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Abstract. Electronic voting promises the possibility of a convenient, efficient
and secure facility for recording and tallying votes in an election. Recently high-
lighted inadequacies of implemented systems have demonstrated the importance
of formally verifying the underlying voting protocols. The applied pi calculus
is a formalism for modelling such protocols, and allows us to verify properties
by using automatic tools, and to rely on manual proof techniques for cases that
automatic tools are unable to handle. We model a known protocol for elections
known as FOO 92 in the applied pi calculus, and we formalise three of its ex-
pected properties, namely fairness, eligibility, and privacy. We use the ProVerif
tool to prove that the first two properties are satisfied. In the case of the third
property, ProVerif is unable to prove it directly, because its ability to prove ob-
servational equivalence between processes is not complete. We provide a manual
proof of the required equivalence.

1 Introduction

Electronic voting promises the possibility of a convenient, efficient and secure facil-
ity for recording and tallying votes. It can be used for a variety of types of elections,
from small committees or on-line communities through to full-scale national elections.
However, the electronic voting machines used in recent US elections have been fraught
with problems. Recent work [13] has analysed the source code of the machines sold by
the second largest and fastest-growing vendor, which are in use in 37 US states. This
analysis has produced a catalogue of vulnerabilities and possible attacks.

A potentially much more secure system could be implemented, based on formal
protocols that specify the messages sent between the voters and administrators. Such
protocols have been studied for several decades. They offer the possibility of abstract
analysis of the protocol against formally-stated properties. There are two main kinds
of protocol proposed for electronic voting [16]. In blind signature schemes, the voter
first obtains a token, which is a message blindly signed by the administrator and known
only to the voter herself. She later sends her vote anonymously, with this token as proof
of eligibility. In schemes using homomorphic encryption, the voter cooperates with the
administrator in order to construct an encryption of her vote. The administrator then



exploits homomorphic properties of the encryption algorithm to compute the encrypted
tally directly from the encrypted votes.

Among the properties which electronic voting protocols may satisfy are the follow-
ing:

Fairness: no early results can be obtained which could influence the remaining voters.
Eligibility: only legitimate voters can vote, and only once.
Privacy: the fact that a particular voted in a particular way is not revealed to anyone.
Individual verifiability: a voter can verify that her vote was really counted.
Universal verifiability: the published outcome really is the sum of all the votes.
Receipt-freeness: a voter cannot prove that she voted in a certain way (this is important

to protect voters from coercion).

In this paper, we study a protocol commonly known as the FOO 92 scheme [12],
which works with blind signatures. By informal analysis (e.g., [16]), it has been con-
cluded that FOO 92 satisfies the first four properties in the list above.

Because security protocols are notoriously difficult to design and analyse, formal
verification techniques are particularly important. In several cases, protocols which
were thought to be correct for several years have, by means of formal verification tech-
niques, been discovered to have major flaws [14, 6]. Our aim in this paper is to use
verification techniques to analyse the FOO 92 protocol. We model it in the applied pi
calculus [3], which has the advantages of being based on well-understood concepts. The
applied pi calculus has a family of proof techniques which we can use, is supported by
the ProVerif tool [4], and has been used to analyse a variety of security protocols [1,
11].

2 The FOO 92 protocol

The protocol involves voters, an administrator, verifying that only eligible voters can
cast votes, and a collector, collecting and publishing the votes. In comparison with
authentication protocols, the protocol also uses some unusual cryptographic primitives,
such as secure bit-commitment and blind signatures. Moreover, it relies on anonymous
channels.

In a first phase, the voter gets a signature on a commitment to his vote from the
administrator. To ensure privacy, blind signatures [7] are used, i.e. the administrator
does not learn the commitment of the vote.

– Voter V selects a vote v and computes the commitment x = ξ(v,r) using the com-
mitment scheme ξ and a random key r;

– V computes the message e = χ(x, b) using a blinding function χ and a random
blinding factor b;

– V digitally signs e and sends his signature σV (e) to the administrator A together
with his identity;

– A verifies that V has the right to vote, has not voted yet and that the signature is
valid; if all these tests hold, A digitally signs e and sends his signature σA(e) to V ;

– V now unblinds σA(e) and obtains y = σA(x), i.e. a signed commitment to V ’s
vote.



