
A Formal Framework for the Analysis

of Recursive-Parallel Programs

O. Kushnarenko

1

and Ph. Schnoebelen

2

1

IRISA, Univ. Rennes I, Campus de Beaulieu, 35042 Rennes Cedex France

email: Olga.Kouchnarenko@irisa.fr

2

Lab. Sp�eci�cation & V�eri�cation, ENS de Cachan & CNRS URA 2236,

61, av. Pdt. Wilson, 94235 Cachan Cedex France

email: phs@lsv.ens-cachan.fr

Abstract. RP programs are imperative programs with parallelism and

recursion and only a limited way of synchronizing parallel processes.

The formal framework we propose here combines (1) a formal operational

model of abstract programs (or RP schemes), (2) a set of decision meth-

ods for the analysis of RP schemes, (3) a formal operational model for

the interpreted programs, and (4) translation results stating how some

behavioural properties of the concrete programs can be correctly checked

on the corresponding scheme.

3

Introduction

Automated (and computer-assisted) veri�cation and analysis of parallel systems

are a fast-growing application �eld for formal methods and techniques in com-

puter science. This is because parallel systems are notably more di�cult to un-

derstand for human designers and users while formal analysis is not necessarily

more di�cult from a structural complexity viewpoint.

Today there exists a very successful approach [BCM

+

92] to some of these

questions: systems are commonlymodeled by various types of transition systems.

In this framework, most problems of system analysis reduce to various kinds of

reachability problems on these models. Unfortunately, this classical approach

still has many (widely acknowledged) limitations, making it only well-suited

to speci�c kinds of systems. In particular, its main characteristic is the use of

�nite-state transition systems as a foundation.

Recently, many research groups are working to remove, possibly partially,

this limitation. They investigate speci�c fragments (BPP, PA, . . .) of general

process algebra, speci�c subclasses of communicating automata, pushdown au-

tomata, special classes of Petri nets, etc. See [Mol96, Esp96] for a survey.

3

Keywords: semantics of concurrency, automated veri�cation of programs, in�nite

state systems.

Thanks: This research was mainly done while the 2 authors were at the Leibniz-

IMAG Lab. in Grenoble.

In [KS96a, Kou97], we proposed and studied a new in�nite-state model of

concurrent systems with a good balance between expressive power and decid-

ability of behavioral questions. This formal model, called RP schemes, was

developed as an abstract semantic foundation for the RP programming lan-

guage [VEKM94]. The analysis of RP programs was in fact the real motivation

behind the development of a theory of RP schemes. Now a bridge must be built,

linking practical questions about real RP programs and theoretical problems

about abstract RP schemes.

In this paper, we present a formal framework linking the two viewpoints.

This framework provides for a systematic treatment of how results can be trans-

fered from one viewpoint to the other. The formal framework relies on a general

Preservation Theorem between two semantics. Today, it is used as a formal se-

mantical foundation in the development of software tools for the analysis of RP

programs. These tools are connected to the RP compiler currently developed by

a research team of the Theor. Comp. Sci. Dept. at Yaroslavl State University.

This paper is organized as follows: Sections 1 and 2 succinctly recall the basic

concepts of RP programs, RP schemes, and their abstract behavioral semantics

M. Section 3 summarizes our main decidability results. In Section 4 we de�ne

M

I

, the formal model we use for the full interpreted language and give our

Preservation Theorem linkingM and M

I

. We conclude with several examples,

illustrating how speci�c questions can be transfered from M

I

to the abstract

M.

1 Recursive-parallel programs and their schemes

The recursive-parallel (RP) style of programming is a speci�c approach to the

organization of parallel computations. This section gives a short introduction

to the basic concepts and notions which will be needed throughout. For a more

detailed treatment we refer to [KS96a].

1.1 RP programs

RP programs are written in an imperative programming language supporting

parallel coroutines (with recursion) and following a precise discipline for han-

dling parallelism. The language has been developed around the parallel machine

of the IPTC Institute in Yaroslavl [MVVK88] and it assumes a shared global

memory.

