
ar
X

iv
:0

90
1.

05
01

v2
 [

cs
.D

S]
 6

 J
an

 2
00

9

Interprocedural Dataflow Analysis over Weight

Domains with Infinite Descending Chains⋆

Morten Kühnrich2, Stefan Schwoon1, Jǐŕı Srba2, and Stefan Kiefer1

1 Technische Universität München
Boltzmannstr. 3, 85748 Garching, Germany

{kiefer,schwoon}@in.tum.de
2 Department of Computer Science, Aalborg University
Selma Lagerlöfs Vej 300, 9220 Aalborg East, Denmark

{mokyhn,srba}@cs.aau.dk

Abstract. We study generalized fixed-point equations over idempotent
semirings and provide an efficient algorithm for the detection whether a
sequence of Kleene’s iterations stabilizes after a finite number of steps.
Previously known approaches considered only bounded semirings where
there are no infinite descending chains. The main novelty of our work
is that we deal with semirings without the boundedness restriction. Our
study is motivated by several applications from interprocedural dataflow
analysis. We demonstrate how the reachability problem for weighted
pushdown automata can be reduced to solving equations in the frame-
work mentioned above and we describe a few applications to demonstrate
its usability.

1 Introduction

Weighted pushdown systems [19] are a suitable model for analyzing programs
with procedures. They have been used successfully in a number of applications,
e.g. BDD-based model checking [22, 7], trust-management systems [10], path
optimization [13], and interprocedural dataflow analysis (see [18] for a survey).

The main idea is that the transitions of a pushdown system are labelled
with values from a given data domain (e.g. natural numbers). These values can
be composed when executed in sequence (e.g. using the addition on natural
numbers) and one is then interested in a number of verification questions like
reachability of a given configuration with the combined value over all paths
leading into this configuration (e.g. by taking the minimum value over all such
paths). It has been shown that there are efficient polynomial time algorithms for
answering these questions [19].

In this paper, we contribute to the research in this area. We first draw a
connection between reachability in weighted pushdown systems (WPDS) over an

⋆ The second and fourth authors are supported in part by the DFG project Algorithms

for Software Model Checking. The third author is supported in part by Institute for
Theoretical Computer Science, project No. 1M0545.

http://arXiv.org/abs/0901.0501v2

idempotent semiring and solving fixed-point equations over the same semiring.
Unlike related work, we allow for infinite descending chains in our semirings
(our approach e.g. includes the integer semiring). Due to this reason, the system
of equations constructed from a WPDS may not have a solution. We therefore
provide an efficient algorithm that either determines the solution or detects the
presence of an infinite descending chain. In the latter case, we output some
component (variable) of the system affected by the problem. So on one hand
we treat domains with infinite descending chains but on the other hand, two
restrictions are necessary to make this possible. However, as argued in Section 4,
the framework still includes a number of interesting applications.

For better readability some proofs have been moved to an appendix.

1.1 Dataflow Analysis and Fixed-Point Equations

Static analysis gathers information about a program without executing it. Data-
flow analysis is an instance of static analysis: it reasons about run-time values
of variables or expressions. More to the point, we desire to establish facts that
hold at some control point whenever an execution reaches it.

Most approaches to dataflow analysis reduce the problem (explicitly or im-
plicitly) to solving a system of fixed-point equations over some algebraic struc-
ture, e.g. a lattice or a semiring. They map the control-flow graph of a program
to an equation system X = f(X), where the vector X = (X1, . . . , Xn) stands
for the nodes in the control flow graph, and takes values from some dataflow
domain. The vector f = (f1, . . . , fn) stands for the edges in the graph, i.e., the
transfer function fi(X) describes the effect of the program on Xi in terms of
the other dataflow values. Under certain conditions (e.g., the functions fi are
distributive) the desired dataflow information is precisely the greatest solution
of the system X = f(X), i.e., the greatest fixed point gfp(f) of f [17, 21].

There is a large body of literature dealing with dataflow analysis along these
lines. Of particular interest to us are interprocedural analyses. The seminal work
of Sharir and Pnueli [21] shows how to set up an equation system that captures
only the interprocedurally valid paths, i.e. those paths in which all return state-
ments lead back to the site of the most recent call. However, [21] computes only
one dataflow value for each program point, merging together all the paths that
reach it, regardless of the calling context. In [19] a generalization was provided,
where the solution of the equations computes a solution for each configuration,
where configuration denotes a program point together with its calling context.
Thus, [19] allows to distinguish dataflow values for different, arbitrary calling
contexts. (The merged information can still be obtained as a special case.) The
results of [19] were phrased in terms of weighted pushdown systems (WPDS),
and we will adopt this notion in our paper.

If the dataflow domain satisfies the so-called descending chain condition
(i.e. each infinite descending chain eventually becomes stationary), gfp(f) can
be obtained by Kleene’s iteration: Let 0 be the greatest domain element, and
0 = (0, . . . , 0). Then Kleene’s fixed-point theorem guarantees that the sequence

0, f(0), f (f(0)), . . . reaches gfp(f) after finitely many steps. Both [21] and [19]
require the descending chain condition.

However, the descending chain condition does not always hold. For example,
the lattice of non-positive integers with ⊓ = min and ⊔ = max does not satisfy
the condition because of the infinite descending chain 0,−1,−2, In fact, this
chain arises when doing Kleene’s iteration on the equation X = f(X) where
f(X) = min(X, X − 1). More to the point, Kleene’s iteration on f would fail to
terminate. We will show how to overcome this problem.

Previous work (e.g., [19]) has shown that many important analysis problems
can be phrased as equation systems, where f(X) contains polynomials over
idempotent semirings. By polynomial, we mean an expression that is built up
from variables, constant elements, and the semiring operations ‘⊕’ (combine)
and ‘⊗’ (extend).

Recently, fixed-point equations over idempotent semirings have been studied
intensively. While the classical solution is to use Kleene’s iteration or chaotic
iteration, recent work has proposed faster algorithms and better convergence
results based on Newton’s method [9, 5, 4, 6]. In these works, the boundedness
condition is dropped, but replaced by another condition called ω-continuity, re-
quiring that the infimum of every infinite set exists, thus ensuring that a greatest
fixed point can always be found. Our work does not require this condition, and a
greatest fixed point is not always guaranteed to exist (but our algorithm detects
such a case and reports it). The penalty for this is that a different kind of re-
striction has to be introduced: we require that semirings are totally ordered and
that “extend preserves inequality”, i.e., a ⊗ c 6= b ⊗ c for a 6= b and a, b, c 6= 0.

Our algorithm executes Kleene’s iteration, and if the iteration terminates,
it outputs the greatest fixed point. If Kleene’s iteration fails to terminate, our
algorithm will detect this and still terminate, indicating a responsible variable
(a so-called witness component).