The second phase of the protocol is the actual voting phase.

– V sends y, A’s signature on the commitment to V ’s vote, to the collector C using
an anonymous channel;

– C checks correctness of the signature y and, if the test succeeds, enters (�, x, y)
onto a list as an �-th item.

The last phase of the voting protocol starts, once the collector decides that he re-
ceived all votes, e. g. after a fixed deadline. In this phase the voters reveal the random
key r which allows C to open the votes and publish them.

– C publishes the list (�i, xi, yi) of commitments he obtained;
– V verifies that his commitment is in the list and sends �, r to C via an anonymous

channel;
– C opens the �-th ballot using the random r and publishes the vote v.

Note that we need to separate the voting phase into a commitment phase and an opening
phase to avoid releasing partial results of the election.

3 The applied pi calculus

The applied pi calculus [3] is a language for describing concurrent processes and their
interactions. It is based on the pi calculus, but is intended to be less pure and therefore
more convenient to use. Properties of processes described in the applied pi calculus
can be proved by employing manual techniques [3], or by automated tools such as
ProVerif [4]. As well as reachability properties which are typical of model checking
tools, ProVerif can in some cases prove that processes are observationally equivalent
[5]. This capability is important for privacy-type properties such as those we study here.
The applied pi calculus has been used to study a variety of security protocols, such as
those for private authentication [11] and for fast key establishment [1].

To describe processes in the applied pi calculus, one starts with a set of names
(which are used to name communication channels or other constants), a set of variables,
and a signature Σ which consists of the function symbols which will be used to define
terms.

In the applied pi calculus, one has (plain) processes and extended processes. Plain
processes are built up in a similar way to processes in the pi calculus, except that mes-
sages can contain terms (rather than just names). Extended processes can also be active
substitutions: {M/x} is the substitution that replaces the variable x with the term M .
Active substitutions generalise “let”. The process νx.({M/x} | P ) corresponds exactly
to “let x = M in P ”.

Active substitutions are useful because they allow us to map an extended process A
to its frame φ(A) by replacing every plain processes in A with 0. A frame is an extended
process built up from 0 and active substitutions by parallel composition and restriction.
The frame φ(A) can be viewed as an approximation of A that accounts for the static
knowledge A exposes to its environment, but not A’s dynamic behaviour.

The operational semantics of processes in the applied pi calculus is defined by struc-
tural rules defining two relations: structural equivalence, noted ≡, and internal reduc-
tion, noted →. A context C[·] is a process with a hole; an evaluation context is a context



whose hole is not under a replication, a conditional, an input, or an output. Structural
equivalence is is the smallest equivalence relation on extended processes that is closed
under α-conversion on names and variables, by application of evaluation contexts, and
satisfying some further basic structural rules such as A | 0 ≡ A, associativity and
commutativity of |, binding-operator-like behaviour of ν, and when Σ � M = N the
equivalences:

νx.{M/x} ≡ 0 {M/x} | A ≡ {M/x} | A{M/x} {M/x} ≡ {N/x}
Internal reduction → is the smallest relation on extended processes closed under struc-
tural equivalence such that ā〈x〉.P | a(x).Q → P | Q and whenever Σ �� M = N ,

if M = M then P else Q → P if M = N then P else Q → Q.

Many properties of security protocols (including some of the properties we study
in this paper) are formalised in terms of observational equivalence between processes.
To define this, we write A ⇓ a when A can send a message on a, that is, when A →∗

C[ā〈M〉.P ] for some evaluation context C that does not bind a.

Definition 1. Observational equivalence (≈) is the largest symmetric relation R be-
tween closed extended processes with the same domain such that A R B implies:

1. if A ⇓ a then B ⇓ a.
2. if A →∗ A′ then B →∗ B′ and A′ R B′ for some B′.
3. C[A] R C[B] for closing evaluation contexts C.

