
Unfolding of Parametric Logical Regulatory Networks

Juraj Kolčák, David Šafránek, Stefan Haar, Löıc Paulevé

To cite this version:

Juraj Kolčák, David Šafránek, Stefan Haar, Löıc Paulevé. Unfolding of Parametric Logical
Regulatory Networks. The Seventh International Workshop on Static Analysis and Systems
Biology (SASB 2016), Sep 2016, Edimbourg, United Kingdom. Elsevier, accepted, Electronic
Notes in Theoretical Computer Science. <http://sasb2016.fi.muni.cz/>. <hal-01354109>

HAL Id: hal-01354109

https://hal.archives-ouvertes.fr/hal-01354109

Submitted on 17 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01354109

Unfolding of Parametric Logical Regulatory
Networks

Juraj Kolčáka,b David Šafránekb Stefan Haara Löıc Paulevéc

a Inria and LSV
École Normale Supérieure de Cachan and CNRS

Cachan, France

b Systems Biology Laboratory (Sybila)
Masaryk University

Brno, Czech Republic
c LRI UMR CNRS 8623

Univ. Paris-Sud – CNRS, Université Paris-Saclay
Orsay, France

Abstract

In systems biology, models of cellular regulatory processes such as gene regulatory networks or signalling
pathways are crucial to understanding the behaviour of living cells. Available biological data are however
often insufficient for full model specification. In this paper, we focus on partially specified models where
the missing information is abstracted in the form of parameters. We introduce a novel approach to analysis
of parametric logical regulatory networks addressing both sources of combinatoric explosion native to the
model. First, we introduce a new compact representation of admissible parameters using Boolean lattices.
Then, we define the unfolding of parametric regulatory networks. The resulting structure provides a partial-
order reduction of concurrent transitions, and factorises the common transitions among the concrete models.
A comparison is performed against state-of-the-art approaches to parametric model analysis.

Keywords: logical networks, parameters identification, asynchronous systems, concurrency, systems
biology

1 Introduction

One of the main problems studied in computational systems biology is understand-

ing of intracellular molecular interactions, often represented as networks. Two par-

ticular classes of processes are predominantly modelled, gene expression regulation

(gene regulatory networks) and cell signalling [12].

The prime interests of gene regulatory networks are gene-protein and gene-gene

interactions, the latter are generally facilitated by the proteins they encode. Cell

signalling models usually consist of one or several signalling pathways. In simple

terms chains of proteins providing information flow by means of sequential phos-

phorylation until some cellular process (such as gene expression) is influenced.

Although both of the described processes are quantitative in their nature, it

is often the case that precise kinetic parameters of the reactions are unknown in

1

Kolčák

biological context. As such, it is common to model genetic regulatory networks and

signalling pathways by discrete models (logical regulatory networks) [1,6,14,18,19].

In the context of gene regulatory networks and signalling pathways it is often the

case that one-to-one influences between species are known from in vitro experiments.

The results of combinations of those influences are, however, largely unknown. In

other words, it may be known that two species have both positive influence on

the activity/population of a third species. However, it is rarely known if both of

the activators must be present to activate the target or if just one is sufficient.

In general, an arbitrary logical function may govern the joint influences. To cope

with the problem technically, the individual target values of a species in possible

combinations of their regulators activity are considered as unknown parameters.

The analysis of parametric regulatory networks (PRNs) is hindered by dual com-

binatorial explosion. Not only is the state space exponential in size of the networks,

but the number of parametrisations is in the worst case double exponential in num-

ber of species. Combination of those factors often leads to the fact that analysis

techniques of PRNs do not scale to larger networks.

Our Contribution. We introduce a new analysis framework for parametric lo-

gical regulatory networks addressing combinatorial explosion on two levels. First,

we propose a novel encoding of parametrisations utilising the inner structure of pa-

rametrisations. The encoding is applied to mitigate the combinatorial explosion

induced by parametrisations. Accompanying methods are provided allowing for ef-

ficient use of the encoding. Second, we extend Petri net unfoldings to accommodate

for the parametric setting. The unfoldings are coupled with the encoding method

for parametrisations to allow for compact representation of state space of the PRNs

thanks to their ability to exploit concurrency. Finally, a prototype implementa-

tion is provided to compute the introduced unfoldings. Experiments are conducted

comparing the results of our methods against state-of-the-art methods in parametric

regulatory network analysis.

Related Work. The analysis of logical regulatory networks under parameter un-

certainty is a field not yet largely explored. Recently, it is gaining popularity thanks

to the importance and great promise to the field of systems biology. Computational

Tree Logic (CTL) [2] has been used to enumerate all possible temporal properties

(parametrisations) of Thomas networks, by Bernot et al. [4]. Methods based on

LTL model checking [2] have also been introduced for Thomas networks [13,10].

In [13] the method called coloured model checking first introduced in [3] is used

to capitalise on many parametrisations sharing some parts of their behaviour. The

parametrisations are represented by colours (bits) in a binary vector and the model

checking is extended to binary vector operations to keep track of the satisfying

behaviours.

The approach in [10] explores the state space represented symbolically in form of

execution trees. This approach is closest to our work since the symbolical representa-

tion of state space employed in [10] is acyclic similarly to unfoldings. Furthermore,

encoding of parametrisations is also performed in [10] utilising logical formulas.

Contrary to our fixed-size encoding, however, the formula used in [10] continues

to expand during the exploration as more detailed encoding of parametrisations is

required.

2

Kolčák

Work was also done using constraint logic programming for parameter identific-

ation [5,9], again using Thomas networks. The approach in [5] encodes all available

biological knowledge into logical constraints on the behaviour of the network while

in [9] the constraint logic programming is used to pre-process the initial set of be-

haviours to filter out those in conflict with the constraints. Model checking is used

on the smaller (filtered) set afterwards.

Ostrowski et al. [16] also introduce a method for restricting the initial set of

possible behaviours for Boolean networks. Logical constraints are derived from

time series data and answer set programming (ASP) is applied to compute a set of

transient dynamics (parametrisations) best fitted to the measurements.

Paper Structure. In Section 2 we introduce the parametric regulatory networks

including their semantics and parametrisation. Section 3 further expands the model

by labels on the influences used to incorporate prior knowledge into the model. In

Section 4 we address the potentially double exponential number of parametrisations

by introducing a new encoding of parametrisations. This encoding is subsequently

applied for unfoldings of parametric regulatory networks in Section 5. Section 6 fea-

tures experimental results using the parametric unfoldings and comparison against

methods relying on execution trees [10] is provided.

2 Parametric Regulatory Networks

In this section we introduce parametric regulatory networks (PRN). Informally

one can consider PRN as a standard regulatory network with unknown dynamics,

namely transition relation. We can therefore capture the topology of a PRN using a

directed graph, so-called Influence Graph, G = (V, I) where V is the set of n vertices

(components) and I ⊆ V ×V is the set of directed edges (influences). We denote the

set of all in-neighbours (regulators) of some v ∈ V as n−(v) = {u ∈ V |(u, v) ∈ I}
and the set of all out-neighbours (targets) as n+(v) = {u ∈ V |(v, u) ∈ I}. The

influence graph of our running example can be seen in Figure 1.

a b

c

Figure 1. The influence graph of a simple three node regulatory network. We will further use this influence
graph for our running example.

Generally, every component v ∈ V is considered as a variable with a finite dis-

crete domain (multivalued). In the scope of this article we limit ourselves to Boolean

setting for the sake of simplicity. However, natural extension to any multivalued

variables is considered. In the case that every variable v ∈ V is Boolean we denote

the PRN as a parametric Boolean network (PBN).

3

Kolčák

a a

0 P a∅

1 P a{a}

b b

0 P b∅

1 P b{b}

a b c

0 0 P c∅

0 1 P c{b}

1 0 P c{a}

1 1 P c{a,b}
Table 1

The truth tables for the nodes of the running example influence graph depicted in Figure 1. Truth tables
for all three nodes: a,b and c are listed left to right.

Viewing the components of the interaction graph as variables allows for a natural

definition of a state of the PBN. By a state X of G = (V, I) we understand any

subset of V (X ⊆ V). We say that any component v ∈ V is active (has value 1) in

state X if v ∈ X and, respectively, v is inactive (has value 0) if v /∈ X. We denote

the set of all possible states as X = 2V .

The nature of the interactions depends on the activity levels of the components

in a given state. However, it is often the case in biology that exact effects of

regulators on their targets are unknown. We therefore abstract these values by

means of parameters.

A parameter represents a value of the target assigned to a given combination

of active and inactive regulators as determined in the particular state. Naturally,

there exists a parameter for any such combination of regulators. We denote such a

combination as regulatory context (RC). Formal definition follows.

Definition 2.1 A regulatory context ω of component v ∈ V is an arbitrary subset

of the regulators of v. Formally, ω ⊆ n−(v). Just as with the states of PBN we say

that all components u ∈ ω are active and all components u ∈ n−(v)\ω are inactive.