The work closest to ours is the one by Gawlitza and Seidl [8], who consider
systems of equations over the integer semiring. Our algorithm can be seen as
a generalization of one of their algorithms to totally ordered semirings where
extend preserves inequality and to equations over arbitrary polynomials. More-
over, we provide a direct and self-contained proof of the result. Another related
work is by Leroux and Sutre [14]. They present an algorithm for computing
least fixed-points for monotone bounded-increasing functions over integers. On
one hand they consider more general functions like e.g. factorials, on the other
hand the minimum and maximum functions are not bounded-increasing accord-
ing to their definition. As a result, their algorithm is not applicable in our setting
of weighted pushdown systems.

We proceed as follows: In Section 2, we provide a new algorithm for solving
fixed-point equations. Using this result, we design a new algorithm for inter-
procedural dataflow analysis in Section 3, which is based on WPDS [19] and
still requires a polynomial number of semiring operations. Like previous work on
WPDS, the algorithm allows to compute dataflow information for each configu-
ration (if desired). Due to the properties of the systems we handle, our algorithm

either returns a solution (if it exists) or reports that none exists (usually indi-
cating an error in the program). We provide several applications of our theory
in Section 4.

2 Fixed-Point Equations over Idempotent Semirings

In this section we shall study fixed-point equations over idempotent semirings
and Kleene’s iterations over vectors of polynomials.

Definition 1 (Idempotent Semiring). An idempotent semiring is a 5-tuple
S = (D,⊕,⊗, 0, 1) where D is a set called the domain, 0, 1 ∈ D, and the binary
operators combine ‘⊕’ and extend ‘⊗’ on D satisfy:

1. (D,⊕) is a commutative monoid with 0 as its neutral element and (D,⊗) is
a monoid with 1 as its neutral element,

2. extend distributes over combine, i.e., ∀a, b, c ∈ D : a⊗(b⊕c) = (a⊗b)⊕(a⊗c)
and (a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c),

3. 0 is an annihilator for extend, i.e., ∀a ∈ D : a ⊗ 0 = 0 ⊗ a = 0, and
4. every a ∈ D is idempotent w.r.t. combine, i.e., ∀a ∈ D : a ⊕ a = a.

Definition 2 (Ordering). We write a ⊑ b for a, b ∈ D whenever a ⊕ b = a.

As we are mainly interested in algorithmic verification approaches, we shall
implicitly consider only computable semirings where the elements from the do-
main are effectively representable, operations combine and extend are algorith-
mically computable and the test on equality is decidable. We will use the big-O-
notation for complexity upper-bounds, though it should be always interpreted
relative to the complexity of the semiring operations. In the semirings consid-
ered in our applications, we can assume that all operations can be performed in
O(1) time. Hence the big-O-notation for the semirings mentioned in this paper
corresponds to the standard asymptotic complexity.

Lemma 1. (i) For all a, b ∈ D it holds that a⊕ b ⊑ a. (ii) For all a, b, c ∈ D it
holds that if a ⊑ b then a ⊗ c ⊑ b ⊗ c.

The proof of Lemma 1 is straightforward. We shall now define an additional
condition on the extend operator that will be used later on in this section.

Definition 3 (Extend Preserves Inequality). Given an idempotent semir-
ing we say that extend preserves inequality if a 6= b implies that a ⊗ c 6= b ⊗ c
for any a, b, c ∈ D r {0}.

Example 1. The tuple Sint = (Z∞, min, +,∞, 0) is an idempotent semiring. The
domain are the integers extended with infinity Z∞ = Z∪{∞} where min(∞, a) =
min(a,∞) = a and a+∞ = ∞+a = ∞ for all a ∈ Z∞. Combine is the minimum
and extend is the usual addition on integers. It is easy to see that Sint meets
the requirements of Definition 1. It moreover preserves inequality because the
addition does so, and ⊑ is a total order.

Another example of an idempotent semirings is Srat = (Q[0, 1], max, ∗, 0, 1)
which is the semiring defined over the rationals in the interval from 0 to 1.
Here combine is the maximum and extend is the multiplication on rationals.
This semiring Srat also meets the requirements of Definition 1, extend preserves
inequality and ⊑ is a total order. ⊓⊔

In what follows we fix an idempotent semiring S = (D,⊕,⊗, 0, 1). We often
omit the ⊗ sign in “products”, i.e., we write ab for a ⊗ b. We also fix a set
X = {X1, . . . , Xn} of variables. Now we define vectors of polynomials over S
and their fixed points following [4].

Let V = Dn denote the set of vectors over S. We use bold letters to denote
vectors, e.g., v = (v1, . . . , vn). We also write X = (X1, . . . , Xn) to arrange the
variables from X in a vector. We extend ⊑ to vectors by setting u ⊑ v if ui ⊑ vi

for all 1 ≤ i ≤ n.
A monomial is a finite expression a1Xi1a2Xi2 · · · asXis

as+1 where s ≥ 0,
a1, . . . , as+1 ∈ D and Xi1 , . . . , Xis

∈ X . A polynomial is an expression of the
form m1 ⊕ · · · ⊕ ms where s ≥ 0 and m1, . . . , ms are monomials. The value of a
monomial m = a1Xi1a2 · · · asXis

as+1 at v is m(v) = a1vi1a2 · · · asvis
as+1 ∈ D.

The value of a polynomial f = m1⊕· · ·⊕ms at v is f(v) = m1(v)⊕· · ·⊕ms(v).
A polynomial induces a mapping from V to D that assigns to v the element
f(v). A vector of polynomials f = (f1, . . . , fn) is an n-tuple of polynomials; it
induces a mapping from V to V that assigns to a vector v the vector f(v) =
(f1(v), . . . , fn(v)). A fixed point of f is a vector v that satisfies v = f (v). A
greatest fixed point of f is a fixed point v such that v′ ⊑ v holds for all other
fixed points v′. The size K(f) of a vector of polynomials f is the total number
of ⊕ and ⊗ operators in f . In particular, given a vector v, it takes O(K(f))
time to compute f (v).

Example 2. Consider the semiring Sint from Example 1. Let X = {X1, X2, X3}.
Then f = (−2⊕X2⊗X3, X3⊗1, X1⊕X2) is a vector of polynomials over Sint.
It can be rewritten as f = (min{−2, X2 +X3}, X3 +1, min{X1, X2}). The size
K(f) equals 4. ⊓⊔

It is easy to see that polynomials are monotone and continuous mappings
w.r.t. ⊑, see Lemma 1. Kleene’s theorem can then be applied (see e.g. [12]),
which leads to the following proposition.

Proposition 1. Let f be a vector of polynomials. Let the Kleene sequence
(κ(k))k∈N be defined by κ(0) = 0 and κ(k+1) = f(κ(k)).