In cases in which the two processes differ only by the terms they contain, if they
are also observationally equivalent then ProVerif may be able to prove it directly. How-
ever, ProVerif’s ability to prove observational equivalence is incomplete, and therefore
sometimes one has to resort to manual methods, whose justifications are contained in
[3].

The method we use in this paper relies on two further notions: static equivalence
(≈s), and labelled bisimilarity (≈l). Static equivalence just compares the static knowl-
edge processes expose to their environment. Two frames are statically equivalent if,
when considered as substitutions, they agree on the distinguishability of terms. For
frames, static equivalence agrees with observational equivalence, while for general ex-
tended processes, observational equivalence is finer.

The definition of labelled bisimilarity is like the usual definition of bisimilarity,
except that at each step in the unravelled definition one additionally requires that the
processes are statically equivalent. Labelled bisimilarity and observational equivalence
coincide [3]. Therefore, to prove observational equivalence, it is sufficient to prove
bisimilarity and static equivalence at each step. This is what we do to prove the pri-
vacy property.

4 Modelling FOO 92 in the applied pi calculus

4.1 Model

We use the applied pi calculus to model the FOO 92 protocol. The advantage is that we
can combine powerful (hand) proof techniques from the applied pi calculus with au-
tomated proofs provided by Blanchet’s ProVerif tool. Moreover, the verification is not



(* Signature *)
fun commit /2 (* bit commitment *)
fun open /2 (* open bit commitment *)
fun s ign /2 (* digital signature *)
fun checksign /2 (* open digital signature *)
fun pk /1 (* get public key from private key *)
fun host /1 (* get host from public key *)
fun getpk /1 (* get public key from host *)
fun b l i n d /2 (* blinding *)
fun unb l ind /2 (* undo blinding *)

(* Equational theory *)
equat ion open ( commit (m, r ) , r ) = m
equat ion getpk ( host ( pubkey ) ) = pubkey
equat ion checksign ( s ign (m, sk ) , pk ( sk ) ) = m
equat ion unb l ind ( b l i n d (m, r ) , r ) = m
equat ion unb l ind ( s ign ( b l i n d (m, r ) , sk ) , r ) = s ign (m, sk )

Process 1. signature and equational theory

restricted to a bounded number of sessions and we do not need to explicitly define the
adversary. We only give the equational theory describing the intruder theory. Generally,
the intruder has access to any message sent on a public, i.e. unrestricted, channel. These
public channels model the network. Note that all channels are anonymous in the applied
pi calculus. Unless the identity or something like the IP address is specified explicitly
in the conveyed message, the origin of a message is unknown. This abstraction of a real
network is very appealing, as it avoids having us to model explicitly an anonymiser ser-
vice. However, we stress that a real implementation needs to treat anonymous channels
with care.

Most of our proofs rely directly on Blanchet’s ProVerif tool. The input for the tool
is given in an ascii version of the applied pi calculus. To be as precise as possible, the
processes described below are directly extracted out of the input files and are given in
a pretty-printed version of the ascii input. The minor changes with the usual applied pi
calculus notation should be clear.

4.2 Signature and equational theory

The signature and equational theory are represented in Process 1. We model cryptogra-
phy in a Dolev-Yao style as being perfect. In this model we can note that bit commitment
(modeled by the functions commit and open) is identical to classical symmetric-key
encryption. The functions and equations that handle public keys and hostnames should
be clear. Digital signatures are modeled as being signatures with message recovery, i.e.
the signature itself contains the signed message which can be extracted using the check-
sign function. To model blind signatures we add a pair of functions blind and unblind.
These functions are again similar to perfect symmetric key encryption and bit commit-
ment. However, we add a second equation which permits us to extract a signature out of



process
ν ska . ν skv . (* private keys *)
ν pr ivCh . (* channel for registering legimitate voters *)
l e t pka=pk ( ska ) in
l e t hosta = host ( pka ) in
l e t pkv=pk ( skv ) in
l e t hostv=host ( pkv ) in
(* publish host names and public keys *)
out ( ch , pka ) . out ( ch , hosta ) .
out ( ch , pkv ) . out ( ch , hostv ) .
(* register legimitate voters *)
( ( out ( privCh , pkv ) . out ( privCh , pk ( s k i ) ) ) |
( ! processV ) | ( ! processA ) | ( ! processC ) )