An RP program is essentially a set of nested procedures with the possibil-

ity of recursive calls. Fig. 1 contains an example of an abstract RP program,

\abstract" because we used abstract action names a; b; c; : : : from some uninter-

preted countable alphabet A instead of the usual basic actions from imperative

languages: \x:=y+2",

program main procedure subr1

a

1

; if b

2

then f

l1: pcall subr1; a

4

;

a

2

; g else f

if b

1

then f pcall subr1;

goto l1; a

5

;

g else f g

wait; end;

a

3

;

end;

g

Fig. 1. An (abstract) RP program

Every call of an RP procedure (via a pcall statement) yields a new process

that runs in parallel while execution proceeds in the caller (the parent). The only

synchronization device is the wait statement. With this, at any time, a parent

invocation may ask to synchronize with (i.e. to wait for) the termination of all

the children invocations it has spawned earlier. It is not possible to wait for the

termination of only a subset of the children invocations. It is not possible for a

child invocation to wait for the termination of its parent invocation.

1.2 RP schemes

RP schemes are a graphical representation of RP programs where the structure

of the control ow is made more apparent. An RP scheme (over A) is a �nite

rooted graph G with several kinds of labels that we will not de�ne formally here

(see [KS96a]). We let RPPS

A

denote the class of all such graphs. Fig. 2 shows

the scheme associated to the abstract RP program we saw earlier. A scheme

has several kind of nodes: rectangular (resp. oval) nodes for basic actions (resp.

tests), pentagonal nodes for pcall's, triangular nodes for wait statements, etc.

2 Behavioral semantics

In this section, we follow [KS96a] and de�ne a formal notion of behavior for RP

schemes. The intention is to formalize the operational meaning of the RP con-

structs pcall, wait, etc., but abstracting from the semantics of the individual

actions.

We consider a given scheme G 2 RPPS

A

. The behavior of G is given via a

labeled transition system M

G

. Labels are taken from A

�

def

= A[f�g, where � is

a special name denoting silent, internal computation, and ranged over by a; : : :

First we de�ne what are the states (or con�gurations) of our system.

a1

a4

a5

pcall

pcall

wait
wait

end

end

b1

b2

a2

a3

q0

q1

q2

q3

q5

q4

q6

q7

q8

q11

q12

q9

q10

Fig. 2. The scheme associated to the RP program from Fig. 1

De�nition1. The set of hierarchical states of a scheme G is the least set M (G)

s.t. if q

1

; : : : ; q

n

are nodes of G, and �

1

; : : : ; �

n

2 M (G) are hierarchical states,

then the multiset � = f(q

1

; �

1

); : : : ; (q

n

; �

n

)g is in M (G). (In particular, � 2

M (G).)

Thus hierarchical states are trees (more generally forests) of nodes from scheme

G. (Trees and subtrees are unordered.) But the algebraic structure of nested

multisets has its advantages: we use the customary notations \� + �

0

", \� � �

0

",

. . . to denote addition, inclusion, . . . between multisets.

Fig. 3 displays �

1

, a possible hierarchical state for M (G). In the algebraic

q1

q9 q12

q11 q10

Fig. 3. �

1

, an example hierarchical state

notation, �

1

is written f(q

1

; f(q

9

; f(q

11

;�)g); (q

12

; f(q

10

;�)g)g)g. We often omit

a few parenthesis and braces when no ambiguity arises and e.g. write �

1

=

q

1

; fq

9

; fq

11

g; q

12

; fq

10

gg.

