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Abstract—We present an algorithm of control synthesis for
nonlinear switched systems, based on an existing procedure of
state-space bisection and made available for nonlinear systems
with the help of validated simulation. The use of validated
simulation also permits to take bounded perturbations and
varying parameters into account. The whole approach is en-
tirely guaranteed and the induced controllers are correct-by-
design.

1. Introduction

We focus here on switched control systems, a class
of hybrid systems recently used with success in various
domains such as automotive industry and power electronics.
These systems are merely described by piecewise dynamics,
periodicaly sampled with a given period. At each period, the
system is in one and only one mode, decided by a control
rule [1], [2].

In this paper, we consider that these modes are repre-
sented by nonlinear ODEs. In order to compute the control
of a switched system, we do need the solution of differential
equations. In the general case, differential equations can not
be integrated formally, and a numerical integration scheme
is used to approximate the state of the system. With the
objective of computing a guaranteed control, we based our
approach on validated simulation (also called “reachability
analysis”). The guaranteed or validated solution of ODEs
using interval arithmetic is mainly based on two kinds of
methods based on: i) Taylor series [3]–[6] ii) Runge-Kutta
schemes [7]–[10]. The former is the oldest method used in
interval analysis community because the expression of the
bound of a Taylor series is simple to obtain. Nevertheless,
the family of Runge-Kutta methods is very important in the
field of numerical analysis. Indeed, Runge-Kutta methods
have several interesting stability properties which make
them suitable for an important class of problems. Our tool
[11] implements Runge-Kutta based methods which prove
their efficiency at low order for short simulation (fixed by
sampling period of controller).

In the methods of symbolic analysis and control of
hybrid systems, the way of representing sets of state val-
ues and computing reachable sets for systems defined by

autonomous ordinary differential equations (ODEs), is fun-
damental (see, e.g., [12], [13]). Many tools using, eg.
linearization or hybridization of these dynamics are now
available (e.g., Spacex [14], Flow* [15], iSAT-ODE [16]).
An interesting approach appeared recently, based on the
propagation of reachable sets using guaranteed Runge-Kutta
methods with adaptive step size control (see [9], [17]). An
originality of the present work is to use such guaranteed
integration methods in the framework of switched systems.

The paper is divided as follows. In Section 2, we in-
troduce some preliminaries on switched systems and some
notation used in the following. In Section 3, the guaranteed
integration of nonlinear ODEs is presented. In Section 4, we
present the main algorithm of state-space bisection used for
control synthesis. In Section 5, the whole approach is tested
on three examples of the literature.

2. Switched systems

Let us consider the nonlinear switched system

ẋ(t) = fσ(t)(x(t), d(t)) (1)

defined for all t ≥ 0, where x(t) ∈ Rn is the state of
the system, σ(·) : R+ −→ U is the switching rule, and
d(t) ∈ Rm is a bounded perturbation. The finite set U =
{1, . . . , N} is the set of switching modes of the system.
We focus on sampled switched systems: given a sampling
period τ > 0, switchings will occur at times τ , 2τ , . . .
The switching rule σ(·) is thus piecewise constant, we will
consider that σ(·) is constant on the time interval [(k −
1)τ, kτ) for k ≥ 1. We call “pattern” a finite sequence
of modes π = (i1, i2, . . . , ik) ∈ Uk. With such a control
input, and under a given perturbation d, we will denote by
x(t; t0, x0, d, π) the solution at time t of the system

ẋ(t) = fσ(t)(x(t), d(t)),

x(t0) = x0,

∀j ∈ {1, . . . , k}, σ(t) = ij ∈ U for t ∈ [(j − 1)τ, jτ).
(2)

We address the problem of synthesizing a state-
dependent switching rule σ̃(x) for (2) in order to verify
some properties. The problem is formalized as follows:



Problem 1. Let us consider a sampled switched system (2).
Given three sets R, S, and B, with R ∪ B ⊂ S and
R∩B = ∅, find a rule σ̃(x) such that, for any x(0) ∈ R
• τ -stability1: x(t) returns in R infinitely often, at

some multiples of sampling time τ .
• safety: x(t) always stays in S\B.