Process 2. environment process

a blinded signature, when the blinding factor is known. The ProVerif tool also implic-
itly handles pairing: pair(x,y) is abbreviated as (x,y). We also consider the functions
fst and snd to extract the first, respectively second element of a pair. Note that because
of the property that unblind(sign(blind(m,r),sk),r) = sign(unblind(blind(m,r),r),sk)
= sign(m,sk), our theory is not a subterm theory. Therefore the results for deciding
static equivalence from [2] do not apply. However, an extension of [2] presents new re-
sults that seem to cover a more general family of theories, including the one considered
here [9].

4.3 The environment process

The main process is specified in Process 2. Here we model the environment and specify
how the other processes (detailed below) are combined. First, fresh secret keys for the
voters and the administrator are generated using the restriction operator. For simplicity,
all legitimate voters share the same secret key in our model (and therefore the same
public key). The public keys and hostnames corresponding to the secret keys are then
sent on a public channels, i.e. they are made available to the intruder. The list of le-
gitimate voters is modeled by sending the public key of the voters to the administrator
on a private communication channel. We also register the intruder as being a legitimate
voter by sending his public key pk(ski) where ski is a free variable: this enables the
intruder to introduce votes of his choice and models that some voters may be corrupted.
Then we combine an unbounded number of each of the processes (voter, administra-
tor and collector). An unbounded number of administrators and collectors models that
these processes are servers, creating a separate instance of the server process (e.g. by
“forking”) for each client.

4.4 The voter process

The voter process given in Process 3 models the role of a voter. At the beginning two
fresh random numbers are generated for blinding, respectively bit commitment of the



l e t processV =
ν b l i n d e r . ν r .
l e t bl indedcommitedvote= b l i n d ( commit ( v , r ) , b l i n d e r ) in
out ( ch , ( hostv , s ign ( bl indedcommitedvote , skv ) ) ) .
in ( ch ,m2) .
l e t bl indedcommitedvote0=checksign (m2, pka ) in
i f bl indedcommitedvote0=bl indedcommitedvote then
l e t signedcommitedvote=unb l ind (m2, b l i n d e r ) in
phase 1 .
out ( ch , signedcommitedvote ) .
in ( ch , ( l ,= signedcommitedvote ) ) .
phase 2 .
out ( ch , ( l , r ) )

Process 3. voter process

l e t processA =
in ( privCh , pubkv ) . (* register legimitate voters *)
in ( ch ,m1) .
l e t ( hv , s i g )=m1 in
l e t pubkeyv=getpk ( hv ) in
i f pubkeyv = pubkv then
out ( ch , s ign ( checksign ( s ig , pubkeyv ) , ska ) )

Process 4. administrator process

vote. Note that the vote is not modeled as a fresh nonce. This is because generally the
domain of values of the votes are known. For instance this domain could be {yes, no},
a finite number of candidates, etc. Hence, vulnerability to guessing attacks is an impor-
tant topic. We will discuss this issue in more detail in section 5. The remainder of the
specification follows directly the informal description given in section 2. The command
in(ch,(l,=s)) means the process inputs not any pair but a pair whose second argument
is s. Note that we use phase separation commands, introduced by the ProVerif tool as
global synchronization commands. The process first executes all instructions of a given
phase before moving to the next phase. The separation of the protocol in phases is useful
when analyzing fairness and the synchronization is even crucial for privacy to hold.