The set of all combinatorially possible regulatory contexts of v will be further

denoted as Ωv = 2n
−(v).

It can be shown that RCs correspond to the rows of the truth table for each

component. The truth tables with the RCs and parameters for our running example

can be seen in Table 1.

Every parameter (RC) can be assigned a target value 0 or 1. We denote such

an assignment for all RCs as parametrisation.

Definition 2.2 A parametrisation assigns every RC of every component a target

value. Formally, a parametrisation P is defined as P ⊆ Ω where Ω =
⋃
v∈V {v}×Ωv

represents all regulatory context of all components. In other words, parametrisation

is a subset of pairs of a component v and a RC ω of the component v. We say that

the target value of RC ω of component v under parametrisation P is 1 if (v, ω) ∈ P .

We write simply ω ∈ P instead of (v, ω) ∈ P whenever the target v is known from

the context.

We denote the set of all possible parametrisations of an influence graph G =

(V, I) as PG = 2Ω

A PBN B is thus an influence graph G equipped with a set of possible parame-

4

Kolčák

trisations P ⊆ PG (B = (G,P)). Shall P = PG we say that B is fully parametric.

On the other hand, shall |P| = 1 B is a simple Boolean network.

Finally we can define the dynamics of the PBN. As we have already mentioned

the dynamics of a PBN equipped with a single parametrisation is identical to stand-

ard Boolean networks. There are, however, several ways to define dynamics of a

Boolean network from the synchrony perspective. In the biological setting the indi-

vidual reactions are often temporally independent and no explicit synchrony exists.

In the scope of this paper, we consider the asynchronous dynamics.

The asynchronous dynamics are generally nondeterministic, however, it can be

easily captured by means of so-called state transition graph (STG) S = (X , δ) where

δ ⊆ X ×X is the state transition relation given by target values of RCs. Intuitively,

the STG of a PBN B = (G,P) can be considered a natural composition (union

on transitions) of STGs of Boolean networks (G, {P}) for every P ∈ P. More

formally, due to the asynchrony we only consider transitions between states that

differ in exactly one element. As such, for X1, X2 ∈ X such that X1 \ X2 = {v}
(respectively X2 \X1 = {v}) for some v ∈ V there exists a transition (X1, X2) ∈ δ
iff ∃P ∈ P : (n−(v) ∩X1) /∈ P (respectively ∃P ∈ P : (n−(v) ∩X1) ∈ P).

The dynamics and parametrisation definitions can be easily extended to general

PRNs. An example of such an extension can be found in [13] where a further

capability is introduced to allow for an interval of values of regulators to share

behaviour. In the general case PRNs each parametrisation defines a unique Thomas

network instead of a Boolean network.

3 Labels on Edges of Influence Graphs

In the previous section we have introduced the PBNs and mentioned that the cause

of parameter uncertainty comes from the lack of information on biological interac-

tion. The information is, however, often partially available. Most of the biological

knowledge can be compiled into two types of conditions on the edges of the influence

graph: monotonicity and observability.

Monotonicity comes in two forms, either as plus-monotonicity or the dual minus-

monotonicity. An edge (u, v) ∈ I is plus-monotonous under parametrisation P iff

∀ω ∈ Ωv : u ∈ ω ⇒ (ω ∈ P ∨ ω \ {u} /∈ P). Analogically, an edge (u, v) ∈ I is

minus-monotonous under P iff ∀ω ∈ Ωv : u ∈ ω ⇒ (ω /∈ P ∨ ω \ {u} ∈ P). In

other words, an edge is plus-monotonous if the increase in the activity of the source

cannot cause a decrease in the activity of the target and minus-monotonous if the

increase in the activity of source cannot cause an increase in the target activity.

On the other hand, an edge (u, v) ∈ I is observable under parametrisation P if

∃ω ∈ Ωv : |{ω \ {u}, ω ∪ {u}} ∩ P | = 1. In other words, an edge is observable if

there exists a combination of regulators such that the change in the activity of the

source causes a change in the activity of the target.

Naturally, monotonicity and observability may be used to restrict possible pa-

rametrisations. We therefore equip the influence graph with a labelling function

γ : I → 2{+,−,o} specifying the conditions imposed on every edge. A Labelled Influ-

ence Graph (LIG) is thus a tuple G = (V, I, γ). The set of possible parametrisations

of G is {P ∈ P(V,I)|∀i ∈ I : P satisfies the conditions imposed by γ(i)}. An example

5

Kolčák

a b

c

o- o-

o+ o+

Figure 2. An example of a labelled influence graph (LIG) obtained by introducing a labelling function
γ = {((a, a), {−, o}), ((b, b), {−, o}), ((a, c), {+, o}), ((b, a), {+, o})}. Only one possible parametrisation is
available to govern the self-regulation of a and b after the labelling. In fact, from the initial 28 = 256
parametrisations of the running example, only two parametrisations are possible with the labelling. Also
notice that with the labelling γ every influence of the running example is both observable and monotonous.
We refer to such labelling function as full labelling and to LIG with full labelling as fully labelled.

of a labelling function and a LIG is given in Figure 2 using the running example as

the original influence graph.

The concept of monotonicity and observability can again be straightforwardly

extended to multivalued variables.

4 Parametrisation Encoding

In previous sections we have introduced the concept of parametrisation of Boolean

networks and natural constraints to implement partial knowledge about the model.

In practice, however, known methods are not scalable when applied to PBNs as

introduced due to combinatorial explosion. In fact, the combinatorial explosion oc-

curs for PBNs in two instances. First the state space is exponential in the number of

components (note X = 2V). The state space explosion also affects standard Boolean

networks and equivalent models (this is addressed more closely in Section 5). In this

section we dedicate ourselves to the second cause of combinatorial explosion, the

parametrisations themselves (recall PG = 2Ω). Here we introduce a novel approach

to encode some special sets of parametrisations relevant for our application.

The need to encode parametrisations is required especially for generating pro-

cesses (possible behaviours) of the PBN. Although processes may be infinite, any

reachable state is reachable by at least one finite process. We therefore only require

finite processes to be reachability-complete. Formal definition follows.

Definition 4.1 Let (G,P) be a PBN with STG (X , δ). A process of length k ∈ N is

a sequence of states π = (X1, .., Xk) ∈ X k where ∀i ∈ {1, . . . , k−1} : (Xi, Xi+1) ∈ δ.
Let π = (X1, . . . , Xk) be a process and X ∈ X state such that (Xk, X) ∈ δ.

Then π′ = π ·X is a process of length k + 1 and we say π′ is an extension of π.

PBNs represent several different model possibilities introduced by individual pa-

rametrisations. The parametrisations are in fact mutually exclusive. The dynamics

given by STG, however, do not distinguish between individual parametrisations and

allow for their combinations. As such, there may exist processes that cannot be re-

produced by any single parametrisation. It is useless to explore such processes and

it is therefore imperative to assign every process (set of transitions) a set of feasible

parametrisations.
6

Kolčák

Let (G,PG) be a PBN and (X1, X2) ∈ δ a transition of the respective STG such

that X1\X2 = {v} for some v ∈ V . We call such transition the inhibition of v. Every

parametrisation that allows the inhibition of v in state X1 must necessarily assign

the target value of X1∩n−(v) to 0. Furthermore, it is sufficient for the target value

of X1 ∩ n−(v) to be fixed to 0 for the parametrisation to allow transition (X1, X2).

We can apply similar reasoning to activations (X2 \X1 = {v} for some v ∈ V). An

activation requires the associated RC X1 ∩ n−(v) to have target value 1. As such,

we can define an associated regulatory context of a transition d = (X,X ′) ∈ δ as

ωd = n−(v) ∩X where {v} = X 4X ′ (by 4 we understand symmetric difference).

Any transition changes the value of exactly one component. Thus any transition

is either exclusively an activation or an inhibition of some component. Arbitrary

set of transitions D ⊆ δ is therefore uniquely given as union of set of inhibitions DI

and set of activations DA (D = DA ∪DI). We now formalise the notion of feasible

parametrisations of any set of transitions under the notion of parameter context

(PC).

Definition 4.2 Let (G,P) be a PBN with STG (X , δ). We define a function p :

2δ → 2P that assigns every set of transitions the set of parametrisations that allow

all of the transitions. Formally, given any D ⊆ δ we set p(D) = {P ∈ P|∀d ∈
DA : (ωd ∈ P) ∧ ∀d ∈ DI : (ωd /∈ P)} where DA and DI are sets of activations

and inhibitions (respectively) such that DA ∪DI = D. We call p(D) the parameter

context of D for any D ⊆ δ. One can remark that p(D) =
⋂
d∈D p({d}).