Under the above-mentioned notation, we propose a pro-
cedure which solves this problem by constructing a law
σ̃(x), such that for all x0 ∈ R, and under the unknown
bounded perturbation d, there exists π = σ̃(x0) ∈ Uk for
some k such that:

x(t0 + kτ ; t0, x0, d, π) ∈ R
∀t ∈ [t0, t0 + kτ ], x(t; t0, x0, d, π) ∈ S
∀t ∈ [t0, t0 + kτ ], x(t; t0, x0, d, π) /∈ B

Such a law permits to perform an infinite-time state-
dependent control. The synthesis algorithm is described in
Section 4 and involves guaranteed set based integration
presented in the next section, the main underlying tool is
interval analysis [3]. To tackle this problem, we introduce
some definitions. In the following, we will often use the
notation [x] ∈ IR (the set of intervals with real bounds) with
[x] = [x, x] = {x ∈ R | x 6 x 6 x} denotes an interval.
By an abuse of notation [x] will also denote a vector of
intervals, i.e., a Cartesian product of intervals, a.k.a. a box.
In the following, the sets R, S and B are given under the
form of boxes.
Definition 1 (Initial Value Problem (IVP)). Consider an

ODE with a given initial condition

ẋ(t) = f (t, x(t), d(t)) with x(0) ∈ X0, d(t) ∈ [d],
(3)

with f : R+×Rn×Rm → Rn assumed to be continuous
in t and d and globally Lipschitz in x. We assume
that parameters d are bounded (used to represent a
perturbation, a modeling error, an uncertainty on mea-
surement, . . . ). An IVP consists in finding a function
x(t) described by the ODE (3) for all d(t) lying in [d]
and for all the initial conditions in X0.

Definition 2. Let X ⊂ Rn be a box of the state space. Let
π = (i1, i2, . . . , ik) ∈ Uk. The successor set of X via
π, denoted by Postπ(X), is the (over-approximation of
the) image of X induced by application of the pattern
π, i.e., the solution at time t = kτ of

ẋ(t) = fσ(t)(x(t), d(t)),

x(0) = x0 ∈ X,
∀t ≥ 0, d(t) ∈ [d],

∀j ∈ {1, . . . , k}, σ(t) = ij ∈ U for t ∈ [(j − 1)τ, jτ).
(4)

Definition 3. Let X ⊂ Rn be a box of the state space.
Let π = (i1, i2, . . . , ik) ∈ Uk. We denote by Tubeπ(X)

1. This definition of stability is different from the stability in the Lya-
punov sense.

the union of boxes covering the trajectories of IVP (4),
which construction is detailed in Section 3.

3. Validated simulation

In this section, we describe our approach for validated
simulation based on Runge-Kutta methods [9], [10].

A numerical integration method computes a sequence of
approximations (tn, xn) of the solution x(t;x0) of the IVP
defined in Equation (3) such that xn ≈ x(tn;xn−1). The
simplest method is Euler’s method in which tn+1 = tn + h
for some step-size h and xn+1 = xn + h× f(tn, xn, d); so
the derivative of x at time tn, f(tn, xn, d), is used as an
approximation of the derivative on the whole time interval
to perform a linear interpolation. This method is very sim-
ple and fast, but requires small step-sizes. More advanced
methods coming from the Runge-Kutta family use a few
intermediate computations to improve the approximation
of the derivative. The general form of an explicit s-stage
Runge-Kutta formula, that is using s evaluations of f , is

xn+1 = xn + h

s∑
i=1

biki ,

k1 = f
(
tn, xn, d

)
,

ki = f
(
tn + cih, xn + h

i−1∑
j=1

aijkj , d
)
, i = 2, 3, . . . , s .

(5)
The coefficients ci, aij and bi fully characterize the method.
To make Runge-Kutta validated, the challenging question
is how to compute a bound on the distance between
the true solution and the numerical solution, defined by
x(tn;xn−1) − xn. This distance is associated to the local
truncation error (LTE) of the numerical method.