4.5 The administrator process

The administrator is modeled by the process represented in Process 4. In order to verify
that a voter is a legitimate voter, the administrator first receives a public key on a private
channel. Legitimate voters have been registered on this private channel in the environ-
ment process described above. The received public key has to match the voter who is
trying to get a signed ballot from the administrator. If the public key indeed matches,
then the administrator signs the received message which he supposes to be a blinded
ballot.



l e t processC =
phase 1 .
in ( ch ,m3) .
ν l . out ( ch , ( l ,m3) ) .
phase 2 .
in ( ch , ( = l , rand ) ) .
l e t voteV=open ( checksign (m3, pka ) , rand ) in
out ( ch , voteV )

Process 5. collector process

4.6 The collector process

In Process 5 we model the collector. When the collector receives a committed vote,
he associates a fresh label ’l’ with this vote. Publishing the list of votes and labels is
modeled by sending those values on a public channel. Then the voter can send back
the random number which served as a key in the commitment scheme together with the
label. The collector receives the key matching the label and opens the vote which he then
publishes. Note that in this model the collector immediately publishes the vote without
waiting that all voters have committed to their vote. In order to verify in section 5 that
no early votes can be revealed we simply omit the last steps in the voter and collector
process corresponding to the opening and publishing of the results.

5 Analysis

We have analysed three major properties of electronic voting protocols: fairness, eligi-
bility and privacy. Most of the properties can be directly verified using ProVerif. The
tool allows us to verify standard secrecy properties as well as resistance against guess-
ing attacks, defined in terms of equivalences. For all but one property, privacy, the tool
directly succeeds its proofs. When analysing privacy, we need to rely on the proof tech-
niques introduced in [3]. Although the results are positive results, we believe that the
way we verify the properties increases the understanding of the properties themselves
and also the way to model them.

5.1 Fairness

Fairness is the property that ensures that no early results can be obtained and influence
the vote. Of course, when we state that no early results can be obtained, we mean that
the protocol does not leak any votes before the opening phase. It is impossible to prevent
“exit polls”, i.e. people revealing their vote when asked.

We model fairness as a secrecy property: it should be impossible for an attacker to
learn a vote before the opening phase, i.e. before the beginning of phase 2.



Standard secrecy. Checking standard secrecy, i.e. secrecy based on reachability, is the
most basic property ProVerif can check. We request ProVerif to check that the private
free variable v representing the vote cannot be deduced by the attacker. ProVerif directly
succeeds to prove this result.

Resistance against guessing attacks. In the previous paragraph we deduce that a stan-
dard attacker cannot learn a legitimate voter’s vote. However, voting protocols are par-
ticularly vulnerable to guessing attacks because the values of the votes are taken from
a small domain of possible values. Intuitively, in a guessing attack, an attacker guesses
a possible value for the secret vote and then tries to verify his guess. A trivial example
of a guessing attack is when the voter encrypts his vote with the collector’s public key
(using deterministic encryption). Then the attacker just needs to encrypt his guess and
compare the result with the observed encrypted vote. Guessing attacks have been for-
malized by Lowe [15] and later by Delaune and Jacquemard [10]. A definition in terms
of equivalences has been proposed by Corin et al. in [8]:

Definition 2. Let φ be a frame in which v is free. Then we say that φ verifies a guess of
v if φ �≈sνv.φ. Conversely, we say that φ is secure wrt v if φ≈sνv.φ.

Intuitively, if φ and νv.φ can be distinguished then an adversary can verify his guess
using φ. This is also the definition checked by ProVerif. ProVerif succeeds in proving
this stronger version of secrecy for the commitment phase of the FOO 92 protocol. Note
that verification of guessing attacks does not support considering the protocol up to a
given phase. Therefore, we slightly change the processes presented in section 4: we
omit the last sending of the voter process which allows the opening of the commitment.

Strong secrecy. We also verified strong secrecy in the sense of [5]. Intuitively, strong
secrecy is verified if the intruder cannot distinguish between two processes where the
secret changes. For the precise definition, we refer the reader to [5]. The main difference
with guessing attacks is that strong secrecy relies on observational equivalence rather
than static equivalence. ProVerif directly succeeds to prove strong secrecy.

Corrupt administrator. We have also verified standard secrecy, resistance against guess-
ing attacks and strong secrecy in the presence of a corrupt administrator. A corrupt ad-
ministrator is modeled by outputting the administrator’s secret key on a public channel.
Hence, the intruder can perform any actions the administrator could have done. Again,
the result is positive: the administrator cannot learn the votes of a honest voter, before
the committed votes are opened. Note that we do not need to model a corrupt collector,
as the collector never uses his secret key, i.e. the collector could anyway be replaced by
the attacker.