We extend the definition to processes in natural fashion. Let π = (X1, . . . , Xk)

be a process. By PC of π we understand p(π) = p({(Xi, Xi+1)|i ∈ {1, . . . , k − 1}}).

A naive approach to computing the PC as defined above could be to enumerate

all exponentially many parametrisations. It is, however, precisely thanks to PG = 2Ω

that by introducing set inclusion order to parametrisations we obtain a Boolean

lattice (PG,⊆). We now provide intuition behind the use of lattices for PC encoding.

Let us consider a fully parametric PBN (G,PG). As was mentioned above, the

PC of arbitrary single transition d only contains parametrisations that set target

value of ωd to the same value. Shall d be an inhibition of some v ∈ V we thus

know ∀P ∈ p({d}) : ωd /∈ P . Keeping the set inclusion order in mind the largest

parametrisation in p({d}) is Ω \ {(v, ωd)}. In fact, p({d}) is a prime ideal of the

lattice (PG,⊆) with sole principal (maximal) element Ω \ {(v, ωd)}. Analogically,

shall d be an activation of some v ∈ V the PC p({d}) = {P ∈ PG|ωd ∈ P} is a

prime filter of (PG,⊆) with sole principal (minimal) element {(v, ωd)}.
Since p(D ∪ D′) = p(D) ∩ p(D′), one can remark that PC of any set DI ⊆ δ

such that ∀d ∈ DI : d is an inhibition is an ideal of (PG,⊆). Respectively, PC

of any set of activations DA ⊆ δ is a filter. It is well known that the intersection

of an arbitrary ideal and filter is either empty or a convex sub-lattice. Moreover,

any convex sub-lattice can be uniquely represented by intersection of an ideal and

a filter [11]. This allows us to represent any convex sub-lattice of (PG,⊆) by only

the maximal element (ideal) and minimal element (filter). As any set of transitions

can be split into set of inhibitions and set of activations it is clear that any PC can

be encoded by minimal and maximal elements. An example of the PCs represented

as convex sub-lattices is visualised in Figure 3.

7

Kolčák

{(c,{a}),(c,{b}),(c,{a,b})}

{(c,{a}),(c,{b})}

{(c,{a}),(c,{a,b})}

{(c,{b}),(c,{a,b})}

{(c,{b})}

{(c,{a})} {(c,{a,b})}

∅

(A)

{(c,{a}),(c,{a,b})}

{(c,{a,b})}{(c,{a})}

∅

(B)

Figure 3. Hasse diagrams of the lattices representing parameter contexts for the regulation of component c
in the unlabelled running example. (A) The PC of transition ({c}, ∅) (p({({c}, ∅)})). (B) The restricted
PC after transition ({b, c}, {b}) is included (p({({c}, ∅), ({b, c}, {b})})).

The results we have provided hold for fully parametric PBN (G,PG). However,

considering a LIB G the lattice (PG ,⊆) is no longer guaranteed to exist. We therefore

propose an over-approximation of a PBN B = (G,PG) constructed as B′ = (G, [PG])

where we use [P] to denote the smallest convex sub-lattice such that P ⊆ [P]. On

similar note we introduce an over-approximative PC p′ : 2δ → 2PG such that p′(D) =

[p(D)] or p′(D) = ∅ if p(D) = ∅. The labelling function γ introduces dependencies

between target values of individual RCs and therefore computing p′(D)∩p′(D′) may

not be sufficient to obtain the correct p′(D∪D′) contrary to p. However, a method

to resolve the issue for our purposes exists.

The method relies on knowledge of p′(π) for some process π = (X1, . . . , Xk) to

compute the PC of an arbitrary extension π ·X where X ∈ X is a compatible state.

Since we know that p(π ·X) ⊆ p(π) and in conjecture p′(π ·X) ⊆ p′(π) the PC of

the extension can only be smaller than the PC of π. The method thus continuously

removes elements from p′(π) until [p(π ·X)] is reached. The elements are removed

in steps we refer to as restriction. By restriction we understand a combination of a

regulatory context ω ∈ Ωv for some v ∈ V and a value i ∈ {0, 1}. A restricted PC

is then a PC P such that ∀P ∈ P : ω ∈ P if i = 1 and ω /∈ P if i = 0. In other

words, a restriction ensures all parametrisations in the restricted PC to have the

same target value for a given RC.

The method recognises two causes of restriction. First, the extension itself re-

quires the transition (Xk, X) to be allowed. Second, the edge labels introduce

dependencies between target values of individual RCs. The method detects those

dependencies and restricts the PC accordingly. For a more detailed explanation of

the method see Appendix A.1.

One of the most important properties of the method is preservation of reach-

ability. Since the method guarantees that p′(π × X) = [p(π × X)] and namely

p′(π ×X) = ∅ if p(π ×X) = ∅, any process π such that p′(π) 6= ∅ is guaranteed to

also have p(π) 6= ∅ and vice versa. This property becomes important in Section 5

where we construct a compact representation of reachable state space. Thanks to

the reachability being preserved any state reached by the over-approximation p′ is

guaranteed to be also reachable by p and vice versa. This allows us to compute the

reachable states within the over-approximation p′. Reachability is, however, only

8

Kolčák

guaranteed to be preserved if the input p′(π) of the method is correct. Cases exist

where the initial [PG] 6= PG. A pre-computation is therefore necessary to determine

[PG]. The pre-computation itself is detailed in Appendix A.3.

The lattice encoding and over-approximation of PCs can be extended to cover

general multivalued PRNs. As multivalued parametrisations can no longer be ex-

pressed as sets, the lattice obtained is not a Boolean lattice. Instead an instance

of vector lattice (also known as Riesz space) with product order of integer orders

for each RC is obtained in the general case. The method for computing PCs of

extensions also requires several adjustments discussed in detail in Appendix A.2.

5 Parametric Unfolding

Previously we have introduced an encoding of parametrisations to alleviate the com-

binatorial explosion induced by all possible combinations of RCs. In this section we

address the combinatorial explosion of the state space of PBNs and standard Boo-

lean networks for that matter. Biological networks are often considerably sparse in

nature and contain a high amount of concurrent interactions. Partial order reduc-

tion approaches are therefore meaningful for dealing with the state space explosion

in case of standard networks. Petri Net unfoldings are a prime example of a struc-

ture exploiting the concurrency of transitions. This section is therefore dedicated

to application of unfoldings to PBNs and parametric setting in general.

We will now introduce unfoldings for PBNs utilising the PCs given by p′. In-

tuitively, the unfolding is an acyclic (tree-like) representation of all the processes

of the PBN starting in a given initial state. Albeit an equivalent Petri net can be

constructed for any PBN we do not require this Petri net explicitly to be able to

unfold the PBN. We define (parametric) unfolding of a PBN as an event structure.

Hence, our construction is similar to Petri net unfoldings [8,7], at the difference that

the events are generated from the PBN.

In general, an event structure is a triplet E = (E,≤,#) where E is the set

of events, ≤⊆ E × E is a partial order relation on E called causality relation and

⊆ E×E is an antisymmetric, irreflexive relation called conflict relation satisfying:

(i) ∀e ∈ E : {e′ ∈ E|e′ ≤ e} is finite.

(ii) ∀e, e′, e′′ ∈ E : (e#e′ ∧ e′ ≤ e′′)⇒ e#e′′.

For our purposes we extend the event structure by a set of conditions B (we

adopt Petri net unfolding notation here) to provide better intuition behind causality

and conflict relations in our setting. First let us define the set of all events E and

conditionsB possible for a given PBN. As the definitions of events and conditions are

interdependent, we define a hierarchy of sets Ei and Bi. First let B0 = {(⊥, v, j)|v ∈
V ∧j ∈ {0, 1}}. We then define Ei = {(β, v)|v ∈ V ∧β ⊆

⋃
j∈{0,...,i−1}Bj∧β∩Bi−1 6=

∅} and Bi = {(e, v, j)|v ∈ V ∧ j ∈ {0, 1} ∧ e ∈ Ei} for all i ∈ N. The coveted

E =
⋃
i∈NEi and B =

⋃
i∈N0

Bi thus become the infinite unions.

Every condition b ∈ B is of the form b = (e, v, i) where e ∈ E ∪ {⊥} is a

predecessor (parent) event of b if it exists, or ⊥, otherwise, v ∈ V is the component

of PBN represented by condition b and i ∈ {0, 1} is the value of v in b. Intuitively,

a condition represents the possibility of a process reaching state where component

9

Kolčák

v has value i by following event e. Analogically, every event e ∈ E is of the form

e = (β, v) where β ⊆ B is the set of predecessors (preset) of e and v ∈ V is the

component whose value changes by firing e. Intuitively, an event e represents the

possibility of component v changing value under influence of regulators in β.

