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Abstract. In a previous work, we explained how Euler’s method for
computing approximate solutions of systems of ordinary differential equa-
tions can be used to synthesize safety controllers for sampled switched
systems. We continue here this line of research by showing how Euler’s
method can also be used for synthesizing safety controllers in a distributed
manner. The global system is seen as an interconnection of two (or more)
sub-systems where, for each component, the sub-state corresponding to
the other component is seen as an “input”; the method exploits (a vari-
ant of) the notions of incremental input-to-state stability (δ-ISS) and
ISS Lyapunov function. We illustrate this distributed control synthesis
method on a building ventilation example.

1 Introduction

The computation of reachable sets for continuous-time dynamical systems has
been intensively studied during the last decades. Most of the methods to compute
the reachable set start from an initial value problem for a system of ordinary
differential equations (ODE) defined by

9xptq “ fpt, xptqq with xp0q P X0 Ă Rn and t P r0, tends . (1)

As an analytical solution of Equation (1) is usually not computable, numerical
approaches have been considered. A numerical method to solve Equation (1),
when X0 is reduced to one value, produces a discretization of time, such that
t0 ď ¨ ¨ ¨ ď tN “ tend, and a sequence of states x0, . . . , xN based on an integration
method which starts from an initial value x0 at time t0 and a finite time horizon h
(the step-size), produces an approximation xk`1 at time tk`1 “ tk ` h, of the
exact solution xptk`1q, for all k “ 0, . . . , N ´ 1. The simplest numerical method
is Euler’s method in which tk`1 “ tk ` h for some step-size h and xk`1 “ xk `
hfptk, xkq; so the derivative of x at time tk, fptk, xkq, is used as an approximation
of the derivative on the whole time interval.



The global error errorptq at t “ t0`kh is equal to }xptq´xk}. In case n “ 1,
if the solution x has a bounded second derivative and f is Lipschitz continuous
in its second argument, then it satisfies:

errorptq ď
hM

2L
peLpt´t0q ´ 1q (2)

where M is an upper bound on the second derivative of x on the given in-
terval and L is the Lipschitz constant of f [3]. 3

In [14], we gave an upper bound on the global error errorptq, which is more
precise than (2). This upper bound makes use of the notion of One-Sided Lips-
chitz (OSL) constant. This notion has been used for the first time by [7] in order
to treat “stiff” systems of differential equations for which the explicit Euler
method is numerically “unstable” (unless the step size is taken to be extremely
small). Unlike Lipschitz constants, OSL constants can be negative, which ex-
press a form of contractivity of the system dynamics. Even if the OSL constant
is positive, it is in practice much lower than the Lipschitz constant [5]. The use
of OSL thus allows us to obtain a much more precise upper bound for the global
error. We also explained in [14] how such a precise estimation of the global error
can be used to synthesize safety controllers for a special form hybrid systems,
called “sampled switched systems”.

In this paper, we explain how such an Euler-based method can be extended
to synthesize safety controllers in a distributed manner. This allows us to control
separately a component using only partial information on the other components.
It also allows us to scale up the size of the global systems for which a control can
be synthesized. In order to perform such a distributed synthesis, we will see the
components of the global systems as being interconnected (see, e.g., [18]), and
use (a variant of) the notions of incremental input-to-state stability (δ-ISS) and
ISS Lyapunov functions [11] instead of the notion of OSL used in the centralized
framework.

The plan of the paper is as follows: In Section 2, we recall the results of [14]
obtained in the centralized framework; in Section 3 we extend these results to
the framework of distributed systems; we then apply the distributed synthesis
method to a nontrivial example (Section 4), and conclude in Section 5.

2 Euler’s method applied to control synthesis

In this Section, we recall the results obtained in [14]. We first give results con-
cerning a system governed by a single ODE system (Section 2.1), then consider
results for a switched system composed of several ODEs (Section 2.2).

3 Such a bound has been used in hybridization methods: errorptq “ ED
L
peLt ´ 1q [2,

4], where ED gives the maximum difference of the derivatives of the original and
approximated systems.