(a) We have κ(k+1) ⊑ κ(k) for all k ∈ N.
(b) If a greatest fixed point exists then it is the infimum of {κ(k) | k ∈ N}.
(c) If the infimum of {κ(k) | k ∈ N} exists then it is the greatest fixed point.

Proposition 1 is the mathematical basis for the classical fixed-point iteration:
apply f until a fixed point is reached, which is, by Proposition 1 (c), the greatest
fixed point of f . We call this method Kleene’s iteration. In general, Kleene’s
iteration does not always reach a fixed point. Some equations, like X = X ⊗ (−1)

over Sint, do not have any (greatest) fixed point, other equations might have
a greatest fixed point but it is not achievable in a finite number of Kleene’s
iterations (consider for example the above equation but over the semiring Sint

extended with the element −∞). It is not a priori clear how to detect whether
Kleene’s iteration terminates, i.e., computes the greatest fixed point in a finite
number of iterations.

Algorithm 1 (called “safe Kleene’s iteration”) solves this problem. If Kleene’s
iteration reaches the greatest fixed point, then the algorithm computes it. Other-
wise it outputs a witness component where Kleene’s iteration does not terminate.
Formally, a witness component is defined as follows.

Definition 4 (Witness Component). Let f be a vector of polynomials over
an idempotent semiring. A component i (1 ≤ i ≤ n) is a witness component if

{κ
(k)
i | k ≥ 0} is an infinite set.

In our applications, the presence of a witness component pinpoints a problem of
the analyzed model which the user may want to fix. More details are given in
Section 4.

Algorithm 1 is based on the generalized Bellman-Ford algorithm of [8] for Sint

and generalizes it further to totally ordered semirings where extend preserves
inequality and to equations over arbitrary polynomials.

Algorithm 1 Safe Kleene’s iteration

Input: A vector of polynomials f = (f 1, . . . , fn) over an idempotent semiring S =
(D,⊕,⊗, 0, 1) s.t. ⊑ is a total order and where extend preserves inequality.

Output: Greatest fixed point of f or a witness component.
1: κ(0) := 0

2: for k := 1 to n + 1 do

3: κ(k) := f (κ(k−1))
4: end for

5: if ∃i with 1 ≤ i ≤ n such that κ
(n+1)
i

6= κ
(n)
i

then

6: return “Kleene’s iteration does not terminate. Component i is a witness.”
7: else

8: return “The vector κ(n) is the greatest fixed point.”
9: end if

Theorem 1. Algorithm 1 is correct and terminates in time O(n · K(f)).

Algorithm 1 on its own is very straightforward, and its proof for polynomials
of degree only 1 would directly mimic the proof of Bellman-Ford algorithm. Our
contribution is that we prove that it works also for polynomials of higher degrees
where more involved technical treatment is necessary. Full details can be found
in Appendix A.

Remark 1. In the integer semiring Sint, Algorithm 1 can be extended such that it
computes all witness components and for the remaining terminating components

returns the exact value. This is done as follows. The main loop on lines 2–4 is run
once again, but the components that still change are assigned a new semiring
element “−∞” on which the operators “+” and “min” act as expected. Thus,
−∞ may be propagated through the components during the repetition of the
main loop. At the end, all components that are not −∞ have reached their final
value, all others can be reported as witness components. For details see [8].

Example 3. Consider again the vector of polynomials from Example 2:

f = (min{−2, X2 + X3}, X3 + 1, min{X1, X2}) .

Kleene’s iteration produces the following Kleene sequence: κ(0) = (∞,∞,∞),
κ(1) = (−2,∞,∞), κ(2) = (−2,∞,−2), κ(3) = (−2,−1,−2), κ(4) = (−3,−1,−2).

As κ
(3)
1 = −2 6= −3 = κ

(4)
1 , Alg. 1 returns the first component as a witness. ⊓⊔

Notice that Algorithm 1 merely indicates whether a greatest fixed point can
be found using Kleene’s iteration or not. Even if Algorithm 1 outputs a witness
component, a greatest fixed point may still exist (and be found by other means).
An example is a semiring over the reals which can admit the sequence 1/2n for
some variable. This sequence converges to 0, but Kleene’s iteration fails to detect
this. Nevertheless, for some semirings like Sint used in our applications, we can
make the following stronger statement.

Corollary 1. Algorithm 1 applied to polynomials over the semiring Sint finds
the greatest fixed point iff it exists. If it does not exist, all witness components
can be explicitly marked.

Proof. In Sint a component is a witness component iff Kleene’s iteration does not
terminate in that component. The rest follows from Definition 4, Proposition 1
and Remark 1. ⊓⊔

3 Weighted Pushdown Systems

In this section we will use the fixed-point equations studied in the previous sec-
tion for reasoning about properties of weighted pushdown systems (WPDS) [19].
We are interested in applying Theorem 1 to weighted pushdown systems; there-
fore we implicitly consider only semirings that are totally ordered, and where
extend preserves inequality.

Definition 5 (Weighted Pushdown System). A weighted pushdown system
is a 4-tuple W = (P, Γ, ∆,S), where P is a finite set of control states, Γ is a
finite stack alphabet, ∆ ⊆ (P × Γ) × D × (P × Γ ∗) is a finite set of rules, and
S = (D,⊕,⊗, 0, 1) is an idempotent semiring.

We write pX
d
→֒ qα whenever r = (p, X, d, q, α) ∈ ∆ and call d the weight

of r, denoted by dr. We consider only rules where |α| ≤ 2. (It is well-known that
every WPDS can be translated into a one that obeys this restriction and is larger
by only a constant factor, see, e.g., [20]. The reduction preserves reachability.)
We let the symbols X, Y, Z range over Γ and α, β, γ range over Γ ∗.

Example 4. As a running example in this section, we consider a weighted push-
down system over the semiring with both positive and negative integers as

weights, i.e. Wex = ({p, q}, {X, Y }, ∆ex,Sint), where ∆ex = {pX
1
→֒ qY, pX

1
→֒

pXY, pY
1
→֒ p, qY

−2
→֒ q}. ⊓⊔

A configuration of a weighted pushdown system W is a pair pγ where p ∈ P
and γ ∈ Γ ∗. A transition relation ⇒ on configurations is defined by pXγ

r
⇒ qαγ

iff γ ∈ Γ ∗ and there exists r ∈ ∆, where r = (pX
d
→֒ qα). We annotate ⇒

with the rule r ∈ ∆ which was used to derive the conclusion. If there exists a
sequence of configurations c0, . . . , cn and rules r1, . . . , rn such that ci−1

ri⇒ ci for

all i = 1, . . . , n, then we write c0
σ
⇒ cn, where σ := r1 . . . rn. The weight of σ is

defined as v(σ) = dr1
⊗ · · · ⊗ drn

. By definition v(ǫ) = 1.