To bound the LTE, we rely on order condition [18]
respected by all Runge-Kutta methods. This condition states
that a method of this family is of order p iff the p + 1
first coefficients of the Taylor expansion of the solution
and the Taylor expansion of the numerical methods are
equal. In consequence, LTE is proportional to the Lagrange
remainders of Taylor expansions. Formally, LTE is defined
by (see [9]):

x(tn;xn−1)− xn =

hp+1

(p+ 1)!

(
f (p) (ξ, x(ξ;xn−1), d)− dp+1φ

dtp+1
(η)

)
ξ ∈]tn, tn+1[ and η ∈]tn, tn+1[ . (6)

The function f (n) stands for the n-th derivative of function
f w.r.t. time t that is dnf

dtn and h = tn+1 − tn is the step-
size. The function φ : R → Rn is defined by φ(t) = xn +
h
∑s

i=1 biki(t) where ki(t) are defined as Equation (5).
The challenge to make Runge-Kutta integration schemes

safe w.r.t. the true solution of IVP is then to compute a
bound of the result of Equation (6). In other words we have
to bound the value of f (p) (ξ, x(ξ;xn−1), d) and the value of
dp+1φ
dtp+1 (η). The latter expression is straightforward to bound



because the function φ only depends on the value of the
step-size h, and so does its (p+1)-th derivative. The bound
is then obtain using the affine arithmetic.

However, the expression f (p) (ξ, x(ξ;xn−1), d) is not so
easy to bound as it requires to evaluate f for a particular
value of the IVP solution x(ξ;xn−1) at an unknown time
ξ ∈]tn, tn+1[. The solution used is the same as the one
found in [4], [7] and it requires to bound the solution of IVP
on the interval [tn, tn+1]. This bound is usually computed
using the Banach’s fixpoint theorem applied with the Picard-
Lindelöf operator, see [4]. This operator is used to compute
an enclosure of the solution [x̃] of IVP over a time interval
[tn, tn+1], that is for all t ∈ [tn, tn+1], x(t;xn−1) ∈ [x̃]. We
can hence bound f (p) substituting x(ξ;xn−1) by [x̃].

For a given pattern of switched modes π =
(i1, i2, . . . , ik) ∈ Uk of length k, we are able to compute,
for j ∈ {1, .., k}, the enclosures:

• [xj ] 3 x(tj);
• [x̃j ] 3 x(t), for t ∈ [(j − 1)τ, jτ ].

with respect to the system of IVPs:

ẋ(t) = fσ(t)(t, x(t), d(t)),
x(t0 = 0) ∈ [x0], d(t) ∈ [d],
σ(t) = i1,∀t ∈ [0, t1], t1 = τ

...
ẋ(t) = fσ(t)(t, x(t), d(t)),
x(tk−1) ∈ [xk−1], d(t) ∈ [d],

σ(t) = ik,∀t ∈ [tk−1, tk], tk = kτ

Thereby, the enclosure Postπ([x0]) is included in [xk]
and Tubeπ([x0]) is included in

⋃
j=1,..,k[x̃j ]. This applies

for all initial states in [x0] and all disturbances d(t) ∈ [d]. A
view of enclosures computed by the validated simulation for
one solution obtained for Example 5.2 is shown in Figure 1.

Tubeπ(X )

Post π(X )

X

Figure 1. Functions Postπ(X) and Tubeπ(X) for the initial box X =
([−0.69,−0.64]× [1, 1.06]), with a pattern π = (1, 3, 0).

4. The state-space bisection algorithm

We describe here the main algorithm of control synthe-
sis. Given the input boxes R, S, B, and given two positive

integers K and D, the algorithm provides, when it succeeds,
a decomposition ∆ of R of the form {Vi, πi}i∈I , with the
properties:⋃

i∈I Vi = R
∀i ∈ I, Postπi

(Vi) ⊆ R
∀i ∈ I, Tubeπi

(Vi) ⊆ S
∀i ∈ I, Tubeπi

(Vi)
⋂
B = ∅

The sub-boxes {Vi}i∈I are obtained by repeated bisec-
tion. At first, function Decomposition calls sub-function
Find Pattern which looks for a pattern π of length at
most K such that Postπ(R) ⊆ R, Tubeπ(R) ⊆ S and
Tubeπ(R)

