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Abstract This article proposes two approaches to tool-supported automatic verification of
dense real-time systems against scenario-based requirements, where a system is modeled as
a network of timed automata (TAs) or as a set of driving live sequence charts (LSCs), and a
requirement is specified as a separate monitored LSC chart.

We make timed extensions to a kernel subset of the LSC language and define a trace-
based semantics. By translating a monitored LSC chart to a behavior-equivalent observer
TA and then non-intrusively composing this observer with the original TA-modeled real-
time system, the problems of scenario-based verification reduce to computation tree logic
(CTL) real-time model checking problems. When the real-time system is modeled as a set of
driving LSC charts, we translate these driving charts and the monitored chart into a behavior-
equivalent network of TAs by using a “one-TA-per-instance line” approach, and then reduce
the problems of scenario-based verification also to CTL real-time model checking problems.
We show how we exploit the expressivity of the TA formalism and the CTL query language
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of the real-time model checker UPPAAL to accomplish these tasks. The proposed two ap-
proaches are implemented in the UPPAAL tool and built as a tool chain, respectively. We
carry out a number of experiments with both verification approaches, and the results indi-
cate that these methods are viable, computationally feasible, and the tools are effective.

Keywords Real-time system · Modeling · Timed automata · Scenario · Live sequence
chart · Verification

1 Introduction

A model checker typically needs two inputs: a model that characterizes the state/transition
behaviors of a finite state concurrent system, and a temporal logic formula that specifies
the property of interest. For real-time systems, a widely used modeling formalism is timed
automata (TA) [2], and the temporal logics could be CTL, LTL, TCTL, etc. Various methods,
techniques and tools for model checking real-time systems have been developed over the
years, and numerous successful stories of applying them to industrial projects have been
reported [7].

Temporal logics such as CTL, LTL, TCTL in themselves are rich enough to formalize a
wide range of user requirements such as reachability, safety, liveness and responsiveness.
However, these logics are difficult to grasp by non-mathematician/logician users, and in
most existing real-time model checkers such as KRONOS [42] and UPPAAL [7], they have
only incomplete implementations—on one hand, their atomic propositions are interpreted
over the semantic states of timed automata and cannot be event occurrences [7, 42]; and on
the other hand, there are only limited or even no means for straightforward characterization
of quantitative timing constraints [7, 42].

The first incompleteness as mentioned above implies that these temporal logics describe
only intra-process (or “state/transition-based”) properties, i.e., whether all states (!) or at
least one state (♦) along all paths (A) or at least one path (E) of the individual processes
or the product process (i.e., the parallel composed system model) satisfy some particular
properties. The second incompleteness implies that general form timing requirements such
as E♦1≤x≤3 cannot be easily captured. Altogether, we cannot hope to use these temporal
logics to characterize event synchronizations, causal relations, or timed scenarios such as
“if process B sends message m1 to process A, and C sends m2 to D (in any order), then B

must send m3 to C within 1 to 3 time units” intuitively and conveniently.
Live Sequence Chart (LSC) [12, 18] is a visual formalism for scenario-based requirement

specification (in this case, an LSC chart is called a monitored chart). Similar to the classical
Message Sequence Chart (MSC) [21], LSC also describes inter-process properties, i.e., how
the system processes interact, collaborate and cooperate via message or rendezvous synchro-
nizations. But beyond that, LSC makes essential extensions to MSC by adding modalities.
The existential and cold (resp. universal and hot) modalities represent the provisional (resp.
mandatory) requirements at global (i.e., whole chart) and local (i.e., message, condition, lo-
cation and cut) levels, respectively. At the global level, an existential (resp. universal) chart
specifies restrictions over at least one satisfying (resp. all possible) system runs. At the lo-
cal level, for example, a cold condition may be violated and thus lead to a “graceful” chart
exit, whereas a hot one must be satisfied and otherwise will indicate an error. The power
of LSC lies in that a universal LSC chart can optionally contain a prechart, which specifies
the scenario which, if successfully executed (or matched), forces the system to satisfy the
scenario given in the actual chart body (i.e., the main chart). Furthermore, the LSC language
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is unambiguous because it has strictly defined semantics, e.g., the executable (operational)
semantics [18] and the trace-based semantics [12, 27].

We envisage LSC as a nice complement to the intra-process property specification lan-
guages of existing (real-time) model checkers:

– Intuitiveness. As a visual formalism, LSC is more intuitive in capturing complex user
requirements than the text-form temporal logics;

– Scenario characterization. Compared with many temporal logics whose atomic proposi-
tions are restricted to be state formulas, LSC has the necessary language constructs (e.g.,
message and conditional synchronization) to describe process interactions and thus en-
able the characterization of a variety of causality and non-trivial scenarios. In particular,
LSC can be extended to describe timed scenarios;

– Counterexample display. In conventional temporal logic model checking, even if a coun-
terexample is due to an inappropriately specified requirement on a correct system model,
one has to debug the model to find out the specification error. LSC improves on this by
providing the possibility of tracing the counterexamples also back to the visual, scenario-
based requirement specifications, and thus facilitates the debugging of both the system
models and the user requirements.

In addition to being used as a requirement specification language, LSC can also serve
as a scenario-based behavioral modeling language (in this case, each LSC chart is called
a driving chart). A communicating system can be modeled as a set of driving LSC charts,
which we call an LSC system (LS). Scenario-based modeling using LSCs enjoys the advan-
tage of piecewise incremental construction of system models, i.e., new pieces of scenarios
can be added into the models during the development process. However, to check whether
an LSC-modeled system satisfies a scenario-based requirement is difficult due to the need
to consider both the explicitly specified and implicitly allowed behaviors in each scenario,
and the interplays among the different scenarios. The problem becomes even more com-
plicated for real-time systems, as time-enriched LSCs may contain subtle timing errors that
are difficult to diagnose. Clearly, this verification problem needs powerful analysis methods,
techniques and automated tool support.

In an LSC system, the instance lines in the charts can be viewed as parallel composed
processes that interact with one another via message or rendezvous synchronizations. This
in spirit resembles some formalisms and tools for concurrent system modeling and analysis.
Specifically, the real-time model checker UPPAAL [7] operates on a network of interact-
ing timed automata that communicate via handshake and broadcast synchronizations and
shared-variable communications. With its features of committed locations, broadcast chan-
nels, and boolean and integer variables, UPPAAL is capable of properly mimicking the be-
haviors of a time-enriched LSC system using timed automata. This opens up the possibility
of exploiting the power of UPPAAL for simulating and analyzing scenario-based real-time
system models.

A monitored LSC chart captures the user requirement that once the prechart (if any) is
successfully matched, then the main chart must be matched afterwards. This is a kind of
liveness or responsiveness requirement. Coincidentally, the UPPAAL CTL query language
has the “leads-to” property pattern φ#ϕ which is a shorthand for A!(φ ⇒ A♦ϕ), stating
that whenever φ is satisfied, then eventually ϕ will be satisfied. By automatically trans-
forming a monitored chart into a behavior-equivalent observer timed automaton, we can
specify a corresponding φ#ϕ property in UPPAAL to capture the LSC requirement. By
non-intrusively composing the observer timed automaton with a TA-modeled real-time sys-
tem, we can achieve the effect of using a monitored chart to “spy on” the system behaviors.
All these pave way to verifying real-time systems against scenario-based LSC requirements.
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In this article we model a real-time system as a state/transition-based system, more pre-
cisely a network of timed automata, or as an object interaction-based system, more precisely
a set of driving LSC charts. We capture a scenario-based requirement that is to be verified
using a separate monitored LSC chart. We aim at tool-supported automatic verification of
the system against the requirement (Fig. 1). As mentioned in the previous paragraphs, we no-
tice that the problems of verifying a state/transition-based real-time system (Fig. 1, left part)
and an object interaction-based real-time system (Fig. 1, right part) against a scenario-based
user requirement can both be reduced to CTL real-time model checking problems. Since
UPPAAL has sophisticated data structures and efficient verification algorithms for handling
timing constraints, in this article we will employ UPPAAL as our underlying verification
engine.

This article is an extended version of previous work at FM’09 (Fig. 1, left part) [29]. In
this article, we extend our previous work by complementing (i.e., “horizontally scaling up”)
the verification framework with systems being modeled as a set of driving time-enriched
LSC charts (Fig. 1, right part, partly taken from [30]). We provide lemmas and proofs for
the theorems in this article. We add new translation and verification methods for LSC charts
under the iterative activation mode. We provide explanations on the prototype tool imple-
mentations, and report in more detail some experimental verification results.

1.1 Contributions

The main contributions of this article include:

– We define a kernel subset of the LSC language, make timed extensions to this subset such
that it is suitable both for scenario-based behavioral modeling and for scenario-based
requirement specification of real-time systems, and we define a trace-based semantics;

– We propose a behavior-equivalent translation of a monitored LSC chart to an observer
timed automaton, and propose a method of non-intrusively “observing” an existing TA-
modeled real-time system using this observer automaton, thus encoding the problem of
verifying state/transition-based real-time systems against scenario-based requirements as
a CTL real-time model checking problem. We show how these are integrated into the
UPPAAL model checker;

– We propose a behavior-equivalent translation of a driving or monitored LSC chart to a
network of timed automata, one for each instance line, and reduce the problem of veri-
fying object interaction-based real-time systems against scenario-based requirements to
CTL real-time model checking problems. We implement the LSC-to-TA translator which,
together with our LSC editor and the UPPAAL model checker, constitutes a tool chain for
scenario-based automatic verification; and

– We conduct experimental evaluations of the proposed approaches, and report the results.

1.2 Organization

Section 2 shows how to model and specify real-time systems using timed automata and tem-
poral logics, respectively, and why scenario-based approaches may come in handy. In Sect. 3
we define the notations, syntax and semantics of our time-enriched LSC chart. Sections 4
and 5 show how to verify a state/transition-based real-time system and an object interaction-
based real-time system against a scenario-based requirement, respectively. Section 6 reports
the tool implementations and experimental evaluations of the proposed approaches. Sec-
tion 7 shows how to horizontally scale up the LSC-to-TA translation methods from invariant
mode charts to iterative mode charts. Section 8 discusses some related work on scenario-
based verification of real-time systems. Finally, Sect. 9 concludes this article.
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2 Modeling and specification of real-time systems

2.1 Timed automata and computation tree logic

Timed automata (TA) is a popular visual formalism for modeling the state/transition-based
behaviors of dense real-time systems. According to Alur and Henzinger [3], the underlying
philosophy of TA is that a real-time system can be viewed as a discrete system with clock
variables:

– The discrete system is represented as a finite directed graph, where each vertex represents
a (control) location, and each edge represents an instantaneous switch (or discrete jump);
and

– The system has a finite set of clocks which increase at the same speed and can be reset.
Each clock variable keeps track of the elapsed time since last time this clock was reset.
Clock variables can be used in boolean expressions to guard the instantaneous switches.
Each location may be associated with a clock constraint called invariant, specifying the
condition under which time can still elapse in this location.1

To describe a system which consists of a number of concurrently running processes,
a network of timed automata can be constructed, one for each process. These automata are
composed in parallel using the operator ‖. Different automata in the system can synchro-
nize on their common actions [2], and the product automaton has an interleaved execution
semantics.

Timed automata in its original form [2] are a simple, concise and yet expressive lan-
guage. To better support the modeling and automatic verification of real-time systems, vari-
ous syntactic sugar and extensions are added to the TA formalism. Specifically, UPPAAL [7]
strengthens TA with a number of features such as boolean and bounded integer variables,
variable constraints and updates, urgent and committed locations, handshake and broadcast
channel synchronizations, shared variable communications, etc. Here an urgent location is a
location where time is frozen (i.e., once an urgent location is entered, it should be exited with
zero time delay); and a committed location is a special urgent location where the outgoing
transitions have higher priority to be taken than those from non-committed ones (Fig. 2(c),
the “C”-marked location).

Fig. 2(a)–(d) give an example of a network of TAs in UPPAAL.
Requirements on TA-modeled real-time systems can be specified using temporal logics

such as CTL, LTL or timed variants thereof. For example, UPPAAL uses a fragment of the

Fig. 2 A real-time system model
(network of TAs)

1Pragmatically, location invariants are used to allow the system to stay in a location for a limited period of
time, and then force it to leave that location.
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CTL logic as its property specification language. Atomic propositions take the form:

ap ::= automaton.location | guard_on_clocks | guard_on_variables,

and properties can be specified using a number of patterns:

– reachability (E♦φ);
– safety (A!φ, E!φ); and
– liveness properties (A♦φ, φ#ϕ).

In particular the leads-to (responsiveness) property φ#ϕ is a shorthand for A!(φ ⇒ A♦ϕ),
stating that whenever φ is satisfied, then eventually ϕ will be satisfied.

2.2 Scenario-based approaches

Although a lot of properties can be specified by using the above-mentioned property pat-
terns, many others still cannot. Consider a user requirement on the TAs in Fig. 2:

If we observe that process B sends message m1 to process C when clock x is no less
than 3, then afterwards (and before m1 can be observed again) we must observe that B

sends m2 to A when x is no less than 2, and C sends m3 to D (in any order).
This requirement cannot be specified as a UPPAAL CTL formula or a KRONOS TCTL

formula. The reason is that the atomic propositions, which are restricted to be state proposi-
tions, do not characterize message passing directly. In other words, they lack the necessary
mechanisms for specifying the process interactions and scenarios.

Live Sequence Chart (LSC) is a scenario-based requirement specification language. After
extending the LSC language with TA-like clock variables and clock constraints, we notice
that the above requirement can be easily captured using LSC (Fig. 3). For instance, the first
block of diagrammatic elements {m1, x ≥ 3} means that: when message m1 in the real-time
system model is observed, the value of clock x should be no less than 3 at this moment; and
if this is the case, then the monitored execution continues, otherwise the prechart (Fig. 3,
the outer dashed hexagon) is cold-violated and exited, indicating that this “premise” is not
satisfied.

Thanks to its liveness feature and executable semantics, LSC can also be used to model
the scenario-based interaction behaviors of communicating systems. In this case, each LSC
chart describes a piece of the “if (something happens) then (some other thing must happen)”
style behaviors. A number of driving charts collectively constitute the system model. They
characterize how the system processes should interact and collaborate. By allowing LSC
to be used both for requirement specification and for system modeling, we may carry out
scenario-based validation activities in a much earlier stage of the software development cy-
cle, thus making it possible for developers to focus more efforts on programming/validation-
in-the-large rather than programming/validation-in-the-small.

Fig. 3 An LSC chart that
expresses a requirement on the
real-time system in Fig. 2
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3 Live Sequence Chart: timed extensions and semantics

3.1 Notations and syntax

In this article, LSC in its simplest form is a message-only untimed chart, i.e., there are only
language elements of instance lines, locations, messages and precharts/main charts (Fig. 4).

We make the synchrony hypothesis, i.e., system events consume no real time and time
may elapse only between events. In this way message synchronizations will be instanta-
neous, i.e., the sending and receiving of a message are assumed to happen at the same mo-
ment in time. Therefore the terms of message and (message sending or receiving) event will
be used interchangeably.

An LSC chart has a role, a type and an activation mode. In this article we consider the
roles of:

– property specification, i.e., a monitored chart will just “listen to” the messages and read
the clock variables in the original system models, but never emit messages to or reset the
clocks in those models; and

– system modeling, i.e., a driving chart can emit messages and/or reset the clocks when it
needs to do so.

A monitored LSC chart could be of the universal or existential type, whereas a driving
chart can only be of the universal type. Since an existential chart is in nature similar to a
Message Sequence Chart, in this article we will mainly be interested in universal charts.
A driving or monitored universal chart consists of:

– a main chart (Mch), which specifies what should happen in order for this universal chart
to be satisfied (Fig. 4, lower part of the chart2); and optionally

– a prechart (Pch), which specifies the “premise” whose satisfaction triggers the main chart
and forces it to be satisfied (Fig. 4, upper part of the chart, i.e., the dashed hexagon area).

If a universal chart has no prechart, then it can be simply treated as having a satisfying
prechart. In this article we assume that a universal chart has a prechart. Furthermore, an
existential chart consists of only a main chart.

A universal chart has an activation mode which determines how often a chart should be
activated. In this article we consider:

– the invariant mode, i.e., the prechart is being constantly matched for in the message
stream (i.e., for any arriving message, in addition to being monitored by existing prechart
copies, it will initiate a new prechart copy), and the main chart will be activated (i.e.,
a live chart copy will be incarnated and then enforced) whenever the prechart is success-
fully completed; and

– the iterative mode, i.e., as long as the main chart is currently active, the prechart will
not be monitored for further satisfaction (until the current “iteration” of the main chart is
over).

In the rest of this section and Sects. 4–6, we consider only the invariant mode LSC charts
and their translations. The case of the iterative activation mode will be addressed in Sect. 7.

2In the original definition of LSC [18], the main chart of a universal chart should be enclosed within a solid
rectangle borderline, whereas that of an existential chart should be within a dashed borderline. For brevity, in
this article we omit the borderlines of universal charts. Since no existential chart examples are given in this
article, no confusion arises between existential charts and non-prechart universal charts.
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Fig. 4 Anatomy of an example
untimed LSC chart L

3.1.1 Message-only untimed chart

We start with message-only untimed charts. See Fig. 4 for an example.
Each LSC chart describes a particular interaction scenario among a set of processes

(or instances, or agents). Given a universal chart L, let I = inst(L) be the set of in-
stance lines in L (Fig. 4, instance lines {A,B}). Along each instance line Ii ∈ I there is
a finite set of “positions” pos(L, Ii) = {0,1,2, . . . , p_maxL,Ii } ⊂ N≥0, which denote the
points of communication, computation and synchronization (Fig. 4, black filled circles
along A and B). Specifically, along each instance line Ii there are four “standard” po-
sitions StdPos(L, Ii) = {Pch_topL,Ii

,Pch_botL,Ii ,Mch_topL,Ii
,Mch_botL,Ii } ⊆ pos(L, Ii),

denoting the entry/exit points of the prechart/main chart, respectively (Fig. 4, downward
ascending positions 0, 3, 4, 6 on instance line A), such that:

– 0 = Pch_topL,Ii
< Pch_botL,Ii < Mch_topL,Ii

< Mch_botL,Ii = p_maxL,Ii ; and
– Pch_botL,Ii + 1 = Mch_topL,Ii

. !
The positions of an existential chart L can be defined similarly. Since an existential chart

has no prechart, an instance line Ii of it has only two “standard” positions Mch_topL,Ii
and

Mch_botL,Ii .
A chart location is a position on a certain instance line of the chart. The set of all locations

of chart L is denoted as:

Loc = loc(L) = {〈Ii,p〉 | Ii ∈ inst(L),p ∈ pos(L, Ii)}.

Since a “standard” position cannot be the end point of a message, the set of all message-
anchoring locations of L is denoted as:

locM(L) = {〈Ii,p〉 | Ii ∈ inst(L),p ∈ pos(L, Ii)\StdPos(L, Ii)}.

Furthermore, we define a function psn : loc(L) →⋃
Ii∈inst(L) pos(L, Ii) to project a loca-

tion to its position on its instance line.
Let L be an LSC chart, and ML(L) be the set of message labels (or “signals”,

or “channels” in UPPAAL) of L (Fig. 4, {m1,m2,m4}). A message occurrence mo =
(〈Ii,p〉,m, 〈Ii′ ,p

′〉) ∈ locM(L) × ML(L) × locM(L) corresponds to instance Ii , while in
its position (p − 1), sending signal m ∈ ML(L) to instance Ii′ at its position (p′ − 1), and
then arriving at positions p and p′, respectively (Fig. 4, ellipse-circled portion). We call
lab(mo) = m the message label, head(mo) = 〈Ii′ ,p

′〉 and tail(mo) = 〈Ii,p〉 the message
head and tail locations, and src(mo) = Ii and dest(mo) = Ii′ the source and destination
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instances, respectively. We use loc(mo) = {head(mo), tail(mo)} to denote the message an-
choring locations. The set of all message occurrences in chart L is denoted as:

MO(L) ⊆ {(〈Ii,p〉,m, 〈Ii′ ,p
′〉) ∈ locM(L)× ML(L)× locM(L) |

p ≤ Pch_botL,Ii ⇔ p′ ≤ Pch_botL,Ii′ }.

We omit the parameter L in MO(L) (and thus abbreviating it as MO) when it is clear
from the context. Furthermore, the projection of MO(L) onto inst(L) × ML(L) × inst(L)

is denoted as Σ = MA(L) (“message alphabet”), where each letter is a message which
denotes that a particular signal is sent from one object (instance line) to another. For a given
message occurrence, we may overload its “message label” to also denote the corresponding
letter in Σ .

This article does not consider concurrent messages (i.e., we assume that any instance line
does not send and/or receive two or more messages simultaneously), thus each location can
be the end point of at most one message occurrence in the chart.

3.1.2 Time-enriched chart

Now we continue to define our timed extensions to the above kernel subset of the LSC
language. In our time-enriched LSC charts, there are further elements of (clock) variables,
conditions (clock constraints), updates (clock resets) and simregions (i.e., “simultaneous
regions”). Figure 5 gives two example time-enriched LSC charts (for clarity the normal
positions on the instance lines are omitted).

Assume that in chart L there is a finite set X of real-valued clock variables that range
over R≥0. A clock valuation is a function v : X → R≥0 that maps each clock variable to a
non-negative real number, also denoted v ∈ R≥0

X .
Let d ∈ R≥0. Notation (v + d) : X → R≥0 means that the clock valuation v is shifted by

d such that ∀x ∈ X . (v(x + d) = v(x) + d).
A clock constraint is of the form x 01 n or x − y 01 n where x, y ∈ X, n ∈ Z, and 01 ∈

{<,≤,=,≥,>}. Let B(X) be the set of finite conjunctions over these constraints. A condi-
tion (or guard) is an element from B(X) that spans across (and thus “anchors” on or inter-
sects with) one or more instance lines, denoted g ∈ Loc+×B(X). Here Loc+ = ⋃card(I )

i=1 Loci

represents the union of Cartesian products where the number of Loc’s ranges from 1 to
card(I ) (i.e., the cardinality of I ). The set of guards in a chart is denoted G⊂ Loc+ ×B(X).
The set of anchoring locations of condition g is denoted loc(g). We may omit the lo-
cation information of a guard when it is not explicitly needed in the context (Fig. 5(b),
{x ≥ 3 ∧ y ≤ 10, x ≤ 2}).