5.2 Eligibility

Eligibility is the property verifying that only legitimate voters can vote, and only once.
The way we verify the first part of this property is by giving the attacker a challenge
vote. We modify the processes in two ways: (i) the attacker is not registered as a legit-
imate voter; (ii) the collector tests whether the received vote is the challenge vote and



l e t processC =
phase 1 .
in ( ch ,m3) .
ν l . out ( ch , ( l ,m3) ) .
phase 2 .
in ( ch , ( = l , rand ) ) .
l e t voteV=open ( checksign (m3, pka ) , rand ) in
ν a t tack .

i f voteV=chal lengeVote then
out ( ch , a t t ack )

else
out ( ch , voteV )

Process 6. modified collector process for checking the eligibility properties

outputs the restricted name attack if the test succeeds. The modified collector process
is given in Process 6. Verifying eligibility is now reduced to secrecy of the name attack.
ProVerif succeeds in proving that attack cannot be deduced by the attacker.

If we register the attacker as a legitimate voter, the tool finds the trivial attack, where
the intruder votes challenge vote. Similarly, if a corrupt administrator is modeled then
the intruder can generate a signed commitment to the challenge vote and insert it.

The second part of the eligibility property (that a voter can vote only once) cannot
be verified in our model, because of our simplifying assumption that all voters share the
same key.

5.3 Privacy

The privacy property aims to guarantee that the link between a given voter V and his
vote v remains hidden. Anonymity and privacy properties have been successfully stud-
ied using equivalences. However, the definition of privacy in the context of voting pro-
tocols is rather subtle. While generally most security properties should hold against an
arbitrary number of dishonest participants, arbitrary coalitions do not make sense here.
Consider for instance the case where all but one voter are dishonest: as the results of
the vote are published at the end, the dishonest voter can collude and determine the
vote of the honest voter. A classical trick for modeling anonymity is to ask whether two
processes, one in which V1 votes and one in which V2 votes, are equivalent. However,
such an equivalence does not hold here as the voters’ identities are revealed (and they
need to be revealed at least to the administrator to verify eligibility). In a similar way,
an equivalence of two processes where only the vote is changed does not hold, because
the votes are published at the end of the protocol. To ensure privacy we need to hide the
link between the voter and the vote and not the voter or the vote itself.

In order to give a reasonable definition of privacy, we need to suppose that at least
two voters are honest. We denote the voters V1 and V2 and their votes vote1, respectively
vote2. We say that a voting protocol respects privacy whenever a process where V1

votes vote1 and V2 votes vote2 is observationally equivalent to a process where V1

votes vote2 and V2 votes vote1.



process
l e t x=choice [ v1 , v2 ] in
l e t y=choice [ v2 , v1 ] in
( ( out ( ch , x ) ) | ( out ( ch , y ) ) )

Process 7. limitation of the ProVerif tool to prove observational equivalence

With respect to the modeling given in section 4 we explicitly add a second voter.
However, the equivalence that is checked by ProVerif is strictly finer than observational
equivalence. Therefore the tool does not succeed in proving the above given privacy
property. In Process 7, we illustrate a simple process that is observationally equivalent
(it is actually structurally equivalent), but cannot be proven so by ProVerif. This exam-
ple also illustrates ProVerif’s choice operator used to define two processes that should
be proven observationally equivalent. The choice operator is a binary operator that de-
fines two processes P1 and P2 such that choice(x1,x2) evaluates to x1 in P1 and to
x2 in P2. Although the two processes are structurally equivalent, the current version of
ProVerif does not succeed in proving observational equivalence.

As ProVerif takes as input processes in the applied pi calculus, we can rely on hand
proof techniques to show privacy. The processes modeling the two voters are shown
in Process 8. The main process is adapted accordingly to publish public keys and host
names.

Proposition 1. The FOO 92 protocol respects privacy, i.e. P [vote1/v1, vote2/v2] ≈
P [vote2/v1, vote1/v2], where P is given in Process 9.