Events very closely resemble the transitions of the STG (δ). In fact, if the event

e = (β, v) is well-formed (satisfies n−(v)∪{v} = {u|(e′, u, i) ∈ β} and |n−(v)∪{v}| =
|β|) we can define an associated RC ωe = {u ∈ n−(v)|∃(e′, u, i) ∈ β : i = 1}
much like for transitions. We can also make a distinction between activations and

inhibitions among the events. We say an event e = (β, v) is an activation of v if

∃(e′, v, 0) ∈ β and analogically, e is an inhibition of v if ∃(e′, v, 1) ∈ β. Any well-

formed event is exclusively either activation or inhibition. This allows us to extend

the PC function p and in turn also p′ to well-formed events in the natural fashion.

Formally, let E ⊆ E be a set of well-formed events. Then p(E) = {P ∈ P|∀e ∈ EA :

(ωe ∈ P) ∧ ∀e ∈ EI : (ωe /∈ P)} where EA is a set of activations and EI is a set of

inhibitions such that E = EA ∪ EI .
We can now define causality and conflict relations. Let e, e′ ∈ E be arbitrary.

We say that event e = (β, v) is causally dependent on event e′ = (β′, u) (e′ ≤ e)

if e = e′ or there exists b = (e′′, w, i) ∈ β such that e′ ≤ e′′. In other words, e is

causally dependent on e′ if there exists a directed path from e to e′ defined by the

parents and presets of conditions and events. If ¬(e ≤ e′) and ¬(e′ ≤ e) we say that

e and e′ are causally independent. Similarly, e is in conflict with e′ (e#e′) if there

exist events (β, v), (β′, u) ∈ E such that (β, v) 6= (β′, u), (β, v) ≤ e, (β′, u) ≤ e′

and β ∩ β′ 6= ∅. In other words, two events are in conflict if they (or their causal

predecessors) use the same condition by two different events.

We can also naturally extend the relations of causality and conflict to conditions

simply by setting ∀(β, v) ∈ E : ∀b ∈ β : b < (β, v) and ∀(e, v, i) ∈ B : e < (e, v, i)

and computing the reflexive and transitive closure. The conflict relation is adjusted

extending its domain to E ∪ B. Additionally, let x, y ∈ E ∪ B such that x and y

are causally independent and not in conflict. We then say x and y are concurrent.

One can notice that (B,E,≤,#) may not be an extended event structure as it

is not guaranteed to satisfy the constraints on the causality and conflict relations.

We therefore construct the unfolding using subsets of B ⊆ B and E ⊆ E on which

the relations ≤ and # satisfy the coveted properties. Let (G,PG) be a PBN with

STG (X , δ) and X0 ∈ X an initial state. Then the unfolding U = (B,E,≤,#) of

(G, [PG]) in state X0 is constructed as follows.

(i) Start with empty B = ∅ and E = ∅.
(ii) For every v ∈ V add a condition (⊥, v, i) to B such that i = 1 if v ∈ X0 and

i = 0 otherwise.

(iii) For every v ∈ V find all sets C ⊆ B of concurrent conditions (cosets) such

that {u|(e, u, i) ∈ C} = n−(v) ∪ {v} and |C| = |n−(v) ∪ {v}|. For every such C
create en event e = (C, v). If e /∈ E then compute p′(e) using the algorithm in

Appendix A.1. If p′(e) 6= ∅ add e to the set E and for every (e′, u, i) ∈ C add

new condition b = (e, u, j) to B where j = i if u 6= v and j = (1− i) for u = v.

If at least one event was added to E repeat step (iii).

Although B and E are subsets of B and E it is apparent from the construction

10

Kolčák

of the unfolding that they are infinite in the general case. We have mentioned in

Section 4 that any reachable state is reachable by a finite process. As the unfolding

is a representation of all the processes of the network and the number of states is

finite, there exists finite prefixes of the unfolding from which all the reachable states

can be recovered. We refer to such a prefix as a complete finite prefix (CFP), and

show hereafter a possible construction. First, we define an equivalent of a process

within the unfolding traditionally denoted as configuration.

Definition 5.1 A set C ⊆ E is a configuration if it is conflict free (@e, e′ ∈ C : e#e′)

and causally closed ∀ : e ∈ C, e′ ∈ E : e′ ≤ e⇒ e′ ∈ C.

By [e] we denote a special configuration called local configuration of e, [e] =

{e′ ∈ E|e′ ≤ e}.
Any configuration C corresponds to at least one process of the PBN given by

completing the partial order on the transitions equivalent to events in C. We can

therefore assign every finite configuration a terminal (final) state XC = X04{v1}4
· · · 4 {vk} where C = {e1 = (β1, v1), . . . , ek = (βk, vk)} and k ∈ N0.

Let C be a configuration and F ⊆ E such that C ∩ F = ∅. We say that F

is an extension of C if C ∪ F is a configuration. Let us now consider all possible

extensions of C. Any extension of C corresponds to a process in the original PBN

starting in state XC and every such process is represented by an extension. As such,

we can see that all extensions of C define an unfolding of the PBN in state XC and

initial parametrisation p′(C). Furthermore, any extension possible in P ⊆ p′(C) is

also possible under p′(C).

Let us now consider two configurations C,C ′ ⊆ E such that XC = XC′ and

p′(C) ⊆ p′(C ′) and an extension F ⊆ E of C. Since F is an extension of C it

surely belongs to the unfolding of the PBN in state XC with p′(C) and namely

it also belongs to the unfolding in XC with p′(C ′). Unfolding of a PBN is given

uniquely by initial state and set of feasible parametrisations. The unfolding in XC

with p′(C ′) must therefore be isomorphic to the unfolding in XC′ with p′(C ′). And

especially, there must be an extension F ′ ⊆ E of C ′ isomorphic to F . This holds

for any extension of C meaning any information captured by the extensions of C is

already covered by extensions of C ′ and is redundant from the reachability point of

view.

This result is interesting especially for local configurations. Let e, e′ ∈ E be such

that X[e] = X[e′] and p′([e]) ⊆ p′([e′]). As there is no need to explore extensions of

[e] we omit them from the CFP. We formalise this by the notion of cut-off events.

Once an event e is marked as cut-off event, no other event e′ ∈ E such that e < e′

is added to the CFP. Esparza et al. [8] show for Petri net unfoldings that a specific

order on the configurations called adequate order is required to guarantee that

no reachability is lost by cut-offs. As our unfolding notion is equivalent to Petri

net unfoldings we have the same requirement on the order. By ≺ we will further

understand the total adequate order as defined in [8] adjusted for our definition of

unfolding (see Appendix B for details). Formal definition of a cut-off event follows.

Definition 5.2 An event e ∈ E is considered a cut-off event if there exists a dif-

ferent event e′ ∈ E such that X[e] = X[e′], [e′] ≺ [e] and p′([e]) ⊆ p′([e′]).

11

Kolčák

a0 c0

e0 e1

a1 b1

e2 e3

a0 b0

b0

e4 e5

a0 b1 c1a1 b0 c1 e6

a1 c1 b1

e7 e8

a0 b0

e9 e10

a1 b1

e11

a0 c0 b0

e12

a1 b0 c0

e13

a0 b1 c0

Figure 4. The complete finite prefix of the running example equipped with full labelling function as il-
lustrated in Figure 2. The conditions are labelled by the component they represent and the value of the
component (vi for (e, v, i)) while events are simply numbered. Cut-off events are marked with dashed
borders. Notice that the order of concurrent activation/inhibition of species a and b is abstracted.

The total adequate order ≺, however, does not correlate with inclusion order

over PCs. In other words, C ≺ C ′ does not guarantee p(C ′) ⊆ p(C) and vice versa.

As such a situation may occur where local configurations of two events e, e′ ∈ E

lead to the same state X[e] = X[e′] and p([e]) ⊆ p([e′]) also holds, however, due to

[e] ≺ [e′] the event e would not be designed as a cut-off event. Although we do

not currently posses the means to prevent such a situation, we can resolve it by

marking e cut-off upon adding e′ into the prefix. Naturally, a situation may arise

where there exists e′′ ∈ E such that e < e′′ by the time e′ is reached. Any such e′′

is removed from the prefix upon marking e as a cut-off and was therefore explored

uselessly.

It is proven for Petri net unfoldings that the number of non-cut-off events does

not exceed the size of the marking graph (state space) of the Petri net [8]. As the

parametric unfolding relies on the PC for cut-offs, however, the claim cannot be

extended to our setting. It is intuitively clear, however, that the number of traces

in the CFP is surely smaller than in the STG. The CFP computed for the fully

labelled version of the running example is shown in Figure 4.

12

Kolčák

6 Experiments

In this section we present some initial results on biological models and compare

against the symbolic representation employed in [10]. The results have been ob-

tained by a prototype implementation in Python of a parametric unfolder named

Pawn. 1

The comparison is done regarding the size of the structure representing all the

possible traces. We therefore compare the size of the unfolding – typically represen-

ted as the number of non-cut-off events with the number of states in the complete

symbolic execution tree, obtained with the tool SPuTNIk [10]. Therefore, the differ-

ence accounts for the partial-order reduction implicitly achieved by the unfolding,

in the scope of Parametric Biological Regulatory Networks.