Fig. 5 Example time-enriched LSC charts
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The LSC language constructs such as location, message and condition each have a
cold/hot modality (or “temperature”). For example, the temperature of a condition g ∈ G is
denoted g.temp. When temp is cold, the condition is enclosed in a dashed hexagon (Fig. 3,
x ≥ 3); when temp is hot, it is enclosed in a solid hexagon (Fig. 5(a), x ≤ 5). Tempera-
ture defines the criticality of a condition, and it also determines the consequence when this
condition evaluates to false. While a hot condition must be satisfied, a cold condition may
or may not be satisfied. When a hot condition evaluates to false, it indicates a violation of
the system requirement. In contrast, a cold condition evaluating to false merely induces a
“graceful” exit from the chart. The temperature of a condition may be either hot or cold in
a main chart. However, it can only be cold in a prechart. The reason is that a prechart itself
does not enforce anything.

In the original definition of LSC [18], many language constructs have their hot/cold
modalities. For simplicity, in this article we distinguish between the cold and hot tempera-
tures only for conditions, and assume hot as the default temperature for other constructs.

A clock reset is of the form x := 0 where x ∈ X. An assignment (or update) is the union
of a finite set of clock resets (also written as the set of clocks to be reset) that spans across
one or more instance lines, denoted a ∈ Loc+ × 2X . The set of all assignments in the chart is
denoted A ⊂ Loc+ × 2X . The set of anchoring locations of assignment a is denoted loc(a).
The location information of an assignment may also be omitted if it is not explicitly needed
in the context (Fig. 5(b), y := 0). Furthermore, we can also view a ∈ A as a transformer on
the functions of clock valuations, and as such the new valuation of v after assignment a is
denoted by v′ = a(v).

Unlike in untimed charts where a message occurs all by itself, in time-enriched LSCs,
each message occurrence mo can be optionally associated with a condition g and/or an as-
signment a. Notationally the condition and/or assignment is anchored to an end point of the
message (Fig. 5(a), the two anchoring points on m1 and m3). A message occurrence and
the condition and/or assignment attached thereto (if any) constitute an atomic step of LSC
execution (Fig. 5(a), the ellipse area), i.e., they take place at the same moment in time. As
inspired by [25], we call such a structure of message occurrence/condition/assignment a si-
multaneous region (simregion). The intuitive meaning of message synchronization [g]mo/a

from location 〈Ii,p〉 to 〈Ii′ ,p
′〉 is that, if when mo occurs, the clock valuation v satisfies

g, then this synchronization can fire; and immediately after the firing, v will be updated
according to a.

When a simregion s contains a message, then s is called a message simregion (Fig. 5(a),
the ellipse area). If s has no message occurrence, then s consists of a condition test, or
an assignment, or both of them combined and anchored together. In this case, s is called a
non-message simregion (Fig. 8(c)). For such a simregion, we adopt the As-Soon-As-Possible
(ASAP) semantics for its firing, i.e., the condition test (if any) will be evaluated immediately
after the execution of the previous simregion, and the update (if any) follows immediately.

When the condition, message occurrence or assignment part is missing in a simregion,
we denote that part as ε. Since such an “absence” does not correspond to any location, we
let loc(ε) = ∅.

Definition 1 (Simregion) A simregion s is a tuple of LSC condition, message occurrence,
and assignment, s = (g,mo, a) ∈ (G ∪ {ε})× (MO ∪ {ε})× (A ∪ {ε}), which is subject to
the following constraints:

– common anchoring point. If mo 5= ε, then (g 5= ε ⇒ loc(g) ∩ loc(mo) 5= ∅) ∧ (a 5= ε

⇒ loc(a)∩ loc(mo) 5= ∅); if mo = ε, then (g 5= ε ∧ a 5= ε ⇒ loc(g)∩ loc(a) 5= ∅);
– non-emptiness. (g 5= ε)∨ (mo 5= ε)∨ (a 5= ε); and
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– no overlapping with other simregions. ∀s ′ = (g′,mo′, a′) . ((loc(g)∪ loc(mo)∪ loc(a))∧
(loc(g′)∪ loc(mo′)∪ loc(a′)) 5= ∅ ⇒ (g = g′)∧ (mo = mo′)∧ (a = a′)).

The set of all simregions in a chart is denoted SR ∈ 2(G∪{ε})×(MO∪{ε})×(A∪{ε}).
For example, in Fig. 3 there are three simregions s1 = (x ≥ 3,m1, ε), s2 = (x ≥ 2,m2, ε),

and s3 = (ε,m3, ε). Note that for brevity here we use the message labels to represent the
corresponding message occurrences.

For a simregion s = (g,mo, a) ∈ SR, we use loc(s) = loc(g)∪ loc(mo)∪ loc(a) to denote
the set of anchoring locations of simregion s. For example, in Fig. 5(a) the circled simregion
s = (x ≤ 5,m3, x := 0) has two anchoring locations loc(s) = {〈B,5〉, 〈C,3〉}.

Now that we have presented the necessary basic and composite LSC constructs, we are
in place to give the following generic definition of LSC.

Definition 2 (Live sequence chart, LSC) A live sequence chart is a tuple L = 〈I,Loc,
ML,X,MO,G,A,PchBot〉, where

– I = inst(L) is the set of instance lines in L;
– Loc = loc(L) is the set of locations in L;
– ML is the set of message labels in L;
– X is the set of clocks in L;
– SR ∈ 2(G∪{ε})×(MO∪{ε})×(A∪{ε}) is the set of simregions in L, where:

– G⊂ Loc+ ×B(X) is the set of guards;
– MO ⊂ Loc × ML ×Loc is the set of message occurrences;
– A⊂ Loc+ × 2X is the set of updates; and

– PchBot ∈ {nil} ∪ Loc+ is the bottom location vector of the prechart. In particular when
L has no prechart PchBot is nil.

The BNF grammar for our time-enriched LSC language is given in Appendix A. The
Class Diagram of our time-enriched LSC language is presented in Fig. 6, where the solid
diamond lines and normal lines represent the “composition” and “association” relationships
among the LSC constructs, respectively. Note that in Fig. 6 the Cut class and its relation-
ships to other classes will be explained in Sect. 3.2.1.

3.2 Trace-based semantics

3.2.1 Semantics for a single universal chart

In an LSC chart L, every location is either associated with a simregion, or it is an entry/exit
point of the prechart/main chart. We define a labeling function λ : loc(L) → SR ∪ {nil} to
map a location of the former type to its corresponding simregion, and a location of the latter
type to nil.

Locations in a chart L are preordered (≤) as follows:

– Along each instance line Ii , locations are downward increasing: location l is above l′ ⇒
(l ≤ l′)∧¬(l′ ≤ l); and

– All locations in the same simregion have the same order: ∀s ∈ SR,∀l, l′ ∈
loc(L) . (λ(l) = s)∧ (λ(l′) = s)⇒ (l ≤ l′)∧ (l′ ≤ l).

The preorder relation $⊆ loc(L) × loc(L) is defined as a transitive closure of ≤. For
example in Fig. 5(b), 〈A,0〉$ 〈B,1〉$ 〈B,5〉$ 〈C,4〉 is a preorder of the locations.

A cut represents all the locations along all instance lines that have been progressed so far.
It is formally defined as follows.
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Fig. 6 Class diagram for time-enriched LSC language

Definition 3 (Cut of an LSC chart) A cut of a chart L is a set c ⊆ loc(L) of locations that
span across all the instance lines in L and satisfy the properties of:

– downward-closure. If a location l is included in cut c, so are all of its predecessor loca-
tions: ∀l, l′ ∈ loc(L) . ((l ∈ c ∧ l′$ l) ⇒ l′ ∈ c); and

– intra-chart coordination integrity. If a Mch_top position of a certain instance line is in-
cluded in the cut, then the Mch_top positions of all other instance lines are also included
in the cut: ∃l∈ loc(L), Ii ∈ inst(L) . ((Mch_topL,Ii

≤ psn(l)) ∧ (psn(l) ≤ Mch_topL,Ii
) ∧

(l ∈ c)⇒∀l′ ∈ loc(L), Ii′ ∈ inst(L) . ((Mch_topL,Ii′
≤ psn(l′))∧ (psn(l′) ≤ Mch_topL,Ii′

)

⇒ l′ ∈ c)).

For a cut c, we use loc(c) to denote its frontier, i.e., the set of locations that constitute
the downward borderline progressed so far. The location where c “cuts” instance line Ik ∈ I

is denoted loc(c)〈Ik 〉. For example in Fig. 5(a), if c is the cut when the main chart is just
entered, then loc(c) = {〈A,4〉, 〈B,4〉, 〈C,2〉}, and loc(c)〈A〉 = 〈A,4〉. The set of all cuts is
denoted as Cuts.

Given a cut c ∈ Cuts and a simregion s ∈ SR, we say s is enabled at cut c (with respect
to the location preorder relation), denoted c

s−→, if each anchoring location of s immediately
follows a certain location in c. Formally, ∀l ∈ loc(s) .∃l′ ∈ c . ((l′ $ l)∧¬(l $ l′))∧ (! l′′ ∈
loc(L)\(c∪ loc(s)) . (l′ $ l′′ ∧ l′′ $ l)). For example, in Fig. 5(a) the circled simregion is en-
abled at the cut when the main chart is just entered. The enabledness of message occurrences
can be defined similarly.

A cut c′ is an s-successor of cut c, denoted c
s−→ c′, if s is enabled at c (w.r.t. the location

preorder), and c′ is achieved by adding the set of locations that s anchors at into c. Formally,
c

s−→ c′ ⇔ (c
s−→)∧ (c′ = c ∪ loc(s)).

Since a simregion triggers a new cut, this new cut and the original cut can be viewed as
the destination and source cuts of the LSC advancement step, respectively. This relationship
between the Cut and Simregion classes is depicted in Fig. 6. We also stress that in
Fig. 6 the Cut class is singled out in shaded rectangle, because it is a semantic rather than a
syntactical concept.
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A cut c is minimal, denoted 9, if it “cuts” each instance line at its top location; and c is
maximal, denoted ⊥, if it “cuts” each instance line at its bottom location. The minimal and
maximal cuts of the prechart and main chart are denoted Pch.9, Pch.⊥, Mch.9 and Mch.⊥,
respectively. The frontiers of minimal and maximal cuts do not contain simregion anchoring
points. Rather the cuts Pch.⊥ and Mch.⊥ each represent a requirement for compulsory
synchronization of all the instance lines in the chart. Thus the preorder relation $ on loc(L)

is extended as follows (and finally also extended to its transitive closure):

– All locations in the frontier of the same minimal or maximal cut have the same order:
∀c ∈ {Pch.9, Pch.⊥,Mch.9,Mch.⊥}, ∀l, l′ ∈ loc(c) . (l $ l′)∧ (l′ $ l).

For example, in Fig. 3 the possible cuts are: {}, {s1}, {s1, s2}, {s1, s3}, {s1, s2, s3}, where
e.g. {s1} is a shorthand for the cut where simregion s1 has just been stepped over. Clearly,
cut {s1, s2, s3} is the s3-successor of cut {s1, s2}.

Based on the preorder relation $ on loc(L), we can induce an event (message) partial
order relation of the chart.

In order to define a trace-based semantics for LSC, we need to determine what is a “se-
mantic state” of a time-enriched LSC chart. In this article we call such a semantic state an
LSC configuration.

Definition 4 (Configuration) A configuration of an LSC chart is a tuple (c, v), where c is a
cut and v is a clock valuation.

A configuration at the minimal cut 9 with all clocks assigned their initial values (e.g.,
0’s) is called the initial configuration.

In each configuration, we can check whether a next coming message violates the event
partial order of the chart, and whether a next condition evaluates to true. If in the main
chart the event partial order is violated or a hot condition evaluates to false, then it is a
hot violation. In comparison, if the event partial order is violated in the prechart or a cold
condition evaluates to false, then it is a cold violation. A hot violation means that some
mandatory requirements are not satisfied and therefore there is an error in the system (e.g., an
exception rather than expected message occurs in the main chart), whereas a cold violation
means that some provisional requirements are not satisfied and therefore the chart can be
gracefully exited (e.g., a condition in the prechart evaluates to false).

A universal chart starts from the initial configuration, advances from one configuration
to a next one, until a hot violation occurs, or until the chart arrives at a maximal cut config-
uration and then starts all over again (i.e., to begin a next round execution).

There could be three kinds of advancement steps between two configurations (c, v) and
(c′, v′) of a time-enriched LSC chart:

– Message synchronization step. Given a simregion s which consists of an m-labeled mes-
sage occurrence mo (m ∈Σ ), and optionally a condition g and/or assignment a, there is
a message synchronization step (c, v)

m−→ (c′, v′) if:
– (normal advancement). c

s−→ c′, v |=g, and v′ = a(v); or
– (cold violation). c′ = Pch.9, v′ = v, and either

– mo is not enabled at cut c in the prechart (w.r.t. the preorder relation); or
– v " g ∧ g.temp = cold;

– Silent step. Given a simregion s which consists of a condition g and/or assignment a,
there is a silent step (c, v)

τ−→ (c′, v′) if either
– (silent advancement). projMO∪{ε}(s) = ε, c

s−→ c′, v |= g, and v′ = a(v); or
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– (prechart-main chart transition). (c = Pch.⊥, c′ = Mch.9, v′ = v); or
– (main chart-prechart transition). (c = Mch.⊥, c′ = Pch.9, v′ = v); or
– c′ is reached because an instance line moves to its bottom location in Pch or Mch

autonomously (this happens when the instance line will not interact with other instance
lines before it reaches its bottom location in Mch or Pch). Formally, there exists an
instance Ik such that v′ = v and either
– loc(c′)〈Ik 〉 = (loc(Pch.⊥))〈Ik 〉, psn(loc(c′)〈Ik 〉) = psn(loc(c)〈Ik 〉)+1, and loc(c′)〈Ii 〉 =

loc(c)〈Ii 〉 for all Ii 5= Ik ; or
– loc(c′)〈Ik 〉 = (loc(Mch.⊥))〈Ik 〉, psn(loc(c′)〈Ik 〉) = psn(loc(c)〈Ik 〉)+1, and loc(c′)〈Ii 〉=

loc(c)〈Ii 〉 for all Ii 5= Ik ;

– Time delay step. There is a time delay step (c, v)
d−→ (c′, v′) where d ∈ R≥0 if: c′ = c, v′ =

v + d , and whenever there are message occurrences that are enabled at cut c (w.r.t. both
the preorder relation and the guard), then after delay d there exists at least one of them that
is still enabled at the same cut, i.e., ∃s ∈ SR . (projMO∪{ε}(s) 5= ε) ∧ (projG∪{ε}(s) = g) ∧
(∀d ′ ∈ [0, d] . (c s−→)∧ (v + d ′)|=g).

Similar to the above-mentioned cold violation case, if in the main chart, an m-labeled
message violates $, or (v " g ∧ g.temp = hot), then the configuration (c, v) is said to be
hot-violated, denoted (c, v) /m−→.

Definition 5 (Run of an LSC chart) A run of a time-enriched universal LSC chart is a
sequence of configurations (c0, v0) · (c1, v1) · · · · that are connected by the advancement
steps (ci, vi)

ui−→ (ci+1, vi+1), where ui ∈ (Σ ∪ {τ }∪R≥0), i ≥ 0.

A transition in Definition 5 carries only a single letter u ∈ (Σ ∪ {τ } ∪ R≥0). We extend
→ to →∗ such that a transition carries a (finite or infinite) word w ∈ (Σ ∪ {τ } ∪ R≥0)

∗ ∪
(Σ ∪ {τ }∪R≥0)

ω .
Let Π correspond to the set of all possible messages that occur in a state/transition-

based system model (i.e., a network of timed automata), or be the set of all messages in
an object interaction-based system model (i.e., a set of driving universal LSC charts). In
the latter case, the message alphabet for the LSC system model LS = {Li | 1 ≤ i ≤ n} is
Π = ⋃n

i=1 Σi = ⋃n
i=1 MA(Li).

Definition 6 (Satisfaction of a prechart/main chart) A timed trace γ ∈ (Π ∪ {τ } ∪ R≥0)
∗ ∪

(Π ∪ {τ }∪R≥0)
ω satisfies an LSC prechart or main chart C, denoted γ |= C, if its restriction

γ |(Σ∪{τ }∪R≥0) has a prefix µ which is the accepted word of a run that starts from the initial
configuration and arrives at a maximal cut configuration of C, and no prefix of it ever leads
to a hot violation. Formally, γ |= C ⇔ (∃µ ∈ (Σ ∪ {τ }∪R≥0)

∗, ξ ∈ (Σ ∪ {τ }∪R≥0)
∗ ∪ (Σ ∪

{τ } ∪ R≥0)
ω, v′ ∈ R≥0

X . (γ |(Σ∪{τ }∪R≥0) = µ · ξ) ∧ (9, v0)
µ

→∗ (⊥, v′)) ∧ (!µ′ ∈ (Σ ∪ {τ } ∪
R≥0)

∗, ξ ∈ (Σ∪{τ }∪R≥0)
∗∪(Σ∪{τ }∪R≥0)

ω, m ∈Σ, • ∈ Cuts×R≥0
X. ((γ |(Σ∪{τ }∪R≥0) =

µ′ · m · ξ)∧ (9, v0)
µ′

→∗ • /m−→)).

Definition 6a A finite trace γ ∈ (Π ∪ {τ }∪R≥0)
∗ satisfies chart C exactly, denoted γ % C,

iff γ satisfies C, and its restriction on (Σ ∪ {τ } ∪ R≥0) is the accepted word of a run that
contains and ends with exactly one maximal cut configuration of C. Formally, γ % C ⇔
(γ |= C)∧∃µ ∈ (Σ ∪ {τ }∪R≥0)

∗, v′ ∈ R≥0
X . (γ |(Σ∪{τ }∪R≥0) = µ)∧ ((9, v0)

µ

→∗ (⊥, v′))∧
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!ε 5= µ′ ∈ (Π ∪ {τ } ∪ R≥0)
∗, ε 5= ξ ∈ (Π ∪ {τ } ∪ R≥0)

∗, v′′ ∈ R≥0
X . (γ |(Σ∪{τ }∪R≥0) = µ′ ·

ξ)∧ ((9, v0)
µ′

→∗ (⊥, v′′)).

Now we define the satisfaction relation for a full universal chart (under the invariant
activation mode):

Definition 7 (Satisfaction of a universal LSC chart) A timed trace γ ∈ (Π ∪ {τ } ∪ R≥0)
ω

satisfies (passes) a universal chart L, denoted γ |= L, iff whenever a finite sub-trace matches
the prechart, then the main chart is matched immediately afterwards. Formally, γ |= L ⇔
∀α,µ ∈ (Π ∪ {τ }∪R≥0)

∗,β ∈ (Π ∪ {τ }∪R≥0)
ω . (α ·µ ·β = γ ) ∧(µ % Pch) ⇒ (β |= Mch).

Definition 7a A timed language Lang ⊆ (Π ∪ {τ }∪R≥0)
ω satisfies chart L, denoted

Lang |= L, iff every word of Lang satisfies the chart. Formally, Lang |= L ⇔ ∀γ ∈
Lang .γ |= L.

As seen above, Lang characterizes the system behaviors that respect L.
When L is used as a monitored chart, then for a network S of timed automata, we use

S |= L to denote that the timed traces (language) of S satisfy LSC L.

3.2.2 Semantics for a set of driving universal charts

For an LSC system LS which consists of a set of driving universal charts L1,L2, . . . ,Ln, we
denote a cut vector of LS by c̄ = (c1, c2, . . . , cn), and a valuation of all of the clock variables
in LS by v. Each member cut of c̄ is denoted by ci = (c̄)i , 1 ≤ i ≤ n. We call (c̄, v) a global
configuration of LS.

Let (c̄, v) be a global configuration of an LSC system LS. Assume that there are message
occurrences mo1, . . . ,mok (1 ≤ k ≤ n, each in a different chart) that are simultaneously
enabled at ((c̄)1, v), . . . , ((c̄)k, v), and that these message occurrences are the same message
(they have exactly the same message label and the same source and destination instances),
i.e., ∃m ∈ Π , Lj ∈ LS, Ia, Ib ∈ inst(Lj ) .∀1 ≤ i ≤ k . (lab(moi ) = m) ∧ (src(moi ) = Ia) ∧
(dest(moi ) = Ib). In this case, these identically labeled message occurrences are said to be
enabled at global configuration (c̄, v) w.r.t. their respective preorder relations.

Given a global configuration (c̄, v) of LS and a message m ∈ Π , there is a message
synchronization step (c̄, v)

m−→ (c̄′, v′) in LS if:

– A maximal set of m-labeled message occurrences are enabled at (c̄, v), and there is no
chart Li whose local configuration ((c̄)i , v) will be hot-violated by an m-labeled message.
In this case, for all charts Lj that have an m-labeled message occurrence enabled at (c̄, v),
the

m−→ message synchronization steps will occur simultaneously; and

there is a silent step (c̄, v)
τ−→ (c̄′, v) in LS if:

– There is a chart Li such that ((c̄)i , v)
τ−→ ((c̄′)i , v). In this case, for all j 5= i, we have

c̄′j = c̄j ; and

there is a time delay step (c̄, v)
d−→ (c̄, v + d) in LS if:

– For all 1 ≤ i ≤ n, we have ((c̄)i , v)
d−→ ((c̄)i , v + d).
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In the first case above, the global condition for all m-labeled message occurrences is
the conjunction of all individual conditions, and the global assignment is the union of all
individual assignments.

Similarly, we can define runs and →∗ for a set of time-enriched LSC charts.

Definition 8 (Satisfaction of an LSC system) A timed trace γ ∈ (Π ∪ {τ }∪R≥0)
ω satisfies

(passes) an LSC system LS, denoted γ |= LS, iff γ corresponds to an infinite run of LS, and
it satisfies each chart Li in LS separately.

3.2.3 Semantics for existential charts

As mentioned in Sect. 1, unlike a universal chart which needs to be matched by each possible
run of the system, an existential chart requires only one satisfying run of the system. Similar
to Sect. 3.2.1, we can define the semantics for a single existential chart.