The intuition behind hierarchical states is that � = f(q

1

; �

1

); : : : ; (q

n

; �

n

)g

denotes a con�guration where n completely independent concurrent activities

are present. One such activity, say (q

i

; �

i

), is the invocation of a coroutine (cur-

rently in state/node q

i

) together with its family of children invocations. These

children are running in parallel and are currently (collectively) in state �

i

. In

our example, �

1

has �ve concurrent components. One, in state q

11

, depends of

its father (currently in state q

9

) that itself depends on its father (currently in

state q

1

). This father invocation has another child invocation (currently in q

12

)

with its own child (currently in q

10

).

Another view is to see a hierarchical state � as the marking of a Petri-like net

(with tokens in the q; q

0

; : : : nodes) together with an additional tree-like structure

between tokens, keeping track of the parent-child relation created by the pcall's,

and used by the wait's statements. Fig. 4 displays �

1

as a marking of scheme G.

a1

a4

a5

pcall

pcall

wait
wait

end

end

b1

b2

a2

a3

q0

q1

q2

q3

q5

q4

q6

q7

q8

q11

q12

q9

q10

Fig. 4. �

1

as a marking of scheme G

The dotted lines between the 5 tokens depict the parent-child hierarchy.

The \hierarchical states as markings" viewpoint helps understand how one

moves from a current hierarchical state to a next one. Basically, the tokens move

independently (according to the graph structure of G), are created at pcall

nodes and disappear at end nodes. The parent-child relationship between tokens

is maintained and updated at all times. A token can only pass a wait node when

it has no child anymore (i.e. they are terminated, see Prop. 3).

Fig. 5 shows a possible evolution of �

1

, exemplifying the updating of the

parent-child hierarchy. �

1

transforms into �

2

when its invocation currently in q

10

q1

q9 q12

q11 q11

q9 q12

q11 q11

q11

q1

q9 q12

q11 q10

q7 q7

q7 q12

q11

q7

q2 q2

q7
�

1

�

2

�

3

�

4

Fig. 5. Example behaviour for hierarchical states

evolves into q

11

, thereby invoking a new child in q

7

. Then �

2

transforms into �

3

when the parent in q

1

evolves into q

2

, thereby invoking a new child in q

7

. Then

the invocation in q

9

(an end node) terminates and disappears, leading from �

3

to �

4

.

We now formally de�ne what are the transitions between the hierarchical

states.

De�nition2. The transition system M

G

def

= hM (G); A

�

;!; �

0

i has initial state

�

0

def

= q

0

;�, and labeled transition relation !� M (G) � A

�

�M (G) de�ned as

the least family of triples (�; a; �

0

) (written \�

a

! �

0

") satisfying the following

rules:

action: If q is an a-labeled action (or test) node in G, and q

0

is a

successor node of q, then q; �

a

! q

0

; � for all �.

end: If q is an end node in G, then q; �

�

! � for all �.

call: If q is a pcall node in G, with successor node q

0

and with invoked

node q

00

, then q; �

�

! q

0

; (� + q

00

;�) for all �.

wait: If q is a wait node in G, and q

0

is a successor node of q, then

q;�

�

! q

0

;�:

paral1: If �

a

! �

0

then � + �

00

a

! �

0

+ �

00

for all �

00

.

paral2: If �

a

! �

0

and q is a node of G, then q; �

a

! q; �

0

.

Rules for parallelism express that any activity �

a

! �

0

can still take place when

brothers are present (i.e. in some �+�

00

) or when a parent is present (i.e. in some

q; �). The wait-rule states how we can only perform a wait statement in state q

if the invoked children are all terminated (and then not present anymore). The

other rules state how children invocations are created and kept around.

We can now formally state that RP schemes have no deadlock:

Proposition3 [KS96a]. � 6! i� � = �.

The expressive power of our RP schemes and their hierarchical states seman-

tics is in some way larger than Petri nets because RP schemes allow a distinction

between parent and child invocations. On the other hand, they do not allow ar-

bitrary synchronization between concurrent components.

Formally, we proved in [Kou97, KS96a] that RP schemes and �nite PA pro-

grams [BK89, BW90] generate the same class of languages while Petri nets and

RP schemes generate incomparable classes. (When branching time behavior is

taken into account, RP schemes seem more expressive that PA programs but we

have no formal proof of this.)

