Enumeration of first-order queries on classes of structures
with bounded expansion

%
Wojciech Kazana
INRIA and ENS Cachan
kazana@lsv.ens-cachan.fr

ABSTRACT

We consider the evaluation of first-order queries over elass
of databases withounded expansiofhe notion of bounded

expansion is fairly broad and generalizes bounded degree

bounded treewidth and exclusion of at least one minor. It
was known that over a class of databases with bounded ex
pansion, first-order sentences could be evaluated in time li

ear in the size of the database. We first give a different proof
of this result. Moreover, we show that answers to first-order

Luc Segoufin
INRIA and ENS Cachan
http://pages.saclay.inria.fr/luc.segoufin/

answer is output after a time linear in the size of the da&bas
and once the enumeration starts a new answer is being out-
put regularly at a speed independent from the size of the
database. Altogether, the sgD) is entirely computed in
time f(q)(n + |¢(D)|) for some functionf depending only
ongq and not orD.

One could also view a constant delay enumeration algo-
rithm as follows. The preprocessing phase computes in lin-

ear time an index structure representing thegeY) in a

queries can be enumerated with constant delay after a linea€0mpPact way (of size linear in). The enumeration algo-

time preprocessing. We also show that counting the number

of answers to a query can be done in time linear in the size
of the database.

1. INTRODUCTION

Query evaluation is certainly the most important problem
in databases. Given a queyand a databade it is to com-
pute the seg(D) of all tuples in the output of onD. How-
ever, the set;(D) may be larger than the database itself as
it can have a size of the form' wheren is the size of the
database antdthe arity of the query. It can therefore require
too many of the available resources to compute it entirely.

There are many solutions to overcome this problem. For
instance one could imagine that a small subsef(Bf) can
be quickly computed and that this subset will be enough for
the user needs. Typically one could imagine computing the
top-£ most relevant answers relative to some ranking func-
tion or to provide a sampling @f{ D) relative to some distri-
bution. One could also imagine computing only the number
of solutions|q(D)| or providing an efficient test for whether
a given tuple belongs t@(D) or not.

rithm is then a streaming decompression algorithm.

One could also require that the enumeration phase outputs
the answers in some given order. Here we will consider the
lexicographical order based on a linear order on the domain
of the database.

There are many problems related to enumeration. The
main one is the model checking problem. This is the case
when the query is boolean, i.e. outputs oflor 1. In
this case a constant delay enumeration algorithm is a Fixed
Parameter Linear (FPL) algorithm for the model checking
problem ofg, i.e. it works in timef(g)n. This is a rather
strong constraint as even the model checking problem for
conjunctive queries is not FPL (modulo some hypothesis in
parametrized complexity) [19]. Hence, in order to obtain
constant delay enumeration algorithms, we need to make re-
strictions on the queries and/or on the databases. Here we
consider first-order (FO) queries over classes of strusture
having “bounded expansion”.

The notion of class of graphs with bounded expansion was
introduced by NeSét and Ossona de Mendez in [16]. Its
precise definition can be found in Section 2.2. At this point
it is only useful to know that it contains the class of graphs

In this paper we consider a scenario consisting in enu- of bounded degree, the class of graphs of bounded treewidth,
meratingg(D) with constant delay. Intuitively, this means the class of planar graphs, and any class of graphs excluding
that there is a two-phases algorithm working as follows: a at least one minor. This notion is generalized to classes of
preprocessing phase that works in time linear in the size of structures via their Gaifman graphs or adjacency graphs.
the database, followed by an enumeration phase outputting For the class of structures with bounded degree and FO
one by one all the elements ofD) with a constant delay queries the model checking is in FPL [20] and there also
between any two consecutive outputs. In particular, the firs are constant delay enumeration algorithms [9, 13]. In the
*This work has been partially funded by the European Research case of structures of b_ound.ed t_reeWIdth and FO querles (ac-
Council under the European Community’s Seventh Framework tually even MSO queries with first-order free variables) the