Let c, c′ be two configurations and σ ∈ ∆∗ such that c
σ
⇒ c′. We call c

a predecessor of c′ and c′ a successor of c. In the following, we will consider
the problem of computing the set of all predecessors pre∗(cf) and successors
post∗(cf) for a given configuration cf . Due to space limitations we provide the full
treatment only for the predecessors; the computation of successors is analogous
and it is provided in Appendix C.

Let us fix a WPDS W and a target configuration cf , where cf = pf ǫ for some
control state pf . For any configuration c of W , we want to know the minimal
weight of a path from c to cf . If a path of minimal weight does not exist for
every c, we want to detect such a case. In our applications (see Section 4), this
situation usually indicates the existence of an error.

Remark 2. In the literature, it is more common to consider a regular set C of
target configurations. This problem, however, reduces to the one with only a
single target configuration cf . The reduction can be achieved by extending W
with additional ‘pop’ rules that simulate a finite automaton for C; the ‘pop’
rules will succeed in reducing the stack to cf iff they begin with a configuration
in C. For details, see [19], Section 3.1.1.

At an abstract level, we are interested in solutions for the following equation
system, in which each configuration c is represented by a variable [c]. Intuitively,
the greatest solution (if it exists) for the variable [c] will correspond to the
minimum (w.r.t. the combine operator) of accumulated weights over all paths
leading from the configuration c to cf .

[c] = I(c) ⊕
⊕

c
r
⇒c′

(dr ⊗ [c′]), where I(c) :=

{

1 if c = cf

0 otherwise
(1)

Let us consider the Kleene sequence (κ(k))k∈N for (1). By κ
(k)
[c] we denote the

entry for configuration c in the k-th iteration of the Kleene sequence.

Lemma 2. For k ≥ 1 and any configuration c, the following holds

κ
(k)
[c] =

⊕

{ v(σ) | c
σ
⇒ cf , |σ| < k } .

Thus, [c] is a witness component of (1) iff no path of minimal weight exists,
because it is possible to construct longer and longer paths with smaller and
smaller weights. On the other hand, if (1) has a greatest fixed point, then the
fixed point at [c] gives the combine of the weights of all sequences leading from
c to cf , commonly known as the meet-over-all-paths. However, (1) defines an
infinite system of equations, which we cannot handle directly. In the following,
we shall derive a finite system of equations, from which we can determine the
greatest fixed point of (1) or the existence of a witness component.

Definition 6 (Pop Sequence). Let p, q be control states and X be a stack

symbol. A pop sequence for p, X, q is any sequence σ ∈ ∆∗ such that pX
σ
⇒ qǫ.

Let us consider the following polynomial equation system, in which the vari-
ables are triples [pXq], where p, q are control states and X a stack symbol:

[pXq] =
⊕

(pX
d
→֒qǫ)∈∆

d ⊕
⊕

(pX
d
→֒rY)∈∆

(

d⊗ [rY q]
)

⊕
⊕

(pX
d
→֒rY Z)∈∆

(

d⊗
⊕

s∈P

(

[rY s]⊗ [sZq]
)

)

. (2)

Intuitively, Equation (2) lists all the possible ways in which a pop sequence for
p, X, q can be generated and computes the values accumulated along each of
them.

Example 5. Let us consider the WPDS Wex from Example 4. Here, the scheme
presented in (2) yields a system with eight variables and equations, four of which
are reproduced below.

[pXp] = min{1 + [qY p], 1 + [pXp] + [pY p], 1 + [pXq] + [qY p]} [pY p] = 1
[pXq] = min{1 + [qY q], 1 + [pXp] + [pY q], 1 + [pXq] + [qY q]} [qY q] = −2

Notice that the other four variables would be simply assigned to the 0 element,
in this case ∞. ⊓⊔

We now examine the Kleene sequence (κ(k))k∈N for (2).

Lemma 3. For any k ≥ 1, control states p, q, and stack symbol X,

⊕

{ v(σ) | c
σ
⇒ cf , |σ| ≤ 2k−1 } ⊑ κ

(k)
[pXq] ⊑

⊕

{ v(σ) | c
σ
⇒ cf , |σ| ≤ k − 1 } .

Thus, [pXq] is a witness component of (2) iff no minimal-weight pop sequence
exists for p, X, q. On the other hand, if no witness component exists, then the
value of [pXq] in the greatest fixed point denotes the combine of the weights of
all pop sequences for p, X, q.

We now show how (2) can be used to derive statements about (1). Let a
configuration c = pX1 . . . Xn be a predecessor of cf . Then any sequence σ leading
from c to cf can be subdivided into subsequences σ1, . . . , σn and there exist states
p =: p0, p1, . . . , pn−1, pn := pf such that σi is a pop sequence for pi−1, Xi, pi, for
all i = 1, . . . , n. As a consequence, we can obtain a solution for (1) from a solution

for (2): suppose that λ is the greatest fixed point of (2), and let µ be a vector
of configurations as follows:

µ[c] =
⊕

p1,...,pn−1

(

λ[pX1p1] ⊗ · · · ⊗ λ[pn−1Xnpf]

)

, for c = pX1 . . . Xn . (3)

It is easy to see that (3) “sums up” all possible paths from c to cf , and therefore
yields the meet-over-all-paths for c. Thus, µ is a solution (greatest fixed point)
of (1). On the other hand, if (1) has a witness component, then (2) must also
have one.

Theorem 2. Applying Algorithm 1 to (2) either yields a witness component or,
via (3), the greatest fixed point of (1).

Example 6. Once again, consider Wex from Example 4 and the equation system
from Example 5. Here, the Kleene sequence quickly converges to the values 1 for
[pY p], −2 for [qY q], and ∞ for all other variables except [pXq], which turns
out to be a witness component of (2). Indeed, one can construct a series of pop

sequences for p, X, q with smaller and smaller weights, e.g. pX
1
⇒ qY

−2
⇒ qǫ, and

pX
1
⇒ pXY

1
⇒ qY Y

−2
⇒ qY

−2
⇒ qǫ, and etc. with weights −1, −2 etc. If cf = qǫ,

this implies that, e.g., pX is a witness component of (1). On the other hand, qY
or qY Y would not be a witness components, because their values in (3), would
not be affected by the variable [pXq] and evaluate to −2 and −4, respectively.