2.1 ODE systems

We make the following hypothesis:

pH0q f is a locally Lipschitz continuous map.

We make the assumption that the vector field f is such that the solutions of
the differential equation (7) are defined. We will denote by φpt;x0q the solution
at time t of the system:

9xptq “ fpxptqq,

xp0q “ x0.
(3)

Consider a compact and convex set S Ă Rn, called “safety set”. We denote by T
a compact overapproximation of the image by φ of S for 0 ď t ď τ , i.e., T is
such that

T Ě tφpt;x0q | 0 ď t ď τ, x0 P Su.

The existence of T is guaranteed by assumption pH0q. We know furthermore
by pH0q that there exists a constant L ą 0 such that:

}fpyq ´ fpxq} ď L }y ´ x} @x, y P S. (4)

Let us define C:
C “ sup

xPS
L}fpxq}. (5)

We make the additional hypothesis that the mapping f is one-sided Lipschitz
(OSL) [7]. Formally:

pH1q There exists a constant λ P R such that

xfpyq ´ fpxq, y ´ xy ď λ }y ´ x}2 @x, y P T,

where x¨, ¨y denotes the scalar product of two vectors of Rn.

Remark 1. Constants λ, L and C can be computed using constrained optimiza-
tion algorithms, namely, the ‘sqp’ function from GNU Octave [8].

Given an initial point x̃0 P S, we define the following “linear approximate
solution” φ̃pt; x̃0q for t on r0, τ s by:

φ̃pt; x̃0q “ x̃0 ` tfpx̃0q. (6)

We define the closed ball of center x P Rn and radius r ą 0, denoted Bpx, rq,
as the set tx1 P Rn | }x1 ´ x} ď ru.

Given a positive real δ0, we now define the expression δptq which, as we will
see in Theorem 1, represents (an upper bound on) the error associated to φ̃pt; x̃0q

(i.e., }φ̃pt; x̃0q ´ φpt;x0q}).
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Fig. 1. Illustration of Corollary 1, with x̃1 “ φ̃pτ ; x̃0q and x1 “ φpτ ;x0q.

Definition 1. Let δ0 be a positive constant. Let us define, for all 0 ď t ď τ ,
δptq as follows:

– if λ ă 0:

δptq “

ˆ

pδ0q2eλt `
C2

λ2

ˆ

t2 `
2t

λ
`

2

λ2

`

1´ eλt
˘

˙˙

1
2

– if λ “ 0 :

δptq “
`

pδ0q2et ` C2p´t2 ´ 2t` 2pet ´ 1qq
˘

1
2

– if λ ą 0 :

δptq “

ˆ

pδ0q2e3λt `
C2

3λ2

ˆ

´t2 ´
2t

3λ
`

2

9λ2

`

e3λt ´ 1
˘

˙˙

1
2

Note that δptq “ δ0 for t “ 0. The function δp¨q depends implicitly on param-
eter: δ0 P R. In Section 2.2, we will use the notation δ1p¨q where the parameter
is denoted by pδ1q0.

Theorem 1. Given an ODE system satisfying (H0-H1), consider a point x̃0

and a positive real δ0. We have, for all x0 P Bpx̃0, δ0q, t P r0, τ s:

φpt;x0q P Bpφ̃pt; x̃0q, δptqq.

Corollary 1. Given an ODE system satisfying (H0-H1), consider a point x̃0 P S
and a real δ0 ą 0 such that:

1. Bpx̃0, δ0q Ď S,
2. Bpφ̃pτ ; x̃0q, δpτqq Ď S, and

3. d2pδptqq
dt2 ą 0 for all t P r0, τ s.

Then we have, for all x0 P Bpx̃0, δ0q and t P r0, τ s: φpt;x0q P S.



