-
tive integer k, and an initial reconstruction error η0, a
successful observer based decomposition returns a set
∆̃ of the form {Vi, Pati}i∈I , where I is a finite set of
indices, every Vi is a subset of Rx, and every Pati is a
k-pattern such that:

(a)
⋃
i∈I Vi = Rx,

(b) for all i ∈ I: PostPati(Vi + η0) ⊆ Rx − η0,
(c) for all i ∈ I: PostPati,C(Vi + η0) ⊆ Ry.

Such a decomposition allows to perform an output
feedback control on Σ as stated in the following. The
algorithm relies on two functions given in Algorithms
5 and 6. If a successful observer based decomposition
is obtained, it naturally induces an estimate-dependent
control, which we denote by u∆̃. By looking for patterns
mapping Rx + η0 into Rx, we guarantee that x(t, x, u)
is stabilized in Rx. Indeed, if x(0) is the initial state,
and x̃(0) the initial estimation (supposed belonging to
Rx), we know that x̃(0) belongs to Vi0 for some i0 ∈ I,
and that x(0) belongs to Vi0 + η0, so the application
of the pattern Pati0 yields x(|Pati0 |τ, x(0), Pati0) ∈
Rx − η0 (because PostPati0

(Vi0 + η0) ⊆ Rx − η0) and
x̃(|Pati0 |τ, x̃(0), Pati0) ∈ Rx because

‖x(|Pati0 |τ, x(0), Pati0)− x̃(|Pati0 |τ, x̃(0), Pati0)‖
< η0.

Note that we plan to improve these algorithms by tak-
ing the decrease of η(t) into account, so that the de-
composition is less restrictive when η(t) is small.

7.4 Reduced output feedback control

Algorithms 5 and 6 allow to synthesize guaranteed out-
put feedback controllers for switched control systems
without model order reduction. However, the use of
model order reduction and observation for the thermal
problem of section 6.1 is indeed possible, this is partly
enabled thanks to the elliptic nature and highly con-
tractive behavior of the system.



Control of Mechanical Systems Using Set Based Methods 15

Algorithm 5: Bisection Obs(W,Rx, Ry, D,K, η0)
Input: A box W , a box Rx, a box Ry, a degree D of

bisection, a length K of input pattern, an initial
reconstruction error η0

Output: 〈{(Vi, Pati)}i, T rue〉 with
⋃
i
Vi = W ,⋃

i
PostPati

(Vi + η0) ⊆ Rx and⋃
i
PostPati,C(Vi + η0) ⊆ Ry , or 〈 , False〉

1 (Pat, b) := Find Pattern(W,Rx, Ry,K, η0)
2 if b = True then
3 return 〈{(W,Pat)}, T rue〉
4 else
5 if D = 0 then
6 return 〈 , False〉
7 else
8 Divide equally W into (W1, . . . ,W2n )
9 for i = 1 . . . 2n do

10 (∆i, bi) := Bisection(Wi,Rx,Ry,D− 1,K,η0)
11 return (

⋃
i=1...2n ∆i,

∧
i=1...2n bi)

Algorithm 6: Find Pattern Obs(W,Rx, Ry,K, η0)
Input: A box W , a box Rx, a box Ry, a length K of

input pattern, an initial reconstruction error η0
Output: 〈Pat, True〉 with PostPat(W + η0) ⊆

Rx,PostPat,C(W + η0) ⊆ Ry, or 〈 , False〉
when no input pattern maps W + η0 into Rx

1 for i = 1 . . .K do
2 Π := set of input patterns of length i
3 while Π is non empty do
4 Select Pat in Π
5 Π := Π \ {Pat}
6 if PostPat(W + η0) ⊆ Rx − η0 and

PostPat,c(W + η0) ⊆ Ry then
7 return 〈Pat, True〉

8 return 〈 , False〉

The online simulations are performed just as sated
in Figure 14. From the full-order system Σ, we build
a reduced-order system Σ̂ by balanced truncation. An
ε-decomposition is then performed on Σ̂, yielding a x̂-
dependent controller (the decomposition was obtained
in about two minutes). The control u(˜̂x) is then com-
puted online with the reconstructed variable ˜̂x, which
dynamics is the following:

˙̂̃x = Â˜̂x− L(u)(Ĉ ˜̂x− Cx) + B̂u, L(u) ∈ Rnr×m (19)

As the ε-decomposition is already quite restrictive
(i.e. the error bound overestimates the real projection
error) and because the Luenberger observer converges
fast, we observe that the induced control already works,
even if we do not have any justification of the efficiency
yet. The proof should be established by evaluating, for
any pattern Pat, a bound of the following error:

‖πRx(|Pat|τ, x(0), Pat)− ˜̂x(|Pat|τ, ˜̂x(0), Pat)‖ (20)

In the simulations Figures 15 and 16, the full-order
system is of order n = 897, the reduced order system of
order nr = 2. The full-order system is initialized with a
uniform temperature field of x(0) = 0.06n. The reduced
observer is initialized at x̃(0) = 02. The two projected
variables πRx cannot be reconstructed exactly because
of (at least) the projection error, but the output is still
very well reconstructed. Both the observer and the full-
order outputs are sent in the objective set Ry, which
means that we should manage to control a thermal
problem just with the information obtained with few
sensors.

8 Final Remarks

Two methods have been proposed to synthesize con-
trollers for switched control systems using model or-
der reduction and the state-space bisection procedure.
An offline and an online use are enabled, both uses
are efficient but they present different advantages. The
offline method allows to obtain the same behavior as
the reduced-order model, but the associated bound is
more pessimistic, and the controller has to be computed
before the use of the real system. The online method
leads to less pessimistic bounds but implies a behav-
ior slightly different from the reduced-order model, and
the limit cycles may be different from those computed
on the reduced system. The behavior of the full-order
system is thus less known, but its use can be performed
in real time.

A first step to the online reconstruction of the state
of the system has been done with the help of Luenberger
observers. Numerical simulations seem to show a good
behavior with reconstruction and model reduction but
the efficiency must still be proved. The use of Kalman
filters is however not dismissed.

We are still investigating new model order reduc-
tions, more adapted to hyperbolic systems, and with the
aim of controlling non linear PDEs. A recent trail which
we also want to develop is the dimensionality reduction
[19,35,34]. Less restrictive than model order reduction,
it should permit to use a fine solver and post-processing
techniques to use bisection on a reduced space more
representative of the system behavior.
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Fig. 15 Simulation of the thermal problem with observation: projected variables. x r1 and x r2 are the two variables πRx plotted
within time (plain lines), it corresponds to the projection of the full-order system state. x t1 and x t2 are the two variables ˜̂x
plotted within time (dotted lines), it corresponds to the state of the reduced observer.

Fig. 16 Simulation of the thermal problem with observation: output variables. The output of the full-order system (plain red)
coincides with the output reconstructed by the observer (plain blue), both are sent in the objective set at the end of patterns (red
circles).
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