The experiments were conducted for two different biological models. First we use

the common biological example of the bacteriophage λ life cycle genetic regulatory

network [17] also analysed in [10,13]. The model is depicted in Figure 5 (A). The

reachable state space has been explored from initial state with all species inactive

(X = ∅). The model has been considered in two configurations, with and without

the Min/Max constraint as introduced and employed in [10].

cro
0/3

(A)

cI
0/2

cII
0/1

N
0/1

(B)

o+
2 o-

3

o-
2

o-
2

o- 2

o-
3

o-
1

o- 1

o+
1

o+ 1

map3k1

tnfa egf

ikb pi3k sos

nfkb raf1gsk3

crebp38 erkap1

o-

o-

o-

o-

o+

o+

o+
o+

o+
o+

o+
o+

o+

o+o+
o+

Figure 5. (A) A genetic regulatory network controlling the bacteriophage λ life cycle. Notice that the
network is not Boolean. The numbers in the nodes represent the initial state slash maximal value. The
numbers next to the edges represent the thresholds in the same fashion as in [10]. (B) Model of signalling
pathway of EGF-TNFα. In this case, we consider only compatible Boolean networks and therefore no
specification of maximal values and edge thresholds is necessary. The only two states that start with initial
value 1 are marked in blue.

The second model is a signalling pathway, EGF-TNFα, as studied in [15,16]

(Figure 5 (B)). In this case the initial state was with every specie inactive save for

the two input species, tnfa and egf , which were active (X = {tnfs, egf}). The

results are summarised in Table 2. The execution times for Pawn were less than

a second (∼ 0.4s) and around 8.5 seconds for the bacteriophage λ (both variants)

and EGF-TNFα respectively. SPuTNIk on the other hand took ∼ 1m and ∼ 10m

for the bacteriophage λ with and without Min/Max respectively, and ∼ 30m for

EGF-TNFα.

1 Pawn is available online: https://github.com/GeorgeKolcak/Pawn

13

https://github.com/GeorgeKolcak/Pawn

Kolčák

Model Unfolding Events Unfolding Events (with cut-offs) Symbolic Execution Size

Lambda Switch 170 575 68,011

LS (with Min/Max) 170 569 15,139

EGF-TNFα 1,057 2,658 534,498

Table 2
Comparison of the size of the obtained structures between unfolding and the symbolic representation for

different models.

Although no theoretical estimate on the size of the parametric unfolding can

be given it is apparent from the results that exploiting the concurrency allows

for considerably small representations of the parametric state space in practice.

The difference in size is derived especially from the capability of the unfoldings to

exploit concurrency. Therefore, shall there be n different concurrent transitions

firing, unfolding does not distinguish the order in which they are fired and only

explores one possibility. The symbolic execution on the other hand explores all n!

possible firing sequences only to obtain the same result each time. This is especially

apparent in sparse networks that contain high amount of concurrent transitions.

The compact size of the unfolding allows for analysis of larger models. It was

mentioned in Section 4, however, that only over-approximation is given in case of

LIGs. Therefore, in the unfolding of an LIG based PBN, the PC of an arbitrary

process may contain parametrisations that do not allow the said process. It may thus

be required to filter out these false positives before further application. Reachability

model checking on the obtained PC may be considered for such a filtering.

7 Conclusion

We offer a new platform for parameter identification of logical regulatory networks

based on Petri net unfoldings. Our contribution addresses several issues. First,

we introduce a novel approach to encoding parametrisations allowing for efficient

analysis of parametric regulatory networks. We employ the encoding in practice

for computing feasible parametrisations for all possible behaviours of the system.

Accompanying methods are also presented for efficiently computing the feasible

parametrisations of extensions of behaviours within the encoding. Although only

over-approximation of the set of feasible parametrisations is given in the general

case, reachability preservation is guaranteed by the methods. The refinement of the

overapproximation is considered for future work.

Next we analyse the possibility of using Petri net unfoldings to exploit concur-

rency in parametric models of biological networks. We present a modification to

allow for unfolding of parametric regulatory networks and couple the unfoldings

with the encoding of parametrisations to neutralise both sources of combinatorial

explosion in parametric regulatory networks.

Last but not least, we provide a prototype implementation of the introduced

methods and compare against existing methods on relevant biological examples.

The comparison proves our methods capable of representing the reachable state

space of parametric regulatory networks in much smaller structure than previous

approaches. This compression opens the possibilities of efficient further analysis of

parametric networks via the parametric unfoldings.

14

Kolčák

References

[1] R. Albert and H. G. Othmer. The topology of the regulatory interactions predicts the expression pattern
of the segment polarity genes in drosophila melanogaster. Journal of Theoretical Biology, 223(1):1 –
18, 2003.

[2] C. Baier and J. Katoen. Principles of Model Checking. MIT Press, 2008.

[3] J. Barnat, L. Brim, A. Krejci, A. Streck, D. Safranek, M. Vejnar, and T. Vejpustek. On parameter
synthesis by parallel model checking. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 9(3):693–705, May 2012.

[4] G. Bernot, J.-P. Comet, A. Richard, and J. Guespin. Application of formal methods to biological
regulatory networks: extending thomas’ asynchronous logical approach with temporal logic. Journal of
Theoretical Biology, 229(3):339 – 347, 2004.

[5] F. Corblin, E. Fanchon, and L. Trilling. Applications of a formal approach to decipher discrete genetic
networks. BMC Bioinformatics, 11(1):1–21, 2010.

[6] H. de Jong. Modeling and Simulation of Genetic Regulatory Systems: A Literature Review. Journal
of Computational Biology, 9(1):67–103, 2002.

[7] J. Esparza and K. Heljanko. Unfoldings: A Partial-Order Approach to Model Checking. Monographs
in Theoretical Computer Science. An EATCS Series. Springer Berlin Heidelberg, 2010.

[8] J. Esparza, S. Römer, and W. Vogler. An improvement of mcmillan’s unfolding algorithm. Formal
Methods in System Design, 20(3):285–310, 2002.

[9] J. Fromentin, J. P. Comet, P. L. Gall, and O. Roux. Analysing gene regulatory networks by both
constraint programming and model-checking. In 2007 29th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, pages 4595–4598, Aug 2007.

[10] E. Gallet, M. Manceny, P. Le Gall, and P. Ballarini. Formal Methods and Software Engineering: 16th
International Conference on Formal Engineering Methods, ICFEM 2014, Luxembourg, Luxembourg,
November 3-5, 2014. Proceedings, chapter An LTL Model Checking Approach for Biological Parameter
Inference, pages 155–170. Springer International Publishing, Cham, 2014.

[11] G. Grätzer. Lattice Theory: Foundation. SpringerLink : Bücher. Springer Basel, 2011.

[12] H. Kitano. Computational systems biology. Nature, 420:206–210, 2002.

[13] H. Klarner, A. Streck, D. Šafránek, J. Kolčák, and H. Siebert. Computational Methods in Systems
Biology: 10th International Conference, CMSB 2012, London, UK, October 3-5, 2012. Proceedings,
chapter Parameter Identification and Model Ranking of Thomas Networks, pages 207–226. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012.

[14] R. Laubenbacher and B. Stigler. A computational algebra approach to the reverse engineering of gene
regulatory networks. Journal of Theoretical Biology, 229(4):523 – 537, 2004.

[15] A. MacNamara, C. Terfve, D. Henriques, B. P. Bernabé, and J. Saez-Rodriguez. State–time spectrum
of signal transduction logic models. Physical Biology, 9(4):045003, 2012.

[16] M. Ostrowski, L. Paulevé, T. Schaub, A. Siegel, and C. Guziolowski. Computational Methods in
Systems Biology: 13th International Conference, CMSB 2015, Nantes, France, September 16-18, 2015,
Proceedings, chapter Boolean Network Identification from Multiplex Time Series Data, pages 170–181.
Springer International Publishing, Cham, 2015.

[17] D. Thieffry and R. Thomas. Dynamical behaviour of biological regulatory networks—ii. immunity
control in bacteriophage lambda. Bulletin of Mathematical Biology, 57(2):277–297, 1995.

[18] R. Thomas. Boolean formalization of genetic control circuits. Journal of Theoretical Biology, 42(3):563
– 585, 1973.

[19] R.-S. Wang, A. Saadatpour, and R. Albert. Boolean modeling in systems biology: an overview of
methodology and applications. Physical Biology, 9(5):055001, 2012.

15

Kolčák

Appendices

A Parameter Context of Extensions

Here we present in detail the method to compute the overapproximation PC p′ of

process extensions expanding on the intuition given in Section 4. Precomputation

of [PG] is also provided and the case with multivalued PRNs is discussed.