Programme (FP7/2007-2013) / ERC grant Webdam, agreementmodel checking is also in FPL [8] and are constant delay
226513.htt p: //webdaminria.fr/

enumeration algorithms [4, 14]. For classes of structures fers from theirs in the fact that in the bounded degree case
with bounded expansion the model checking problem for FO the functions can be assumed to be permutations (in partic-
gueries was recently shown to be in FPL [10, 12]. ular they are invertible) while this is no longer true in our

Our results can be summarized as follows For FO setting, complicating significantly the combinatorics.

queries and any class of structures with bounded expansion: ©Once we have a quantifier-free formula, constant delay
« we provide a new proof that the model checking prob- enumeration could also be obtained using the characteriza-

lem can be solved in FPL tion of bounded expansion based on low tree depth color-
« we show that the set of solutions to a query can be enu- ings. Indeed, using this characterization one can easilysh
merated with constant delay that enumerating a quantifier-free formula over structofes

« we show that computing the number of solutions can be Pounded expansion amounts in enumerating an MSO query
donein FPL, over structures of bounded tree-width and for those known
algorithms exist [4, 14]. However, the known enumeration
algorithms of MSO over structures of bounded treewidth are
rather complicated while our direct approach is fairly sienp
)) . Actually, our proof shows that constant delay enumeratfon o

Concerning model checking, our method uses a different £ queries over structures of bounded treewidth can be done
teqhnlgue than the previous ones. There arelseveral characUSmg simpler algorithms than for MSO queries. Moreover,
terizations of classes having bounded expansion [16]. AMON ¢ gives a constant delay algorithm outputting the soluion
them we find the “low tree depth coloring” and the *transi- i,"|exicographical order. No such algorithms were known
tive fraternal augmentations”. The previous methods were ¢, £ queries over structures of bounded treewidth. In the

base(_JI on the low tree (_JIgpth coloring characteri_zation while pounded degree case, both enumeration algorithms of [9, 13]
ours is based on transitive fraternal augmentations. We ar'output their solutions in lexicographical order.

gue that the use of transitive fraternal augmentationssgive gjmjlarly, counting the number of solutions of a quantifier-
a simpler proof. The reason is that it gives a useful nor- gree formula over structures of bounded expansion reduces
mal form_on quantifier-free formulas that W!|| be the core of counting the number of solutions of a MSO formula over
our algorithms for constant delay enumeration and for count. gictyres of bounded treewidth. This latter problem is#mo
ing the number of solutions. As for the previous proofs, we 1 pe in EPL [3]. We give here a direct and simple proof of

exhibit a quantifier elimination method, also based on our iis fact for FO queries over structures of bounded expan-
normal form. Our quantifier elimination method results ina g

guantifier-free formula but over a recoloring of a functibna
representation of a “fraternal and transitive augmenttio
of the initial structure. 2. PRELIMINARIES

Our other algorithms (constant delay enumeration, count- In this paper a database is a finite relational structure. A

e we show that, after a preprocessing in time linear in the
size of the database, one can test on inputhethera €
¢(D) in constant time.

ing the number of solution or testing whether a tuple is a relational signatureis a tuplec = (R, ..., R;), eachR;
solution or not) start by eliminating the quantifiersas f@t being a relation symbol of arity;. A relational structure
model checking algorithm. Note that for all these problems, overo is a tupleD = (D, RP,...,RP), whereD is the

the quantifier-free case is already non trivial and reqiiee t domainof D and RP is a subset oD™:. We fix a reasonable
design and the computation of new index structures. For in- encoding of structures by words over some finite alphabet,
stance consider the simple quetyz, y). Given a pail(a, b) as in [1] for instance. Thsizeof D is denoted byD| and is
we would like to test whethdi, b) is a tuple of the database the length of the encoding &.
in constant time. In general, index structures can do this By querywe mean a formula written in the first-order
with logn time. We will see that we can do constant time, logic, FO, built from atomic formulas of the form = y
assuming bounded expansion. or R;(z1,...,x,,) for some relationk;, and closed under