⊓⊔

Remark 3. The size of the equation system (2) is polynomial in W . Notice that it
makes sense to generate equations only for such triples p, X, q in which pX occurs
on the left-hand side or right-hand side of some rule. Under this assumption, the
number of equations in (2) is O(|P | · |∆|), and its overall size is O(|P |2 · |∆|),
the same complexity as in the algorithms for computing predecessors in [3].
According to Theorem 1, Algorithm 1 therefore runs in O(|P |3 ·|∆|2) time on (2).
For any configuration c of interest, the value µc in (3) can be easily obtained
from the result of Algorithm 1. See also the W-automaton technique in the
subsection to follow. A similar conclusion about the complexity of the algorithm
for computing successors can be drawn thanks to the (linear) connection between
forward and backward reachability analysis described in Appendix C.

3.1 Weighted Automata

For (unweighted) pushdown systems, it is well-known that reachability preserves
regularity; in other words, given a regular set of configurations, the set of all pre-
decessors resp. successors is regular. Moreover, given a finite automaton recogniz-
ing a set of configurations, automata recognizing the predecessors or successors
can be constructed in polynomial time (see, e.g., [3]).

It is also known that the results carry over to weighted pushdown systems
provided that the semiring is bounded, i.e., there are no infinite descending chains
w.r.t. ⊑ [19]. For this purpose, so-called weighted automata are employed.

Definition 7 (Weighted W-Automaton). Let W = (P, Γ, ∆,S) be a push-
down system over a bounded semiring S. A W-automaton is a 5-tuple A =
(Q, Γ,→, P, F) where Q is a finite set of states, → ⊆ Q× Γ ×D ×Q is a finite
set of transitions, P ⊆ Q, i.e. the control states of W, are the set of initial
states and F ⊆ Q is a set of final (accepting) states.

Let π = t1 . . . tn be a path in A, where ti = (qi, Xi, di, qi+1) for all 1 ≤ i ≤ n.
The weight of π is defined as v(π) := d1 ⊗ · · · ⊗ dn. If q1 ∈ P and qn+1 ∈ F ,
then we say that π accepts the configuration q1X1 . . . Xn. Moreover, if c is a
configuration, we define vA(c) as the combine of all v(π) such that π accepts c.
In this case, we also say that A accepts c with weight vA(c).

In [19] the following problem is considered for the case of bounded semirings:
compute a W-automaton A such that vA(c) equals the meet-over-all-paths (or
equivalently the greatest fixed point of (1), which always exists for bounded
semirings) from c to cf , for every configuration c.

We extend this solution to the case of unbounded semirings, using Theorem 2.
We first apply Algorithm 1 to the equation system (2). If the algorithm yields the
greatest fixed point, then we construct a W-automaton A = (P, Γ,→, P, {cf}),
with (p, X, d, q) ∈ → for all p, X, q such that d is the value of [pXq] in the
greatest fixed point computed by Algorithm 1. Given a configuration c, it is easy
to see that vA(c) yields the same result as in (3).

Example 7. The automaton arising from Example 6 is depicted below where the
witness component is marked by ⊥ and transitions with the value ∞ are omitted
completely.

p q
X,⊥

Y, 1 Y,−2

⊓⊔

The problem of computing successors is also considered in [19], i.e., comput-
ing a W-automaton A where vA(c) is the meet-over-all-paths from an initial
configuration c0 to c. Using our technique, this result can also be extended to
unbounded semirings; Appendix C shows an equation system for this problem,
which can be converted into a W-automaton for post∗(c0) in analogous fashion.

4 Applications

Here we outline some applications of the theory developed in this paper. Unless
stated otherwise, we will consider the semiring Sint as described in Example 1.
Following Remark 1 and Corollary 1, we assume that all nonterminating compo-
nents can be detected in this semiring and the corresponding transitions in the
W-automaton will be assigned the value ⊥. The terminating components resp.
the corresponding transitions in the W-automaton take the computed value.

Note that the previously known approaches to reachability in weighted push-
down automata are not applicable to any of the below presented cases because
they required the semiring to be bounded (no infinite descending chains). Bound-
edness is, however, not satisfied in any of our applications. Our first two applica-
tions are new and we are not aware of any other algorithms that could achieve the

same results. Our third application deals with shape-balancedness of context-free
languages, a problem for which an algorithm was recently described in [23].

Memory Allocations in Linux Kernel. Correct memory allocation and dealloca-
tion is crucial for the proper functionality of an operating system. In Linux the
library linux/gfp.h is used for allocation and deallocation of kernel memory
pages via the functions alloc pages and free pages respectively. The func-
tions which are argumented with a number n (also called the order) allocate or
deallocate 2n memory pages. Citing [15, page 187]:“You must be careful to free
only pages you allocate. Passing the wrong struct page or address, or the incor-
rect order, can result in corruption.” This means that a basic safety requirement
is: never free more pages than what are allocated.

As most questions about real programs are in general undecidable, several
techniques have been suggested to provide more tractable models. For example
so-called boolean programs [2] have recently been used to provide a suitable
abstraction via pushdown systems. Assume a given pushdown system abstraction
resulting from the program code. The transitions in the pushdown system are
labelled with the programming primitives, among others the ones for allocation
and deallocation of memory pages. If a given pushdown transition allocates 2n

memory pages, we assign it the weight 2n; if it deallocates 2n pages, we assign
it the weight −2n; in all other cases the weight is set to 0.

Now the pushdown abstraction corrupts the memory iff a configuration is
reachable from the given initial configuration pX with negative weight. As shown
in Section 3, we can in polynomial time (w.r.t. to the input pushdown system W)
construct a W-automaton A for post∗({pX}). For technical convenience, we
first replace all occurrences of ⊥ in A with −∞. From all initial control-states
of A we now run e.g. the Bellman-Ford shortest path algorithm (which can
detect negative cycles and assign the weight to −∞ should there be such) to
check whether there is a path going to some accept state with an accumulated
negative weight. This is doable in polynomial time. If a negative weight path
is found this means that the corresponding configuration is reachable with a
negative weight, hence there is a memory corruption (at least in the pushdown
abstraction). Otherwise, the system is safe. All together our technique gives a
polynomial time algorithm for checking memory corruption with respect to the
size of the abstracted pushdown system. Also depending on whether under- or
over-approximation is used in the abstraction step, our technique can be used
for detecting errors or showing the absence of them, respectively.

Correspondence Assertions. In [24] Woo and Lam analyze protocols using the
so-called correspondences between protocol points. A correspondence property
relates the occurrence of a transition to an earlier occurrence of some other
transition. In sequential programs (modelled as pushdown systems) assume that
assertions of the form begin ℓ and end ℓ (where ℓ is a label taken from a finite set
of labels) are inserted by the programmer into the code. The program is safe if for
each end ℓ reached at a program point there is a unique corresponding begin ℓ at
an earlier execution point of the program. Verifying safety via correspondence

assertions can be done using a similar technique as before. For each label ℓ
we create a weighted pushdown system based on the initially given boolean
program abstraction where every instruction begin ℓ has the weight +1, every
instruction end ℓ the weight −1, and all other instructions have the weight 0.
Now the pushdown system is safe if and only if every reachable configuration
has nonnegative accumulated weight. This can be verified in polynomial time as
outlined above.