4 Verifying state/transition-based models against LSC requirements

A monitored LSC chart L can be used to specify a scenario-based user requirement on
a state/transition-based real-time system model S (i.e., a network of timed automata). We
may wish to model check S against L. However, there is no direct solution to this problem,
because model checking by definition works only on state transition systems and temporal
logic formulas.

To model check real-time systems against complex user requirements, a number of tech-
niques which use (manually crafted) observer timed automata have been developed [1, 20].
We notice that a monitored LSC chart in principle functions like an observer timed
automaton—the chart keeps track of the progress of the system, and reports error once
there is an unexpected event or timing error in the system. In order to make use of exist-
ing observer automata-based techniques and tools for scenario-based automatic verification,
we need to automatically construct a behavior-equivalent observer timed automaton OL for
chart L, let OL observe S in a non-intrusive way, and automatically extract a temporal logic
formula which together with OL characterizes the LSC requirement.

4.1 LSC-to-TA translation: one automaton per chart

4.1.1 Basic ideas of translation

By comparing the semantic states of a timed automaton and an LSC chart, we notice that
they agree on the clock valuation part, but differ on the discrete part. In a timed automaton
the control switches from one location to another, whereas in an LSC chart the control pro-
gresses from one cut to a next cut. Indeed an LSC cut is comparable to a TA location—if
we view all the instances of an LSC chart collectively as a whole system (i.e., an automa-
ton), then a cut can be viewed as a control “location” of this system. Based on the above
consideration, it makes sense to translate an LSC cut to a TA location.

As mentioned in Sects. 3.1.2 and 3.2.1, a simregion triggers the advancement from one
LSC cut to a next cut. If we ignore the trivial cut advancement steps (i.e., the three latter cases
of a “silent step”), then simregion is the only primitive semantic unit that can be stepped over
to make a discrete (i.e., cut-changing) advancement step. This is very similar to a labeled
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Table 1 Mapping live sequence charts to timed automata (“one-TA-per-chart”)

LSC TA

Explicitly LSC cut ⇔ TA location

specified Mch.9 ⇔ lmin

behaviors Mch.⊥ ⇔ lmax

LSC simregion ⇔ TA edge

Message simregion ⇔ Synchronization transition edge

Non-message simregion ⇔ Silent transition edge

Implicitly Unconstrained event ⇔ Self-loop edge

allowed Cold violation ⇔ Negated-guard transition edge +
behaviors out-of-order sync. transition edge

Fig. 7 The translated observer timed automaton OL for chart L in Fig. 3 (“one-TA-per-chart” translation)

edge in a timed automaton, which connects two TA locations. Therefore, it makes sense to
translate an LSC simregion to a TA edge.

The basic rules for mapping live sequence charts to timed automata are given in Table 1,
which will be explained in more detail later.

For the example in Sect. 2, the original real-time system S consists of timed automata
A, B , C and D, having channels m1, m2, m3 and m4, and clock variable x (Fig. 2); and
the scenario-based LSC requirement L is given in Fig. 3. The translated observer timed
automaton for chart L is presented in Fig. 7.
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4.1.2 Translating an LSC cut to a TA location

The initial cut of an LSC chart is the minimal cut of the prechart Pch.9. Starting from
Pch.9, the cut advances towards Mch.⊥ by stepping over a simregion, or by an intra-chart
coordination, or by the autonomous advancement of an instance line.

For the minimal cut Pch.9 and maximal cut Pch.⊥ of the prechart (resp. Mch.9 and
Mch.⊥ of main chart), we assign the TA locations lpmin and lpmax (resp. lmin and lmax, see
Table 1), respectively. The lpmin, lpmax, lmin and lmax locations correspond to the four manda-
tory synchronization points for all instance lines in the chart.

Each time a simregion is stepped over, we create a new cut. In comparison, the cut ad-
vancement that is caused by intra-chart coordination or the autonomous advancement of an
instance line has only a “gluing” or “managerial” semantics. In order not to clutter up the
translated timed automaton, in the following cases we assign two adjacent cuts the same TA
location in OL:

– Pch.⊥ and Mch.9; (i.e., lpmax and lmin are the same location in OL, meaning that the
successful completion of prechart will immediately activate the main chart. See Fig. 7)

– Mch.⊥ and Pch.9; (i.e., lmax and lpmin are the same location in OL, meaning that a next
round of monitoring will begin immediately after the successful completion of the main
chart. See Fig. 7)

– If in chart L, instance Ii has no more interactions with the other instance lines (i.e.,
I1, . . . , Ii−1, Ii+1, . . . , In) in the prechart, then the two cuts with frontiers (psn(loc(c)〈I1〉),
. . . ,psn(loc(c)〈Ii−1〉), (Pch_botL,Ii − 1), psn(loc(c)〈Ii+1〉), . . . ,psn(loc(c)〈In〉)) and
(psn(loc(c)〈I1〉), . . . ,psn(loc(c)〈Ii−1〉),Pch_botL,Ii ,psn(loc(c)〈Ii+1〉), . . . ,psn(loc(c)〈In〉))
will be assigned the same TA location. Similarly for the case in the main chart.

Since there are only finitely many instance lines and simregions in an LSC chart and
there are no looping structures, the number of cuts will also be finitely many.

4.1.3 Translating an LSC simregion to a TA edge

If s ∈ SR is a message simregion (Fig. 8(a), (x ≥ 3,m1, y := 0)), then we map the message,
condition (if any) and assignment (if any) of s into one edge of the TA OL (Fig. 8(b)).

In an LSC chart, a message in Σ is sent from one particular instance to another one (e.g.,
from instance A to B). To preserve this sender/receiver information in the translated timed
automaton, the TA edge will be further guarded by the predicate “A→ B” (Fig. 8(b)), which
is a shorthand for “(src = A)∧ (dest = B)”.

If s ∈ SR is a non-message simregion (Fig. 8(c), (x ≥ 1, ε, y := 0)), then according to
the ASAP semantics, this simregion should be stepped over immediately. Since in UPPAAL

timed automata, a committed location requires that it be exited immediately, we mark the

Fig. 8 Translating LSC simregion to TA edge (here “A→ B” denotes that instances A and B are the message
sender and receiver, respectively)
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source location of the translated TA edge as a committed location (Fig. 8(d), “C”-marked
location).

4.1.4 Incremental construction of the TA

In Sects. 4.1.2 and 4.1.3 we showed how to translate a single cut and simregion to a TA
location and edge, respectively. When translating an entire chart into a timed automaton, we
need to exploit the structural information of LSC to conduct incremental translation.

As mentioned in Sect. 3.1.2, simregion is the primitive semantic unit for triggering cut
advancements. At a given cut there might be more than one next simregion that can be
stepped over. Each simregion should correspond to an outgoing edge from the TA location
that corresponds to the given cut. All of these simregions should be translated to TA edges
that share the same common “source cut.” But before we can do this, we should determine
how all the simregions are partially ordered in a chart, and how these simregions and the
cuts are partially ordered.

In Sect. 3.2 we showed how to determine the preorder relation $ on the set loc(L) of
locations of chart L. Now the relation $ on loc(L) can be lifted up to a partial order $′ on
(SR ∪ Cuts) as follows:

∀s1, s2 ∈ (SR ∪ Cuts) . (s1 $′ s2 ⇔∃l1 ∈ loc(s1), l2 ∈ loc(s2) . l1 $ l2).

For instance in Fig. 3, the partial order $′ among the three simregions s1 (middle), s2

(left) and s3 (right) is: s1 $′ s2, and s1 $′ s3.
Assume that a TA location l has already been created for the current LSC cut (Fig. 9(a),

cut {s1 = (x ≥ 3,m1, ε)}, and Fig. 9(b), TA location l). Without loss of generality, we assume
that there are two immediately following simregions s2 and s3.

If s2 and s3 are both message simregions (Fig. 9(a)), then the two new TA edges will
be appended to location l. The LSC and TA semantics coincide that there are two possible
orderings of the execution of the two transitions. Let the two new edges be (l1, l2) and (l3, l4),
respectively. Then l1 and l3 will be superposed on l (Fig. 9(b)). The cut will be advanced
accordingly.

If s2 is a non-message simregion that spans across instance lines A and B , e.g.,
(u ≥ 1, ε, ε) (Fig. 10(a)), then according to the ASAP semantics, s2 will be stepped over
immediately, and s3 will follow, but cannot be the other way around. When appending the
corresponding two edges (l1, l2) and (l3, l4) to the TA, we mark the source location l1 as a
committed location, and superpose it on l (Fig. 10(b), edge (l1, l2)). Note that in this case l2
may not be superposed on l. Therefore, there is only one possible ordering of edges (l1, l2)

and (l3, l4) (Fig. 10(b)).

Fig. 9 TA edge construction for two subsequent message simregions
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Fig. 10 TA edge construction for a subsequent message and non-message simregions

Fig. 11 TA edge construction for two subsequent non-message simregions

If s2 and s3 are both non-message simregions, e.g., (u ≥ 1, ε, ε) and (u 5= 0, ε, ε)

(Fig. 11(a)), then according to the ASAP semantics, both (l1, l2) and (l3, l4) will be exe-
cuted immediately, therefore there are again two possible orderings of the execution of the
two transitions (Fig. 11(b)).

4.1.5 Implicitly allowed behavior

In addition to the explicitly specified behaviors, an LSC chart also has behaviors that are
implicitly allowed, e.g., those due to unconstrained events and cold violations (Table 1).

Let Π correspond to the set of possible messages in the system model S (i.e., a network of
timed automata), and Σ ⊆Π be the set of messages in chart L. Clearly, messages in (Π\Σ)

are not constrained by chart L. For each message in (Π\Σ), we add a corresponding self-
loop edge to each non-committed location l of the translated TA OL. For example in Fig. 7,
at location lpmin the unconstrained events correspond to the edges labeled with m4, [!(src ==
B && dest == C)]m1, [!(src == B && dest == A)]m2 and [!(src == C && dest ==
D)]m3. Note that the latter two edges will be merged with some cold violation edges that
will be explained shortly, thus giving rise to the m2- and m3-labeled edges, respectively.

According to the LSC semantics, cold violations in the prechart or main chart are not
failures. Rather they just bring the chart back to the prechart minimal cut. To model this,
for a cut c and each following simregion s that has a cold condition g, we add edges from
the corresponding TA location l to lpmin to correspond to the ¬g conditions (of DNF form)
(Fig. 7, the edge labeled with [(x < 3) && (src == B && dest == C)]m1 from lpmin to
lpmin). Similarly, given a cut c in the prechart, for each m-labeled message that occurs in L

but does not follow c immediately (i.e., it violates the event partial order), we also add a
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corresponding TA edge (l, lpmin) (Fig. 7, the edges labeled with [(src == B && dest ==
A)]m2 and [(src == C && dest == D)]m3 from lpmin to lpmin).

4.1.6 Undesired behavior

The construction of the observer TA so far considers only the legal (or admissible) behaviors.
When the current configuration (c, v) is in the main chart, if an observed message is not
enabled at cut c (i.e., it is an out-of-order message), or the hot condition of the simregion
that immediately follows c evaluates to false under v, then there will be a hot violation. In
this case, we add a dead-end (sink) location Err in the TA, and for each such hot violation
we add an edge to Err (Fig. 7).

4.1.7 Invariant activation mode

According to the LSC semantics, under the invariant mode the prechart is being continuously
monitored. Normally we need to maintain multiple incarnations of the chart. In this way, a
given message sequence will not be incorrectly rejected by the chart (i.e., there is no false
negative). For instance, given the chart in Fig. 3, and given a message sequence m1 · m1 ·
m2 · m3 (assuming that the message guards in Fig. 3 are all satisfied), although the first
incarnation of the chart hot-violates this sequence (i.e., the second m1 violates the message
partial order in the main chart), the second incarnation works well with it (i.e., the latter
three messages m1 · m2 · m3 match the chart).

To enforce the LSC semantics under the invariant activation mode, for each message
occurrence that appears in Pch as a minimal event (i.e., an event that is minimal in the event
partial order induced by the chart), we add a corresponding self-loop to location lpmin (Fig. 7,
the [(x >= 3) && (src == B && dest == C)]m1-labeled self-loop edge at lpmin). We call
this kind of handling prechart pre-matching.

4.2 Complexity

Let the number of simregions that appears in L be n. In the worst case, the number of
locations in the translated observer TA OL is 2n + 1. We have this exponential complexity
when L consists of only the prechart or the main chart, and the messages in L are totally
unordered.

The number of outgoing edges from a location l of OL depends on: (1) the number of
unconstrained events, ue; (2) the number of the following simregions in the corresponding
cut c of L, fs; (3) the length of the condition (in case the condition evaluates to false), lc;
and (4) the number of messages that cause violations of the chart, cv. Therefore, the number
of outgoing edges from a TA location has complexity O(ue + fs + lc + cv).

Since the LSC simregions are directly copied as TA edges, OL has the same numbers of
synchronization channels (message labels) and clock variables as L.

4.3 Equivalence of LSC and TA

If in the translated timed automaton OL of chart L we ignore the undesired and implicitly
allowed behaviors, i.e., we ignore the edges that correspond to hot violations, unconstrained
events, cold violations, and prechart pre-matching, then we have:
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Theorem 1 If a configuration (c, v) of L corresponds to a semantic state (l, v) of OL, then:
(1) each simregion s that follows (c, v) in L uniquely corresponds to an outgoing edge (l, l′)
in OL; and (2) the target configuration (c′, v′) of s in L uniquely corresponds to the target
semantic state (l′, v′) in OL.

Theorem 1 says that each LSC configuration is uniquely mapped to a semantic state of
the observer timed automaton, and each LSC simregion is uniquely mapped to an edge of
that automaton.

If in the LSC semantics (Sect. 3.2.1) we ignore the silent steps that are caused by intra-
chart coordinations and autonomous advancements of instance lines, then based on Theo-
rem 1, we have the following theorem:

Theorem 2 For any trace tr in OL: tr |= L⇔ (OL, tr) |= (lmin # lmax).

Theorem 2 says that a trace in the observer timed automaton of an LSC chart satisfies that
chart if and only if the trace satisfies the “leads-to” property (lmin # lmax) in that automaton.
Alternatively, it indicates that OL has exactly the same set of legal traces as L.

As we can anticipate, the prechart pre-matching mechanism in Sect. 4.1.7 does introduce
undesired behaviors and non-determinacy. For instance in Fig. 7, the message sequence
tr = m1 · m1 · m2 · m3 could be an accepted trace in OL (assuming that all message guards
are satisfied). But since its sub-sequence tr′ = m1 · m1 can be rejected (i.e., leading to a hot
violation), so tr does not really satisfy L. However, it coincides that this particular trace tr
in the model OL does not satisfy the CTL property (lmin # lmax) as well.

The syntax and semantics of timed automata are given in Appendix B. The proofs of
theorems in Sect. 4 and the lemma for them can be found in Appendix C.

4.4 Composing the observer automaton with the original system

With the development so far in this section (Sect. 4), the set X of clocks can be viewed as
“private” clocks of the LSC chart L, i.e., L can both read and reset these clocks. When we
use the observer timed automaton OL to observe the original system S, then the set CS of
clocks in S will also be visible to (but cannot be reset by) OL. To this end, the definition of
the clock valuation part of a configuration of L will be extended accordingly.

When composing OL with S, we wish that OL would “observe” S in a timely and non-
intrusive manner. A natural idea is to let the synchronization channels in OL (and accord-
ingly the relevant channels in S) be broadcast channels to achieve this goal. However, this
is not possible because UPPAAL has a restriction that broadcast channels cannot be guarded
by timing constraints. To solve this problem, we propose to use spying techniques such that
the translated observer TA will be notified of each message synchronization in the original
system immediately after it occurs there. Specifically, for each channel ch ∈ Π , we make
the following modifications:

(1) In S (e.g., Fig. 12(a)–(b)), for each edge (l1, l2) that is labeled with ch!, we add an inter-
mediate committed location l′1 and a cho!-labeled edge in between edge (l1, l2) and loca-
tion l2. Here cho is a dedicated fresh channel which aims to notify OL of the occurrence
of the ch-synchronization in S. The location invariant (if any) of l2 will be copied on to
l′1. Furthermore, we use a global boolean flag variable (i.e., a binary semaphore) mayFire
to further guard the ch-synchronization. This semaphore is initialized to true at system
start. It is cleared immediately after the ch-synchronization in S is taken, and it is set
again immediately after the cho-synchronization is taken (Fig. 13(a)).

(2) In OL (e.g., Fig. 12(c)), each synchronization label ch? is renamed to cho? (Fig. 13(b)).
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Fig. 12 Coupling emitting/receiving edges in original system model S and the observing edge in observer
timed automaton OL

Fig. 13 Edge modifications for Fig. 12

If L has non-message simregions, then OL contains corresponding committed locations.
If in a certain state both OL and some timed automata in S are in committed locations (e.g.,
lm+1 in Fig. 14(b), and l2 in Fig. 14(a)), there will be a race condition. But according to the
ASAP semantics of L, the (internal action) edge in OL has higher priority. To this end, for
each edge (li , li+1) in OL, if li+1 is a committed location, then we add “NxtCmt := true” to
the assignment of the edge, otherwise we add “NxtCmt := false”. Here the global boolean
flag variable (i.e., a binary semaphore) NxtCmt denotes whether the observer TA will be
in a committed location (Fig. 15(b)). This semaphore is initialized to false at system start.
Accordingly, for each ch-labeled edge (li , li+1) in S where ch ∈ Π and li is a committed
location, we use “NxtCmt == false” to strengthen the condition of the edge (Fig. 15(a)).

Our method of composing the observer timed automaton OL with the original system
model S is similar to that of [15]. While their method works only when the target state of a
communication action is not a committed location in the original model, in our method, due
to the first locking mechanism (using mayFire), we have no restrictions on whether a location
in S is a normal, urgent or committed one. Broadcast channels can be handled the same way
as binary synchronization channels in our method. Furthermore, due to the second locking
mechanism (using NxtCmt), we guarantee the enforcement of the ASAP semantics in OL.

Our method involves only syntactic scanning and manipulations. For each ch ∈ Π , we
need to introduce a dedicated fresh channel cho. For each occurrence of the emitting edge
ch!, we need to introduce a fresh committed location in S. Moreover, we need two global
boolean flag variables (mayFire, NxtCmt) as the binary semaphores.

Example of Sect. 2 Continued

After modifying S and the automatically generated observer TA OL, we get the composed
network of instrumented TAs (S ′ ‖ O ′

L) (Fig. 16 and 17). Note that in Fig. 17 each channel
name has been suffixed with an “o”, e.g., m1 becomes m1o.
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Fig. 14 Race condition for Fig. 13 due to a non-message simregion in LSC chart (and thus a committed
location lm+1 in observer timed automaton)

Fig. 15 Further modifications for Fig. 14

4.5 Verification problems

After the modifications, the original system model S becomes S ′, and the observer timed
automaton OL for chart L becomes O ′

L. Let the minimal and maximal cuts of the main
chart of L correspond to locations lmin and lmax of O ′

L, respectively. Recall that the UPPAAL

“leads-to” property (φ # ϕ) stands for A!(φ ⇒ A♦ϕ), where φ and ϕ are state formulas.
When L is a universal chart, we have the following main theorem:

Theorem 3 S |= L ⇔ (S ′ ‖ O ′
L) |= (lmin # lmax).

Theorem 3 says that a TA-modeled real-time system S satisfies a universal LSC chart
requirement L if and only if the parallel composition of the (instrumented) system and the
observer timed automaton satisfies the “leads-to” property (lmin # lmax). This indicates that
the problem of model checking real-time systems against universal LSC chart requirements
can be equivalently transformed into a CTL real-time model checking problem in UPPAAL.
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Fig. 16 The modified model S′ of the original real-time system in Fig. 2(a)–(d)

Fig. 17 The modified version of the translated observer timed automaton O ′
L (Fig. 7) of the chart in Fig. 3

When L is an existential chart, we have another main theorem:

Theorem 4 S |= L ⇔ (S ′ ‖ O ′
L) |= E♦ lmax.

Theorem 4 says that a TA-modeled real-time system S satisfies an existential LSC chart
requirement L if and only if the parallel composition of the (instrumented) system and the
observer timed automaton satisfies the reachability property E♦ lmax.

Furthermore, it is possible to check whether a system S satisfies multiple existential
charts L1,L2, . . . ,Lm simultaneously by checking the formula E♦ (l1,max ∧ l2,max ∧ . . . ∧
lm,max), where li,max denotes the location in observer TA O ′

Li
that corresponds to the maximal

cut of the main chart of existential chart Li , 1 ≤ i ≤ m.
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Example of Sect. 2 Continued

For the composed network of instrumented timed automata in Figs. 16 and 17, we check in
UPPAAL the property (lmin # lmax), and it turns out to be satisfied. This indicates that S does
satisfy the requirements that are specified in L.

If in L the condition of m2 is changed from x ≥ 2 to e.g. x ≥ 4, then the property is found
not satisfied. There will be a counterexample, e.g., when O ′

L gets to location L2 (Fig. 17),
but the value of clock x falls in [3,4), then it will get stuck in location Err and will never
be able to arrive at location lmax thereafter.

5 Verifying object interaction-based models against LSC requirements

In addition to being used as a property specification language, LSC can also be used as
a scenario-based behavioral modeling language (i.e., as a high-level “programming” lan-
guage [18]). When some LSC charts are used for behavioral modeling and some others
are used for property specification, it will be possible to verify scenario-based LSC models
against scenario-based LSC requirements. Clearly, this contributes to earlier validation of
the prototyped systems.

5.1 LSC-to-TA translation: one automaton per instance line

5.1.1 Motivation

Similar to Sect. 4, in this section our method of verifying object interaction-based system
models against LSC requirements relies on a translation of the LSC charts to timed automata,
and the reduction of the verification problems to CTL real-time model checking problems.

However, unlike monitored charts which each specify a piece of user requirements indi-
vidually, a set of driving charts are supposed to characterize the inter-object behaviors of the
system collectively. When the system consists of a large number of driving charts, then the
cut-based LSC-to-TA translation will encounter the state explosion problem: the number of
possible global cuts (i.e., the number of possible system states) will increase rapidly, and
explicit encoding and storing these information requires a lot of memory. Furthermore, the
outcome of the translation as a single huge timed automaton will be difficult to visualize, to
debug and to diagnose.