PA is currently under heavy scrutiny [Esp96, Mol96] because it is both quite

expressive and still amenable to formal analysis. Thus RP schemes seem to be

just expressive enough to o�er challenging analysis questions.

3 The analysis of RP schemes

Our �rst investigations of RP schemes allowed several decidability results [KS96a].

Of course, the expressive power of these schemes is high enough so that many

natural questions (language equality, . . .) are not decidable.

In this section, we are only interested into recalling the positive decidability

results we use in Section 4.

Theorem4 [Sch96]. The Reachability Problem:

input: a scheme G and two states �; �

0

2M (G).

output: true i� there exists a sequence of transitions in M

G

reaching

�

0

from �,

the Node Reachability Problem:

input: a scheme G, a node q and a state � 2M (G).

output: true i� from � we can reach a state where q occurs,

the Mutual Exclusion Problem:

input: a scheme G, two nodes q; q

0

and a state � 2M (G).

output: true i� from � we never reach a state where both q and q

0

occur,

and the Boundedness Problem:

input: a scheme G and a state � 2M (G).

output: true i� Reach(�), the set of all states reachable from �, is �nite,

are decidable.

We say that a hierarchical state � is embedded into �

0

, written � � �

0

, if

there exists an embedding between � and �

0

seen as labeled forests, i.e. if �

can be obtained from �

0

by deleting some nodes, preserving the transitive an-

cestor relationships between the remaining nodes (see [KS96a]). This yields a

well-founded partial ordering, with � as minimum element. By Kruskal's Tree

Theorem [Kru60], this is also a well-quasi-ordering.

We say that a set I � M (G) is upward-closed i� � � �

0

2 I entails � 2 I. The

upward-closure of I

0

is the set of all states larger (w.r.t. �) than states in I

0

. If

I

0

is �nite, it is a basis of its upward-closure. Because � is a well-ordering, any

upward-closed set has a �nite basis.

Theorem5 [Kou97, KS96a]. The Sup-Reachability Problem:

input: a scheme G and a state � 2M (G).

output: a �nite basis of the upward-closure of Reach(�).

is e�ectively solvable.

[KS96a] introduces ?-embedding between hierarchical states. This is a �ner

variant of the earlier tree embedding, this time with gap-conditions. It also yields

a decidable well-quasi-ordering.

Theorem6 [Kou97, KS96a]. The Inevitability Problem:

input: a scheme G, a state � 2M (G), a �nite basis I

0

� M (G).

output: true i� all computations starting from � eventually reach a state

not in the upward-closure (w.r.t. ?-embedding) of I.

is decidable.

Corollary 7. The halting problem (whether all computations starting from a

given � eventually terminate) is decidable.

4 A model for interpreted RP programs

In the abstract RP schemes model, basic actions were left uninterpreted. A

formal semantics for the full language with interpreted actions can be obtained

simply by enriching the hierarchical states viewpoint with memory states and

the e�ect of basic actions upon memory. This way we obtain a formal de�nition

which can be used for the full language and which is based on the same ideas

we developed and studied in the simpler abstract framework.

4.1 Interpretation of the basic actions

In the RP language, the memory states have two components: (1) a shared global

memory, and (2) for each invocation, a local memory.

Formally, we consider a set (in�nite, in general) GMem = fu; : : :g of shared

global memory states, and a set (in�nite, in general) LMem = fv; : : :g of local

memory states (that is, local to a given coroutine invocation).

The local and global memory states are read and modi�ed by the basic

actions of our programs. Formally, all basic actions a 2 A are interpreted as

mappings

a

7�! from GMem � LMem into itself. We write u; v

a

7�! u

0

; v

0

rather

than \

a

7�! (u; v) = (u

0

; v

0

)". This means that performing a in a con�guration

where the global (resp. local) memory is in state u (resp. v) changes them (de-

terministically) to u

0

and v

0

. Additionaly, there are some similar

pcall

7�! ,

wait

7�! and

end

7�! (see x 4.3).