A.1 Method for Parameter Context Restriction

Let us first fix a notation for minimum and maximum of the PCs. For [P] we denote

the minimum as 0P =
⋂
P∈P P and the maximum as 1P =

⋃
P∈P P . Next we define

restriction formally and denote some special relationships between PCs and RCs.

Definition A.1 A restriction is a tuple r = (v, ω, i) where ω ∈ Ωv is RC of v ∈ V
and i ∈ {0, 1} is the new target value of ω.

Let P be a PC (convex lattice). P can be restricted by restriction r = (v, ω, i)

to obtain a restricted PC P ′ = {P ∈ P|ω ∈ P if i = 1 or ω /∈ P if i = 0}

Using the notation with minimal and maximal element a restriction (v, ω, 0)

results in ω /∈ 1P ′ and (v, ω, 1) leads to ω ∈ 0P ′ . As long as 0P ′ ⊆ 1P ′ holds

(P ′ 6= ∅) the above constraints enforce ω /∈ 0P ′ 4 1P ′ .

Definition A.2 Let ω ∈ Ωv be RC of some v ∈ V and let u ∈ n−(v) be an arbitrary

regulator of v. We say that ω′ ∈ Ωv such that ω′ = ω 4 {u} is a u-pair regulatory

context (u-pair) of ω. In other words, two RCs of v are reciprocal u-pairs of each

other if they differ only in activity of regulator u. We will denote the u-pair of ω as

ωu.

Let [P] be some PC. We say that ω is restricted under [P] iff ω /∈ 0P 4 1P . In

other words, ω is said to be restricted under [P] if all parametrisations in P assign

ω the same target value. In such case we say [P] fixes the target value of ω. On the

other hand, shall the target values for ω differ we say ω is free under [P].

Additionally, if both ω and the u-pair of ω are restricted under some [P] we say

that ω and the u-pair are u-restricted under [P].

As mentioned in Section 4 the method works with two causes of restrictions. In

fact, the first cause – the transition itself is always the first restriction to happen. Let

π = (X1, . . . , Xk) be a process and transition (Xk, X) an inhibition of v. If there is

indeed no restriction necessary for all parametrisations to allow the transition then

we know that Xk ∩ n−(v) /∈ 1p′(π) and thus especially Xk ∩ n−(v) /∈ 1p(π). Surely

then p((Xk, X)) ⊆ p(π) must hold leading to p(π ·X) = p(π). We may even extend

this reasoning as it can be shown that any edge label based restriction is a result of

a prior restriction and dependency introduced by labelling function.

Let us first consider a case when a restriction occurs due to monotonocity re-

quirement. Let (u, v) ∈ I be an interaction such that + ∈ γ((u, v)). (Once again we

assume plus-monotonocity without loss of generality as the reasoning is analogical

for minus-monotonocity.) We now define necessary and sufficient conditions for the

monotonocity of interaction (u, v) to introduce a restriction (v, ω, 1): u ∈ ω and

16

Kolčák

ωu ∈ 0p(π·X). Clearly these conditions are sufficient as using the definition of mo-

notonocity we have u ∈ ω ⇒ (ω ∈ P ∨ ωu /∈ P) thus obviously ω ∈ P . In fact, the

given conditions are not necessary strictly speaking. However, under the assump-

tion that it was indeed the monotonocity of the (u, v) interaction that requires the

restriction (v, ω, 1), it becomes easy to see that they are indeed necessary. In other

words, those are the necessary conditions for a plus-monotonocity criterion to in-

troduce a new restriction. Let us therefore assume restriction (v, ω, 1) was required.

As we are working with plus-monotonocity, the only way to enforce restriction on

ω is when u ∈ ω. Moreover, the restriction with value 1 can only be imposed if

ωu ∈ P for all P giving us ωu ∈ 0p(π·X). Clearly then restriction (v, ω, 1) enforced

by plus-monotonocity requires a prior restriction (v, ωu, 1) to occur.

Similarly we may consider restriction enforced by observability. Let (u, v) ∈
I be an interaction such that o ∈ γ((u, v)). Just as in the monotonocity case

we define necessary and sufficient conditions for the observability of interaction

(u, v) to introduce restriction (v, ω, 1): ∀ω′ ∈ Ωv \ {ω, ωu} : (ω′ ∈ 0p(π·X) ∧ ω′u ∈
0p(π·X)) ∨ (ω′ /∈ 1p(π·X) ∧ ω′u /∈ 1p(π·X)) and ωu /∈ 1p(π·X). Albeit the conditions are

more complex to formalise compared to monotonocity, they are fundamentally very

straightforward, the first condition requires any u-pair of regulatory contexts other

than ω to be u-restricted to the same value in p(π ·X) while the second condition

simply requires the u-pair of ω to have target value fixed to 0. Again we show the

given conditions are sufficient. As any ω′ ∈ Ωv except ω and ωu has target value

equal to the u-pair ω′u it is apparent that to satisfy the existential condition in

the definition of observability we need target values of ω and ωu to differ. Thus

ω ∈ 0p(π·X) as the value of ωu is fixed to 0 and the coveted restriction happened.

The conditions again, are not necessary in the general sense, however it can be

shown they are necessary if the restriction (v, ω, 1) is imposed by the observability

of (u, v). Let therefore ω ∈ 0p(π·X) be enforced by observability of (u, v). For ω

and the u-pair of ω to be able to satisfy observability is is clearly necessary that

their target values differ and as ω is fixed to 1 we get ωu /∈ 1p(π·Xk+1). Moreover for

observability to strictly determine the target value of ω it must hold for all the other

u-pairs that they do not satisfy observability of (u, v) giving us the first criterion

(∀ω′ ∈ Ωv \ {ω, ωu} : (ω′ ∈ 0p(π·X) ∧ ω′u ∈ 0p(π·X)) ∨ (ω′ /∈ 1p(π·X) ∧ ω′u /∈ 1p(π·X)))

as if any of those u-pairs differed in target value the observability would be satisfied

with arbitrary target value of ω. Again we can draw the conclusion that there must

have been a prior restriction that allowed the sufficient and necessary conditions to

become true before the restriction (v, ω, 1) was enforced by observability.

We can conduct analogical reasoning for restrictions with target values 0. As

any restriction with the exception of the first one imposed by the transition itself

has a one prior restriction acting as a cause, we can define a causal partial order on

the restrictions. It is easy to see, that such a partial order defines a tree topology

on the restrictions. We will now proceed with the definition of the method itself.

Let π = (X0, ..., Xk) be a process and X ∈ X a state such that (Xk, X) ∈ δ. The

following method computes p′(π ·X) using p′(π).

(i) Set 0p(π·X) = 0p(π) and 1p(π·X) = 1p(π) and initialise an empty FIFO queue of

restrictions.

(ii) Push (v,Xk ∩ n−(v), i) where i = 0 if (Xk, X) is inhibition of v or i = 1 if

17

Kolčák

(Xk, X) is activation of v to the queue of restrictions.

(iii) While the queue of restrictions is not empty, pop (v, ω, i) from the queue and

execute the following:

(a) If i = 0 set 1p(π·X) = 1p(π·X) \{ω} else 0p(π·X) = 0p(π·X)∪{ω}. If no change

occurred by the previous operation skip to next element in the queue of

restrictions.

(b) For every monotonous influence (u, v) ∈ I push (v, ωu, i) where ωu is the

u-pair of ω to the queue of restrictions if one of the following is true:

i = 0, + ∈ γ((u, v)) and u ∈ ω.

i = 1, + ∈ γ((u, v)) and u /∈ ω.

i = 0, − ∈ γ((u, v)) and u /∈ ω.

i = 1, − ∈ γ((u, v)) and u ∈ ω.

(c) If there exists only one regulatory context ω′ ∈ Ωv such that ω′ is open

under p′(π · X) as defined by 0π·X and 1π·X then for every observable

influence (u, v) ∈ I such that there does not exist an u-closed pair of

regulatory contexts with different target values push (v, ω′, 1− j) where j

is the fixed target value of u-pair of ω′ to the queue of restrictions.

(iv) Output 0π·X and 1π·X as minimum and maximum of p′(π ·X) respectively. If

0π·X ≤ 1π·X does not hold we consider the result to be empty (p′(π ·X) = ∅)
in accordance with the definition as intersection of ideal and filter.

In simpler terms, the aforementioned method traverses the tree of restrictions

with a breadth first search while constructing it on the run. Monotonocity (point

(iii)(b)) is enforced straightforwardly as the universal quantifier in the definition

requires every u-pair to satisfy the condition. Observability (point (iii)(c)) definition

contains an existential quantifier an is therefore enforced only if no other u-pair

can satisfy the condition. The method always terminates and has a polynomial

complexity of O(Ω2) in the worst case as every RC can have it’s value restricted at

most twice.