In the presence of a linear order on the domain of the the usual Boolean connectives,(/, A) and existential and
database, our constant delay algorithm can output the an-universal quantificationsi(V). We write ¢(z) to denote a

swers in the corresponding lexicographical order. guery whose free variables afg and the number of free
variables is called tharity of the query A sentencds a
Related work. query of arity 0. Given a structur® and a queryy, an

We make use of a functional representation of the initial answerto ¢ in D is a tuplea of elements ofD such that
structures. Without this functional representationswaldo D = ¢(a). We write ¢(D) for the set of answers tgin D,
not be able to eliminate first-order quantifiers. Indeedhwit i.e. (D) = {a | D | ¢(a)}. As usual]¢| denotes the size
this functional representation we can talk of a node at dis- of ¢.
tance 2 frome using the quantifier-free terif(f (x)), avoid- Let C be a class of structures. The model checking prob-
ing the existential quantification of the middle point. This lem of FO overC is the computational problem of given a
idea was already taken in [9] for eliminating first-orderqua sentenceq € FO and a databade € C to test whether
tifiers over structures of bounded degree. Our approach dif-D = ¢ or not.

We now introduce our running examples.

ExXAMPLE A-1. The first query has arity 2 and returns
pairs of nodes at distance two in a graph. We use the clas-
sical notion of distance that ignores the possible origotat
of the edges. The query is of the foBmE (z, z) A E(z,y),
whereF is the symmetric closure of the input relation.

Testing the existence of a solution to this query can be
easily done in time linear in the size of the database. For
instance one can go trough all nodes of the database and

check whether it has degree two. The degree of each node

can be computed in linear time by going through all edges

of the database and incrementing the counters associated to

its endpoints.

ExAmMPLE B-1. The second query has arity 3 and returns
triples (z,y, z) such thaty is connected ta: and z via an
edge butr is not connected te. The query is of the form
E(z,y) N E(y,z) AN ~E(x,z), whereE is the symmetric
closure of the input relation.

It is not clear at all how to test the existence of a solu-
tion to this query in time linear in the size of the database.
The problem is similar to the one of finding a triangle in
a graph, for which the best know algorithm has complexity
even slightly worse than matrix multiplication [2]. If thed
gree of the input structure is bounded by a constgntve
can test the existence of a solution in linear time by the fol-
lowing algorithm. We first go through all edgés, y) of
the database and adgto a list associated ta andz to a
list associated tg. It remains now to go through all nodes
y of the database, consider all paifs;, z) of nodes in the
associated list (the number of such pairs is bounded?)y
and then test whether there is an edge betweand = (by
testing whether is in the list associated te).

We aim at generalizing this kind of reasoning to structures
with bounded expansion.

Given a query;, we care about “enumerating(D) effi-
ciently. LetC be a class of structures. For a que(y¥), the
enumeration problem @foverC is, given a databade € C,
to output the elements gf D) one by one with no repetition.
The maximal time between any two consecutive outputs of
elements of(D) is calledthe delay The definition below re-

that we can enumerateoverC with constant delay, if it can
be solved by a RAM algorithm which, on inpDt € C, can
be decomposed into two phases:

e aprecomputation phase thatis performed in ti{¢D|),

e an enumeration phase that outpy(®) with no rep-
etition and a constant delay between two consecutive
outputs. The enumeration phase has full access to the
output of the precomputation phase but can use only a
constant total amount of extra memory.

Notice that if we can enumeratewith constant delay,
then all answers can be output in tit|D| + |¢(D)|) and

the first output is computed in time linearjB|. In the par-
ticular case of boolean queries, the associated model eheck
ing problem must be solvable in time linear|D|.

We may in addition require that the enumeration phase
outputs the answers tousing the lexicographical order. We
then say that we can enumerateverC with constant delay
in lexicographical order.