We say that I = hGMem;LMem; (

a

7�!)

a2A[���

i is an interpretation of the

underlying language A. I is �nite if GMem and LMem are. We let I

A

= fI; : : :g

denote the class of all recursive interpretations. Obviously �nite interpretations

are recursive.

In summary, our basic assumption is that all atomic actions in an RP pro-

gram (1) have a deterministic e�ect upon the local+shared memory, (2) always

terminate properly, and (3) are e�ective. It would be possible to allow non-

deterministic interpretations but we feel this does not respect the basic RPC

idea where non-determinism only comes from parallelism.

4.2 Interpreted states

A state for an interpreted RP program has the same tree-like structure between

parallel invocations we used for abstract RP schemes. Now each invocation is

equipped with its local memory state. On top of this, there is one single shared

global memory state.

De�nition8. Given an interpreted scheme G; I, the set of its interpreted hierar-

chical states is the least set M

I

(G) s.t. if q

1

; : : : ; q

n

are nodes of G, v

1

; : : : ; v

n

2

LMem are local memory states, and �

1

; : : : ; �

n

2 M

I

(G), then the multiset

� = f(q

1

; v

1

; �

1

); : : : ; (q

n

; v

n

; �

n

)g is in M

I

(G). The set of its interpreted global

states is GMem �M

I

(G).

4.3 Transitions between interpreted states

The transitions between global states are given by rules extending the rules for

uninterpreted schemes. The transition rule for action nodes becomes

action: If q is an a-labeled action node in G, and q

0

is the successor node

of q, and u; v

a

7�! u

0

; v

0

then hu; (q; v; �)i

a

! hu

0

; (q

0

; v

0

; �)i for all �.

Of course, this must be used in combination with rules for parallelism, which

become

paral1: If hu; �i

a

! hu

0

; �

0

i then hu; � + �

00

i

a

! hu

0

; �

0

+ �

00

i for all �

00

.

paral2: If hu; �i

a

! hu

0

; �

0

i and q is a node of G and v a state of LMem,

then hu; (q; v; �)i

a

! hu

0

; (q; v; �

0

)i.

Invocation of coroutines through pcall has some e�ect on the local and

the global memory states, but it also yields a new local memory for the invoked

process, so that

pcall

7�! is a mapping fromGMem�LMem into (GMem�LMem)�

LMem. The transition rule for invocations becomes

call: If q is a pcall node in G, with successor node q

0

, invoked node q

00

and

if u; v

pcall

7�! u

0

; v

0

; v

00

then hu; (q; v; �)i

�

! hu

0

; (q

0

; v

0

; (� + (q

00

; v

00

;�)))i for

all �.

The rules for the wait and end constructs follow the same logic:

wait: If q is a wait node in G, and q

0

is a successor node of q, and u; v

wait

7�!

u

0

; v

0

then hu; (q; v;�)i

�

! hu

0

; (q

0

; v

0

;�)i.

end: If q is an end node in G, and u; v

end

7�! u

0

then hu; (q; v; �)i

�

! hu

0

; �i for

all �.

The test instructions are not considered as non-deterministic basic actions any-

more. Rather, they yield a de�nite boolean result (depending on u; v) so that

if b is a test,

b

7�! is a mapping from GMem � LMem into GMem� LMem �

ftrue; falseg. The rule is

test: If q is a b-labeled test node in G, and q

0

; q

00

are its two successor nodes,

and u; v

b

7�! u

0

; v

0

; true then hu; (q; v; �)i

b

! hu

0

; (q

0

; v

0

; �)i for all �. If

instead u; v

b

7�! u

0

; v

0

; false then hu; (q; v; �)i

b

! hu

0

; (q

00

; v

0

; �)i.