To overcome the above problems, in this section we propose a different method for trans-
lating LSC charts into timed automata. For each driving LSC chart L in the system model,
we view the instance lines in L as a set of parallel composed processes that communicate
with one another and collaborate to achieve a common goal as specified by chart L. Since
UPPAAL also operates on a network of parallelly composed processes (TAs) that commu-
nicate with each other, this motivates us to translate each instance line of L to a timed
automaton. In this way we avoid the explicit construction of a global automaton. This idea
in spirit resembles the approaches of [19, 38], which aim at smart play-out and satisfiability
checking, respectively; and it is also similar to the approaches of mapping message-based
concurrent objects to TAs [22, 23], by means of which modular schedulability analysis of
distributed real-time systems can be achieved. Thanks to the UPPAAL features of broadcast
channels, boolean and integer variables and committed locations in timed automata, we are
able to appropriately translate the LSC features such as intra/inter-chart coordinations and
cold/hot violations to timed automata. Compared with the “one-TA-per-chart” approach that
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can be viewed as a kind of centralized translation (Sect. 4.1), the “one-TA-per-instance line”
approach of this section can be viewed as a kind of distributed translation.

Table 2 gives an overview of the most important LSC-to-TA mapping rules. These rules
will be explained in more detail later.

In order to keep the driving LSC charts and their complexity within human readable
and manageable levels, a single LSC chart must not be very large and complex. Rather
the complexity of scenario-based models mainly lies in the interplays of a large number of
simple charts. Our LSC-to-TA translation is in accordance with this philosophy. Instead of
constructing a complex global state machine that handles all possible activities explicitly,
we leave the intricate semantics of LSC chart progress and intra/inter-chart coordinations
mostly up to UPPAAL.

5.1.2 Translating message-only charts

As mentioned in Sect. 3.1, along each instance line Ii in chart L, there is a set pos(L, Ii)

of positions, among which there is a set StdPos(L, Ii) ⊂ pos(L, Ii) of four “standard” po-
sitions. For example in instance line A of Fig. 4, there are 7 positions (black filled cir-
cles), where the four standard ones are Pch_topL,A(0),Pch_botL,A(3), Mch_topL,A(4) and
Mch_botL,A(6).

Figure 18 shows the translated network of timed automata for the chart L1 in Fig. 4.

(1) Basic mapping rules

Let LS be an LSC system, Lu be a chart in LS, and Ii be an instance line in Lu. We
map each such Ii to a timed automaton Au,i using the following rules (Table 2, the “Basic
mapping rules” chunk):

R1 Each position k on Ii of Lu corresponds to a TA location lk in Au,i , 0 ≤ k ≤ p_maxLu,Ii .
See Fig. 18(a), locations l0–l6.

R2 If at position k on Ii of Lu there is a sending of an m-labeled message to instance
Ij , then an m!-labeled TA edge from location lk−1 to lk will be assigned in Au,i . See
Fig. 18(a), straight line edges (l0, l1), (l1, l2), (l4, l5). Similarly, if it is a message receiv-
ing, then an m?-labeled TA edge will be assigned. See Fig. 18(b), straight line edges
(l0, l1), (l1, l2), (l4, l5).

We use the notations Pch_top,Pch_bot,Mch_top and Mch_bot to also denote the TA
locations that correspond to their respective LSC positions on the instance line. For any
position k other than the aforementioned four, it corresponds to a TA location lk , meaning
that upon sending/receiving the message that anchors at position k, we now arrive at lk .
Specifically, position 0 (i.e., Pch_top) corresponds to the initial TA location l0 (i.e., the
“abused” Pch_top).

When the message sending case of rule R2 is applied, the message-emitting TA edge can
be associated with an assignment “m_src := Ii, m_dest := Ij ”, where m_src and m_dest
are fresh auxiliary (bounded integer) variables, meaning that an m-labeled message is sent
from instance Ii to Ij in chart Lu. In R2, the destination location lk will have invariant
“(m_src == Ii) ∧ (m_dest == Ij )” and “(m_src == Ij ) ∧ (m_dest == Ii)” for message
sending and receiving, respectively (Fig. 18(a), locations l1, l2, l5, and Fig. 18(b), l1, l2, l5).

(2) Handling intra-chart coordinations

In an LSC chart, if an instance line (process) in its prechart portion has no more interac-
tions with the other instance lines (e.g., it has successfully sent/received the last message,
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Table 2 Mapping live sequence charts to timed automata (“one-TA-per-instance line”)

LSC TA

Basic
mapping
rules

Chart Lu ⇐⇒ TAs
Au,1||Au,2|| . . . ||Au,inst(Lu)||Coordu

Instance line Ii ,1 ≤ i ≤ inst(Lu) ⇐⇒ TA Au,i

Position k, 0 ≤ k ≤ p_maxLu,Ii
R1⇐⇒ location lk

Message Ii (at position k)
m−→ Ij

R2⇐⇒ edge lk−1
m!−→ lk

Message Ii (at position k)
m←− Ij

R2⇐⇒ edge lk−1
m?−−→ lk

Intra-chart
coordination

Chart Lu =⇒ Coordinator automaton Coordu

Instance line Ii progressing to its

Pch_botLu,Ii position R3⇐⇒ pch_overu,i -sync. from Au,i to
Coordu

Mch_botLu,Ii position R3⇐⇒ mch_overu,i -sync. from Au,i to
Coordu

Pch_botLu,Ii → Mch_topLu,Ii
R4⇐⇒ activateu-broadcast sync. from

(chart activation) Coordu

Mch_botLu,Ii → Pch_topLu,Ii
R4⇐⇒ overu-broadcast sync. from Coordu

(“all over again”)

Inter-chart
coordination

Chart Lu, Ii (at position k)
m−→ Ij ; and R5⇐⇒ Accompany (lk−1

m!−→ lk) with

(lk−1
m?−−→ lk);

Chart Lv (v 5= u), Ii (at position k′) m−→ Ij Accompany (lk′−1
m!−→ lk′ ) with

(lk′−1
m?−−→ lk′ )

Cold/hot
violation

Chart Lu

Prechart violation due to out-of-order
message on instance line Ii

R6⇐⇒ pch_viou-sync. from Au,i to Coordu,
followed by resetu-broadcast sync.
from Coordu

Main chart violation due to out-of- R7⇐⇒ Au,i arriving at a deadend location
order message on instance line Ii

Clock
constraint

Chart Lu

Ii
[g]m−−−→ Ij , where g is a guard R9⇐⇒ Message-emitting edge

m!−→ in Au, i
with immediately prefixed/suffixed
transitions that test the upper/lower
bounds of g

Clock
reset

Chart Lu

Ii
m/a−−−→ Ij , here a is a set of clock resets R10⇐⇒ Au,i sends an individual m_Rpt

request for clock resets to dedicated
timed automaton Am, and Am
initiates system-wide m_Rst
broadcast synchronization for clock
resets

and optionally chart Lv

Ii
m/a′−−−→ Ij , here a′ is another set of

clock resets
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Fig. 18 The translated network of timed automata for the untimed chart in Fig. 4 (“one-TA-per-instance
line” translation)



230 Form Methods Syst Des (2010) 37: 200–264

or it does not really span across the prechart and thus before chart activation it has no in-
teractions with other instance lines at all), then it will immediately progress to the bottom
position Pch_bot of its prechart portion, to be ready for a next mandatory synchronization
that involves all the instance lines in that chart (Table 2, upper-middle part of the “Intra-chart
coordination” chunk).

R3 At position k on the prechart portion of Ii of Lu, if k = Pch_botLu,Ii − 1, then we mark
lk as a committed location in Au,i , and we add a pch_overu,i !-labeled edge from lk to
lk+1 (i.e., Pch_botLu,Ii ) in Au,i . See Fig. 18(a), location l2.

The auxiliary channel pch_overu,i is used to notify the coordinator automaton Coordu

(explained below) of the completion of instance line Ii with its prechart portion in chart Lu.
When all the instance lines in chart Lu progress to their respective Pch_bot positions, the

prechart is successfully matched. Once this happens, all these instance lines must immedi-
ately synchronize and progress to their respective Mch_top positions, meaning that the main
chart is now activated. To model this kind of intra-chart coordination at the prechart/main
chart interface, for each chart Lu, we create a dedicated (auxiliary) coordinator automaton
Coordu (note that it is an untimed automaton except for the notion of time that is induced
by the UPPAAL committed locations). This automaton will communicate with the automata
that correspond to the instance lines of Lu using auxiliary binary channels such that it can
bookkeep how many instance lines are done with their prechart portions. Once the coordina-
tor automaton realizes that the prechart has been successfully matched, it will immediately
launch a broadcast synchronization with all the timed automata that correspond to the in-
stance lines by using a broadcast channel.

Figure 18(c) gives an example of the coordinator automaton for chart L1 of Fig. 4, where
pch_over1,A and pch_over1,B are binary channels, activate1 is a broadcast channel which
indicates that the main chart is to be activated, nInst1 is a constant that denotes the number
of instance lines that participate in chart L1 (hence “nInst”), and dInst1 is an integer variable
that denotes the number of instance lines that are done with their prechart (or main chart)
portions of L1 (hence “dInst”).

The coordinator automaton synchronizes all the timed automata that correspond to the
instance lines in the chart for a collective advancement (i.e., one onward advancement step
for each automaton) according to the following rule (Table 2, lower part of the “Intra-chart
coordination” chunk):

R4 At position k of Ii of Lu, if k = Pch_botLu,Ii , then an activateu?-labeled TA edge from
lk to lk+1 will be assigned in Au,i . See Fig. 18(a), l3, and Fig. 18(b), l3.

Similarly, intra-chart coordination upon main chart completion will correspond to the
channels mch_overu,i (“instance line Ii of chart Lu has completed its main chart portion”)
and overu (“now that the main chart has been successfully matched, the matching process
of chart Lu will start all over again”).

(3) Handling inter-chart coordinations

In scenario-based modeling, the same message may well appear in two or more charts.
For example given an LSC system LS, in chart L1 there is an m-labeled message occurrence
mo1 sent from instance I1 to I2, and in chart L2 there is an m-labeled message occurrence
mo2, also from I1 to I2. If at a certain global configuration (c̄, v) these message occurrences
(in the above example mo1 and mo2) are all enabled, then their firings should be synchro-
nized, i.e., either all of them are chosen to be fired, or none of them is chosen. This is
considered a kind of inter-chart coordination.
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In the translated network of timed automata, this coordination can be accomplished by
using a broadcast synchronization (in the above example we let m be a broadcast channel).
Recall that in a broadcast synchronization, there is only one sender. Therefore, when trans-
lating the message occurrences (in the above example mo1 and mo2) to edges in their respec-
tive timed automata, only one of the LSC positions that are associated with the message tails
(i.e., sending locations) in LS can correspond to the sole message-emitting TA edge in the
translated TAs, and all others will correspond to message-receiving TA edges. But consider-
ing that all message-sending instance lines in the relevant charts have the equal possibility to
initiate the message broadcast synchronization, we propose a universal and symmetric solu-
tion: for each m!-labeled edge from one TA location to another, we add an m?-labeled edge
between these two TA locations to “accompany” the m!-labeled edge. In other words, we let
all translated TA locations that correspond to the message-sending locations (in the above
example two locations in the translated TAs A1,1 and A2,1) have the equal chance to act as
the broadcast synchronization initiator (Table 2, the “Inter-chart coordination” chunk).

R5 If at position k on Ii of Lu there is a sending of an m-labeled message, then an m?-
labeled TA edge from lk−1 to lk will be added in Au,i . In the translated TAs, m will be
changed from a binary to a broadcast channel. See Fig. 18(a), polyline edges (l0, l1),
(l1, l2), (l4, l5).

(4) Handling cold and hot violations

Along an instance line of an LSC chart, if an arriving message is not enabled at the current
cut in the prechart, then there will be a cold violation. In this case, all participating instance
lines in this chart should be reset (i.e., brought back to their initial positions) immediately.
In the translation, this is accomplished by letting the timed automaton that corresponds to
the message receiving instance line “report” the cold violation to the coordinator automaton
in charge, which in turn immediately initiates a broadcast synchronization to ask the timed
automata that correspond to all other instance lines of the chart to do a reset (Table 2, upper
part of the “Cold/hot violation” chunk).

R6 Assume that at position k on the prechart portion of instance line Ii of chart Lu, there is a
receiving of an m-labeled message from instance Ij . If k ≥ Pch_topLu,Ii

+2, then for all
m′-labeled messages in Lu such that m′ 5= m (note that m,m′ ∈Π ), first an m′?-labeled
outgoing TA edge from lk−1 will be added, then a fresh intermediate committed TA
location with invariant m′_src == src(m′) ∧ m′_dest == dest(m′) will be added, and
then a pch_viou!-labeled TA edge that leads to l0 will be added in Au,i . See Fig. 18(b),
TA location Rst1 and edges (l1, Rst1), (Rst1, l0).

In the above rule, the auxiliary binary channel pch_viou (meaning “prechart viola-
tion” of chart Lu) is used to notify the coordinator automaton Coordu of the cold viola-
tion. The resetu!-labeled broadcast edge will be added in Coordu. See Fig. 18(c), TA edges
(l0, Rst), (Rst, l0). In the prechart of Lu, for all positions s on all instance lines It such
that Pch_topLu,It

+1 ≤ s ≤ Pch_botLu,It , we add a resetu?-labeled edge from ls to l0 in Au,t .
See Fig. 18(a), TA edges (l1, l0), (l3, l0).

If a message violates the event partial order in the main chart, then it is a hot violation.
Once this happens, the corresponding TA will immediately arrive at a deadend error location
(Err) (Table 2, lower part of the “Cold/hot violation” chunk).
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R7 If at position k on the main chart portion of instance line Ii of chart Lu, there is a
receiving of an m-labeled message from instance Ij , then for all m′-labeled messages
in Lu such that m′ 5= m, an m′?-labeled outgoing TA edge which arrives at a deadend
error location will be added to location lk−1. See Fig. 18(b), locations Err1, Err2 and
edges (l4, Err1), (l4, Err2).

(5) Prechart pre-matching

According to the semantics for invariant mode LSC chart, minimal events in the prechart
are constantly being matched for. For example in Fig. 4, m1 ·m1 ·m4 ·m2 is a matching
sequence for the second incarnation of this chart under the invariant mode.

R8 If at position 1 on the prechart portion of instance line Ii of chart Lu, there is a sending
of an m-labeled message to instance line Ij at its position 1, then an m!-labeled self-loop
edge that carries assignment “m_src := Ii,m_dest := Ij ,prematchu := true” will be
added to location l0 of Au,i . If location l0 in Au,i has an invariant, then it will be enhanced
with a further constraint “prematchu == false”. See Fig. 18(a), location l0.

Similarly, if there is a receiving of an m-labeled message from Ij , then we add to l0
an m?-labeled edge, followed by an intermediate committed location which has invariant
“(m_src == Ij )∧(m_dest == Ii)∧(prematchu == true)”, and then an internal transition
edge with assignment “prematchu := false” leading back to l0 (Fig. 18(b)).

The flag boolean variable prematchu is initialized to false. Once it is set true, it
means that chart Lu is currently undergoing a process of prechart pre-matching.

For simplicity, the semantics of prechart pre-matching has not been considered in
Sect. 3.2.1. A remedy to this is to add one more bullet to the “silent step” case, stating
that an m-consuming advancement step will just remain at the top cut 9.

5.1.3 Dealing with time

For time-enriched LSCs, there are further constructs (i.e., clock constraints and clock resets)
to be considered during the translation. To mimic the behaviors of each clock constraint and
clock reset in an LSC chart, we use a linked sequence of edges in the corresponding timed
automaton. The atomicity of executing this sequence is ensured by the UPPAAL feature of
committed location.

(1) Translation of guards (clock constraints)

If an instance line has an m-labeled message sending that is guarded by a clock constraint,
then a natural idea is to put this constraint on the m!-labeled edge of the translated TA.
While this is feasible in the “one-TA-per-chart” translation method, it does not work in
the “one-TA-per-instance line” method of this section. The reason is that we need to use
a broadcast channel m to handle the inter-chart coordination (see Sect. 5.1.2); however,
due to the restriction of UPPAAL, broadcast channels cannot carry clock constraints [7].
To overcome this problem, in the translated TA, the upper bound constraint (if any) such
as x ≤ 5 will be tested prior to the message sending, and the lower bound and/or clock
difference constraints (if any) such as x ≥ 3 and x − y ≤ 2 will be tested immediately after
the message sending (Table 2, the “Clock constraint” chunk).

R9 If at position k on the main chart portion of instance line Ii of chart Lu there is a sending
of an m-labeled message which is guarded by a clock constraint (Fig. 19(a)), then in Au,i
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Fig. 19 Translating a guarded message to TA fragments

there will be first an intermediate committed location for upper bound constraint test. If
true, then the next will be a normal location lk with the upper bound constraint as the
location invariant, which will in turn be immediately followed by a message sending
edge. Finally, there will be another intermediate committed location for lower bound
and/or clock difference constraint test. See Fig. 19(b).

For the receiving position of the guarded message, the translation is similar, see
Fig. 19(c).

A clock constraint in the prechart portion is translated slightly differently. Since in the
prechart the messages are being monitored rather than being enforced, there will be no pre-
transition upper bound constraint test. Instead, it will also immediately follow the message
sending transition and will be merged with the lower bound and/or clock difference con-
straint test.

(2) Translation of assignments (clock resets)

In a time-enriched LSC chart, an assignment (i.e., a set of clock resets) should take
place immediately after the synchronization of the message occurrence that it is attached
to. But in the translated TA, it cannot be put on the very edge that corresponds to the mes-
sage sending/receiving, because clock resets should not occur before the lower bound or
clock difference constraint test which is supposed to happen immediately after the mes-
sage synchronization. Neither can we append the TA edge that carries the assignment to the
destination locations of the lower bound or clock difference constraint test, because if sev-
eral identically-labeled message occurrences are simultaneously enabled in their respective
charts where those charts have different guards and/or assignments for those message oc-
currences (Fig. 5, the m3-labeled message occurrences), then there could be race conditions
(e.g., the assignment x := 0 that is attached to m3 in Fig. 5(a) could happen before the lower
bound test x ≥ 3 in Fig. 5(b)). Clearly, this is not what we want.

To model the clock resets properly, for each message m ∈Π in an LSC system, if m is
ever associated with an assignment, then we use a dedicated process (TA) Am to coordinate
all the clock resets of the corresponding message occurrences that are engaged in the same
broadcast synchronization on m. When the broadcast synchronization happens, we use an
integer variable m_count to bookkeep how many instance lines in the LSC system have
participated in this broadcast synchronization. Whenever one of these instance lines is done
with its lower bound and/or clock difference constraint test (if any), it will immediately
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Fig. 20 Translating a message with clock reset to TAs

notify Am of its completion using a binary channel m_Rpt (i.e., “reporting to Am”), and after
that it will wait there for a synchronization on the broadcast channel m_Rst (i.e., “resetting
clocks” command from Am), along with which it can carry out its clock resets. In Am, an
integer variable m_done is increased by 1 each time when Am is notified by an instance line
(via m_Rpt?). Once m_done rises up to m_count, Am will immediately initiate the broadcast
synchronization (via m_Rst!) (Table 2, the “Clock reset” chunk).

R10 If at position k on instance line Ii of chart Lu there is a receiving of an m-labeled
message which has clock resets (Fig. 20(a), instance line on the right), then there will
be first an m_Rpt!-labeled outgoing edge from location lk in Au,i , then a normal loca-
tion, and then an m_Rst?-labeled outgoing TA edge that carries the clock resets. See
Fig. 20(b).

The dedicated TA Am just waits for all the relevant instance lines to be done with their
lower bound and/or clock difference constraint tests, and then synchronizes them for clock
resets (Fig. 20(c)).

(3) Just-in-Time message upper bound constraint test

When time-enriched LSC charts have upper-bound clock constraints, there are condi-
tional tests before message sending/receiving in the translated timed automata. Given an
m-labeled message occurrence in a chart, a potential problem is that in the translated timed
automata for the sending and receiving instance lines, the TA locations that correspond to
the sending and the receiving positions of this message may not be ready for this message
synchronization at the same time (Fig. 5(b), the m1-labeled message occurrence). In the
symbolic exploration of the state space of the translated network of timed automata, prob-
lems will arise if the upper bound of some message sending/receiving is tested when actually
it should not at that time. For example in Fig. 5, assume that a message sequence m1 ·m2 has
been observed, and both charts have just entered their main charts, respectively. Note that a
next m1 is not enabled at the current cut (w.r.t. $). But according to our translation method
mentioned earlier in this section (5.1.3), its guard will incorrectly add a further constraint
“x ≤ 2” to “(x ≤ 5) ∧ (x ≥ 3 ∧ y ≤ 10)”. Consequently, in this example all possible paths
will end up with hot violations.

To avoid this kind of premature tests of upper bound constraints for message occur-
rences, we associate each message occurrence mo in each chart Lu with two flag boolean
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Fig. 21 An LSC fragment of Fig. 5(b) and the corresponding TA fragment for its instance line A

variables mo_u_maySnd and mo_u_mayRcv, denoting whether this message may be sent
or received in chart Lu, respectively. The upper bound constraint of mo can be tested only if
both flag variables evaluate to true.

R11 If at position k on instance line Ii of chart Lu there is a sending of message occurrence
mo which has a clock constraint (Fig. 19(a)), then there will be a preceding edge car-
rying the predicate “mo_u_mayRcv == true”. Once this message synchronization is
fired, mo_u_maySnd will be cleared.

For the receiving instance line of message occurrence mo, the corresponding predicate
will be “mo_u_maySnd == true”.

If mo is a minimal event in the prechart (resp. main chart), then mo_u_maySnd and
mo_u_mayRcv will have initial values true (resp. will be set to true by the activateu

synchronization). If mo is not a minimal event, then the flag variables will be set to true
by its predecessor events.

Given a message occurrence mo, if the predecessor positions of the head/tail positions
of mo are also the head/tail (or tail/head) positions of another message occurrence, or mo
is a minimal event, then mo_u_maySnd and mo_u_mayRcv will be both true prior to
the constraint tests. Otherwise, their truth values may differ, e.g. in Fig. 21(a), message
occurrence m1 for the current cut (the dashed free line). In this case, the translated TA A2,A

will go to location Wait to “sleep”, and will then be woken up by a dedicated message
mo1_Rcv that is sent by the TA A2,B (Fig. 21(b)).