⋂
B = ∅. If such a pattern π is found, then a uni-

form control over R is found (see Figure 2(a)). Otherwise,
R is divided into two sub-boxes V1, V2, by bisecting R w.r.t.
its longest dimension. Patterns are then searched to control
these sub-boxes (see Figure 2(b)). If for each Vi, function
Find Pattern manages to get a pattern πi of length at
most K verifying Postπi

(Vi) ⊆ R, Tubeπi
(Vi) ⊆ S and

Tubeπi
(Vi)

⋂
B = ∅, then it is done. If, for some Vj , no

such pattern is found, the procedure is recursively applied
to Vj . It ends with success when every sub-box of R has a
pattern verifying the latter conditions, or fails when the max-
imal degree of decomposition D is reached. The algorithmic
form of functions Decomposition and Find Pattern is
given in [1] for the linear case.

  

(a) (b)

R

π

R

π1

Post π(R)

Post π1
(V 1)

V 2V 1

Figure 2. Principle of the bisection method.

Having defined the control synthesis method, we now
introduce the main result of this paper, stated as follows:
Proposition 1. A decomposition successfully computed with

the above procedure allows to perform an infinite-time
state-dependent control satisfying Problem 1.

Proof: Let x0 = x(t0 = 0) be an initial condition
belonging to R. If the decomposition has terminated suc-
cessfully, we have

⋃
i∈I Vi = R, and x0 thus belongs to

Vi0 for some i0 ∈ I . We can thus apply the pattern πi0
associated to Vi0 . Let us denote by k0 the length of πi0 . We
have:

• x(k0τ ; 0, x0, d, πi0) ∈ R
• ∀t ∈ [0, k0τ ], x(t; 0, x0, d, πi0) ∈ S
• ∀t ∈ [0, k0τ ], x(t; 0, x0, d, πi0) /∈ B

Let x1 = x(k0τ ; 0, x0, d, πi0) ∈ R be the state reached after
application of πi0 and let t1 = k0τ . State x1 belongs to R,
it thus belongs to Vi1 for some i1 ∈ I , and we can apply
the associated pattern πi1 of length k1, leading to:

• x(t1 + k1τ ; t1, x1, d, πi1) ∈ R



• ∀t ∈ [t1, t1 + k1τ ], x(t; t1, x1, d, πi1) ∈ S
• ∀t ∈ [t1, t1 + k1τ ], x(t; t1, x1, d, πi1) /∈ B

We can then iterate this procedure from the new state
x2 = x(t1 + k1τ ; t1, x1, d, πi1) ∈ R. This can be repeated
infinitely, yielding a sequence of points belonging to R
x0, x1, x2, . . . attained at times t0, t1, t2, . . . , at which the
patterns πi0 , πi1 , πi2 , . . . are applied.

We furthermore have that all the trajectories stay in S
and never cross B: ∀t ∈ R+,∃k ≥ 0, t ∈ [tk, tk+1] and ∀t ∈
[tk, tk+1], x(t; tk, xk, d, πik) ∈ S, x(t; tk, xk, d, πik) /∈ B.
The trajectories thus return infinitely often in R, while
always staying in S and never crossing B.
Remark 1. Note that it is possible to perform reacha-

bility from a set R1 to another set R2 by comput-
ing Decomposition(R1, R2, S,B,D,K). The set R1

is thus decomposed with the objective to send its sub-
boxes into R2, i.e. for a sub-box V of R1, patterns π
are searched with the objective Postπ(V ) ⊆ R2 (see
Example 5.2).

Remark 2. Our solver prototype, written in C++ and based
on DynIBEX [11], also exploits heuristics to prune the
search tree of patterns. For example, cross the set B,
then all the branches issued from it will also cross B,
and this branch should thus be cut.

5. Experimentations

In this section, we apply our approach to different case
studies taken from the literature. The computations times
given in the following have been performed on a 2.80 GHz
Intel Core i7-4810MQ CPU with 8 GB of memory. Note that
our algorithm is mono-threaded so all the experimentation
only uses one core to perform the computations.