Finally, all constructs now behave deterministically and it is the arbitrary in-

terleaving of parallel components which produces a non-deterministic global be-

havior.

This construction leads to a transition systemM

I

G

once we agree on a precise

starting state hu

0

; (q

0

; v

0

;�)i. Pursuing the \RP schemes as high-level nets"

analogy, we could say that M

I

G

is a colored version ofM

G

, where colors are the

memory states. However, this coloring mechanism is quite powerful, even if we

only consider �nite interpretations:

Theorem9. RP schemes with �nite interpretations are Turing powerful.

This relies on the fact that the global memory component can be used to syn-

chronize �a la Petri nets parallel invocations. Thus we obtain the combined power

of Petri Nets and BPA synchronization.

Proof of Theorem 9. One can encode any Minsky counter machine into an RP

scheme with �nite interpretation. For a counter C, an RP procedure is written.

This procedure counts by spawning children invocations. When we want to in-

crement the counter, we ask it (through u) to spawn a new child. These children

can testify (through u) that C is not zero. Through u, we can ask one (any) of

them to terminate, decrementing the value of C. C can implement a (blocking)

test for emptiness by using the wait construct to check that it has no children

anymore.

There exist some strong links between the interpreted model and the abstract

model.

Theorem10 (Preservation Theorem) [Kou97, KS96b]. M

I

G

v

d

M

G

where v

d

is a divergence preserving version of the classical � -simulation quasi-

ordering [Wal88].

This result shows that the abstract model is a correct approximation of the

more realistic interpreted model. The interesting point is that it only requires

general hypothesis upon the semantics of the basic actions (e.g. they never raise

errors). The proof does not need to know what are GMem and LMem precisely,

nor did we have to worry about the precise de�nition of e.g.

x:=y+3

7�! .

It is also interesting to observe that the same v

d

approximation criterion is

used in [KS96b, Kou97] to relate M

G

and P

G

(also M

I

G

and P

I

G

). P

G

is a third

model for RP programs, in which we formally describe the speci�c implementa-

tion strategy for controlling and assigning priorities to a potentially unbounded

number of parallel processes on the IPTC parallel machine with only a �xed

number of processors.

A corollary of Theorem 10 is that it is possible to investigate properties of

some real program by analyzing its abstract model. Of course, only properties

compatible with v

d

can be handled that way:

De�nition11. A property ' is compatiblewithv

d

i�, for any transition systems

P;P

0

P v

d

P

0

and P

0

j= ' entail P j= '

where P j= ' means that ' holds of P.

Proposition12. 1. All safety properties are compatible with v

d

.

2. Termination is compatible with v

d

.

This gives a general methodology for analyzing RP programs. If a given

property is compatible with v

d

, it is su�cient to establish it on the abstract

M

G

model. Of course the method is not complete (anyway, RP programs are

Turing-powerful) and the property may fail on M

G

and still hold of M

I

G

.

Properties not compatible with v

d

(e.g. normedness) are mostly interesting

if one wants to analyze the uninterpreted model, without aiming at transferring

the information to the interpreted model.

5 Analyzing full RP programs

In this section we list a few examples of analysis questions a programmer may

ask about his RP programs (i.e. about a givenM

I

G

) and which may be answered

by looking at the abstract M

G

for which decidability results exist.

For each example, it is important to check that (1) the question is relevant

from a programmer point of view, (2) it can be translated into a decidable

problem for the abstract model, and (3) a positive answer for M

G

entails a

positive answer for M

I

G

.

Point (3) often involves a slightly more general notion of compatibility where

we allow properties to be translated when moving from M

I

G

to M

G

. In all

examples, establishing the compatibility is quite simple and does not have to

consider �ne details of the semantics of interpreted actions.

5.1 Node Reachability

A user having written some RP programG is interested into knowing whether all

nodes are reachable. Formally, a node q is reachable if q occurs into a reachable

state. If q is not reachable then this may be an indication that there is something

wrong in the program. We saw in Section 3 that this question is decidable for

the abstract modelM

G

.