5.1.4 Translating non-message simregions

In Sects. 5.1.2 and 5.1.3, the simregions take the forms of pure message occurrences and
message occurrences that are associated with conditions and/or assignments, respectively.
In this section, we consider the non-message simregions. As mentioned in Sect. 3.1, we
adopt the ASAP semantics for these simregions. Depending on how many instance lines a
non-message simregion is anchored to, we translate it in different ways:

– one instance line. A single edge will be created in the timed automaton that corresponds to
this instance line to carry the condition and/or assignment of the non-message simregion;

– two instance lines. We treat the non-message simregion as if there were an implicit mes-
sage that carries the condition and/or assignment, and this message were sent from one
to the other instance line. Accordingly, we create a fresh auxiliary binary channel in the
timed automata, and translate similarly as in Sect. 5.1.3;



236 Form Methods Syst Des (2010) 37: 200–264

– three or more instance lines. We treat the non-message simregion as if there were an im-
plicit synchronization among them that carries the condition and/or assignment. Accord-
ingly, we create a fresh auxiliary broadcast channel in the timed automata, and translate
similarly as in Sect. 5.1.3.

5.1.5 Translating monitored charts

In comparison with a driving universal chart, the translation of a monitored chart is different
in the point that a monitored chart only “listens to” the messages in the LSC system and
never emits messages by itself. When translating such a chart to a network of timed au-
tomata, if at position s of instance line Ik there is a sending of an m-labeled message, then
instead of adding an m!-labeled TA edge from ls−1 to ls , we only add an m?-labeled one in
between.

5.2 Complexity of translated timed automata

Let LS be a set of LSC charts L1,L2, . . . ,Ln, and let NTALS be the translated network of
timed automata. Let inst(Li), ML(Li), MA(Li) and MO(Li) denote the set of instance lines,
the set of message labels (i.e., “signals”), the message alphabet and the set of message
occurrences of chart Li , respectively.

Table 3 summarizes the complexity of the outcomes (more precisely the worst-case out-
comes) of the translation in different settings, namely, a single LSC chart or an LSC system;
untimed LSC chart or time-enriched LSC chart.

For a time-enriched LSC system, we analyze the complexity of the translated network of
timed automata as follows:

Let the set LS of time-enriched charts L1,L2, . . . ,Ln have messages m1,m2, . . . ,mk ,
message occurrences mo1,mo2, . . . ,mos , and instance lines Ii,1, Ii,2, . . . , Ii,ini

, where 1 ≤
i ≤ n, ini = #(inst(Li)) = |inst(Li)|.

According to Sect. 5.1.2 (“Handling intra-chart coordinations”) and Sect. 5.1.3 (“Trans-
lation of assignments”), in the worst case (i.e., each message has been associated with
some clock resets somewhere in LS), the translated network of timed automata will be
NTALS = {Ai,j | 1 ≤ i ≤ n,1 ≤ j ≤ #(inst(Li))} ∪ {Coordi | 1 ≤ i ≤ n} ∪ {Ami

| 1 ≤ i ≤ k}.

Table 3 The complexity of the outcomes of LSC-to-TA translation (“one-TA-per-instance line”)

Number of A single chart L

Untimed chart Time-enriched chart

TAs |inst(L)| + 1 |inst(L)| + |MA(L)| + 1

Channels |ML(L)| + 2 · |inst(L)| + 4 |ML(L)| + 2 · |inst(L)| + 4 + 3 · |MA(L)|
Auxiliary variables 2 · |MA(L)| + 2 4 · |MA(L)| + 2 · |MO(L)| + 2

Number of A set of driving charts L1, . . . ,Ln

Untimed charts Time-enriched charts

TAs
∑n

i=1(|inst(Li)| + 1)
∑n

i=1(|inst(Li)| + 1) + |⋃n
i=1 MA(Li)|

Channels |⋃n
i=1 ML(Li)|+ |⋃n

i=1 ML(Li)| +
∑n

i=1(2 · |inst(Li)| + 4)+
∑n

i=1(2 · |inst (Li)| + 4) 3 · |⋃n
i=1 MA(Li)|

Auxiliary variables 2 · |⋃n
i=1 MA(Li)| + 2n 4 · |⋃n

i=1 MA(Li)| + 2 · ∑n
i=1 |MO(Li)| + 2n



Form Methods Syst Des (2010) 37: 200–264 237

Therefore, the number of timed automata is
∑n

i=1(|inst(Li)|) + n + |⋃n
i=1 MA(Li)|

(Table 3, lower part right column).
According to rule R2, each message label corresponds to a channel in NTALS. According

to R3, R4 and R6, there will be a set of auxiliary channels Aux = {pch_overu,i , mch_overu, i |
1 ≤ u ≤ n, 1 ≤ i ≤ #(inst(Lu))} ∪ {activateu,overu, pch_viou, resetu | 1 ≤ u ≤ n} that will
be used in NTALS. According to Sect. 5.1.3 (“Translation of assignments”), in the worst case,
there will be a set of auxiliary channels Aux′ = {mi_Rpt,mi_Rst, mi_Rcv | 1 ≤ i ≤ k} for
translating clock resets. Therefore, in the worst case, the number of channels in NTALS will
be |⋃n

i=1 ML(Li)| +
∑n

i=1(2 · |inst(Li)| + 4) + 3 · |⋃n
i=1 MA(Li)|.

According to Sect. 5.1.2 (“Basic mapping rules”), there will be a set of auxiliary vari-
ables {mi_src, mi_dest | 1 ≤ i ≤ k}. According to rules R3 and R8, there will be a set of
auxiliary variables {prematchu,dInstu | 1 ≤ u ≤ n}. According to Sect. 5.1.3 (“Translation
of assignments”), in the worst case, there will be auxiliary variables {mi_count,mi_done |
1 ≤ i ≤ k}. Furthermore, according to R11, there will be auxiliary variables {moi_maySnd,

moi_mayRcv | 1 ≤ i ≤ s}. Therefore, the total number of auxiliary variables in NTALS may
be up to (2 · |⋃n

i=1 MA(Li)|) + 2n + (2 · |⋃n
i=1 MA(Li)|) + (2 · ∑n

i=1 |MO(Li)|).
The complexities for the other three settings can be analyzed similarly.

Remark 1 Although during the translation we introduce some auxiliary (coordinator) au-
tomata, auxiliary channels and auxiliary integer data variables, we do not introduce auxiliary
clock variables. This is important because the time complexity of model checking timed au-
tomata is much more sensitive to the number of clocks and the clock upper bounds thereof
in the system (e.g., reachability and emptiness problems have a factorial growth with the
number of clocks). Furthermore, among all the auxiliary variables, (n + 2 · ∑n

i=1 |MO(Li)|)
of them are boolean variables, and the rest of them are bounded integer variables that have
relatively small ranges. Still further, rather than being able to take arbitrary values in their
respective ranges, these auxiliary integer variables are inter-correlated and thus have a lim-
ited number of value combinations. All these indicate that the translated network of timed
automata does not have an overwhelmingly large state space as it first appears to have.

Remark 2 In Sects. 3–5, we assume a liberal object interaction context in the sense that a
message label (or “signal”) can be viewed as a member function of a class in object-oriented
programming; and instances of other classes can call the method of a certain instance of the
method-owner class (i.e., to send a message to that instance). Therefore in the translation,
each message m needs to be associated with two bounded integer variable m_src and m_dest,
representing the particular sending and receiving instances, respectively.

In case that object-orientation is not a major concern, we can make the “message
sender/receiver uniqueness” assumption, i.e., each message label corresponds to a unique
sending process and a unique receiving process in the communicating system. In other
words, different messages must carry different message labels. Under this assumption, for a
set of untimed (resp. time-enriched) charts L1,L2, . . . ,Ln, in Table 3 the number of needed
auxiliary bounded integer variables will decrease to 2n (resp. to 2 · |⋃n

i=1 MA(Li)| + 2 ·∑n
i=1 |MO(Li)| + 2n).

Remark 3 In Sect. 5.1.2 (“Basic mapping rules”), for each message m ∈Π we assign two
bounded integer variables m_src and m_dest. Although this handling has good readability
and is easily comprehensible, it is not really necessary to assign so many auxiliary integer
variables even if we do not make the “message sender/receiver uniqueness” assumption.
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On one hand, if a message m ∈Π is always sent from one instance line to another, then
we do not need to use m_src and m_dest at all. On the other hand, if a message m ∈ Π

has different sending and/or receiving instance lines, then let the number of sender/receiver
combinations be k. It suffices to associate m with only one auxiliary bounded integer vari-
able m_sd (“src-dest” of m) rather than m_src and m_dest. The range of m_sd could be
[0, k − 1]. The constraints and updates on m_src and m_dest in Sect. 5 can be modified
accordingly. In this way, the state space of the translated network of timed automata will be
further reduced.

Remark 4 Section 4.2 shows that the observer timed automaton which is obtained by our
first (“one-TA-per-chart”) translation has exponential space complexity. Since this is due to
the inherent complexity of the LSC formalism, the translation outcome cannot be simpler.
In Sect. 5.1, the translated network of timed automata also has exponential space complexity
when they are composed in parallel. A justification is that each cut of the chart corresponds
to a location vector of the network of timed automata (this is shown in the proofs of Theo-
rem 5 and its lemmas).

Since a number of auxiliary automata, locations and variables have been introduced, the
outcome of our “one-TA-per-instance line” translation may have a larger state space than
the first approach. However, the advantage of this approach is also clear. We do not need
to explicitly generate and store a (possibly huge) global transition system (i.e., the parallel
composed timed automata), whose state space does not necessarily need to be fully explored
by the on-the-fly verification algorithms of UPPAAL.

5.3 Equivalence of LSC and TAs

Theorem 5 Let LS be a set of time-enriched LSC charts whose message alphabet is Π ,
and let NTALS be the translated network of timed automata which have a set Act of normal
and auxiliary channels. Then ∀γ1 ∈ (Π ∪ {τ } ∪ R≥0)

ω . ((γ1 |= LS) ⇒ ∃γ2 ∈ (Act ∪ {τ } ∪
R≥0)

ω . (γ2 |= NTALS) ∧ (γ2|(Π∪R≥0) = γ1|(Π∪R≥0))), and ∀γ2 ∈ (Act ∪ {τ } ∪ R≥0)
ω . ((γ2 |=

NTALS) ⇒∃!γ1 ∈ (Π ∪ {τ }∪R≥0)
ω . (γ1 |= LS)∧ (γ2|(Π∪R≥0) = γ1|(Π∪R≥0))).

Theorem 5 indicates that each accepted timed trace γ1 in LS uniquely corresponds to a
cluster of accepted timed traces in NTALS. All these traces correspond to exactly the same
restricted trace on the message alphabet and time delays (Π ∪R≥0) as γ1 does.

The lemmas for theorems in Sects. 5.3 and 5.4, and the proofs of these lemmas and
theorems can be found in Appendix D.

5.4 Verification problems

In the context of scenario-based verification, we would like to ask whether a system that
is modeled as a set LS of driving universal charts satisfies the requirements that are spec-
ified as a separate monitored universal or existential chart L′. Here L′ will be translated
to a network of observer timed automata NTAL′ , i.e., they only “listen to” the messages
in NTALS, and never emit messages to NTALS by themselves. We let CoordL′ .Mch_top and
CoordL′ .Mch_bot denote that the coordinator automaton CoordL′ for chart L′ is in its loca-
tions Mch_top and Mch_bot, respectively.

We have the following two main theorems:

Theorem 6 Let LS be an LSC system, and L′ be a monitored universal chart, then
LS |= L′ ⇔ (NTALS ‖ NTAL′)|=(CoordL′ .Mch_top # CoordL′ .Mch_bot).
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Theorem 6 indicates that in order to check whether an LSC system satisfies the require-
ments in a separate universal chart, we only need to check whether the responsiveness CTL
property is satisfied by the parallel composition of their corresponding networks of timed
automata.

Theorem 7 Let LS be an LSC system, and L′ be a monitored existential chart, then
LS |= L′ ⇔ (NTALS ‖ NTAL′)|=E♦ CoordL′ .Mch_bot.

Theorem 7 indicates that in order to check whether an LSC system satisfies the require-
ments in a separate existential chart, we only need to check whether the parallel composition
of their corresponding networks of timed automata has a trace that can be observed by the
existential chart as a satisfying run.

6 Tools and experiments

6.1 “One-TA-per-chart” approach

Based on previous work [34], the approach in Sect. 4 has been implemented as a prototype
LSC editor and LSC-to-TA translator, which have been integrated into a recent version of
the UPPAAL frontend client (GUI) and backend verification server [5, 6], respectively. The
LSC editor and translator support the LSC elements of instance line, location, message,
condition, assignment, simregion, prechart and main chart. Furthermore, the LSC editor
supports the creation and instantiation of LSC templates, where the template parameters can
be used to parameterize the instance lines and messages in the charts. Both the translation
and the composition algorithms have been integrated into the UPPAAL verification server
(Fig. 1, left part). In this way, the user achieves scenario-based push-button verification.

We carry out experiments on the Train-Gate example [41]. The system model consists
of a number of Trains, each of which may want to cross the only bridge (i.e., to access
a critical resource), and a Gate controller, which ensures correct signalling with the trains
(i.e., to sense the approaching and leaving of trains, and to command the trains to stop and to
resume). Each train uses a clock variable to keep track of its timings of approaching/leaving
the gate and being stopped/resumed by the gate. All these trains are subject to certain timing
constraints such that collisions are avoided and a safe separation distance between any two
trains is always maintained.

We can use time-enriched LSC charts to capture the scenario-based requirements such
as:

– L1 (“liveness”): Once a train approaches the gate, it must eventually (cross and then) leave
the gate; and

– L2 (“freedom from collisions”): If a second train approaches the gate before the first
approaching train completes its crossing, then the gate must signal the second train to stop
within a certain period of time, and after that the first train must leave the gate (Fig. 22,
LSC template “Scenario2”).

The original system TA models, the LSC requirements, and the translated and composed
system models can be found in [31].

Note that the LSC charts can have their own (i.e., “private”) clocks that do not appear in
the original system models, e.g., clock z in the chart template “Scenario2” of Fig. 22.



240 Form Methods Syst Des (2010) 37: 200–264

Fig. 22 A scenario-based “freedom from collisions” requirement in the UPPAAL-integrated LSC editor

Table 4 presents the experimental results of verifying the Train-Gate system against the
scenario-based requirements L1 and L2. The time overheads and memory consumptions as
listed in the four rightmost columns of Table 4 are the sums for the three consecutive phases,
i.e., LSC-to-observer timed automaton translation, system and observer timed automaton
instrumentation and composition, and model checking the composed system against the
automatically extracted CTL formula. In comparison, columns 2 to 5 of Table 4 present
the time and memory consumptions for “pure verification”, i.e., merely to model check the
translated and composed system (which can be saved as a network of UPPAAL TAs (.xml
model file) by the translator) against the automatically extracted CTL formula (which can
also be saved as a UPPAAL query (.q property file) by the translator). Furthermore, we vary
the number of trains in the system to see how this approach scales. Since each train has
a clock variable and the monitored LSC chart may have a fresh clock variable, the total
number of clocks in the system is the number of the trains plus one.

As can be seen in Table 4, model checking an LSC-specified requirement against a TA-
modeled real-time system of up to 10 clocks (i.e., 9 trains plus 1 LSC chart) can be achieved
on an ordinary PC. Considering that the models of many real-life applications have only a
few clocks, our approach can be of practical value. Furthermore, it appears that both the
time overheads and the memory consumptions increase exponentially with the size of the
system and number of clocks. Specifically, when the number of trains increases to 10, UP-
PAAL does not issue a pass/fail verdict after it has been running for more than 12 hours and
consumed 2.2 GB memory. Furthermore, system monitoring shows that the memory usage
is almost stabilized within this long procedure (12+ hours). All these seem to indicate that
time complexity is more of a problem in this approach.

By comparing the results of the “pure verification” and our scenario-based verification, it
is clear that the latter approach is only a little more expensive than the former one (Table 4).
This is reasonable because translation and composition as syntactical level manipulations
are far less computation-intensive than the subsequent model checking. Considering that
manual construction of observer timed automata is in general a time-consuming and error-
prone process, our approach achieves automated scenario-based verification at the expenses
of only a little extra efforts.



Form Methods Syst Des (2010) 37: 200–264 241

Table 4 Experimental results of scenario-based verification of the Train-Gate example

# of trains Performance results 〈CPU time: sec, memory: KB〉
Conventional approach in UPPAAL Approach of Sect. 4

(“pure verification”) (“translation + composition + verification”)

L1 L2 L1 L2

2 <0.01 4108 <0.01 4232 <0.01 4220 <0.01 4504

3 0.01 4208 0.01 4460 0.02 4492 0.01 4672

4 0.03 4324 0.03 4652 0.04 4936 0.03 5240

5 0.23 4664 0.23 4936 0.24 5058 0.24 6080

6 0.68 7252 0.73 7640 0.69 8660 0.75 8908

7 4.38 29892 4.46 27604 4.39 31884 4.48 29764

8 41.66 232924 39.49 191764 41.83 235504 39.61 194428

9 508.14 2127884 404.07 1700360 508.38 2167420 404.24 1703848

10 (>12 hours, ≈ 2.2 GB)

Experiment platform: Intel Core 2 Duo P8700 CPU (2 × 2.53 GHz), 4 GB RAM; Ubuntu 10.4, UPPAAL
4.1.3

As a classic benchmark, the Train-Gate example has been widely examined in real-time
system modeling and verification, including LSC-based verification. The scenario-based
verification problems in [35] are very similar to ours, though the authors use a variant of the
Train-Gate TA models and define LSC in a different manner (e.g., their LSC has subcharts
and conditional constructs, but no guarded messages with clock resets as in this article). For
a Train-Gate system of 4 trains and an LSC scenario that is very similar to our “freedom
from collisions” property L2, their verification takes 6.4 seconds (dual Pentium 4 Hyper-
Threading 2.8 GHz CPUs). As can be seen in Table 4, we need 0.03 second. Although it
is not fair to compare them directly, the results may be indicative of the efficiency of our
approach.

6.2 “One-TA-per-instance line” approach and comparison with previous approach

To realize the approach in Sect. 5, we have built a GUI-based LSC editor, with which we can
construct either universal or existential charts, and we have implemented a prototype com-
mand line LSC-to-TA translator (“one-TA-per-instance line” approach), which is capable
of batch translation of the prescribed LSC charts. The translator-generated timed automata
and extracted CTL formulas comply with the UPPAAL timed automaton and query language
syntax, and can thus be fed into UPPAAL. The LSC editor, the LSC-to-TA translator and the
UPPAAL model checker collectively constitute a tool chain.

We still use the Train-Gate problem to illustrate how our “one-TA-per-instance line”
approach performs. The system consists of two trains and one gate. The scenario-based in-
teraction behaviors are modeled as five driving LSC charts. The scenario-based requirement
is captured in a separate monitored LSC chart. We let this requirement be freedom from
collisions (Sect. 6.1, property “L2”).

The set LS of driving charts and the monitored chart L′ are translated to networks of
timed automata NTALS and NTAL′ (Table 5, lower part), respectively. The models of the
driving/monitored LSC charts and the translated TAs can be found in [31].

We also carry out comparative study of the “one-TA-per-chart” and “one-TA-per-instance
line” approaches using the same configuration of the Train-Gate problem as above (i.e., two
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Table 5 Experimental results of the approaches of Sects. 4 and 5 using the same Train-Gate example

Original and LSC-translated TA models Model checking

TAs Locations Edges Channels Clocks Variables Time (s) Memory (KB)

Train-Gate system 3 13 17 8 2 4

(original TA models) 0.007 4232

Monitored chart “L2” 1 5 32 6 1 4

(approach of Sect. 4)

5 driving charts 23 251 352 65 5 57

(approach of Sect. 5) 3.93 25848

Monitored chart “L2” 5 55 75 16 1 19

(approach of Sect. 5)

Experiment platform: Intel Core 2 Duo P8700 CPU (2 × 2.53 GHz), 4 GB RAM; Ubuntu 10.4, UPPAAL
4.1.3

trains and one gate). We compare the two approaches in terms of the sizes of the trans-
lated timed automata and the performances of the model checking that are subsequently
performed on these timed automata (Table 5).

As we can see, the amounts of translation outcomes of the driving charts (Table 5, mid-
dle columns data, row 3) and of the monitored chart (row 4) using the “one-TA-per-instance
line” approach are roughly in proportion to the numbers of the charts (5 and 1 in this exam-
ple, respectively). The reason is that these two kinds of charts are translated in basically the
same way (Sect. 5.1.5). However, the outcome of the “one-TA-per-instance line” translation
(Table 5, middle columns data, row 4) is more complex than that of the “one-TA-per-chart”
translation (row 2). The reason is that many auxiliary channels and variables are needed to
properly handle intra-/inter-chart coordinations. In other words, the benefit of “distributed”
translation usually comes along with this kind of structure complication of translation.

Also from Table 5 we notice that model checking the translated five driving charts against
the translated monitored chart using the “one-TA-per-instance line” approach (Table 5, right
columns data, row 2) requires more CPU time and memory than model checking the original
Train-Gate TA system against the translated monitored chart using the “one-TA-per-chart”
approach (row 1). This is mainly because that the translated network timed automata of
the five driving charts are far more complex than the original TA models of the Train-Gate
system [41], which consists of only three simple TAs that have 2 clocks, 8 channels and 4
variables (Table 5, middle columns data, row 1).