The proof can be sketched as follows. First note that the only difference between
P [vote1/v1, vote2/v2] and P [vote2/v1, vote1/v2] lies in the two voter processes. We
therefore first show that

(processV 1|processV 2)[vote1/v1, vote2/v2]
≈

(processV 1|processV 2)[vote2/v1, vote1/v2].

To prove this we show labelled bisimilarity. We denote the left-hand process as P1 and
the right-hand process as P2. The labelled transition of P1

P1
νx1.c̄h〈x1〉−→ νblinder1.νr1.νblinder2.νr2.

(P ′
1|{(hostv1,sign(blind(commit(v1,r1),blinder1),skv1)/x1})

νx2.c̄h〈x2〉−→ νblinder1.νr1.νblinder2.νr2.
(P ′′

1 |{(hostv1,sign(blind(commit(v1,r1),blinder1),skv1)/x1}
|{(hostv2,sign(blind(commit(v2,r2),blinder1),skv2)/x2})



(* Voter1 *)
l e t processV1 =

ν b l i n d e r 1 . ν r1 .
l e t bl indedcommitedvote1= b l i n d ( commit ( v1 , r1 ) , b l i n d e r 1 ) in
out ( ch , ( hostv1 , s ign ( bl indedcommitedvote1 , skv1 ) ) ) .
in ( ch ,m21) .
l e t bl indedcommitedvote01=checksign (m21, pka ) in
i f bl indedcommitedvote01=bl indedcommitedvote1 then
l e t signedcommitedvote1=unb l ind (m21, b l i n d e r 1 ) in
phase 1 .
out ( ch , signedcommitedvote1 ) .
in ( ch , ( l1 ,= signedcommitedvote1 ) ) .
phase 2 .
out ( ch , ( l1 , r1 ) )

(* Voter2 *)
l e t processV2 =

ν b l i n d e r 2 . ν r2 .
l e t bl indedcommitedvote2= b l i n d ( commit ( v2 , r2 ) , b l i n d e r 2 ) in
out ( ch , ( hostv2 , s ign ( bl indedcommitedvote2 , skv2 ) ) ) .
in ( ch ,m22) .
l e t bl indedcommitedvote02=checksign (m22, pka ) in
i f bl indedcommitedvote02=bl indedcommitedvote2 then
l e t signedcommitedvote2=unb l ind (m22, b l i n d e r 2 ) in
phase 1 .
out ( ch , signedcommitedvote2 ) .
in ( ch , ( l2 ,= signedcommitedvote2 ) ) .
phase 2 .
out ( ch , ( l2 , r2 ) )

Process 8. two voters for checking the privacy property

can be simulated by P2 as

P2
νx1.c̄h〈x1〉−→ νblinder1.νr1.νblinder2.νr2.

(P ′
2|{(hostv1,sign(blind(commit(v2,r1),blinder1),skv1)/x1})

νx2.c̄h〈x2〉−→ νblinder1.νr1.νblinder2.νr2.
(P ′′

2 |{(hostv1,sign(blind(commit(v2,r1),blinder1),skv1)/x1}
|{(hostv2,sign(blind(commit(v1,r2),blinder1),skv2)/x2})

For the first input of both voters, we need to consider two cases: either the input of
both voters corresponds to the expected messages from the administrator or any other
message has been introduced by the attacker. In the first case, both voters synchronize



process
ν ska . ν skv1 . ν skv2 . (* private keys *)
ν pr ivCh . (* channel for registrating legimitate voters *)
l e t pka=pk ( ska ) in
l e t hosta = host ( pka ) in
l e t pkv1=pk ( skv1 ) in
l e t hostv1=host ( pkv1 ) in
l e t pkv2=pk ( skv2 ) in
l e t hostv2=host ( pkv2 ) in
(* publish host names and public keys *)
out ( ch , pka ) . out ( ch , hosta ) .
out ( ch , pkv1 ) . out ( ch , hostv1 ) .
out ( ch , pkv2 ) . out ( ch , hostv2 ) .
l e t v1=choice [ vote1 , vote2 ] in
l e t v2=choice [ vote2 , vote1 ] in
( ( out ( privCh , pkv1 ) . out ( privCh , pkv2 ) . out ( privCh , pk ( s k i ) ) ) |
( processV1 ) | ( processV2 ) | ( ! processA ) | ( ! processC ) )