2.2 Sampled switched systems

Let us consider the nonlinear switched system

9xptq “ fσptqpxptqq (7)

defined for all t ě 0, where xptq P Rn is the state of the system, σp¨q : R` ÝÑ U
is the switching rule. The finite set U “ t1, . . . , Nu is the set of switching modes
of the system. We focus on sampled switched systems: given a sampling period
τ ą 0, switchings will occur at times τ , 2τ , . . . The switching rule σp¨q is thus
constant on the time interval rpk ´ 1qτ, kτq for k ě 1. For all j P U , fj is a
function from Rn to Rn.

We will denote by φσpt;x
0q the solution at time t of the system:

9xptq “ fσptqpxptqq,

xp0q “ x0.
(8)

Often, we will consider φσpt;x
0q on the interval 0 ď t ă τ for which σptq

is equal to a constant, say j P U . In this case, we will abbreviate φσpt;x
0q as

φjpt;x
0q. We will also consider φσpt;x

0q on the interval 0 ď t ă kτ where k
is a positive integer, and σptq is equal to a constant, say jk1 , on each interval
rpk1 ´ 1qτ, k1τq with 1 ď k1 ď k; in this case, we will abbreviate φσpt;x

0q as
φπpt;x

0q, where π is a sequence of k modes (or “pattern”) of the form π “
j1 ¨ j2 ¨ ¨ ¨ ¨ ¨ jk.

We will assume that φσ is continuous at time kτ for all positive integer k.
This means that there is no “reset” at time k1τ (1 ď k1 ď k); the value of
φσpt, x

0q for t P rpk1 ´ 1qτ, kτ s corresponds to the solution of 9xpuq “ fjk1 pxpuqq
for u P r0, τ s with initial value φσppk

1 ´ 1qτ ;x0q.

More generally, given an initial point x̃0 P S and pattern π of Uk, we can
define a “(piecewise linear) approximate solution” φ̃πpt; x̃

0q of φπ at time t P
r0, kτ s as follows:

– φ̃πpt; x̃
0q “ tfjpx̃

0q ` x̃0 if π “ j P U , k “ 1 and t P r0, τ s, and

– φ̃πpkτ ` t; x̃0q “ tfjpz̃q ` z̃ with z̃ “ φ̃π1ppk ´ 1qτ ; x̃0q, if k ě 2, t P r0, τ s,
π “ j ¨ π1 for some j P U and π1 P Uk´1.

We wish to synthesize a safety control σ for φσ using the approximate func-
tions φ̃π. Hypotheses (H0) and (H1), as defined in Section 2.1, are naturally
extended to every mode j of U , as well as definition of T , constants L, C and λ,
definitions of φ̃j and δ0 (see [14]). From a notation point of view, we will assign an
index j to symbols λ, L,C, . . . in order to relate them to the dynamics of mode j.

Consider a point x̃0 P S, a positive real δ0 and a pattern π of length k. Let
πpk1q denote the k1-th element (mode) of π for 1 ď k1 ď k. Let us abbreviate the
k1-th approximate point φ̃πpk

1τ ; x̃0q as x̃k
1

π for k1 “ 1, ..., k, and let x̃k
1

π “ x̃0 for



k1 “ 0. It is easy to show that x̃k
1

π can be defined recursively for k1 “ 1, ..., k, by:
x̃k

1

π “ x̃k
1
´1

π ` τfjpx̃
k1
´1

π q with j “ πpk1q.

Let us now define the expression δk
1

π as follows: For k1 “ 0: δk
1

π “ δ0, and for
1 ď k1 ď k: δk

1

π “ δ1jpτq where pδ1q0 denotes δk
1
´1

π , and j denotes πpk1q. Likewise,
for 0 ď t ď kτ , let us define the expression δπptq as follows:

– for t “ 0: δπptq “ δ0,
– for 0 ă t ď kτ : δπptq “ δ1jpt

1q with pδ1q0 “ δ`π, j “ πp`q, t1 “ t ´ `τ and

` “ t tτ u.