At a first glance it seems that our “one-TA-per-instance line” approach is very likely to
suffer from scalability problems: even for a small system, we need to create a relatively large
number of LSC charts to model the system behaviors and to specify the user requirements.
In this way, the translation will yield a large network of timed automata. Consequently,
we are left in doubt whether the efforts of dealing with this TA system will outweigh the
benefits of using LSCs. However, a close examination of the LSC charts in this Train-Gate
example reveals that we need to create so many charts (and the respective clock variables
for these charts) mainly because that our time-enriched LSC in its current form has only a
limited number of language constructs. Consequently, a single LSC chart captures only a
small piece of system behaviors or user requirements. If we extend it with e.g. the control
structures such as branching and looping, symbolic mechanisms such as symbolic messages
and symbolic instances, and with forbidden and ignored messages, then our LSC models
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themselves will be much more succinct than what they are now (i.e., fewer charts and fewer
clocks will be needed to model the same system and specify the same requirement). The
numbers of translated timed automata and the clock variables can hopefully be kept within
reasonable sizes. This likelihood and tendency has been shown by previous work on the
“one-TA-per-chart” translation of the richer LSC models [34].

7 Translating iterative mode charts

When translating LSC charts to timed automata in Sects. 4.1 and 5.1, we considered only
the invariant activation mode.

As mentioned in Sect. 3.1, a universal chart under the iterative mode requires that, as
long as the main chart is currently active, the prechart will not be monitored for further
satisfaction. Compared with the invariant mode, satisfaction of a universal chart under the
iterative mode is a weaker requirement. In other words, given an LSC chart and a message
sequence, it may happen that under the invariant mode, the chart hot-violates this sequence,
but under the iterative mode, the chart does not. For example, for the LSC chart in Fig. 23(a),
the message sequence “m1 · m2 · m1 · m3” is hot-violated by the second incarnation of this
chart under the invariant mode. However, it is not violated by any incarnation under the
iterative mode, because under this mode the second incarnation is “killed” immediately
after the prechart of the first incarnation is matched by the sub-sequence “m1 · m2”.

To conduct the “one-TA-per-chart” translation for iterative mode charts, we convert a
chart into a timed automaton similarly as in Sect. 4.1 (except that we discard the “prechart
pre-matching” step). Now we maintain multiple copies of the translated TA. Each of these
copies will become a chart incarnation (i.e., a “live” copy) when necessary. When a new
message arrives, the existing chart incarnations (live copies) will react to it as usual, and
besides, at most one of the remaining chart copies will be incarnated upon this message
(this is ensured by using the auxiliary binary semaphore MoreIncarnations, the “allocating”
variable NxtIncarnation, and the function IncNxtIncarnation() that updates NxtIncarnation,
see Fig. 23 and the UPPAAL declarations below).

The dynamics of the iterative mode activation is implemented by using a fresh auxiliary
broadcast channel kill. Once an incarnation of the chart notices that its prechart has been
successfully matched, it will immediately initiate a broadcast synchronization on kill to reset
(i.e., to “kill”) all other live copies that are still progressing in their respective prechart
portions.

As an example, if we interpret the LSC chart in Fig. 23(a) under the iterative mode, then
Fig. 23(b) is the corresponding TA template IterativeModeTemplate() (for better
legibility, we have omitted the guards on the sending and receiving instance lines). This
template has a template parameter

int[0, MaxIncarnationNum - 1] thisChartCopy

and it will be instantiated as follows when we make the system (component) declarations in
UPPAAL:

// There are at most two incarnations.
Chart0 = IterativeModeTemplate(0);
Chart1 = IterativeModeTemplate(1);

system Chart0, Chart1;
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Fig. 23 An LSC chart and its
translated timed automaton
template (under the iterative
mode)

The global (variable, channel and function) declarations of the above system in UPPAAL

are as follows:

const int MaxIncarnationNum := 2; // The maximal number of incarnations
// for this chart.

int[0, MaxIncarnationNum - 1] NxtIncarnation := 0; // Which chart copy
// should be the
// next incarnation?

bool MoreIncarnations := true; // "Should the Pch be monitored or not?"

broadcast chan m1, m2, m3; // The message labels in the LSC chart
broadcast chan kill; // "kill" is a fresh auxiliary channel.

// Once an incarnation of the LSC chart enters its main
// chart, it should immediately reset all other
// incarnations of that chart.

// The function that shifts the pointer to the next chart incarnation
void IncNxtIncarnation() {

NxtIncarnation := (NxtIncarnation + 1) % MaxIncarnationNum ;
}
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The LSC elements such as conditions and assignments can be added and translated sim-
ilarly as in Sect. 4.1. Likewise, we can prove that the LSC chart L and the translated timed
automata OL,1,OL,2, . . . ,OL,n are behavior-equivalent. Here OL,i denotes the timed au-
tomaton for the i-th chart copy, and n is the maximal number of chart incarnations of L.
We can also compose these observer timed automata with the original system model S (i.e.,
a network of timed automata), and thus get the final (modified) network of timed automata
(S ′ ‖ O ′

L,1 ‖O ′
L,2 ‖ · · · ‖ O ′

L,n).
To verify whether system S is satisfied by chart L under the iterative mode, we do the

following CTL model checking:

(S ′ ‖O ′
L,1 ‖ O ′

L,2 ‖ · · · ‖O ′
L,n) |= (li,min # li,max), 1 ≤ i ≤ n

where li,min and li,max denote the TA locations that correspond to the minimal and maximal
cuts of the main chart of the i-th incarnation of chart L, respectively.

To conduct the “one-TA-per-instance line” translation for iterative mode charts, the above
general idea also applies. We also maintain multiple copies of the translated timed automaton
for each instance line in each driving chart. In this case, each chart Li will have its killi -
broadcast channel, and the synchronization on this channel will take place immediately after
the activatei -broadcast synchronization in Li .

Remark 5 The two activation modes, i.e., invariant and iterative modes, can serve different
but complimentary purposes. When used as a monitored chart, a chart is more difficult to be
satisfied under the invariant mode than under the iterative mode. This indicates that invariant
mode is better for capturing safety-related scenario requirements. On the other hand, when
used as a driving chart, an iterative mode chart can act as a periodic event generator, i.e.,
before a sequence of messages in the main chart are generated and dispatched to fulfill some
commitment, it will not search for an “assume” pattern and make any new commitments.

8 Related work

8.1 Verifying state/transition systems against scenario-based requirements

Model checking by definition and in its earliest forms takes a state/transition system model
and a temporal logic formula as the inputs. To model check state/transition-based real-time
systems against complex properties or scenario-based requirements, various approaches
have been proposed.

One solution is the observer automata (a.k.a. test automata [1]) approach, i.e., to con-
struct a number of auxiliary automata to capture the complex properties or scenario-based
requirements, and then use these automata to “observe” the original system model. This ap-
proach requires that the observer be compatible with the original system model, and that the
observation be non-intrusive and efficient (i.e., it incurs as little extra communication and
computation overheads as possible).

An observer timed automata approach to real-time system verification is suggested in [1].
This approach has been used to model check practically relevant systems such as the B&O
power controller [20] and some timed safety instrumented systems [28]. Case studies thereof
indicate that the approach is effective. However, the approach also comes with some limita-
tions:
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– Manual construction of observer timed automata could be labor-intensive and error-prone,
and this is especially the case when the automata grow large;

– To synchronize with the observer timed automata, the original system models may need
to be modified and annotated. During this modification process, some new errors might
be introduced. Newly introduced timing errors are especially difficult to diagnose; and

– Since an observer timed automaton and the original system usually engage in “loose”
channel synchronizations (i.e., no particular sending and receiving process are specified
for a synchronization on a certain channel (message label)), they specify process inter-
actions only liberally. To capture non-trivial scenario-based requirements, the synchro-
nizations between the observer automaton and the original system should be carefully
designed by using e.g. auxiliary variables, semaphores or locking mechanisms. This is an
extra burden for the designers.

Compared with the observer automata approach, in our method the observer automa-
ton is constructed automatically, and it is guaranteed to observe the original system in a
non-intrusive way. Furthermore, the automatically created auxiliary variables (including
semaphores) will enable our observer automaton to faithfully reflect the LSC requirements
where each message has its particular sending and receiving process.

Scenario-based requirements on state/transition-based system models can also be cap-
tured by using the assume-guarantee style visual formalisms such as Triggered MSC [37],
Template MSC [16] or the even richer LSC [18], and then transformed into directly verifi-
able formalisms. In particular LSCs can be translated into timed Büchi automata (TBA) [25],
timed automata [34], temporal logics [9, 10, 14, 17, 25, 27] or sequences of LSC ele-
ments [35], and the verification problem can be converted to a model checking problem
on existing tools [10, 25], or solved directly [35].

An early attempt of introducing LSC features such as the initial and iterative activation
modes and the activation condition (a Boolean expression which characterizes the state of
the system model when the scenario should start) into UML Sequence Diagrams is made
by Lettrari and Klose [32]. They develop a tool to monitor and test the executable UML
models (i.e., implementations of RHAPSODY UML models). In comparison, our work follow
the more mature LSC definition [18] to support also the invariant mode and the notion of
prechart, which details the activation conditions under which they apply, and we aim at
scenario-based verification.

Damm and Klose [13] propose to use LSCs in combination with STDs (Symbolic Tim-
ing Diagrams) to specify scenario-based requirements on STATEMATE models, and then
carry out model checking. This methodology has been concretized and implemented in [25],
where an LSC chart is transformed into a timed Büchi automaton, which is further trans-
formed into a temporal logic formula. Further descriptions of how LSC as a specification
language can be used in a UML verification environment for the RHAPSODY tool are pre-
sented in [36]. In the work of [25], in order to specify real-time requirements, timers [4, 21]
and timing annotations (or delayed intervals) [4] are added to the LSC charts. To enable
the transformation, each location of the LSC chart is equipped with a discrete (integer)
clock. Since timers can only express timing constraints within a single chart and within a
single process, and delayed intervals can only express the minimal and maximal delays be-
tween two consecutive locations, these restrict the expression of timing constraints across
processes and across charts. Our LSC charts use TA-like real-valued clock variables. This
flavor of timing constraint agrees well with the original TA system model, and thus enable
smooth translation of timing information into the observer TA, as well as seamless embed-
ding of the observer TA into the UPPAAL verification framework.
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An LSC to timed automata translation is proposed in [34]. When the LSC chart is used
as a monitored chart, this translation is similar to our “one-TA-per-chart” translation in the
sense that they are both based on the notion of LSC cut and its advancements. However,
when LSC serves as a modeling language, this method is faced with the cut and configuration
blow-up problem. In comparison, our “one-TA-per-instance line” translation method does
not need to explicitly enumerate and thus create TA locations for a potentially huge number
of cuts.

LSCs can also be translated into temporal logic formulas [9, 14, 17, 27]. For the ker-
nel subset of LSC in [27], it has been shown that existential charts can be expressed using
the CTL logic, and universal charts can be expressed using (LTL ∩ CTL) [17, 27]. Simi-
lar results are achieved in [14]. However, these methods do not handle explicit time in the
charts. In [10], LSC is applied in hardware verification, where the system models are given
in Verilog and the user requirements are specified as LSCs. These LSCs are translated to LTL
formulas and then fed into the verification environment FORMALCHECK. Since LSCs are
used to specify hardware protocols at the register transfer level, a discrete clock tick con-
struct is introduced to explicitly represent the passage of system time. Compared with [10],
we use real-valued clocks to represent various timing constraints.

As mentioned thus far, verification techniques that are based on LSC-to-temporal logic
translation in general tend to suffer from scalability problems. Industrial case studies [24]
show that the LTL formulas grow large even for LSCs of moderate size, and thus formal
verification becomes expensive. To overcome this limitation, Klose and colleagues [26] in-
vestigate efficient model checking of Kripke structures against LSC requirements. In our
method, since our observer automaton is tightly coupled with the original system, a very
simple CTL property A!(lmin ⇒ A♦ lmax) can be extracted from the observer automaton to
capture the LSC requirements. In this way we avoid translating LSCs to complex temporal
logic formulas.

Another line of work [35] is to extract properties from LSCs as sequences of LSC ele-
ments, and to develop verification algorithms to check whether these sequences are respected
by the FSM computation graph of the TA model that is exported from UPPAAL. However,
simultaneous regions (simregions) in their LSCs are used only to model broadcast commu-
nications, and conditions cannot be a part of simregions. Our notion of simregion uses the
“[condition] [message]/[assignment]” pattern, thus enables smooth translation to a TA edge.

8.2 Verifying object interaction-based systems against scenario-based requirements

In this case, the system is modeled as a set of driving universal LSC charts and the require-
ment is specified as a set of monitored universal or existential charts. Monitored universal
charts should not be hot-violated, and monitored existential charts should be matched at
least once [8, 18].

In the execution (or play-out) [18] of scenario-based models, the Play-Engine checks
whether the monitored charts are respected. This is enhanced in the smart play-out mecha-
nism, where planned state space exploration via model checking is added to the Play-Engine
to bypass some avoidable hot violation situations that are caused by some “blind” inter-
actions among the system processes. In a case study of a telecommunication application,
Combes and colleagues [11] check whether a set of monitored existential charts can be sat-
isfied by a set of driving charts without violating any of them. Their method is based on the
play-out and smart play-out mechanisms in the Play-Engine.

In [38], LSCs are encoded as CSP processes. The CSP verification tool FDR is employed
to check whether a set of monitored existential charts can be satisfied by a set of driving
universal charts. This work considers untimed charts only.
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Wang and colleagues [40] employ constraint logic programming (CLP) techniques to
enable the symbolic execution of LSC models. Their implementation supports both universal
and existential charts, and supports timing constraints.

Playing-out [11, 18, 40] as a methodology of executing scenario-based models does not
have in mind verification as its goal. Although it is possible to check whether a number of
existential charts can be satisfied during (smart) playing-out, essentially it is still consid-
ered as a kind of (guided) execution. Compared with [11, 18, 38], our method allows the
requirements to be specified also as universal charts. Furthermore, compared with [11, 18,
38], our method uses TA-like clock variables and clock constraints, and thus enables finer
characterizations of timing requirements.

9 Conclusions and future work

This article proposes two approaches to the verification of state/transition-based and ob-
ject interaction-based real-time system models against scenario-based user requirements,
respectively. We extend a kernel subset of the LSC language with timed automata-like real-
valued clock variables and timing constraints, define its semantics, and use the time-enriched
LSC charts both for system modeling and for property specification. By means of behavior-
equivalent model transformation and non-intrusive event spying, we convert the scenario-
based verification problems to CTL real-time model checking problems in UPPAAL. By
doing so we conclude that it is feasible:

– to introduce important notions from the TA to the LSC formalisms to facilitate scenario-
based characterization of dense real-time systems;

– to employ the original TA constructs as well as the UPPAAL-extended TA features to
properly mimic the time-enriched LSC dynamics; and consequently;

– to exploit the power of the UPPAAL model checker for scenario-based automatic verifica-
tion of non-trivial real-time systems.

The proposed first approach has been implemented as a new feature inside UPPAAL,
and the second approach implemented as an LSC-to-TA translator which, together with
our LSC editor and UPPAAL, constitutes a tool chain for scenario-based verification. Since
the translation, the composition and the underlying verification are all automatic steps, our
methods are fully automated. Preliminary experiments with a Train-Gate system indicate
that the proposed approaches are computationally feasible and effective.

The benefits of building our scenario-based real-time system verification methods on top
of the well-developed real-time model checker are twofold: (1) for system analysts and de-
signers who are interested in early-stage validations using live sequence charts, now they can
scale up to the timed settings without having to develop and implement the corresponding
real-time verification algorithms; (2) for users of conventional (real-time) model checkers
that work with state/transition-based models and temporal logical properties, now they can
horizontally scale up to scenario-based system models and scenario-based user require-
ments.

In our proposed approaches, the time-enriched LSC chart in its current form has only
a limited number of language constructs. To ease the scenario-based characterization of
practically relevant complex systems using LSC and thus to realize the full potential of
scenario-based approaches, we need to support more language constructs such as subchart,
if-then-else structure, loop, forbidden and ignored messages, co-region, and symbolic mes-
sages and instances. Accordingly, we need to implement the full-fledged translators, and to
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apply the tool and tool chain to larger (industrial) case studies. Another limitation of the
current approaches is that counterexamples (if any) can be displayed only in the translated
timed automata. For the users’ convenience, it will be extremely useful to trace the coun-
terexamples back into the LSC system models and the LSC requirements. This needs to be
achieved in the near future.
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Appendix A: BNF grammar of time-enriched LSC

The following BNF grammar describes our time-enriched LSC language.

LSC ::= TYPE MODE INSTANCES CHART
TYPE ::= type (existential | universal)
MODE ::= mode (initial | iterative | invariant)
INSTANCES ::= INSTANCES INSTANCES
| instance INST_ID NAME
CHART ::= chartbegin CHARTBODY chartend
CHARTBODY ::= CHARTBODY CHARTBODY
| message ELEM_ID INST_ID INST_ID YLOCATION NAME
| condition ELEM_ID (INST_ID)+ YLOCATION TEMP EXPR
| assignment ELEM_ID (INST_ID)+ YLOCATION UPDATE
| simregion ELEM_ID (INST_ID)+ YLOCATION
| pchbot ELEM_ID (INST_ID)+ YLOCATION
INST_ID ::= <numeral>
ELEM_ID ::= <numeral>
YLOCATION ::= <numeral>
TEMP ::= cold | hot
EXPR ::= <boolean expression>
UPDATE ::= <clock resets>

As can be seen from the BNF grammar, each primitive construct (i.e., message, con-
dition, assignment) has an element ID and a y-coordinate. This y-coordinate denotes the
geographical distance from the element to the top of all instance lines (note that all mes-
sages, conditions and assignments have horizontal layouts). It should not be confused with
the numbering of a “position” among all the points of communication, computation and
synchronization along an instance line.

In the BNF grammar, a simregion is represented by the y-coordinate where its constituent
message, and/or condition, and/or assignment are anchored together (Fig. 5, black filled
circles).

Furthermore, a prechart is represented by its bottom y-coordinate vector that spans across
the relevant instance lines. When there is no prechart, the “pchbot” statement will not appear
in the LSC file.
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Appendix B: Timed automata in UPPAAL

We use the following notations: X is a set of real-valued clocks, and B(X) is the set of
conjunctions over simple conditions of the form x 01 c or x − y 01 c, where x, y ∈ X,
c ∈ N, and 01 ∈{<,≤,=,≥,>}.

Definition 9 (Timed automaton, TA [7]) A timed automaton is a tuple (L, l0,X,Act,

E, Inv), where L is a set of locations, l0 ∈ L is the initial location, X is a set of clocks,
Act is the alphabet of actions, E ⊆ L × (Act ∪ {τ }) × B(X) × 2X × L is a set of edges
between locations, each of which has an action, a guard and a set of clocks to be reset, and
Inv : L → B(X) assigns invariants to locations.

UPPAAL has defined a number of extensions to the standard notations of timed au-
tomata [2]. Specifically, an urgent location is such a TA location that freezes time, i.e.,
time is not allowed to elapse when a process is in an urgent location. A committed location
is a special kind of urgent location whose outgoing transitions always have higher priority
to be fired than those from non-committed locations.

UPPAAL uses a mixture of handshake communication and broadcast communication. The
CBS (Calculus of Broadcasting Systems [33])-style broadcast channels allow one-to-many
synchronization. If the emitting edge is enabled, then it can always fire. If the emitting edge
is to fire, then all enabled receiving edges (might be 0 edge) will synchronize.

In UPPAAL an urgent channel means that if it is possible to trigger a synchronization
over that channel, then it cannot delay in the source state.

Furthermore, UPPAAL also supports bounded-range integer and boolean data variables,
which can be used in the guards, assignment and location invariants.

A clock valuation is a function u : X → R≥0 that assigns each clock variable a non-
negative real number. Let R≥0

X be the set of all clock valuations. Let u0(x) = 0 for all
x ∈ X. We may consider guards and invariants as sets of clock valuations. For example, we
use u ∈ Inv(l) to denote that valuation u satisfies Inv(l).

Definition 10 (Semantics of TA [7]) Let (L, l0,X,Act,E, Inv) be a timed automaton. The
semantics is defined as a labeled transition system 〈SS, s0,→〉, where SS ⊆ L×R≥0

X is the
set of semantic states, s0 = (l0, u0) ∈ SS the initial state, and →⊆ SS× (Act ∪ {τ }∪R≥0)×
SS the transition relation such that:

– (l, u)
d−→ (l, u + d) if ∀d ′ : 0 ≤ d ′ ≤ d .u + d ′ ∈ Inv(l); and

– (l, u)
a−→ (l′, u′) if there exists e = (l, a, g, r, l′) ∈ E such that u ∈ g, u′ = [r → 0]u, and

u′ ∈ Inv(l′),

where for d ∈ R≥0, u + d maps each clock x in X to the value u(x) + d , and [r → 0]u
denotes the clock valuation which maps each clock in r to 0 and agrees with u over X\r .

Definition 11 (Run of TA) A run of a TA (L, l0,X,Act,E, Inv) is a sequence of states
s0 · s1 · . . . that are connected by the transitions, i.e., ∀i ≥ 0 .∃ui ∈ (Act ∪ {τ }∪R≥0). s

i ui−→
si+1.

The transition relation → as mentioned above each time consumes only a single letter
u ∈ (Act ∪ {τ } ∪ R≥0). We extend it to →∗ such that it consumes a (finite or infinite) word
w ∈ (Act∪ {τ }∪R≥0)

∗ ∪ (Act ∪ {τ }∪R≥0)
ω . A word w that corresponds to a run of the TA

is called a timed trace of the TA.
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A number of timed automata can be composed in parallel into a network of timed au-
tomata over a common set of clocks and actions, Ai = (Li, l0,i ,X,Act,Ei, Invi ), 1 ≤ i ≤ n.
A location vector l̄ = (l1, . . . , ln) is a vector of locations of the member TAs. We compose
the invariant functions into a common function over location vectors Inv(l̄) = ∧

i Invi (li ).
We write l̄[l′i/ li] to denote the vector where the i-th element li of l̄ is replaced by l′i .