Shape-Balancedness of Context-Free Languages. In static analysis of programs
generating XML strings and in other XML-related questions, the balancedness
problem has been recently studied (see e.g. [1, 11, 16]). The problem is, given
a context-free language with a paired alphabet of opening and closing tags, to
determine whether every word in the language is properly balanced (i.e. whether
every opening tag has a corresponding closing tag and vice versa). Tozawa and
Minamide recently suggested [23] a polynomial time algorithm for the problem.
Their involved algorithm consists of two stages and in the first stage they test for
the shape-balancedness property, i.e., if all opening tags as well as closing tags
are treated as of the same sort, is every accepted word balanced? Assume a given
pushdown automaton accepting (by final control-states) the given context-free
language. If we label all opening tags with weight +1 and all closing tags with
weight −1, the shape-balancedness question is equivalent to checking (i) whether
every accepted word has the weight equal to 0 and (ii) whether all configura-
tions on every path to some final control-state have nonnegative accumulated
weights. Our generic technique provides polynomial time algorithms to answer
these questions.

To verify property (i), we first consider the semiring Sint = (Z∞, min, +,∞, 0).
We now construct in polynomial time for the given initial configuration pX a
weighted post∗({pX}) W-automaton A, replace all labels ⊥ with −∞, and for
each final control-state q (of the pushdown automaton) we find in A a shortest
path from q to every accept state of A. This can be done in polynomial time
using e.g. the Bellman-Ford shortest path algorithm, which can moreover detect
negative cycles and set the respective shortest path to −∞. If any of the shortest
paths are different from 0, we terminate because the shape-balancedness prop-
erty is broken. If the system passes the first test, we run the same procedure once
more but this time with the semiring (Z∪{−∞}, max, +,−∞, 0) and where ⊥ is
replaced with ∞, i.e., we are searching for the longest path in the automaton A.
Again if at least one of those paths has the accumulated weight different from 0,
we terminate with a negative answer. If the pushdown system passes both our
tests, this means that any configuration in the set post∗({pX}) starting with
some final control-state (of the pushdown automaton) is reachable only with the
accumulated weight 0 and we can proceed to verify property (ii).

For (ii), we construct the weighted post∗({pX}) W-automaton for the integer
semiring Sint. Now we restrict the automaton to contain only those configura-
tions that can really involve into some accepting configuration by simply inter-
secting it (by the usual product construction) with the unweighted W-automaton
(of polynomial size) representing pre∗((q1 + · · ·+ qn)Γ ∗) where q1, . . . , qn are all

final control-states and Γ is the stack alphabet. Property (ii) now reduces to
checking whether the product automaton accepts some configuration with neg-
ative weight, which can be answered in polynomial time using the technique
described in our first application.

Unfortunately, [23] provides no complexity analysis other than the state-
ment that the algorithm is polynomial. Our general-purpose algorithm, on the
other hand, immediately provides a precise complexity bound. Consider a given
context-free grammar of size n over some paired alphabet. It can be (by the stan-
dard textbook construction) translated into a (weighted) pushdown automaton
of size O(n) and moreover with a constant number of states. As mentioned in
Section 3, this automaton can be normalized in linear time and we can then
build a weighted post∗({pX}) W-automaton, of size O(n2) with O(n) states and
in time O(n4). Details can be found in Appendix C. Now running the Bellman-
Ford algorithm twice in order to verify property (i) takes only the time O(n3).
In property (ii) the Bellman-Ford algorithm is run on a product of the weighted
post∗ automaton and an unweighted pre∗ automaton, which has only a constant
number states. Hence the size of the product is still O(n2) and Bellman-Ford
algorithm will run in time O(n3) as before. This gives the total running time
of O(n4).

5 Conclusion

We presented a unified framework how to deal with interprocedural dataflow
analysis on weighted pushdown automata where the weight domains might con-
tain infinite descending chains. The problem was solved by reformulating it via
generalized fixed-point equations which required polynomials of degree two. To
the best of our knowledge this is the first approach that enables to handle this
kind of domains. On the other hand, we do not consider completely general
idempotent semirings as we require that the elements in the domain are totally
ordered and that extend preserves inequality. Nevertheless, we showed that our
theory is still applicable. Already the reachability analysis of weighted pushdown
automata over the integer semiring, one particular instance of our general frame-
work, was not known before and we provided several examples of its potential
use in verification.

Regarding the two restrictions we introduced, we claim that the first condi-
tion of total ordering can be relaxed to orderings of bounded width, where the
maximum number of incomparable elements is bounded by some a priori given
constant c. By running the main loop in Algorithm 1 cn + 1 times, we should
be able to detect nontermination also in this case. The motivation for introduc-
ing bounded width comes from the fact that this will allow us to combine (via
the product construction) one unbounded domain, like e.g. the integer semiring,
with a fixed number of finite domains in order to observe additional properties
along the computations. The question whether the second restriction (extend
preserves inequality) can be relaxed as well remains open and is a part of our
future work.

References

1. J. Berstel and L. Boasson. Formal properties of XML grammars and languages.
Acta Informatica, 38(9):649–671, 2002.

2. A. Bouajjani and J. Esparza. Rewriting models of Boolean programs. In Proc.

RTA, LNCS 4098, pages 136–150, 2006.
3. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for

model checking pushdown systems. In CAV, LNCS 1855, pages 232–247, 2000.
4. J. Esparza, S. Kiefer, and M. Luttenberger. An extension of Newton’s method to

ω-continuous semirings. In Proc. DLT, LNCS 4588, pages 157–168, 2007.
5. J. Esparza, S. Kiefer, and M. Luttenberger. On fixed point equations over com-

mutative semirings. In STACS’07, LNCS 4397, pages 296–307. Springer, 2007.
6. J. Esparza, S. Kiefer, and M. Luttenberger. Newton’s method for ω-continuous

semirings. In Proc. ICALP, part II, LNCS 5126, pages 14–26. Springer, 2008.
7. J. Esparza, S. Kiefer, and S. Schwoon. Abstraction refinement with Craig interpo-

lation and symbolic pushdown systems. In TACAS, LNCS 3920, pages 489–503,
2006.

8. T. Gawlitza and H. Seidl. Precise fixpoint computation through strategy iteration.
In ESOP’07, LNCS 4421, pages 300–315. Springer, 2007.

9. M. W. Hopkins and D. Kozen. Parikh’s theorem in commutative Kleene algebra.
In Proc. LICS, pages 394–401. IEEE, 1999.

10. S. Jha, S. Schwoon, H. Wang, and T. Reps. Weighted pushdown systems and
trust-management systems. In Proc. TACAS, LNCS 3920, pages 1–26, 2006.