5.1. Boost DC-DC converter

This linear example is taken from [19] and has already
been treated with the state-space bisection method in a linear
framework in [1].

The system is a boost DC-DC converter with one switch-
ing cell. There are two switching modes depending on the
position of the switching cell. The dynamics is given by the
equation ẋ(t) = Aσ(t)x(t) +Bσ(t) with σ(t) ∈ U = {1, 2}.
The two modes are given by the matrices:

A1 =

(
− rl
xl

0

0 − 1
xc

1
r0+rc

)
B1 =

(
vs
xl

0

)

A2 =

(
− 1
xl

(rl + r0.rc
r0+rc

) − 1
xl

r0
r0+rc

1
xc

r0
r0+rc

− 1
xc

r0
r0+rc

)
B2 =

(
vs
xl

0

)
with xc = 70, xl = 3, rc = 0.005, rl = 0.05,

r0 = 1, vs = 1. The sampling period is τ = 0.5. The
parameters are exact and there is no perturbation. We want
the state to return infinitely often to the region R, set here to

[1.55, 2.15]× [1.0, 1.4], while never going out of the safety
set S = [1.54, 2.16]× [0.99, 1.41].

The decomposition was obtained in less than one second
with a maximum length of pattern set to K = 6 and a
maximum bisection depth of D = 3. A simulation is given
in Figure 3.

Figure 3. Simulation from the initial condition (1.55, 1.4). The box R is in
plain black. The trajectory is plotted within time for the two state variables
on the left, and in the state-space plane on the right.

5.2. A polynomial example

We consider the polynomial system taken from [20]:[
ẋ1

ẋ2

]
=

[
−x2 − 1.5x1 − 0.5x3

1 + u1 + d1

x1 + u2 + d2

]
. (7)

The control inputs are given by u = (u1, u2) =
Kσ(t)(x1, x2), σ(t) ∈ U = {1, 2, 3, 4}, which are four
different state feedback controllers K1(x) = (0,−x2

2 + 2),
K2(x) = (0,−x2), K3(x) = (2, 10), K4(x) = (−1.5, 10).
We thus have four switching modes. The disturbance d =
(d1, d2) lies in [−0.005, 0.005]×[−0.005, 0.005]. The objec-
tive is to visit infinitely often two zones R1 and R2, without
going out of a safety zone S, and while never crossing a
forbidden zone B. Two decompositions are performed:

• a decomposition of R1 which returns {(Vi, πi)}i∈I1
with:⋃
i∈I1 Vi = R1,
∀i ∈ I1, Postπi(Vi) ⊆ R2,
∀i ∈ I1, Tubeπi(Vi) ⊆ S,
∀i ∈ I1, Tubeπi(Vi)

⋂
B = ∅.

• a decomposition of R2 which returns {(Vi, πi)}i∈I2
with:⋃
i∈I2 Vi = R2,
∀i ∈ I2, Postπi

(Vi) ⊆ R1,
∀i ∈ I2, Tubeπi

(Vi) ⊆ S,
∀i ∈ I2, Tubeπi

(Vi)
⋂
B = ∅.

The input boxes are the following:



R1 = [−0.5, 0.5]× [−0.75, 0.0],
R2 = [−1.0, 0.65]× [0.75, 1.75],
S = [−2.0, 2.0]× [−1.5, 3.0],
B = [0.1, 1.0]× [0.15, 0.5].
The sampling period is set to τ = 0.15. The de-

compositions were obtained in 2 minutes and 30 seconds
with a maximum length of pattern set to K = 12 and a
maximum bisection depth of D = 5. A simulation is given
in Figure 4 in which the disturbance d is chosen randomly
in [−0.005, 0.005]× [−0.005, 0.005] at every time step.

Figure 4. Simulation from the initial condition (0.5,−0.75). The trajectory
is plotted within time on the left, and in the state space plane on the right.
In the sate space plane, the set R1 is in plain green, R2 in plain blue, and
B in plain black.