Definition 12 (Semantics of a network of TAs [7]) Let Ai = (Li, l0,i ,X,Act,Ei, Invi ) be a
network of timed automata, 1 ≤ i ≤ n. Let l̄0 = (l0,1, . . . , l0,n) be the initial location vector.
The semantics is defined as a transition system 〈SS, s0,→〉, where SS = (L1 × · · ·×Ln)×
R≥0

X is the set of global semantic states, s0 = (l̄0, u0) ∈ SS the initial global state, and →⊆
SS × (Act ∪ {τ }∪R≥0)× SS the transition relation defined by:

– (l̄, u)
d−→ (l̄, u + d) if ∀d ′ : 0 ≤ d ′ ≤ d .u + d ′ ∈ Inv(l̄);

– (l̄, u)
τ−→ (l̄[l′i/ li], u′) if there exists li

τ,g,r−−→ l′i such that u ∈ g, u′ = [r → 0]u and u′ ∈
Inv(l̄[l′i/ li]);

– (l̄, u)
a−→ (l̄[l′i/ li , l

′
j / lj ], u′) if a is a binary channel and there exist li

c!,gi ,ri−−−→ l′i and

lj
c?,gj ,rj−−−−→ l′j such that u ∈ (gi ∧ gj ), u′ = [ri ∪ rj → 0]u and u′ ∈ Inv(l̄[l′i/ li , l

′
j / lj ]);

and
– (l̄, u)

a−→ (l̄[l′i/ li , l
′
j / lj , l

′
k/ lk, . . .], u′) if a is a broadcast channel and there exist an

li
c!,gi ,ri−−−→ l′i and a maximal set {j, k, . . .}: lj

c?,gj ,rj−−−−→ l′j , lk
c?,gk,rk−−−−→ l′k , . . ., such that u ∈ (gi ∧

gj ∧ gk ∧ · · · ), u′ = [ri ∪ rj ∪ rk ∪ · · · → 0]u and u′ ∈ Inv(l̄[l′i/ li , l
′
j / lj , l

′
k/ lk, . . .]).

Runs and traces of a network of TAs are defined similarly as those for a single TA.

Appendix C: Proofs of lemmas and theorems in Sect. 4

Theorem 1 If a configuration (c, v) of L corresponds to a semantic state (l, v) of OL, then:
(1) each simregion s that follows (c, v) in L uniquely corresponds to an outgoing edge (l, l′)
in OL; and (2) the target configuration (c′, v′) of s in L uniquely corresponds to the target
semantic state (l′, v′) in OL.

Proof For each simregion s in L that immediately follows (c, v), according to Sect. 4.1.3, s

uniquely corresponds to an outgoing edge (l, l′) from l in OL. Since the valuation function
v is the same in (l, v) as in (c, v), and the condition in s is straightforward copied onto
the TA edge (l, l′), the simregion s can be stepped over if and only if the TA edge (l, l′)
can be taken. Moreover, the assignment (if any) in s is also straightforward copied onto the
edge (l, l′). This indicates that the valuation function in the LSC target configuration will be
still the same as in the TA target semantic state. Therefore, (c′, v′) uniquely corresponds to
(l′, v′).

Specifically, if s is a non-message simregion that immediately follows (c, v) in L, then
according to the ASAP semantics, s will be stepped over immediately from (c, v). Accord-
ingly, the source location l is a committed location in OL, and the other outgoing edges that
correspond to message simregions will not be appended to l. All these ensure that the TA
edge that corresponds to s is taken immediately from state (l, v). !

If in the LSC semantics (Sect. 3.2.1) we ignore the silent steps that are caused by intra-
chart coordinations and autonomous advancements of instance lines, then we have:
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Theorem 2 For any trace tr in OL: tr |= L⇔ (OL, tr) |= (lmin # lmax).

Proof Let the initial cut of L be c0. According to Sect. 4.1.2, c0 corresponds to the initial
location l0 of OL. Since in the beginning all the clocks in L have the same initial values as in
OL, the initial configuration (c0, v0) of L uniquely corresponds to the initial semantic state
(l0, v0) of OL.

We consider only the legal (admissible) behaviors of OL. In other words, the traces that
lead to the sink TA location Err will be ignored. We consider the following cases:

(1) OL has only explicitly specified behaviors. By Theorem 1, each simregion that im-
mediately follows (c0, v0) uniquely corresponds to an outgoing edge from TA location l0,
and the target configuration (c′, v′) in L uniquely corresponds to the target semantic state
(l′, v′) in OL. On the other hand, in (c0, v0) of L, there could be a time delay d ∈ R≥0 if
and only if in (l0, v0) of OL there could be the same time delay d . By recursively applying
Theorem 1 and the above result, we can conclude that any timed trace tr in OL is also a
timed trace in L.

By assuming that OL has only explicitly specified behaviors, we know that there is no
undesired behavior in OL. If tr |= L, then by definition this particular tr in OL also satisfies
the path formula (lmin # lmax), i.e., (OL, tr) |= (lmin # lmax). Therefore, we have tr |= L ⇒
(OL, tr) |= (lmin # lmax).

The reverse implication is proved similarly.
(2) OL includes behaviors of unconstrained events or cold violations. In this case, each

unconstrained event m at a particular cut c in L uniquely corresponds to an m?-labeled
self-loop edge at the corresponding location l in OL, and each cold violation uniquely cor-
responds to an edge leading to lpmin. The two-way implications are proved similarly.

(3) OL includes behaviors of prechart pre-matching. In this case, the semantics of
tr |= L says that whenever tr matches the prechart Pch, the main chart Mch will be matched
afterwards (and this must happen before Pch begins a next round matching). Considering
that in OL, the locations lmin and lmax are two rendezvous points, thus tr |= L means exactly
the satisfaction of (lmin # lmax) by tr.

To sum up, we conclude that for any trace tr in OL, we have tr |= L ⇔ (OL, tr) |= (lmin #
lmax). !

Let the modified version of the original system model S be S ′, and the modified version
of the observer timed automaton OL for chart L be O ′

L. Let the minimal and maximal cuts
of the main chart of L correspond to locations lmin and lmax of O ′

L, respectively. When L is
a universal chart, we have:

Lemma 1 If OL has no committed location, and all ch ∈ Π are binary synchronization
channels, then S |= L ⇔ (S ′ ‖O ′

L) |= (lmin # lmax).

Proof Let (l̄, v) be a semantic state of the network of TAs of S, where l̄ is a location vector,
and v is the valuation of all clock variables. According to the UPPAAL semantics on binary
synchronizations [39], for each binary synchronization channel ch ∈Π , we have a transition

(l̄, v)
ch−→ (l̄′, v′) if in two different processes (TAs) of S, there are two edges (li , li+1) and

(lj , lj+1) labeled with ch! and ch?, respectively, such that:

– v |= gi ∧ gj , where gi and gj are guards of the two edges, respectively;
– l̄′ = l̄[li+1/li , lj+1/lj ];
– v′ = aj (ai(v)), where ai and aj are the assignments of the emitting and receiving edges,

respectively;
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– v′ |= Invi+1 ∧ Invj+1, where Invi+1 and Invj+1 are the location invariants of the target
locations of the two edges, respectively;

– either (li or lj or both are committed locations), or no other location in l̄ is committed.

We need to show that the modifications of the original system model S and the observer
TA OL do not affect their legal (i.e. admissible) behaviors, i.e., the event notification mech-
anism and the locking mechanisms neither increase nor decrease the behaviors (traces) in S

and OL. To this end, we prove that each synchronization in S uniquely corresponds to a pair
of consecutive synchronizations in (S ′ ‖ O ′

L).

⇒)
By S |= L we know that the original system model S satisfies the requirements that are

specified in the LSC chart L. It follows that the observer TA OL does not restrict the (legal)
behaviors of S.

If at a semantic state (l̄, v) of S there is a synchronization (l̄, v)
ch−→ (l̄′, v′), where ch ∈Π ,

we let the two coupling edges that carry ch! and ch? be (li , li+1) and (lj , lj+1), respectively.
Clearly, they satisfy all the five requirements as listed earlier in this proof. According to
the rules for modifying S, the edge (li , li+1) in S will correspond to two edges (li , l

′
i ) and

(l′i , li+1) in S ′, where l′i is a newly added committed location. Also according to the mod-
ification rules, the semaphore mayFire evaluates to false only when the current control is
in a newly added committed location (Fig. 13(a)). Now that the control is in li in S ′, the
semaphore mayFire should evaluate to true. This together with “v |= gi ∧ gj ” (the first item
requirement) indicates that the guards for the edges (li , l

′
i ) and (lj , lj+1) of S ′ to synchronize

on channel ch are both satisfied. Besides, items 3–5 in the binary synchronization require-
ments also apply to the ch-synchronization at (li , l

′
i ) and (lj , lj+1). Therefore, there exists

a transition (l̄, v)
ch−→ (l̄′′, v′) in S ′ with (li , l

′
i ) and (lj , lj+1) as the coupling edges, where

l̄′′ = l̄′[l′i/ li , lj+1/lj ].
The second edge (l′i , li+1) in S ′ will be immediately coupled with a corresponding edge

in O ′
L. By the assumption S |= L, we know that OL does not restrict the behaviors of S

via its own conditions (e.g., via g3 in Fig. 13(b)). This means that the cho-synchronization
between S ′ and O ′

L will not get stuck there due to the restrictions of O ′
L. Since after this

synchronization, the clock variables in S ′ remain unchanged, we know that the location
invariant Invi+1 on li+1 of S ′ will still be satisfied. After this synchronization, the two target
locations in S ′ will be li+1 and lj+1, thus coinciding with the corresponding target locations
li+1 and lj+1 in S. Therefore, we can conclude that given a trace tr in S, there exists a unique
trace tr′ in (S ′ ‖ O ′

L) such that tr′ and tr correspond.
By the definition of S |= L (see Sect. 3.2), we know that if a timed trace µ in S arrives

at the minimal cut of the main chart of L, then µ must always be able to reach the maximal
cut of that main chart. By Theorem 2 and Sect. 4.1, we know that if µ arrives at location lmin

of O ′
L, then µ must always be able to reach location lmax of O ′

L.
Since each trace µ in S can be equivalently mapped to a trace µ′ in (S ′ ‖ O ′

L), clearly, if
any µ′ arrives at location lmin of O ′

L, then that µ′ must always be able to reach location lmax

of O ′
L.

Since lmin and lmax are two locations in (S ′ ‖ O ′
L), the above requirement can thus be

formulated as a UPPAAL property (S ′ ‖ O ′
L) |= (lmin # lmax).

⇐)
We need to prove that each trace tr′ in (S ′ ‖O ′

L) that satisfies the CTL property uniquely
corresponds to a trace tr in S that satisfies the LSC requirement.
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Assume that in (S ′ ‖ O ′
L) there is a synchronization (l̄, v)

c−→ (l̄′, v′).
If c ∈ Π , then after removing “mayFire == true” from the condition and removing

“mayFire := false” from the assignment of the emitting edge (Fig. 13(a)), the edge be-
comes exactly the corresponding edge in S. Note that the invariant (if any) at the target
location of this emitting edge is irrelevant of the semaphore mayFire. This indicates that the
synchronization between the corresponding edges in S can also fire.

If c is a fresh channel (i.e., in the form of cho), then the source location of the c!-emitting
edge in S ′ must be a newly added committed location. This c! will be synchronized with a
c?-receiving edge in O ′

L. And it will bring the control in S ′ from the committed location
to the target location, which coincides with the corresponding target location in S. Due
to the use of semaphore mayFire, no other synchronizations in (S ′ ‖ O ′

L) can preempt the
execution of this c-synchronization.

The rest of the transitions in (S ′ ‖ O ′
L) are just the same as those in S. Therefore we can

conclude that a trace tr′ in (S ′ ‖O ′
L) uniquely corresponds to a trace tr in S such that tr′ and

tr are equivalent. Now that (S ′ ‖ O ′
L) |= (lmin # lmax), according to the semantics of LSC

chart satisfaction, we have S |= L. !

Let S, L, OL, S ′, O ′
L, lmin and lmax be the same as declared and explained in Lemma 1.

When L is a universal chart, we have:

Theorem 3 S |= L⇔ (S ′ ‖O ′
L) |= (lmin # lmax).

Proof This theorem is a generalization of Lemma 1 by canceling the restrictions.
If ch ∈ Π is a broadcast channel, the semantics of ch-synchronization [39] is a little

different. Since the modifications of the emitting edges in S do not affect the receiving
edges in S, we can still have a one-to-one mapping between the traces in S and in (S ′ ‖ O ′

L).
If there are committed locations in O ′

L, then we use the second semaphore NxtCmt to
guarantee the non-interrupted execution at those committed locations in O ′

L. Since an edge
(l, l′) starting from a committed location l in O ′

L represents an internal action (τ ) transition
(i.e., a local transition), it needs no synchronization with S ′. Thus the edge does not affect
the behavior of S ′.

To sum up, there is a one-to-one mapping of the traces in S and in (S ′ ‖ O ′
L), even in

the presences of broadcast channels in S and committed locations in OL. Thus we have
S |= L⇔ (S ′ ‖O ′

L) |= (lmin # lmax). !

Let S, L, OL, S ′, O ′
L and lmax be the same as explained in Theorem 3. When L is an

existential chart, we have:

Theorem 4 S |= L⇔ (S ′ ‖O ′
L) |= E♦ lmax.

Proof (idea) We can show that there is a one-to-one mapping between the traces in S and
in (S ′ ‖ O ′

L) similarly as in Lemma 1 and Theorem 3.
The main difference between this theorem and Theorem 3 lies in the semantics of a

universal chart and of an existential chart. However, it is clear that the CTL formula E♦ lmax

represents exactly the existential chart requirements. So this theorem can be proved similarly
as in Lemma 1 and Theorem 3. !
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Appendix D: Proofs of lemmas and theorems in Sect. 5

Let L be an untimed LSC chart whose instance lines I1, I2, . . . , In correspond to timed
automata A1,A2, . . . ,An, respectively, then the translated network of TAs will be NTAL

= {Ai | 1 ≤ i ≤ n} ∪ {Coord}. According to rules R3, R4 and R6, there will be a set of
auxiliary channels Aux = {pch_overi,mch_overi | 1 ≤ i ≤ n} ∪ {activate,over,pch_vio,

reset} that will be used in NTAL. Let the message alphabet of L be Σ , then the alphabet of
observable actions in NTAL will be Act = (Σ ∪Aux).

Lemma 2 Let L be an untimed LSC chart whose message alphabet is Σ , and let NTAL be
the translated network of timed automata which have a set Act of observable actions. Then
∀γ1 ∈ (Σ ∪ {τ })ω . ((γ1 |= L) ⇒ ∃γ2 ∈ (Act ∪ {τ })ω .(γ2 |= NTAL) ∧ (γ2|Σ = γ1|Σ )), and
∀γ2 ∈ (Act ∪ {τ })ω . ((γ2 |= NTAL) ⇒∃!γ1 ∈ (Σ ∪ {τ })ω . (γ1 |= L) ∧(γ2|Σ = γ1|Σ )).

Proof We can prove the above two implications by proving that each cut of chart L uniquely
corresponds to a location vector in the network of timed automata NTAL, and each advance-
ment step in L uniquely corresponds to either a message synchronization transition (ranging
on Σ ∪ Aux) or a sequence of concatenated message synchronization and internal action
transitions in NTAL, such that they consume exactly the same letter from Σ if they are both
restricted to Σ . Note that we restrict the LSC advancement steps to represent only legal (i.e.
admissible) behaviors.

Let the instance lines in chart L be I1, I2, . . . , In. They will be translated into timed
automata A1,A2, . . . ,An, respectively. Together with the auxiliary coordinator automaton
Coord they constitute NTAL.

The initial cut c0 of chart L corresponds to the LSC initial position vector (01,02,

. . . ,0n), where ij means that instance Ij ∈ inst(L) is currently in its position i ∈ pos(L, Ij ).
In the translated network of timed automata NTAL, automaton Coord is initially in its lo-
cation l0

coord . By rule R1, each 0i in position vector (01,02, . . . ,0n) corresponds to a TA
location l0

i (denoting location 0 in timed automaton Ai ). Therefore, cut c0 uniquely corre-
sponds to the NTAL initial location vector l̄0 = (l0

1 , l
0
2 , . . . , l

0
n, l

0
coord).

We show how the advancement steps from the LSC initial position vector correspond to
the transitions in the network of timed automata. At LSC position vector (01,02, . . . ,0n),
there are two kinds of possible advancement steps:

– If there is an m-labeled message occurrence mo from position 1i of instance Ii to position
1j of instance Ij (i.e., mo is a minimal event), then:

On one hand, by rule R2, there will be an m!-labeled TA edge from location l0
i to

l1
i in Ai , and an m?-labeled TA edge from location l0

j to l1
j in Aj . According to the

LSC semantics, there is a message synchronization advancement step on m in L from
(01, . . . ,0i , . . . ,0j , . . . ,0n) to (01, . . . ,1i , . . . ,1j , . . . ,0n). Accordingly, in NTAL there
exists exactly a corresponding binary synchronization on channel m between Ai and
Aj , and the location vector of NTAL will change from (l0

1 , . . . , l
0
i , . . . , l

0
j , . . . , l

0
n, l

0
coord)

to (l0
1 , . . . , l1

i , . . . , l
1
j , . . . , l

0
n, l

0
coord).

On the other hand, according to the semantics of the invariant mode universal chart,
the message as a minimal event can be constantly matched for with L staying in the
initial cut. By rule R8, in NTAL there will be first a binary synchronization on channel
m, i.e., (l0

1 , . . . , l
0
i , . . . , l

0
j , . . . , l

0
n, l

0
coord)

m−→ (l0
1 , . . . , l

0
i , . . . , l

PM
j , . . . , l0

n, l
0
coord), and then

an immediately following internal action transition that leads back to the initial location
vector, i.e., (l0

1 , . . . , l
0
i , . . . , lPM

j , . . . , l0
n, l

0
coord)

τ−→ (l0
1 , . . . , l

0
i , . . . , l

0
j , . . . , l

0
n, l

0
coord). Here
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lPM
j is an auxiliary TA location that is specially used for prechart pre-matching. In this

case of pre-matching, the m-synchronization advancement step in L uniquely corre-
sponds to a sequence of the tightly concatenated

m−→ and
τ−→ transitions.

Since a dedicated flag boolean variable prematch has been used to strengthen the TA
transition guards, assignments and the location invariants, it follows that at NTAL lo-
cation vector (l0

1 , . . . , l
0
i , . . . , l0

j , . . . , l
0
n, l

0
coord), there are only the two above-mentioned

possible interleaved executions between the two m!-labeled outgoing edges from l0
i in

Ii and the two m?-labeled outgoing edges from l0
j in Ij .

– If instance Ii has no interactions with other instance lines in the prechart, then there is an
immediate silent advancement step from (01, . . . ,0i , . . . ,0n) to (01, . . . ,1i , . . . ,0n). By
rule R3, l0

i will be a committed location in Ai of NTAL, and there will be a pch_overi !-
labeled edge from l0

i to l1
i . Furthermore, in automaton Coord there will be a coupling

pch_overi?-labeled edge either
– from l0

coord to l1
coord , corresponding to the case where Ii is the very last instance line of

L to complete its prechart portion; or
– from l0

coord to l0
coord , corresponding to the case where Ii is not yet the last instance line

of L to complete its prechart portion.
In the two cases, the location vector of NTAL will be changed from (l0

1 , . . . , l
0
i , . . . , l

0
n,

l0
coord) to (l0

1 , . . . , l
1
i , . . . , l

0
n, l

1
coord), and from (l0

1 , . . . , l
0
i , . . . , l

0
n, l

0
coord) to (l0

1 , . . . , l
1
i , . . . , l

0
n,

l0
coord), respectively. However, in both cases, there will be exactly one binary synchroniza-

tion transition on pch_overi in NTAL.

The above two kinds of possible advancement steps indicate that there is an initial correspon-
dence between the position vector of L and the location vector of NTAL.3 Since an untimed
chart is a message-only chart, a cut vector is itself an LSC configuration, and a location vec-
tor is itself a semantic state of the translated network of timed automata.4 Therefore, there
is an initial “LSC cut to TA location vector”, and “LSC advancement step to TA (sequence
of) transition” correspondence between L and NTAL.

The above correspondences can be generalized by using induction. Assume that at a
cut c that corresponds to a position vector (p11, . . . , pii, . . . , pjj , . . . , pnn) in the prechart
of L, there is an m-labeled message occurrence sent from position (pi + 1)i of instance
Ii to position (pj + 1)j of instance Ij . If for cut c, there uniquely exists a corresponding
location vector l̄ in NTAL, then similar to the case of the initial cut, we can prove that the
message synchronization advancement step on m in L uniquely corresponds to a binary
synchronization transition in NTAL; and after this message synchronization advancement
step, the new cut c′ uniquely corresponds to the destination location vector l̄′ in NTAL.
Proof by induction ensures that any normal (i.e., other than the prechart pre-matching ones)
message synchronization advancement step in the prechart of L uniquely corresponds to a
message synchronization transition in NTAL.

When (p11, . . . , pii, . . . , pjj , . . . , pnn) is a position vector in the main chart of L, the
unique correspondence relation can be proved similarly.

3More precisely the sub-location vector of NTAL that is projected to A1 ‖ A2 ‖ · · · ‖ An . Note that the edges
in Coord correspond only to auxiliary messages rather than the observable messages in Σ or the internal (τ )
action.
4Note that in the LSC chart, the message sender/receiver and other relevant information are not defined as a
part of the chart configuration. Accordingly, the auxiliary and bookkeeping variable information are excluded
from the semantic states of the translated timed automata.
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Now we prove the unique correspondence for the case that involves the intra-chart co-
ordination (e.g., the prechart to main chart transition). Assume that in the prechart of L, a
cut c corresponds to position vector (p11, . . . , pii, . . . , pnn), where pi + 1 = Pch_botL,Ii .
If (p11, . . . , pii, . . . , pnn) uniquely corresponds to a location vector (l

p1
1 , . . . , l

pi
i , . . . , l

pn
n ,

l0
coord), then by rule R3, the internal advancement step (p11, . . . ,pii , . . . , pnn)

τ−→ (p11, . . . ,

(pi + 1)i , . . . ,pnn) in L corresponds to either

– transition (l
p1
1 , . . . , l

pi
i , . . . , l

pn
n , l0

coord)
pch_overi−−−−−→ (l

p1
1 , . . . , l

pi+1
i , . . . , l

pn
n , l1

coord) in NTAL, in
which case Ii is the very last instance line of L to complete its prechart portion; or

– transition (l
p1
1 , . . . , l

pi
i , . . . , l

pn
n , l0

coord)
pch_overi−−−−−→ (l

p1
1 , . . . , l

pi+1
i , . . . , l

pn
n , l0

coord) in NTAL, in
which case Ii is not yet the last instance line of L to complete its prechart portion.