Note that, for 0 ď k1 ď k, we have: δπpk
1τq “ δk

1

π . We have

Theorem 2. Given a sampled switched system satisfying (H0-H1), consider a
point x̃0 P S, a positive real δ0 and a pattern π of length k such that, for all
1 ď k1 ď k:

1. Bpx̃k
1

π , δ
k1

π q Ď S and

2.
d2pδ1

jptqq

dt2 ą 0 for all t P r0, τ s, with j “ πpk1q and pδ1q0 “ δk
1
´1

π .

Then we have, for all x0 P Bpx̃0, δ0q and t P r0, kτ s: φπpt;x
0q P S.

Remark 2. In Theorem 2, we have supposed that the step size h used in Euler’s
method was equal to the sampling period τ of the switching system. Actually, in
order to have better approximations, it is often convenient to take a fraction of
τ as for h (e.g., h “ τ

10 ). Such a splitting is called “sub-sampling” in numerical
methods.

Consider now a compact set R, called “recurrence set”, contained in the
safety set S Ă Rn (R Ď S). We are interested in the synthesis of a control
such that: starting from any initial point x P R, the controlled trajectory always
returns to R within a bounded time while never leaving S.

Corollary 2. Given a switched system satisfying (H0-H1), consider a positive
real δ0 and a finite set of points x̃1, . . . x̃m of S such that all the balls Bpx̃i, δ

0q

cover R and are included into S (i.e., R Ď
Ťm
i“1Bpx̃i, δ

0q Ď S).
Suppose furthermore that, for all 1 ď i ď m, there exists a pattern πi of

length ki such that:

1. Bppx̃iq
k1

πi
, δk

1

πi
q Ď S, for all k1 “ 1, . . . , ki ´ 1

2. Bppx̃iq
ki
πi
, δkiπi

q Ď R.

3.
d2pδ1

jptqq

dt2 ą 0 with j “ πipk
1q and pδ1q0 “ δk

1
´1

πi
, for all k1 P t1, ..., kiu and

t P r0, τ s.

These properties induce a control σ4 which guarantees

4 Given an initial point x P R, the induced control σ corresponds to a sequence of
patterns πi1 , πi2 , . . . defined as follows: Since x P R, there exists a a point x̃i1 with
1 ď i1 ď m such that x P Bpx̃i1 , δ

0
q; then using pattern πi1 , one has: φπi1

pki1τ ;xq P
R. Let x1 “ φπi1

pki1τ ;xq; there exists a point x̃i2 with 1 ď i2 ď m such that

x1 P Bpx̃i2 , δ
0
q, etc.
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Fig. 2. (a): A set of balls covering R and contained in S. (b): Control of ball Bpx̃3, δ
0
q

with Euler-based method.

– (safety): if x P R, then φσpt;xq P S for all t ě 0, and
– (recurrence): if x P R then φσpkτ ;xq P R for some k P tk1, . . . , kmu.

Corollary 2 gives the theoretical foundations of the following method for
synthesizing σ ensuring recurrence in R and safety in S:

– we (pre-)compute λj , Lj , Cj for all j P U ;
– we find m points x̃1, . . . x̃m of S and δ0 ą 0 such that R Ď

Ťm
i“1Bpx̃i, δ

0q Ď

S;
– we find m patterns πi (i “ 1, ...,m) such that conditions 1-2-3 of Corollary 2

are satisfied.

A covering of R with balls as stated in Corollary 2 is illustrated in Figure 2 (a).
The control synthesis method based on Corollary 2 is illustrated in Figure 2 (b).

For the sake of simplicity, we will suppose in the following that R is a rect-
angle, i.e., the Cartesian product of n closed real intervals, and we will denote
its center by c. We will also assume that T is a ball of centre c and radius ∆
(i.e., T “ Bpc,∆q).

3 Distributed synthesis

The goal is to split the system into two (or more) sub-systems and synthesize
controllers for the sub-systems independently. The allows to break the exponen-
tial complexity (curse of dimensionality) of the method w.r.t. the dimension of
the system, as well as the dimension of the control input.