11. Ch. Kirkegaard and A. Møller. Static analysis for Java servlets and JSP. In Proc.

SAS, LNCS 4134, pages 336–352, 2006.
12. W. Kuich. Handbook of Formal Languages, volume 1, chapter 9: Semirings and

Formal Power Series: Their Relevance to Formal Languages and Automata, pages
609–677. Springer, 1997.

13. A. Lal, J. Lim, M. Polishchuk, and B. Liblit. Path optimization in programs and
its application to debugging. In Proc. ESOP, LNCS 3924, pages 246–263, 2006.

14. J. Leroux and G. Sutre. Accelerated data-flow analysis. In Proc. SAS, LNCS 4634,
pages 184–199, 2007.

15. R. Love. Linux Kernel Development. Novell Press, second edition, 2005.
16. Y. Minamide and A. Tozawa. XML validation for context-free grammars. In Proc.

APLAS, LNCS 4279, pages 357–373, 2006.
17. F. Nielson, H. R. Nielson, and Ch. Hankin. Principles of Program Analysis.

Springer, 1999.
18. T. Reps, A. Lal, and N. Kidd. Program analysis using weighted pushdown systems.

In Proc. FSTTCS, LNCS 4855, pages 23–51, 2007.
19. T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and their

application to interprocedural dataflow analysis. SCP, 58(1–2):206–263, 2005.
20. S. Schwoon. Model-Checking Pushdown Systems. PhD thesis, TU Munich, 2002.
21. M. Sharir and A. Pnueli. Program Flow Analysis: Theory and Applications, chap-

ter 7: Two Approaches to Interprocedural Data Flow Analysis, pages 189–233.
Prentice-Hall, 1981.

22. D. Suwimonteerabuth, F. Berger, S. Schwoon, and J. Esparza. jMoped: A test
environment for Java programs. In Proc. CAV, LNCS 4590, pages 164–167, 2007.

23. A. Tozawa and Y. Minamide. Complexity results on balanced context-free lan-
guages. In Proc. FoSSaCS, LNCS 4423, pages 346–360, 2007.

24. T. Y. C. Woo and S. S. Lam. A semantic model for authentication protocols. In
Proc. SP, pages 112–118. IEEE, 1993.

Appendix

A Proof of Theorem 1

The statement about the runtime follows immediately from our definition of K(f).
If Algorithm 1 returns a fixed point, it is the greatest fixed point as it is the
result of Kleene’s iteration. It remains to show that if the algorithm returns the
statement of line 1 then this statement in fact holds.

For that purpose we introduce the concept of derivation trees that was also
used in [5, 4]. It generalizes the well-known notion from language theory to semir-
ings. In the following we identify a node x of a tree t with the subtree of t rooted
at x. In particular, we identify a tree with its root.

Definition 8 (Derivation Tree). Let f be a vector of n polynomials. A deriva-
tion tree t of f is an ordered finite tree whose nodes are labelled with both a
variable Xi (1 ≤ i ≤ n) and a monomial m of f i. We write λv, resp. λm for
the corresponding labelling-functions. If λm(x) = a1Xi1a2 . . .Xis

as+1 for some
s ≥ 0, then x has exactly s children x1, . . . , xs, ordered from left to right, with
λv(xj) = Xij

for all j = 1, . . . , s.

Notice that a node x in a derivation tree is a leaf if and only if λm(x) = a
for some constant a ∈ D. The height h(t) of a derivation tree t is the length
of a longest path from the root to a leaf. For the length, we count the number
of nodes on the path including both the root and the leaf. The yield Y(t) of
a derivation tree t with λm(t) = a1Xi1a2 · · ·Xis

as+1 is inductively defined as
Y(t) = a1Y(t1)a2 · · ·Y(ts)as+1. Figure 1 shows a derivation tree for our running
example.

(X3, X1) (X1,−2)

(X3, X1)(X2, X3 + 1)

(X1,−2)
−2

−2

−3

−1

−2

(X1, X2 + X3)

−2

Fig. 1. A derivation tree of height 4 for f = (min{−2, X2+X3}, X3+1, min{X1, X2}).
The labels of a node x are denoted by (λv(x), λm(x)). The yields are written on top
on the labels.

The following proposition is easy to prove by induction on the height (see
also [4]).

Proposition 2. Let f be a vector of n polynomials over a semiring. For all
k ∈ {1, 2, . . .} and all 1 ≤ i ≤ n we have

κ
(k)
i =

⊕

{Y(t) | t is a derivation tree of f with h(t) ≤ k and λv(t) = Xi } .

Notice that the set of yields in Proposition 2 is always finite and may be empty.
If it is empty we set

⊕

∅ = 0. Now we prove the following lemma from which
the correctness of Algorithm 1 follows immediately.

Lemma 4. Let f be a vector of n polynomials over a totally ordered idempotent
semiring such that extend preserves inequality. Let (κ(i))i∈N denote its Kleene

sequence. If κ
(n)
i 6= κ

(n+1)
i for some 1 ≤ i ≤ n then i is a witness component.

Proof. In this proof we write a ⊏ b to denote that a ⊑ b and a 6= b. We first
show the following:

If κ
(k)
i ⊏ κ

(k−1)
i for some k > n then κ

(k′)
i ⊏ κ

(k)
i for some k′ > k. (4)

Let κ
(k)
i ⊏ κ

(k−1)
i . By Proposition 2 and using the total order of the semiring,

there is a tree t with λv(t) = Xi such that κ
(k)
i = Y(t) and h(t) = k > n. So

there is a path in t from the root to a leaf and some variable Xj with two nodes
x1, x2 on the path such that λv(x1) = λv(x2) = Xj . Assume w.l.o.g. that x1 is
closer to the root than x2. As ⊑ is a total order, one of the following holds.

– If Y(x2) ⊑ Y(x1) then construct a tree t′ from t by replacing the subtree
rooted at x1 by the subtree rooted at x2. We have λv(t′) = Xi and h(t′) = k′

for some k′ < k. By monotonicity of ⊗ (Lemma 1 part (ii)) we have Y(t′) ⊑

Y(t). So Y(t) = κ
(k)
i

Prop. 1(a)

⊑ κ
(k′)
i

Prop. 2

⊑ Y(t′) ⊑ Y(t). Hence, κ
(k)
i = κ

(k′)
i

which, by Prop. 1(a), implies κ
(k)
i = κ

(k−1)
i . This contradicts the assumption

that κ
(k−1)
i 6= κ

(k)
i . So this case does not occur.