Process 9. main process with two voters

at phase 1 and the frames of P1, respectively P2 are

φ1 = νblinder1.νr1.νblinder2.νr2.
(hostv1,sign(blind(commit(v1,r1),blinder1),v1))/x1,
(hostv2,sign(blind(commit(v2,r2),blinder2),v2))/x2,
sign(blind(commit(v1,r1),blinder1),skva)/x3,
sign(blind(commit(v2,r2),blinder2),skva)/x4}

φ2 = νblinder1.νr1.νblinder2.νr2.
{(hostv1,sign(blind(commit(v2,r1),blinder1),v1))/x1,
(hostv2,sign(blind(commit(v1,r2),blinder2),v2))/x2,
sign(blind(commit(v2,r1),blinder1),skva)/x3,
sign(blind(commit(v1,r2),blinder2),skva)/x4}

Given our equational theory and the fact that the blinding factors are restricted, these
frames are statically equivalent. In the second case, if at least one input does not corre-
spond to the correct administrator’s signature, both voter processes will block, as testing
correctness of the message fails and hence they cannot synchronize.

After the synchronization at phase 1, the remaining of the voter processes are struc-
turally equivalent: the remaining of the first voter’s process of P1 is equivalent to the
remaining of the second voter’s process of P2 and vice-versa. Due to this structural
equivalence, P2 can always simulate P1 (and vice-versa). Moreover static equivalence
will be ensured: with respect to frames φ1 and φ2 no other difference will be introduced
and the blinding factors are never divulged.

Given observational equivalence of the voter processes, we can conclude obser-
vational equivalence of the the whole process, as observational equivalence is closed
under application of closed evaluation contexts.



Note also that the use of phases is crucial for privacy to be respected. Surprisingly,
when we omit the synchronization after the registration phase with the administrator,
privacy is violated. Consider the following scenario. Voter 1 contacts the administrator.
As no synchronization is considered, voter 1 can send his commited vote to the collec-
tor before voter 2 contacts the administrator. As voter 2 could not have submitted the
commited vote, the attacker can link this commitment to the first voter’s identity. This
problem was found during a first attempt to prove the protocol where the phase instruc-
tions were omitted. The original paper divides the protocol into three phases but does
not explain the crucial importance of the synchronization after the first phase. Our anal-
ysis emphasizes this need and we believe that it increases the understanding of some
subtle details of the privacy property in this protocol.

6 Conclusion

We have modelled the FOO 92 electronic voting scheme in the applied pi calculus, and
proved three kinds of property. Each property is checked either by reachability analysis
or by checking observational equivalence:

Fairness. F1: the vote of a particular voter is not leaked to an attacker (reachability).
F2: a guess of a vote cannot be verified by the attacker and strong secrecy is guaran-
teed (observational equivalence). These properties are also proved in the presence
of a corrupt administrator.

Eligibility. E1: an attacker cannot trick the system into accepting his vote (reachabil-
ity).

Privacy. P1: the attacker cannot distinguish the actual situation from one in which two
voters have swapped their votes (observational equivalence).

The reachability properties (F1, E1) and the first observational equivalence property
(F2) can be proved by ProVerif. The other observational equivalence property (P1) is
more delecate, both in the way it is formulated and in the way that it is proved. ProVerif
cannot prove this observational equivalence automatically. Therefore we proved it man-
ually, by showing that the two processes are labelled-bisimilar.

In proving P1 manually, we noticed a feature of the protocol which is not much
stressed in the descriptions (e.g. [12, 16]) but is vital for the proof: every participant
must finish the registration stage before proceeding to the voting stage, and every par-
ticipant must finish the voting stage before the collector can begin opening the votes.
Otherwise, some attacks are possible. For example, if voting could begin before every-
one has registered, the attacker could break privacy by temporarily blocking all regis-
trations but V ’s. If V then votes, the attacker can establish a link between V and V ’s
vote. We used the phase construct of ProVerif to prevent this.
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