Assuming the input is correct (p′(π) = [p(π)]) the method computes correct

p′(π ·X) = [p(π ·X)] (p(π ·X) = ∅ ⇒ p′(π ·X) = ∅). Let us first assume p(π ·X) 6= ∅.
As [p(π ·X)] is by definition the smallest convex sub-lattice containing p(π ·X) it

is enough to prove p(π ·X) ⊆ p′(π ·X) ⊆ [p(π ·X)].

Let us first show p(π · X) ⊆ p′(π · X). Let (v, ω, i) be an arbitrary restriction

that gets added to the restriction queue during the algorithm. If the restriction does

not change 0p′(π·X) and 1p′(π·X) within the algorithm then p′(π ·X) = p′(π) and the

condition is trivially satisfied since we know p(π ·X) ⊆ p(π) ⊆ [p(π)] = p′(π). Let

us therefore expect that the restriction (v, ω, i) had an effect on p′(π ·X). Thanks to

the self-duality of the Boolean matrix, the duality of plus-/minus-monotonocity and

symmetry of observability it is enough to consider i = 1 without loss of generality.

Thus we get that 0p(π·X) gets extended by ω by the restriction. Now let us create

a discussion as to the cause of the restriction.

(i) The restriction (v, ω, 1) is added to the queue due to transition (Xk, X) such

that {v} = X \ Xk and n−(v) ∩ Xk = ω. By definition p((Xk, X)) = {P ∈
PG |ω ∈ P} and p(π ·X) = p(π)∩p((Xk, X)) it thus follows that ∀P ∈ p(π ·X) :

ω ∈ P and therefore ω ∈ 0p(π·X).

18

Kolčák

(ii) The restriction (v, ω, 1) is enforced by some prior restriction r and monotono-

city of (u, v) ∈ I (plus-monotonocity without loss of generality). If we apply

this reasoning to restriction in the partial order given by the restriction tree we

can assume r does not break the desired p(π ·X) ⊆ p′(π ·X) (0p′(π·X) ⊆ 0p(π·X)

is enough to consider for the case i = 1). We can now use the sufficient and

necessary conditions for restriction (v, ω, 1) to happen. Thus we get u ∈ ω and

ωu ∈ 0p′(π·X) (by extension ωu ∈ 0p(π·X)). Since p(π · X) ⊆ PG the monoto-

nocity restrictions must hold for every P ∈ p(π · X). Thus namely for any

P ∈ p(π ·X) such that ωu ∈ P is must also hold ω ∈ P giving us the coveted

ω ∈ 0p(π·X).

(iii) The restriction (v, ω, 1) is enforced by some prior restriction r and observability

of (u, v) ∈ I. Just as in the previous case we can assume r does not break the

coveted 0p′(π·X) ⊆ 0p(π·X). Again, we use the sufficient and necessary conditions

for (v, ω, 1) giving us ∀ω′ ∈ Ωv \ {ω, ωu} : (ω′ ∈ 0p(π·X) ∧ ω′u ∈ 0p(π·X)) ∨ (ω′ /∈
1p(π·X) ∧ ω′u /∈ 1p(π·X)) and ωu /∈ 1p(π·X). Applying the same reasoning and

p(π · X) ⊆ PG we know the target value of ω must be different from ωu for

every parametrisation in p(π ·X).

We will now show p′(π · X) ⊆ [p(π · X)]. Shall [p(π)] = [p(π · X)] we know

p′(π ·X) ⊆ p′(π) = [p(π)] = [p(π ·X)] and the result is trivial. Let us thus assume

[p(π ·X)] ⊆ [p(π)]. This clearly means there exists at least one regulatory context

ω such that ω ∈ 0p(π·X)\0p(π) or ω ∈ 1p(π) \ 1p(π·X). Just as in the previous case

we can assume ω ∈ 0p(π·X) \ 0p(π) without loss of generality thanks to the duality

and symmetry properties. We will now show, that for any such ω the algorithm

definitely adds restriction (v, ω, 1) to the restriction queue where v ∈ V is such that

ω ∈ Ωv. Analogically to the above discussion on the restriction we do a discussion

on the nature of ω. Since we know that any parametrisation with target value of

ω equal to 0 does not belong to p(π · X) despite belonging to p(π) there are only

few possible explanations of this occurrence (we once again use the sufficient and

necessary conditions for monotonocity and observability enforcement).

(i) ω = Xk ∩ n−(v) is the regulatory context used by the activation (Xk, X). The

corresponding restriction (v, ω, 1) is always added to the restriction queue.

Thus p′(π ·X) is restricted appropriately thus retaining the coveted 0p(π·X) ⊆
0p′(π·X).

(ii) u ∈ ω and ωu also belongs to 0p(π·X) \ 0p(π) and (u, v) ∈ I is plus-monotonous

(without loss of generality). We may assume that restriction (v, ωu, 1) is in

the queue by conducting this discussion on ωu. By restriction tree we are

guaranteed to eventually have Xk ∩ n−(v) as the cause RC. Since (v, ωu, 1) is

in the restriction queue it will eventually be handled by the algorithm. Since

ωu /∈ 0p′(π) the restriction will make a difference leading to monotonocity and

observability check. By the plus-monotonocity of (u, v) the restriction (v, ω, 1)

will be enqueued.

(iii) There exists some ω′ ∈ 0p(π·X) ⊆ 0p′(π·X) (without loss of generality although

it could also belong to 1p(π) \ 1p(π·X)) such that ω 6= ω′ and ω′ ∈ Ωv and

(u, v) ∈ I is observable. In this case we have two different possibilities for how

the sufficient and necessary conditions are satisfied.

19

Kolčák

(a) ω′ = ωu. In this case we get ∀ω′′ ∈ Ωv \ {ω, ωu} : (ω′′ ∈ 0p(π·X) ∧ ω′′u ∈
0p(π·X)) ∨ (ω′′ /∈ 1p(π·X) ∧ ω′′u /∈ 1p(π·X)) and ωu /∈ 1p(π·X). We can thus

assume (v, ωu, 0) to be in the restriction queue. From the first condition we

know that every RC is u-restricted under p′(π ·X) by the time restriction

(v, ωu, 0) is handled and the observability of (u, v) is yet to be satisfied.

As such ω is left as the last free context by restriction of ωu and to ensure

observability the algorithm adds (v, ω, 1) to the restriction queue.

(b) Otherwise we get ∀ω′′ ∈ Ωv \ {ω, ωu, ω′, ω′u} : (ω′′ ∈ 0p(π·X) ∧ ω′′u ∈
0p(π·X)) ∨ (ω′′ /∈ 1p(π·X) ∧ ω′′u /∈ 1p(π·X)), ω

′u /∈ 1p(π·X) and ωu /∈ 1p(π·X).

And our assumption becomes existence of restriction (v, ω′, 1) in the restric-

tion queue. As we know ω′ /∈ 0p(π) the restriction will make a difference

and as it leaves behind ω as the last free RC and (u, v) with still unful-

filled observability requirement the (v, ω, 1) restriction must be added to

the restriction queue.

Finally, let us assume p(π ·X) = ∅ (and p(π) 6= ∅). We now show that in such a

case the algorithm computes ¬(0p′(π·X) ⊆ 1p′(π·X)) we interpret as p′(π ·X) = ∅. It

is easy to see, as 0p′(π·X) is only extended and 1p′(π·X) only reduced that the method

cannot recover from such a malformed state.

Let us again assume (Xk, X) to be activation of some v ∈ V without loss of

generality. We know p(π ·X) = p(π) ∩ p((Xk, X)) = ∅. Since p((Xk, X)) contains

all parametrisations P ∈ PG such that Xk ∩ n−(v) ∈ P and p(π) ⊆ PG it must hold

that ∀P ∈ p(π) : Xk∩n−(v) /∈ P and by extension Xk∩n−(v) /∈ 1p(π). p
′(π) = [p(π)]

further gives us ∀P ∈ p′(π) : Xk ∩ n−(v) /∈ P . By the structure for the algorithm

1p′(π·X) ⊆ 1p′(π) and therefore Xk∩n−(v) /∈ 1p′(π·X). Furthermore the algorithm will

for sure handle restriction (v,Xk ∩n−(v), 1) due to the transition (Xk, X) resulting

in Xk ∩ n−(v) ∈ 0p′(π·X) giving us ¬(0p′(π·X)⊆1p′(π·X)
).

A.2 Multivalued Case

In the case of multivalued PRNs a restriction does not necessarily close the RC

and there no longer exist u-pairs. Each RC instead has several u-supercontexts and

u-subcontexts. The monotonocity enforcement can be extended straightforwardly,

however, observability poses a slight problem. Let v ∈ V be a component with

maximal activity value 2 and (u, v) ∈ I be an observable influence. Consider a PC

such that all but one RCs of v have target value fixed to 1. As there is an observable

influence it is apparent that the last open context cannot have value 1, however,

the lattice encoding lacks the expressive power as it can only control minimum and

maximum, which is still 0 and 2 respectively. Although the coveted p′(π) = [p(π)]

is breached in such a rare situation it is easy to detect the observability not being

satisfied shall a further restriction fix the target value of the last open RC to 1 and

the PC can thus be set to ∅.