Proposition13. (Correctness) If node q is not reachable in M

G

, it is not

reachable in any M

I

G

.

(Completeness) Conversely, if node q is reachable in M

G

, there exists a �nite

I such that q is reachable in M

I

G

.

Proof. Correctness is clear because when we forget the memory components of

a behavior of M

I

G

, we get a behavior of M

G

.

For completeness, assume that (� =)�

0

! : : : �

n

is a behavior ofM

G

reaching

q (i.e. q occurs in �

n

). We now build a simple interpretation I where the local

memory states are empty and where the global memory state u just stores a

natural number, registering the current number of performed steps. So that any

action simply increments u. If we try to mimic � inM

I

G

, the only di�culty is to

always pick the right branches after test instructions. Because

b

7�! depends on

u, we can code in the

b

7�!'s the \left or right" choice which was actually taken

in �. Because � is �nite, u can be bounded.

5.2 Persistent nodes

We say a set of nodes P = fq

1

; : : : ; q

n

g is persistent i� all states reachable (from

a given initial state in a given program G) have at least one occurrence of one

node in P . In practice, P can be the set of nodes of a given procedure, or the set

of nodes in which a given resource is used. If P is persistent, then the procedure

is never terminated, the resource is never free.

Persistence is decidable in RP schemes, as a corollary of Theorem 5.

Proposition14. (Correctness) If P is persistent in M

G

, it is persistent in

M

I

G

.

(Completeness) Conversely, if P is not persistent in M

G

, there exists a �nite

I such that P is not persistent in M

I

G

.

Proof. As Proposition 13.

5.3 Mutual exclusion

The node exclusion problem is very important for RP programs. This has appli-

cations in compiler techniques. E.g. listing all nodes of G where a given global

variable is assigned new values, and checking that these nodes cannot occur

simultaneously in a hierarchical state, we know there will be no write-conict

in the machine hardware. When they can occur simultaneously, this is often

an indication of bad programming. We saw in Section 3 that node exclusion is

decidable for the abstract modelM

G

. Now we just need:

Proposition15. (Correctness) If nodes q

1

and q

2

are mutually exclusive in

M

G

, they are mutually exclusive in M

I

G

.

(Completeness) Conversely, if q

1

and q

2

are not mutually exclusive in M

G

,

there exists a �nite I such that q

1

and q

2

are not mutually exclusive in M

I

G

.

Proof. As Proposition 13.

5.4 Boundedness

Boundedness means that there only exists a �nite number of di�erent reachable

states, and then that the full behavior of the system can be represented as a

�nite graph. For many protocols, or controllers, it is expected that only a �nite

number of con�gurations can be reached. Boundedness is decidable for abstract

RP schemes.

Proposition16. .

(Correctness) When LMem and GMem are �nite, boundedness of M

G

en-

tails boundedness of M

I

G

.

(Completeness) Conversely, if M

G

is not bounded, there exist a �nite I s.t.

M

I

G

is not bounded.

Proof. Correctness is obvious. For completeness, we assume (� =)�

0

! �

1

! � � �

is an unbounded behavior of M

G

(which must exist by K�onig's Lemma). It is

possible [Sch96] to assume � is of one of the following two forms:

{ � is some

�

0

! � � ��

k

= �[q; �]! �[::]! � � ��

l

= �[q; � + �

0

]

(with �

0

not empty) and unboundedness comes from iterating inde�nitely

the q; � ! � � �q; � + �

0

part in the �[:] context, or

{ � is some

�

0

! � � � �

k

= �[q; �]! �[::]! � � ��

l

= �[�

0

[q; �]]

(with �

0

[:] not empty) and unboundedness comes from pumping inde�nitely

the �

0

[:] context.