The above-mentioned first case will be followed by an intra-chart coordination, i.e., there
will be an immediately following silent advancement step in L, i.e., all instance lines will
move from their Pch_bot positions to their Mch_top positions simultaneously. By rule R4,
the binary synchronization transition will be immediately followed by a broadcast synchro-

nization transition (l
p1
1 , . . . , l

pi+1
i , . . . , l

pn
n , l1

coord)
activate−−−→ (l

p1+1
1 , . . . , l

pi+2
i , . . . , l

pn+1
n , l2

coord),
where p1 + 1 = Mch_topL,I1

, . . . ,pi + 2 = Mch_topL,Ii
, . . . ,pn + 1 = Mch_topL,In

. There-
fore in this case, there is a correspondence between the behaviors of L and NTAL.

When (p11, . . . ,pii , . . . ,pnn) is a position vector in the main chart of L, the unique
correspondence for the case that concerns main chart completion can be proved similarly.

Now we prove the unique correspondence for the case that involves cold violations.
Since an untimed chart has no conditions, a cold violation is caused only by the vi-
olation of the event partial order in the prechart. In this case, all the instance lines
in the prechart of L will be brought from where they are back to their initial posi-
tions. Recall that psn : loc(L) → ⋃

Ii∈inst(L) pos(L, Ii) projects a location to its position
on its instance line. Formally, let us assume that L is in the cut c which corresponds
to the position vector (p11, . . . ,pii , . . . ,pjj , . . . ,pnn) such that pkk < Pch_botL,Ik ,1 ≤
k ≤ n. For any message label m ∈ Σ , if ∃mo ∈ MO(L) . (lab(mo) = m) ∧ (∃Ii, Ij ∈
inst(L) . ((src(mo) = Ii)∧ (dest(mo) = Ij )∧ (psn(tail(mo)) 5= pi + 1)∧ (psn(head(mo)) 5=
pj + 1))), then at cut c, the event partial order will be cold-violated by any (external) m-
labeled message from Ii to Ij . For such an m-labeled message occurrence mo, by rule
R6, the cold violation step (p11, . . . ,pii , . . . ,pjj , . . . ,pnn)

m−→ (01, . . . ,0i , . . . ,0j , . . . ,0n)

in L uniquely corresponds to a sequence of three concatenated synchronizations in

NTAL : (l
p1
1 , . . . , l

pi
i , . . . , l

pj
j , . . . , l

pn
n , l0

coord)
m−→ (l

p1
1 , . . . , l

pi
i , . . . , lRst

j , . . . , l
pn
n , l0

coord)
pch_vio−−−→

(l
p1
1 , . . . , l

pi+1
i , . . . , l0

j , . . . , l
pn
n , lRst

coord)
reset−−→ (l0

1 , . . . , l
0
i , . . . , l

0
j , . . . , l

0
n, l

0
coord).

Note that according to rule R7, a hot violation in the main chart of L will end up with a
semantic state that has a deadend location in a certain TA of NTAL. This transition will not
be considered as a part of an accepted trace of NTAL.

In conclusion, each possible advancement step in L uniquely corresponds to a sequence
of concatenated message synchronization and internal action transitions in NTAL. They con-
sume exactly the same message label in Σ . Therefore, each accepted trace in L uniquely
corresponds to an accepted trace in NTAL modulo the message alphabet Σ . !

Let LS be a set of untimed LSC charts L1,L2, . . . ,Ln. Each chart Li contains the in-
stance lines Ii,1, Ii,2, . . . , Ii,ini

, where 1 ≤ i ≤ n, and ini = #(inst(Li)) denotes the number
of instance lines in Li . The entire translated network of TAs will be NTALS = {Ai,j | 1 ≤
i ≤ n,1 ≤ j ≤ #(inst(Li))} ∪ {Coordi | 1 ≤ i ≤ n}. The message alphabet of LS will be the
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union of all the message alphabets for the individual charts, i.e., Π = ⋃n
i=1 Σi . The alphabet

of observable actions will be Act = (Π ∪ Aux).

Lemma 3 Let LS be a set of untimed LSC charts whose message alphabet is Π , and
let NTALS be the translated network of timed automata which have a set Act = Π ∪ Aux
of normal and auxiliary channels. Then ∀γ1 ∈ (Π ∪ {τ })ω . ((γ1 |= LS) ⇒ ∃γ2 ∈ (Act ∪
{τ })ω . (γ2 |= NTALS) ∧ (γ2|Π = γ1|Π )), and ∀γ2 ∈ (Act ∪ {τ })ω . ((γ2 |= NTALS) ⇒ ∃!γ1 ∈
(Π ∪ {τ })ω . (γ1 |= LS)∧ (γ2|Π = γ1|Π )).

Proof In this case, in order to prove the above two implications, we need to prove that each
cut vector of LS uniquely corresponds to a location vector in NTALS, and each advance-
ment step in LS uniquely corresponds to an equivalence class of sequences of concatenated
(broadcast) synchronization and internal action transitions in NTALS. Although elements in
the equivalence class have different intermediate location vectors, they have the same ini-
tial and final location vectors. They consume exactly the same message in Π . Note that an
advancement step in LS always represents a legal behavior.

By Lemma 2, for each untimed chart Li in LS, each cut in Li uniquely corresponds to a
location vector in the corresponding network of timed automata NTALi

, and each advance-
ment step in Li uniquely corresponds to either a single message synchronization transition,
or a sequence of concatenated message synchronization and internal action transitions in
NTALi

.
The only semantic difference between the advancement steps of a single untimed chart

and of a set of untimed charts is that in the latter case there exist inter-chart coordinations,
i.e., across-chart broadcast synchronization on message occurrences of the same message is
possible. This implies that:

(1) At a cut vector of LS, if in more than one chart there are enabled message occurrences
of the same message, then either all of them are chosen to be fired simultaneously, or
none of them is chosen to be fired;

(2) Due to the nature of broadcast synchronization in the translated network of TAs, while
a message at a cut vector of LS could correspond to a legal message synchronization
advancement step in a certain chart, meanwhile it could also lead another chart to be
reset by cold-violating the prechart of that chart (case 2.1), or lead another chart to a
deadlocked situation by hot-violating the main chart of that chart (case 2.2).

In case (1), given a set LS of untimed LSC charts L1,L2, . . . ,Ln, we let ini =
#(inst(Li)), 1 ≤ i ≤ n. We assume that the current cut vector c̄ of LS uniquely corresponds
to the position vector (p1,1,p1,2, . . . , p1,in1 ,p2,1,p2,2, . . . , p2,in2 , . . . , pn,1,pn,2, . . . , pn,inn ),
where pi,j ∈ pos(Li, Ij ) denotes the current position on instance Ij of chart Li . Without
loss of generality, we assume that two m-labeled message occurrences mo1 and mo2 are en-
abled at cut vector c̄ in two charts Li and Lj , respectively. Specifically, let (pi,a + 1) and
(pi,b + 1) be the sending and receiving positions of mo1 in Li , where 1 ≤ a, b ≤ ini , and
let (pj,c + 1) and (pj,d + 1) be the sending and receiving positions of mo2 in Lj , where
1 ≤ c, d ≤ inj . According to the trace-based semantics for a set of charts, these two mes-
sage synchronization advancement steps in Li and Lj will occur simultaneously. By rule
R2, there will be an m!-labeled edge from location l

pi,a

i,a to l
pi,a+1
i,a in Ai,a , and an m?-labeled

edge from location l
pi,b

i,b to l
pi,b+1
i,b in Ai,b , and similarly for chart Lj . By rule R5, an extra

m?-labeled edge from location l
pi,a

i,a to l
pi,a+1
i,a will be added in Ai,a , and similarly in chart Lj .

Consequently, there will be a broadcast synchronization on m among Ai,a , Ai,b, Aj,c , Aj,d ,
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initiated either by Ai,a , or by Aj,c. In either case, after this broadcast synchronization on m

in NTALS, the locations of Ai,a , Ai,b , Aj,c and Aj,d will progress to l
pi,a+1
i,a , l

pi,b+1
i,b , l

pj,c+1
j,c and

l
pj,d+1
j,d , respectively. Therefore, the message synchronization advancement step on m in LS

corresponds to two possible interleaved executions among Ai,a , Ai,b, Aj,c and Aj,d . Since
both interleavings consume the same message label m, they correspond to the same portion
of the accepted trace in NTALS. These two interleaved executions constitute an equivalence
class with respect to the message synchronization advancement step on m.

In case (2.1), assume that the current cut vector c̄ of LS corresponds to position vector
(p1,1,p1,2, . . . , p1,in1 ,p2,1,p2,2, . . . , p2,in2 , . . . , pn,1,pn,2, . . . , pn,inn ). Without loss of gen-
erality, we assume that an m-labeled message occurrence mo is currently enabled in Li , but
not in Lj , and that c̄ “cuts” the prechart of Lj . According to the semantics for a set of LSC
charts, when message m is encountered, there will be a normal advancement step in Li , and
a cold violation advancement step in Lj . By Lemma 2, such a cold violation advancement
step uniquely corresponds to a sequence of synchronizations in the relevant timed automata.
Therefore, the system-wide synchronization on m will also uniquely correspond to a system-
wide sequence of synchronizations in NTALS.

In case (2.2), assume that the current cut vector c̄ of LS corresponds to position vector
(p1,1,p1,2, . . . , p1,in1 ,p2,1,p2,2, . . . , p2,in2 , . . . , pn,1,pn,2, . . . , pn,inn ). Without loss of gen-
erality, we assume that an m-labeled message occurrence mo is currently enabled in Li , but
not in Lj , and that c̄ “cuts” the main chart of Lj . According to the semantics for a set of
LSC charts, when message m is encountered, there will be a normal message synchroniza-
tion advancement step in Li , and a hot violation in Lj . Specifically, let pi,a and pi,b be the
sending and receiving positions of mo in Li , where 1 ≤ a, b ≤ ini . We let the sub-position
vector in Lj be cj = (pj,1,pj,2, . . . , pj,inj

). Obviously, mo is not enabled at sub-cut cj .
Since Lj is hot-violated by mo, there must exist a position, say pj,x , 1 ≤ x ≤ inj , such that
there is an m?-labeled edge from pj,x to a sink error location Err in Aj,x . After label m is
consumed, the next semantic state of NTALS will be reached. This semantic state will have
a deadend location Err, which indicates that the system will be deadlocked. Therefore, the
TA transition step leading to this semantic state will not be considered as a part of the ac-
cepted trace. In this case, m will not be allowed to occur at cut vector c̄. This demonstrates
how the different charts constrain the behaviors of each others. In summary, in case (2.2), a
to-be-hot violating message in LS uniquely corresponds to a to-be-deadlocked TA transition
in NTALS.

Based on the above discussions, we conclude that there exists a unique correspondence
between the observable traces of a set of untimed LSC charts and their corresponding net-
work of timed automata. !

Let L be a time-enriched chart whose instance lines I1, I2, . . . , In correspond to timed
automata A1,A2, . . . ,An, respectively. Let the message alphabet of L be {m1,m2, . . . ,mk}.
According to Sect. 5.1.3 (“Translation of assignments”) and Sect. 5.2, in the worst case
there will be an auxiliary timed automaton Ami

for each mi , 1 ≤ i ≤ k. Consequently, the
translated network of TAs will be NTAL = {Ai | 1 ≤ i ≤ n}∪ {Coord}∪ {Ami

| 1 ≤ i ≤ k}.
According to rules R3, R4 and R6, there will be auxiliary channels Aux = {pch_overi ,

mch_overi | 1 ≤ i ≤ n} ∪ {activate,over,pch_vio, reset} used in NTAL. According to rule
R10, there could be auxiliary channels Aux′ = {mi_Rpt,mi_Rst,mi_Rcv | 1 ≤ i ≤ k} used
in NTAL. Let the message alphabet of L be Σ , then the alphabet of observable actions in
NTAL will be Act = Σ ∪ Aux ∪ Aux′.
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Lemma 4 Let L be a time-enriched LSC chart whose message alphabet is Σ , and let NTAL

be the translated network of timed automata which have a set Act = Σ∪Aux∪Aux ′ of nor-
mal and auxiliary channels. Then ∀γ1 ∈ (Σ ∪ {τ }∪R≥0)

ω . ((γ1 |= L) ⇒∃γ2 ∈ (Act ∪ {τ }∪
R≥0)

ω . (γ2 |= NTAL) ∧ (γ2|(Σ∪R≥0) = γ1|(Σ∪R≥0))), and ∀γ2 ∈ (Act ∪ {τ } ∪ R≥0)
ω . ((γ2 |=

NTAL) ⇒∃!γ1 ∈ (Σ ∪ {τ }∪R≥0)
ω . (γ1 |= L)∧ (γ2|(Σ∪R≥0) = γ1|(Σ∪R≥0))).

Proof In order to prove the above two implications, we need to show that each configuration
of chart L uniquely corresponds to a certain semantic state of NTAL, and each advancement
step in L uniquely corresponds to a sequence of concatenated message synchronization
transitions, and/or internal action transitions, and/or time delay transitions in NTAL such
that they either consume exactly the same letter from Σ , or undergo exactly the same period
of time delay.

By Lemma 2, each cut of an untimed chart L uniquely corresponds to a semantic state
in NTAL, and each advancement step in L uniquely corresponds to either a message syn-
chronization transition, or a sequence of concatenated message synchronization and internal
action transitions in NTAL. For a time-enriched LSC chart, we keep this skeleton correspon-
dence, i.e., we map position pii of instance line Ii to location l

pi
i of the timed automaton

Ai . Note that along an instance line of the time-enriched chart, two adjacent LSC positions
typically do not correspond to two adjacent locations in the corresponding translated TA.
Between location l

pi
i and l

pi+1
i , where 0 ≤ pi ≤ (p_maxL,Ii − 1), according to rules R9, R10

and R11, we will add some intermediate auxiliary TA locations, and add some TA edges to
connect them.

Now we prove that a message synchronization advancement step on m in L uniquely
corresponds to a sequence of transitions in NTAL that consumes m exactly. Assume that at
a configuration c which corresponds to position vector (p11, . . . ,pii , . . . ,pjj , . . . ,pnn) in L

and at clock valuation v, there is an m-labeled message occurrence mo with condition (clock
constraints) g and assignment (clock resets) a sent from position (pi + 1)i of instance Ii to
position (pj + 1)j of instance Ij . Assume that position pii corresponds to location l

pi
i in Ai ,

and position (pi+1)i corresponds to location l
pi+1
i in Ai , then there will be five intermediate

locations between l
pi
i and l

pi+1
i in Ai , which we denote as l

pi,1
i , l

pi,2
i , l

pi,3
i , l

pi,4
i and l

pi,5
i . Here

– between l
pi
i and l

pi,1
i , there is a TA edge with the guard “m_mayRcv == true”;

– between l
pi,1
i and l

pi,2
i , there is a TA edge which tests the upper bound constraints;

– between l
pi,2
i and l

pi,3
i , there is an m!-labeled TA edge;

– between l
pi,3
i and l

pi,4
i , there is a TA edge which tests the lower bound and/or clock differ-

ence constraints;
– between l

pi,4
i and l

pi,5
i , there is an m_Rpt!-labeled TA edge;

– between l
pi,5
i and l

pi+1
i , there is an m_Rst?-labeled TA edge.

Similarly, in Aj there will also be five intermediate locations and the corresponding edges
that connect them. Specifically, if there are positions on other instance lines that are waiting
for the completion of this message synchronization according to the partial order relation
(like the situation of Fig. 21), then there will be one more intermediate location l

pi,6
i , and

an m_Rcv!-labeled edge connecting l
pi,6
i to l

pi+1
i . According to rule R11, the position sub-

vector (pii ,pjj ) corresponds to the TA location sub-vector (l
pi
i , l

pj
j ), where both locations are

committed locations. After these two transitions from (l
pi
i , l

pj
j ), the new location sub-vector

(l
pi,1
i , l

pj,1
j ) will be reached, which are also committed locations. Since a legal advancement

step in L will not violate the upper bound of the clock constraints, the upper bound con-
straint will evaluate to true and thus the next location sub-vector will be (l

pi,2
i , l

pj,2
j ). From
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(l
pi,2
i , l

pj,2
j ) there will be the message synchronization on m leading to (l

pi,3
i , l

pj,3
j ), which

are again committed locations. After comparing the lower bound of clock constraints, the
location sub-vector (l

pi,4
i , l

pj,4
j ) will be reached. Now instance lines Ii and Ij will immedi-

ately report to the dedicated automaton Am, telling it that the instances are done with testing
the guarding flag boolean variables, testing the upper bound, message synchronization, and
testing the lower bound or clock difference. Once both instance lines have notified Am of
their completions, Am will immediately initiate an m_Rst-labeled broadcast synchronization
which brings Ai from l

pi,5
i to l

pi+1
i , and brings Aj from l

pj,5
j to l

pj+1
j . Specifically, if there is

an l
pi,6
i in Ai , then the m_Rst?-labeled edge will be from l

pi,5
i to l

pi,6
i in Ai , and there will be

an m_Rcv!-labeled edge from l
pi,6
i to l

pi+1
i . In summary, the message synchronization step

on m in L will uniquely correspond to such a sequence of transitions in NTAL.
For a silent advancement step in L, it is the same as in the untimed case. In other words,

the corresponding proof for Lemma 2 also applies here.
For a time delay advancement step in L, since the upper bounds and lower bounds of

clock constraints are properly translated to tests that are prior to and after the message syn-
chronization in NTAL, a time delay of a period of d ∈ R≥0 is allowed in NTAL if and only if
the same period d of time delay is allowed in L.

In all the three possible cases of an advancement step in L, there will be a uniquely
corresponding sequence of transitions in NTAL such that this sequence consumes exactly
the same message or the same amount of time delay as that step in L. !

Let LS be a set of time-enriched LSC charts L1,L2, . . . ,Ln. Each chart Li contains the
instance lines Ii,1, Ii,2, . . . , Ii, ini

, where ini = #(inst(Li)). Let the message alphabet Π of
LS be Π = ⋃n

i=1 Σi = {m1,m2, . . . ,mk}. Then in the worst case, the translated network of
TAs will be NTALS = {Ai,j | 1 ≤ i ≤ n,1 ≤ j ≤ #(inst(Li))} ∪ {Coordi | 1 ≤ i ≤ n} ∪ {Ami

|
1 ≤ i ≤ k}. Similar to Lemma 4, we let Act = Π ∪ Aux ∪ Aux′ (note that here Aux and Aux′

are as defined in Sect. 5.2).

Theorem 5 Let LS be a set of time-enriched LSC charts whose message alphabet is Π ,
and let NTALS be the translated network of timed automata which have a set Act of normal
and auxiliary channels. Then ∀γ1 ∈ (Π ∪ {τ } ∪ R≥0)

ω . ((γ1 |= LS) ⇒ ∃γ2 ∈ (Act ∪ {τ } ∪
R≥0)

ω . (γ2 |= NTALS) ∧ (γ2|(Π∪R≥0) = γ1|(Π∪R≥0))), and ∀γ2 ∈ (Act ∪ {τ } ∪ R≥0)
ω . ((γ2 |=

NTALS) ⇒∃!γ1 ∈ (Π ∪ {τ }∪R≥0)
ω . (γ1 |= LS)∧ (γ2|(Π∪R≥0) = γ1|(Π∪R≥0))).

Proof We need to prove that each cut vector of LS uniquely corresponds to a location vec-
tor in NTALS, and each message synchronization advancement step in LS uniquely corre-
sponds to a sequence of concatenated message synchronization transitions, and internal ac-
tion transitions in NTALS. These transitions are connected by committed locations in NTALS.
Because any committed location appears as a junction location only when it will be im-
mediately followed (only) by a condition test, these concatenated transitions can be viewed
as an atomic step. Although for the sake of inter-chart coordination, the outgoing transi-
tions from locations of different TAs may be executed in an interleaved manner, the order
of the consumed words in (Π ∪ {τ })∗ remains the same. In other words, an accepted timed
trace γ ∈ (Π ∪ {τ } ∪ R≥0)

ω may correspond to an equivalence class of timed traces in
(Act∪ {τ }∪R≥0)

∗. They consume exactly the same timed trace in (Π ∪R≥0)
∗. Proof details

concerning the translations of inter-chart message coordinations and message occurrences
that are associated with conditions and/or assignments are similar to that for Lemmas 3
and 4, respectively. !
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Let LS be an LSC system which consists of a set of (untimed or timed) driving universal
charts L1,L2, . . . ,Ln. We translate LS to a network of timed automata NTALS. Let L′ be
a separate monitored universal chart (i.e., the “property chart”), which will be translated
to another network of timed automata NTAL′ . Let the TA locations CoordL′ .Mch_top and
CoordL′ .Mch_bot denote that the main chart of L′ has just been activated and has just been
successfully matched, respectively. We have:

Theorem 6 LS |= L′ ⇔ (NTALS ‖ NTAL′) |= CoordL′ .Mch_top # CoordL′ .Mch_bot.

Proof By Theorem 5, each accepted trace in LS uniquely corresponds to a cluster of ac-
cepted traces in NTALS which consume exactly the same string from (Π ∪R≥0)

ω . And sim-
ilarly for L′ and NTAL′ .

The TA location CoordL′ .Mch_top represents the situation where the property chart L′

has just been activated, and CoordL′ .Mch_bot the situation where L′ has just been satisfied
(i.e., successfully matched).

Since L′ is a property chart, its corresponding network of timed automata NTAL′ will
never interfere with (or “drive”) the network of timed automata NTALS. This means that
after composing the TAs in NTAL′ with the TAs in NTALS, the behaviors in NTALS will not be
further constrained. Since both CoordL′ .Mch_top and CoordL′ .Mch_bot are locations in the
product automaton of (NTALS ‖ NTAL′), the right hand side formula of this theorem captures
exactly the assume-guarantee style responsiveness property of the LSC requirement, which
is exactly what we require of LS |= L′. !

An LSC system LS satisfies a monitored existential chart L′ iff one of the traces in LS is
included in the traces of L′.

Theorem 7 LS |= L′ ⇔ (NTALS ‖ NTAL′) |= E♦ CoordL′ .Mch_bot.

Proof (idea) This theorem can be proved similarly as in Theorem 6, except that an existen-
tial chart has no prechart and one satisfying run suffices to prove this property. !
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