We consider the distributed control system

9x1 “ f1
j1px1, x2q (9)

9x2 “ f2
j2px1, x2q (10)



where x1 P Rn1 and x2 P Rn2 , with n1 ` n2 “ n. Furthermore, j1 P U1 and
j2 P U2 and U “ U1 ˆ U2.

Note that the system (9-10) can be seen as the interconnection of sub-
system (9) where x2 plays the role of an “input” given by (10), with sub-
system (10) where x1 is an “input” given by (9).

Let: R “ R1 ˆ R2, S “ S1 ˆ S2, and c “ pc1, c2q
5. We denote by L1

j1
the

Lipschitz constant for sub-system 1 under mode j1 on S:

}f1
j1px1, x2q ´ f

1
j1py1, y2q} ď L1

j1

›

›

›

›

ˆ

x1

x2

˙

´

ˆ

y1

y2

˙
›

›

›

›

We then introduce the constant:

C1
j1 “ sup

x1PS1

L1
j1}f

1
j1px1, c2q}

Similarly, we define the constants for sub-system 2:

}f2
j2px1, x2q ´ f

2
j2py1, y2q} ď L2

j2

›

›

›

›

ˆ

x1

x2

˙

´

ˆ

y1

y2

˙
›

›

›

›

and
C2
j2 “ sup

x2PS2

L2
j2}f

2
j2pc1, x2q}

Let us now make additional assumptions on the coupled sub-systems, closely
related to the notion of (incremental) input-to-state stability.

(H2) For every mode j1 P U1, there exists constants λ1
j1
P R and γ1

j1
P Rě0

such that @x, x1 P T1 and @y, y1 P T2, the following expression holds

xf1
j1px, yq ´ f

1
j1px

1, y1q, x´ x1y ď λ1
j1}x´ x

1}2 ` γ1
j1}x´ x

1}}y ´ y1}.

(H3) For every mode j2 P U2, there exists constants λ2
j2
P R and γ2

j2
P Rě0

such that @x, x1 P T1 and @y, y1 P T2, the following expression holds

xf2
j2px, yq ´ f

2
j2px

1, y1q, y ´ y1y ď λ2
j2}y ´ y

1}2 ` γ2
j2}x´ x

1}}y ´ y1}.

These assumptions express (a variant of) the fact that the function V px, x1q “
}x´x1}2 is an ISS-Lyapunov function (see, e.g., [1, 9]). Note that all the constants
defined above can be numerically computed using constrained optimization al-
gorithms.

Let us define the distributed Euler scheme:

x̃1pτq “ x̃1p0q ` τf
1
j1px̃1p0q, c2q (11)

x̃2pτq “ x̃2p0q ` τf
2
j2pc1, x̃2p0qq (12)

The exact trajectory is now denoted, for all t P r0, τ s, by φpj1,j2qpt;x
0q for an

initial condition x0 “
`

x0
1 x

0
2

˘J
, and when sub-system 1 is in mode j1 P U1, and

sub-system 2 is in mode j2 P U2.

5 So T “ T1 ˆ T2 with: T1 “ Bpc1,∆q, T2 “ Bpc2,∆q.



We define the approximate trajectory computed with the distributed Euler
scheme by φ̃1

j1
pt; x̃0

1q “ x̃0
1 ` tf1

j1
px̃0

1, c2q for t P r0, τ s, when sub-system 1 is in

mode j1 and with an initial condition x̃0
1. Similarly, for sub-system 2, φ̃2

j2
pt; x̃0

2q “

x̃0
2`tf

2
j2
pc1, x̃

0
2q when sub-system 2 is in mode j2 and with an initial condition x̃0

2.
We now give a distributed version of Theorem 1.

Theorem 3. Given a distributed sampled switched system, a positive real δ0 and
a point x̃0

1 P S1, suppose that sub-system 1 satisfies (H2) and φ̃1
j1
pt; x̃0

1q belongs to

S1 for all t P r0, τ s. We have, for all x0
1 P Bpx̃

0
1, δ

0q, x0
2 P S2, t P r0, τ s, j1 P U1,

j2 P U2:

φpj1,j2qpt;x
0q|1 P Bpφ̃

1
j1pt; x̃

0
1q, δj1ptqq.

with x0 “
`

x0
1 x

0
2

˘J
and

– if λ1
j1
ă 0,

δj1ptq “

˜

pC1
j1
q2

´pλ1
j1
q4

´

´pλ1
j1q

2t2 ´ 2λ1
j1t` 2eλ

1
j1
t
´ 2

¯

`
2

pλ1
j1
q2

˜

C1
j1
γ1
j1
∆

´λ1
j1

´

´λ1
j1t` e

λ1
j1
t
´ 1

¯

` λ1
j1

˜

pγ1
j1
q2∆2

´λ1
j1

peλ
1
j1
t
´ 1q ` λ1

j1pδ
0q2eλ

1
j1
t

¸¸¸1{2

(13)

– if λ1
j1
ą 0,

δj1ptq “
1

p3λ1
j1
q3{2

˜

C2
1

λ1
j1

´

´9pλ1
j1q

2t2 ´ 6λ1
j1t` 2e3λ1

j1
t
´ 2

¯

` 6λ1
j1

˜

C1γ
1
j1
∆

λ1
j1

´

´3λ1
j1t` e

3λ1
j1
t
´ 1

¯

` 3λ1
j1

˜

pγ1
j1
q2∆2

λ1
j1

pe3λ1
j1
t
´ 1q ` 3λ1

j1pδ
0q2e3λ1

j1
t

¸¸¸1{2

(14)

– if λ1
j1
“ 0,

δj1ptq “
`

pC1
j1q

2
`

´t2 ´ 2t` 2et ´ 2
˘

`
`

2C1
j1γ

1
j1∆

`

´t` et ´ 1
˘

`
`

pγ1
j1q

2∆2pet ´ 1q ` pδ0q2et
˘˘˘1{2

(15)

A similar result can be established for sub-system 2, permitting to perform
a distributed control synthesis.



Proof. Consider on t P r0, τ s the differential system (9-10) with initial conditions
x1p0q P Bpx̃1p0q, δ

0q, x2p0q P S2, and the system (11-12) with initial conditions
x̃1p0q P S1, x̃2p0q P S2. We will abbreviate φj1pt;x1p0qq as x1, φj2pt;x2p0qq

as x2, and φ̃j1pt;x1p0qq as x̃1. In order to simplify the notation, we omit the

mode j1 and write f1
j1
” f1, L1

j1
” L1, C1

j1
” C1, λ1

j1
” λ1. Since, dpx1´x̃1q

dt “

f1px1, x2q ´ f1px̃1p0q, c2q, we have, using the facts x̃1 P S1 and c2 P S2:

1

2

dp}x1 ´ x̃1}
2q

dt
“ xf1px1, x2q ´ f1px̃1p0q, c2q, x1 ´ x̃1y

“ xf1px1, x2q ´ f1px̃1, c2q ` f1px̃1, c2q ´ f1px̃1p0q, c2q, x1 ´ x̃1y

ď xf1px1, x2q ´ f1px̃1, c2q, x1 ´ x̃1y ` xf1px̃1, c2q ´ f1px̃1p0q, c2q, x1 ´ x̃1y

ď xf1px1, x2q ´ f1px̃1, c2q, x1 ´ x̃1y ` }f1px̃1, c2q ´ f1px̃1p0q, c2q}}x1 ´ x̃1}

ď xf1px1, x2q ´ f1px̃1, c2q, x1 ´ x̃1y ` L1

›

›

›

›

ˆ

x̃1

c2

˙

´

ˆ

x̃1p0q
c2

˙
›

›

›

›

}x1 ´ x̃1}

ď λ1}x1 ´ x̃1}
2 ` γ1}x2 ´ c2}}x1 ´ x̃1} ` L1t }f1px̃1p0q, c2q} }x1 ´ x̃1}

ď λ1}x1 ´ x̃1}
2 ` pγ1∆` C1tq }x1 ´ x̃1}

Using the fact that }x1 ´ x̃1} ď
1
2 pα}x1 ´ x̃1}

2 ` 1
α q for any α ą 0, we can write

three formulas following the sign of λ1.