In both cases, one can build a �nite interpretation allowing M

I

G

to mimic this

unbounded behavior. We only need an empty local memory and a �nite global

memory storing only a natural number bounded by l. With this, it is easy to

encode the necessary \left or right" choices in the

b

7�! parts of I.

5.5 Termination

Termination is a compatible property, decidable for abstract RP schemes.

Proposition17. (Correctness) If M

G

halts, M

I

G

halts.

(Completeness) Conversely, if M

G

does not halt, there exists a �nite I such

that M

I

G

does not halt.

Proof. As Proposition 16.

6 Conclusions

We de�ned a formal semantics for interpreted RP programs and connected the

analysis of abstract RP schemes (from [KS96a]) to the analysis of real RP pro-

grams. This provides a formal foundation for the software tools currently devel-

oped around the RP compiler at Yaroslavl State University.

Today the theory of our RP schemes model has not yet been fully investi-

gated. There exist literally hundreds of behavioral problems for which we do not

know yet whether they are decidable or not. Up to now, our approach has been

to propose general methods for answering these questions and possibly many

related variants. The analysis framework we presented in this paper is a further

guide, helping see which questions are more important. Questions about RP

schemes are mostly relevant when they can be linked successfully to questions

about interpreted RP programs.

References

[BCM

+

92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.

Symbolic model checking: 10

20

states and beyond. Information and Com-

putation, 98(2):142{170, June 1992.

[BK89] J. A. Bergstra and J. W. Klop. Process theory based on bisimulation se-

mantics. In Linear Time, Branching Time and Partial Order in Logics

and Models for Concurrency, Noordwijkerhout, LNCS 354, pages 50{122.

Springer-Verlag, 1989.

[BW90] J. C. M. Baeten and W. P. Weijland. Process Algebra, volume 18 of Cam-

bridge Tracts in Theoretical Computer Science. Cambridge Univ. Press,

1990.

[Esp96] J. Esparza. More in�nite results. In Proc. Int. Workshop Veri�cation of

In�nite State Systems, Pisa, pages 4{20, August 1996.

[Kou97] O. Kouchnarenko. S�emantique des programmes r�ecursifs-parall�eles et m�eth-

odes pour leur analyse. Th�ese de Doctorat, Univ. Joseph Fourier-Grenoble

I, France, February 1997.

[Kru60] J. B. Kruskal. Well-quasi-ordering, the Tree Theorem, and Vazsonyi's con-

jecture. Trans. Amer. Math. Soc., 95:210{225, 1960.

[KS96a] O. Kouchnarenko and Ph. Schnoebelen. A model for recursive-parallel pro-

grams. In Proc. Int. Workshop Veri�cation of In�nite State Systems, Pisa,

pages 127{138, August 1996.

[KS96b] O. Kouchnarenko and Ph. Schnoebelen. Mod�eles formels pour les pro-

grammes r�ecursifs-parall�eles. In Proc. RENPAR'8, Bordeaux, pages 85{88,

May 1996.

[Mol96] F. Moller. In�nite results. In Proc. CONCUR'96, Pisa, Italy, LNCS 1119,

pages 195{216. Springer-Verlag, August 1996.

[MVVK88] Y. Mamatov, V. Vasilchikov, S. Volchenkov, and V. Kurchidis. Multipro-

cessor computer system with dynamic parallelism. Technical Report 7160,

VINITI, Moscow, Russia, September 1988.

[Sch96] Ph. Schnoebelen. On the analysis of RP schemes. Unpublished notes,

November 1996.

[VEKM94] V. Vasilchikov, V. Emielyn, V. Kurchidis, and Y. Mamatov. Recursive-

parallel programming and work in RPMSHELL. IPVT RAN, Iaroslavl,

Russia, 1994.

[Wal88] D. J. Walker. Bisimulations and divergence. In Proc. 3rd IEEE Symp.

Logic in Computer Science, Edinburgh, July 1988.

This article was processed using the L

A

T

E

X macro package with LLNCS style