5.3. Building ventilation

We consider a building ventilation application adapted
from [21]. The system is a four room apartment subject
to heat transfer between the rooms, with the external envi-
ronment, with the underfloor, and with human beings. The
dynamics of the system is given by the following equation:

dTi
dt

=
∑
j∈N *

aij(Tj − Ti) + δsibi(T
4
si − T

4
i )

+ ci max

(
0,
Vi − V *

i

V̄i − V *
i

)
(Tu − Ti). (8)

The state of the system is given by the temperatures in
the rooms Ti, for i ∈ N = {1, . . . , 4}. Room i is subject to
heat exchange with different entities stated by the indexes
N * = {1, 2, 3, 4, u, o, c}.

The heat transfer between the rooms is given by the
coefficients aij for i, j ∈ N 2, and the different perturbations
are the following:

• The external environment: it has an effect on room i
with the coefficient aio and the outside temperature
To, varying between 27◦C and 30◦C.

• The heat transfer through the ceiling: it has an effect
on room i with the coefficient aic and the ceiling
temperature Tc, varying between 27◦C and 30◦C.

• The heat transfer with the underfloor: it is given by
the coefficient aiu and the underfloor temperature
Tu, set to 17◦C (Tu is constant, regulated by a PID
controller).

• The perturbation induced by the presence of humans:
it is given in room i by the term δsibi(T

4
si−T

4
i ), the

parameter δsi is equal to 1 when someone is present
in room i, 0 otherwise, and Tsi is a given identified
parameter.

The control Vi, i ∈ N , is applied through the term
ci max(0,

Vi−V *
i

V̄i−V *
i

)(Tu−Ti). A voltage Vi is applied to force
ventilation from the underfloor to room i, and the command
of an underfloor fan is subject to a dry friction. Because
we work in a switched control framework, Vi can take only
discrete values, which removes the problem of dealing with
a “max” function in interval analysis. In the experiment, V1

and V4 can take the values 0V or 3.5V, and V2 and V3 can
take the values 0V or 3V. This leads to a system of the
form (1) with σ(t) ∈ U = {1, . . . , 16}, the 16 switching
modes corresponding to the different possible combinations
of voltages Vi. The sampling period is τ = 10s.

The parameters Tsi , V
*
i , V̄i, aij , bi, ci are given in

[21] and have been identified with a proper identification
procedure detailed in [22]. Note that we have neglected
the term

∑
j∈N δdijci,j ∗ h(Tj − Ti) of [21], representing

the perturbation induced by the open or closed state of the
doors between the rooms. Taking a “max” function into
account with interval analysis is actually still a difficult task.
However, this term could have been taken into account with
a proper regularization (smoothing).

The decomposition was obtained in 4 minutes with a
maximum length of pattern set to K = 2 and a maximum
bisection depth of D = 4. The perturbation due to human
beings has been taken into account by setting the parameters
δsi equal to the whole interval [0, 1] for the decomposition,
and the imposed perturbation for the simulation is given
Figure 5. The temperatures To and Tc have been set to the
interval [27, 30] for the decomposition, and are set to 30◦C
for the simulation. A simulation of the controller obtained
with the state-space bisection procedure is given in Figure 6,
where the control objective is to stabilize the temperature in
[20, 22]4 while never going out of [19, 23]4.

6. Conclusion

We presented a method of control synthesis for nonlinear
switched systems, based on a simple state-space bisection
algorithm, and on validated simulation. The approach per-
mits to deal with stability, safety and forbidden region con-
straints. Varying parameters and perturbations can be easily
taken into account with interval analysis. The approach has
been numerically validated on three examples taken from
the literature, a linear one with constant parameters, and
two nonlinear ones with varying perturbations.



Figure 5. Perturbation (presence of humans) imposed within time in the
different rooms.

Figure 6. Simulation from the initial condition (22, 22, 22, 22). The ob-
jective set R is in plain black and the safety set S is in dotted black.

We are currently continuing the improvements men-
tioned in Remark 2, in order to be able to handle longer
patterns and higher dynamics dimension. Our future work
will be also devoted to the extension of this method to the
control of nonlinear partial differential equations.
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