– if λ1 ă 0, we can choose α “ ´λ1

C1t`γ1∆
, and we get the differential inequality:

dp}x1 ´ x̃1}
2q

dt
ď λ1}x1 ´ x̃1}

2 `
C2

1

´λ1
t2 `

2C1γ1∆

´λ1
t`

γ2
1∆

2

´λ1

– if λ1 ą 0, we can choose α “ λ1

C1t`γ1∆
, and we get the differential inequality:

dp}x1 ´ x̃1}
2q

dt
ď 3λ1}x1 ´ x̃1}

2 `
C2

1

λ1
t2 `

2C1γ1∆

λ1
t`

γ2
1∆

2

λ1

– if λ1 “ 0, we can choose α “ 1
C1t`γ1∆

, and we get the differential inequality:

dp}x1 ´ x̃1}
2q

dt
ď }x1 ´ x̃1}

2 ` C2
1 t

2 ` 2C1γ1∆t` γ
2
1∆

2

In every case, the differential inequalities can be integrated to obtain the
formulas of the theorem.

[\

It then follows a distributed version of Corollary 2.

Corollary 3. Given a positive real δ0, consider two sets of points x̃1
1, . . . , x̃

1
m1

and x̃2
1, . . . , x̃

2
m2

such that all the balls Bpx̃1
i1
, δ0q and Bpx̃2

i2
, δ0q, for 1 ď i1 ď m1

and 1 ď i2 ď m2, cover R1 and R2. Suppose that there exists patterns π1
i1

and
π2
i2

of length ki1 and ki2 such that :



1. Bppx̃1
i1
qk

1

π1
i1

, δk
1

π1
i1

q Ď S1, for all k1 “ 1, . . . , ki1 ´ 1

2. Bppx̃1
i1
q
ki1
π1
i1

, δ
ki1
π1
i1

q Ď R1.

3.
d2pδ1

j1
ptqq

dt2 ą 0 with j1 “ π1
i1
pk1q and pδ1q0 “ δk

1
´1

π1
i1

, for all k1 P t1, ..., ki1u and

t P r0, τ s.

1. Bppx̃2
i2
qk

1

π2
i2

, δk
1

π2
i2

q Ď S2, for all k1 “ 1, . . . , ki2 ´ 1

2. Bppx̃2
i2
q
ki2
π2
i2

, δ
ki2
π2
i2

q Ď R2.

3.
d2pδ1

j2
ptqq

dt2 ą 0 with j2 “ π2
i2
pk1q and pδ1q0 “ δk

1
´1

π2
i2

, for all k1 P t1, ..., ki2u and

t P r0, τ s.

The above properties induce a distributed control σ “ pσ1, σ2q guaranteeing
(non simultaneous) recurrence in R and safety in S. I.e.

– if x P R, then φσpt;xq P S for all t ě 0
– if x P R, then φσpk1τ ;xq|1 P R1 for some k1 P tki1 , . . . , kim1

u, and symmet-
rically φσpk2τ ;xq|2 P R2 for some k2 P tki2 , . . . , kim2

u

4 Application

We demonstrate the feasibility of our approach on a (linearized) building ventila-
tion application adapted from [16]. The system is a four-room apartment subject
to heat transfer between the rooms, with the external environment and with the
underfloor. The dynamics of the system is given by the following equation:

dTi
dt

“
ÿ

jPN *ztiu

aijpTj ´ Tiq ` ci max

ˆ

0,
Vi ´ V

*
i

V̄i ´ V *
i

˙

pTu ´ Tiq. (16)

The state of the system is given by the temperatures in the rooms Ti, for
i P N “ t1, . . . , 4u. Room i is subject to heat exchange with different entities
stated by the indexes N * “ t1, 2, 3, 4, u, o, cu. The heat transfer between the
rooms is given by the coefficients aij for i, j P N 2, and the different perturbations
are the following:

– The external environment: it has an effect on room i with the coefficient aio
and the outside temperature To, set to 30˝C.