A.3 The Initial Parameter Context Overapproximation

As the method relies on the knowledge of p′(π) to compute p(π ·X) it is necessary

to be able to compute the initial p′(∅) = [PG]. Although [PG] = PG often holds,

there are some cases when a restriction is viable.

20

Kolčák

As regulations of individual components are independent (note that both mo-

notonocity and observability only speak about RCs of the same component) is is

enough to consider restrictions for regulation of each component separately. Let

thus v ∈ V be an arbitrary component. Let A = {u ∈ n−(v)|+ ∈ γ((u, v))} be the

set of all regulators of v with plus-monotonous interaction and I = {u ∈ n−(v)|− ∈
γ((u, v))} be the set of all regulators of v with minus-monotonous interaction. We

now consider two parametrisations Ps = Ω \ {I} and Pi = {A}. We can show easily

that any monotonocity criterion on interaction with v is satisfied by both Ps and

Pi. Monotonocity for (u, v) is satisfied by default if both ω and u-pair of ω have the

same target value. As such only the context I has to be analysed. Let u ∈ A be ar-

bitrary. We get u ∈ Iu by definition and I /∈ Ps as well as I /∈ Pi thus monotonocity

of (u, v) is satisfied by both Ps and Pi. Now let u ∈ I be arbitrary. By definition

u ∈ I and thus by I /∈ Ps and I /∈ Pi we again satisfy monotonocity of (u, v) for both

Ps and Pi. Let us now discuss observability. For any u ∈ A observability is trivially

satisfied under both Ps and Pi as I /∈ Ps and I ∪{u} ∈ Ps and similarly A ∈ Pi and

A \ {u} /∈ Pi. Similarly let u ∈ I be arbitrary then I /∈ Ps and I \ {u} ∈ Ps make

(u, v) observable under Ps and A ∈ Pi and A∪{u} /∈ Pi makes (u, v) observable also

under Pi. Finally, observability is also satisfied for any other u ∈ (n−(v) \A) \ I as

I /∈ Ps and I∪{u} ∈ Ps and A ∈ Pi and A∪{u} /∈ Pi. It thus becomes clear that Ps
and Pi satisfy both monotonocity and observability for arbitrary labelling function

γ. As such, edge labelling cannot reduce the initial lattice beyond the maximum Ps
and minimum Pi for each v ∈ V (∀v ∈ V : [{Ps, Pi}] ⊆ [PG ∩ ({v} × Ωv)]).

Let us now consider a set of regulators N ⊆ n−(v) such that N ∩ A = ∅ and

N ∩ I = ∅ and parametrisations Pns = Ω\{N ∪ I} and Pni = {A∪N}. It is easy to

see that both Pns and Pni have the same properties as Ps and Pi and thus satisfy

arbitrary γ. In fact, shall N = ∅ we trivially get Pns = Ps and Pni = Pi. Let us now

consider N 6= ∅. Then clearly both Ps and Pns are valid parametrisations. Moreover

the supremum of Pns and Ps according to the set inclusion order is Pns ∪ Ps = Ω.

Similarly both Pi and Pni are also valid and their infimum Pni ∩ Pi = ∅. Thus,

shall there exist any interaction (u, v) such that + /∈ γ((u, v)) and − /∈ γ((u, v))

then the initial lattice of parametrisations for regulations of v is equal to the fully

parametrised case ([PG∩({v}×Ωv)] = PG∩({v}×Ωv)). And we can safely conclude

that for [PG] ⊂ PG there must exist at least one v ∈ V such that ∀u ∈ n−(v) : + ∈
γ((u, v)) ∨ − ∈ γ((u, v)).

Since the parametrisations Ω and ∅ are both plus-monotonous and minus-mono-

tonous for all interactions it is obvious that just monotonocity is not enough for

[PG] ⊂ PG. In fact, Ω and ∅ are not observable for any interaction (An interaction

that is both plus and minus-monotonous is anti-observable) and thus a single ob-

servable interaction (u, v) is sufficient to remove Ω and ∅ from the set of feasible

parametrisation. In fact, shall every interaction (u, v) ∈ I be monotonous for some

v ∈ V and at least one of them also observable, the initial PC can be restricted to

maximum Ps and minimum Pi ([PG ∩ ({v} × Ωv)] = [Ps, Pi]). To prove this let us

consider any parametrisation P such that I ∈ P . Since (u, v) is minus-monotonous

for every u ∈ I every RC of the form I \ {u} must also belong to P and by iterative

application of the minus-monotonocity condition ∀J ⊆ I : J ∈ P . Similarly (u, v)

is plus-monotonous for any other u ∈ A. As such, for any J ⊆ I we get J ∪{u} ∈ P

21

Kolčák

and by iterative application P = Ω and the observability is not satisfied. Thus we

may conclude that no parametrisation P such that I ∈ P is feasible. An analogical

construction can be conducted for P such that A /∈ P reaching P = ∅.
The construction of the initial PC p′(∅) = [PG] can thus be done algorithmically

as follows.

(i) Start with [PG] = PG.

(ii) Find all components v ∈ V such that ∀u ∈ n−(v) : + ∈ γ((u, v))∨− ∈ γ((u, v))

and ∃u ∈ n−(v) : o ∈ γ((u, v)).

(iii) For every such v construct the sets A = {u ∈ n−(v)|+ ∈ γ((u, v))} and I =

{u ∈ n−(v)|− ∈ γ((u, v))} and restrict the minimum by (v,A) ∈ 0PG and the

maximum by (v, I) /∈ 1PG .

The computation of the initial PC is very similar in the general case of multival-

ued PRNs. The only difference is the target value limitation for I for every suitable

component v ∈ V (target value of A is still set to be at least 1). Instead of setting

target value of I to 0, in general the value is limited to be at most kv − 1 where

kv ∈ N is the maximum value of component v.

B Total Adequate Order

Here we extend the total adequate order ≺F introduced in [8] to our formalism of

unfoldings as introduced in section 5. Let U = (B,E,≤,#) be an unfolding of some

PRN and let C1, C2 ⊆ E be two finite configurations of U .

Let � be an arbitrary total order on all RCs (v, ω) ∈ Ω. We can always find

such an order as Ω is finite. Then we define a function ϕ such that for every

finite configuration C, ϕ(C) = (ωe1 , . . . , ωek) is a vector of regulatory contexts such

that C = {e1, . . . , ek} ordered by �. ϕ(C) is thus a variant of a Parikh vector of

associated RCs of C. We extend the order� to ordered vectors as a lexicographical

order. Essentially the same construction has been used for Petri net unfoldings in [8]

using transitions of the original Petri net instead of RCs.

Furthermore let us define Foata normal form of configuration C, FC(C) as

follows.

(i) FC1(C) = ϕ({e ∈ C|∀e′ ∈ C : ¬(e′ < e)}) is the ϕ of all events in C minimal

in respect to the causality relation.

(ii) For 1 < i ∈ N : FCi(C) = ϕ({e ∈ C|∀e′ ∈ C : e′ < e ⇒ e′ ∈
⋃
j<i−1 FCj(C)})

is the ϕ of all events in C without all the previous FCj(C) minimal in respect

to the causality relation.

(iii) FC(C) = (FC1(C), . . . , FCk(C)) where k ∈ N is the largest natural number

such that FCk(C) 6= ∅. Such k is guaranteed to exist as C is finite.

Intuitively, the Foata normal form FC(C) is a layered representation of C in

respect to causality relation and represents steps in which events of C can fire if all

concurrent events fire synchronously. We again extend � to Foata normal forms

as a lexicographical order on the vectors of FC(C). The construction is again

equivalent to the one proposed in [8] for Petri net unfoldings. Finally, the order ≺
as used in Section 5 is defined as follows.

22

Kolčák

Definition B.1 Let U = (B,E,≤,#) be an unfolding of some PRN and C1, C2 ⊆
E two finite configurations of U . We say that C1 ≺ C2 if one of the following

conditions holds.

– |C1| < |C2|
– |C1| = |C2| ∧ ϕ(C1)� ϕ(C2)

– |C1| = |C2| ∧ ϕ(C1) = ϕ(C2) ∧ FC(C1)� FC(C2)

23

	Introduction
	Parametric Regulatory Networks
	Labels on Edges of Influence Graphs
	Parametrisation Encoding
	Parametric Unfolding
	Experiments
	Conclusion
	References
	Appendices
	Parameter Context of Extensions
	Method for Parameter Context Restriction
	Multivalued Case
	The Initial Parameter Context Overapproximation

	Total Adequate Order