– If Y(x1) ⊏ Y(x2) then construct a tree t′ from t by replacing the subtree
rooted at x2 by the subtree rooted at x1. We have λv(t′) = Xi and h(t′) = k′

for some k′ > k. By monotonicity of ⊗ (Lemma 1 part (ii)) and as extend

preserves inequality we have κ
(k′)
i ⊑ Y(t′) ⊏ Y(t) = κ

(k)
i . So κ

(k′)
i ⊏ κ

(k)
i .

This proves our claim (4).

It follows from the claim and Proposition 1(a) that if κ
(k)
i ⊏ κ

(k−1)
i for

some k > n then κ
(l)
i ⊏ κ

(l−1)
i for some l > k. Hence, if κ

(n)
i 6= κ

(n+1)
i then

{κ
(k)
i | k ∈ N} is infinite. This completes the proof. ⊓⊔

B Proofs of Lemma 2 and Lemma 3

Lemma 2 claims that in the equation system (1) the following holds for every
k ≥ 1 and any configuration c:

κ
(k)
[c] =

⊕

{ v(σ) | c
σ
⇒ cf , |σ| < k }

This follows directly from Proposition 2, and because every derivation tree of
height k for (1) corresponds to a sequence of k − 1 moves in the WPDS. ⊓⊔

Lemma 3 claims that in the equation system (2) the following holds for every
k ≥ 1, control states p, q, and stack symbol X :

⊕

{ v(σ) | c
σ
⇒ cf , |σ| ≤ 2k−1 } ⊑ κ

(k)
[pXq] ⊑

⊕

{ v(σ) | c
σ
⇒ cf , |σ| ≤ k − 1 }

A derivation tree of height k for (2) corresponds to a path in W whose length is
at least k − 1 (if all internal nodes have just one child) and at most 2k−1 (if all
internal nodes have two children). Because of this, and because of Proposition 2,
the lemma holds. ⊓⊔

C Computing Successors in Weighted Pushdown Systems

In Section 3, we considered the following problem: given a target configuration cf ,
compute (if possible) the meet-over-all-paths from c to cf , for any configuration c.
In other words, we considered the predecessors of cf .

Alternatively, one could consider the successors of some source configura-
tion cs := psXs and attempt to compute the meet over all paths from cs to c.
It is possible to adapt the methods from Section 3 to this problem (and in fact,
this adaptation is used by our applications).

It is well-known that most results about backward pushdown reachability
carry over to forward pushdown reachability, and vice versa. The easiest expla-
nation for this is that given a WPDS W , one can construct another WPDS W ′

which makes the movements of W ‘in reverse’. More precisely, if W has con-
trol states P , stack alphabet Γ , and rules ∆, then W ′ has control states P ′ :=

P ∪ { (q, Y) | ∃(pX
d
→֒ qY Z) ∈ ∆ }, stack alphabet Γ ∪ {#}, and the following

rules:

– if pX
d
→֒ qY ∈ ∆, then qY

d
→֒ pX ∈ ∆′;

– if pX
d
→֒ qǫ ∈ ∆, then qY

d
→֒ pXY ∈ ∆′ for every Y ∈ Γ ∪ {#};

– if pX
d
→֒ qY Z ∈ ∆, then qY

1
→֒ (q, Y)ǫ and (q, Y)Z

d
→֒ pX in ∆′.

It is easy to see that whenever pα
σ
⇒ qβ holds in W , then qβ#

τ
⇒ pα# holds

for some rule sequence τ in W ′ such that, if σ = r1 . . . rn and τ = s1 . . . sm,
then dr1

⊗ · · · ⊗ drn
= dsm

⊗ · · · ⊗ ds1
. Thus, it is possible to reduce forward

reachability problems to backward reachability problems, and the reduction is
polynomial.

It is also possible to tackle the forward reachability problem directly, in which
case slightly better complexity bounds can be achieved, see, for instance [3,
19]. Following the ideas from [3, 19], we will present a finite equation system
that serves as the ‘forward analogy’ of (2), without proof. Our system has the
following sets of variables:

– [pX•], for p ∈ P and X ∈ Γ , representing the weights of the paths from
psXs to pX ;

– [pX(rZ)], for p ∈ P , X ∈ Γ , and (r, Z) ∈ P ′, representing the weights of the
paths from rZ to pX ;

– [pǫ•], for p ∈ P , representing the weights of the paths from psXs to pǫ;
– [pǫ(rZ)], for p ∈ P and (r, Z) ∈ P ′, representing the weights of the paths

from rZ to pǫ;
– [(pX)Y •], for (p, X) ∈ P ′ and Y ∈ Γ , representing the weights of the paths

from psXs to pXY , ending with a ‘push’ operation;
– [(pX)Y (rZ)], for (p, X), (r, Z) ∈ P ′ and Y ∈ Γ , representing the weights of

the paths from rZ to pXY , ending with a ‘push’ operation.

Moreover, we define I(pX) = 1 iff pX = psXs and 0 otherwise, and E(pX, rZ) =
1 iff pX = rZ and 0 otherwise, for (p, X) ∈ P ′. The equation system is as follows:

[pX•] = I(pX) ⊕
⊕

qY
d
→֒pX

(

[qY •] ⊗ d
)

⊕
⊕

(q,Y)∈P ′

(

[(qY)X•] ⊗ [pǫ(qY)]
)

[pX(rZ)] = E(pX, rZ) ⊕
⊕

qY
d
→֒pX

(

[qY (rZ)] ⊗ d
)

⊕
⊕

(q,Y)∈P ′

(

[(qY)X(rZ)] ⊗ [pǫ(qY)]
)

[pǫ•] =
⊕

qY
d
→֒pǫ

(

[qY •] ⊗ d
)

[pǫ(rZ)] =
⊕

qY
d
→֒pǫ

(

[qY (rZ)] ⊗ d
)

[(pX)Y •] =
⊕

qU
d
→֒pXY

(

[qU•] ⊗ d
)

[(pX)Y (rZ)] =
⊕

qU
d
→֒pXY

(

[qU(rZ)] ⊗ d
)

Intuitively, the right-hand sides of the equations list the possible ways in
which the paths corresponding to the left-hand-side variables can be generated.

In analogy with Section 3.1, any solution of h can be converted into a
post∗({psXs}) W-automaton. Our automaton A has ǫ-edges, and its states are
P ′ extended with a final state •. Every variable [sXs′], where s, s′ ∈ P ′∪{•} and
X ∈ Γ ∪ {ǫ}, and its value in the solution then correspond to a transition of A.
The meet-over-all-paths for every configuration c can be obtained by identifying
the paths on which c is accepted by A and computing vA(c).

Remark 4. According to [20, 19], the size of the equation system and the number
of variables is O(|P | · |∆|2), therefore the time for Algorithm 1 is O(|P |2|∆|4).
The resulting automaton has got O(|P | + |∆|) states.