– The heat transfer through the ceiling: it has an effect on room i with the
coefficient aic and the ceiling temperature Tc, set to 30˝C.

– The heat transfer with the underfloor: it is given by the coefficient aiu and
the underfloor temperature Tu, set to 17˝C (Tu is constant, regulated by a
PID controller).

The control Vi, i P N , is applied through the term ci maxp0,
Vi´V

*
i

V̄i´V *
i

qpTu´Tiq.

A voltage Vi is applied to force ventilation from the underfloor to room i, and the



Table 1. Numerical results for centralized four-room example.

Centralized

R r20, 22s4

S r19, 23s4

τ 30

Time subsampling τ{20

Complete control Yes

Error parameters max
j“1,...,16

λj “ ´6.30ˆ 10´3

max
j“1,...,16

Cj “ 4.18ˆ 10´6

Number of balls/tiles 256
Pattern length 2

CPU time 48 seconds

command of an underfloor fan is subject to a dry friction. Because we work in a
switching control framework, Vi can take only discrete values, which removes the
problem of dealing with a “max” function in interval analysis. In the experiment,
V1 and V4 can take the values 0V or 3.5V, and V2 and V3 can take the values
0V or 3V. This leads to a system of the form (8) with σptq P U “ t1, . . . , 16u,
the 16 switching modes corresponding to the different possible combinations of
voltages Vi. The system can be decomposed in sub-systems of the form (9)-(10).
The sampling period is τ “ 30s. The parameters V *

i , V̄i, aij , bi, ci are given
in [16] and have been identified with a proper identification procedure detailed
in [17].

The main difficulty of this example is the large number of modes in the switch-
ing system, which induces a combinatorial issue. The centralized controller was
obtained with 256 balls in 48 seconds, the distributed controller was obtained
with 16 ` 16 balls in less than a second. In both cases, patterns of length 2
are used. A sub-sampling of h “ τ{20 is required to obtain a controller with
the centralized approach. For the distributed approach, no sub-sampling is re-
quired for the first sub-system, while the second one requires a sub-sampling of
h “ τ{10. Simulations of the centralized and distributed controllers are given in
Figure 3, where the control objective is to stabilize the temperature in r20, 22s4

while never going out of r19, 23s4.

5 Final remarks and future work

We have given a new distributed control synthesis method based on Euler’s
method. The method makes use of the notions of δ-ISS-stability and ISS Lya-
punov functions. From a certain point of view, this method is along the lines
of [6] and [12] which are inspired by small-gain theorems of control theory (see,
e.g., [10]). In the future, we plan to apply our distributed Euler-based method
to significant examples such as the 11-room example treated in [13, 15].



Table 2. Numerical results for the distributed four-room example.

Sub-system 1 Sub-system 2

R r20, 22s2 ˆ r20, 22s2

S r19, 23s2 ˆ r19, 23s2

τ 30

Time subsampling No τ{10

Complete control Yes Yes

Error parameters max
j1“1,...,4

λ1
j1 “ ´1.39ˆ 10´3 max

j2“1,...,4
λ2
j2 “ ´1.42ˆ 10´3

max
j1“1,...,4

γ1
j1 “ 1.79ˆ 10´4 max

j2“1,...,4
γ2
j2 “ 2.47ˆ 10´4

max
j1“1,...,4

C1
j1 “ 4.15ˆ 10´4 max

j2“1,...,4
C2
j2 “ 5.75ˆ 10´4

Number of balls/tiles 16 16
Pattern length 2 2

CPU time ă 1 second ă 1 second

Fig. 3. Simulation of the centralized (left) and distributed (right) controllers from the
initial condition p22, 22, 22, 22q.
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