ExamMpPLE A-2. Over the class of all graphs, we cannot
enumerate pairs of nodes at distance 2 with constant de-
lay unless the Boolean Matrix Multiplication problem can
be solved in quadratic time [6]. However, over the class of
graphs of degred, there is a simple constant delay enumer-
ation algorithm. During the preprocessing phase, we asso-
ciate to each node the list of all its neighbors at distance 2.
This can be done in time linear in the database as in Ex-
ample B-1. We then color in blue all nodes having a non
empty list and make sure each blue node points to the next
blue node (according to the linear order on the domain).
This also can be done in time linear in the database and
concludes the preprocessing phase. The enumeration phase
now goes through all blue nodesusing the pointer struc-
ture and, for each of them, outputs all pairs, y) wherey
is in the list associated to.

ExampLE B-2. Over the class of all graphs, the query
of this example cannot be enumerated in constant delay be-
cause, as mentioned in Example B-1, testing whether there is
one solution is already non linear. Over the class of graphs
of bounded degree, there is a simple constant delay enumer-

quires a constant time between any two consecutive outputs &lion algorithm, similar to the one from Example A-2.

We formalize these notions in the forthcoming sections.

2.1 Model of computation and enumeration
We use Random Access Machines (RAM) with addition

and uniform cost measure as a model of computation. For

further details on this model and its use in logic see [9].

In the sequel we assume that the input relational structure

comes with a linear order on the domain. If not, we use

Note that in general constant delay enumeration algorithms
are not closed under any boolean operations. For instance
it is not because we can enumeratandq’ with constant
delay, that we can enumerate/ ¢’ with constant delay as
enumerating one query after the other would break the “no
repetition” requirement. However, if we can enumerate with
constant delay in the lexicographical order, then a simple a
gument that resembles the problem of merging two sorted

the one induced by the encoding of the database as a wordjiqis shows closure under union:

Whenever we iterate through all nodes of the domain, the
iteration is with respect to the initial linear order.

We say that the enumeration problenyalfver a clasg§ of
structuresis in the classo@@sTanT-DELAY ;;,,, OF equivalently

LeEmmMA 1. If both queriesq(z) and ¢’(Z) can be enu-
merated in lexicographical order with constant delay then
the same is true fog(z) V ¢'(Z).

It will follow from our results that the enumeration prob- DEFINITION 1. [16] Let C be a class of graphsC has
lem of FO over the class of structures with “bounded ex- bounded expansion if there exists a functign: N — R
pansion” is in @NsTANT-DELAY 1;,,. The notion of bounded such that for each grap® € C the transitive fraternal aug-
expansion was defined in [16] for graphs and then it was gen-mentationG = Gy € G; € G, C ... of G is such that for
eralized to structures via their Gaifman or Adjacency geaph eachi > 0 we haveA(G;) < T¢(4).

We start with defining it for graphs.
Consider for instance a graph of degreé\otice that the

2.2 Graphs with bounded expansion and aug- 1-transitive fraternal augmentation introduces an edge be-
mentation tween nodes that were at distance at most 2 in the initial
In this paper a graph is a directed graph with colors on 9raph. Hence, when starting with a graph of degtewe

vertices. We can then view a graph as a relational structure®nd up with a graph of degree at maBt This observa-
G = (V,E,Pi,...,P,), whereV is the set of nodess C tion shows that the class of graphs of degfdeas bounded

V2 is the set of oriented edges and, for eack i < [, P; expansion as witnessed by the functiof) = d*'. Exhibit-

is a predicate of arit)l_ A pair (U,U) c FE represents an Ing the functionI’ for the other examples of classes with
edge from node: to nodev. Thein-degreeof a nodev is bounded expansion mentioned in the introduction: bounded
the number of nodes such thatu,v) € E. By A~ (G) we treewidth, planar graphs, graphs excluding at least one mi-
mean the maximal in-degree of a nodeGof nor, requires more work [16].

In [16] several equivalent definitions of bounded expan- ~ The following lemma shows that within a classf bounded
sion were shown. We will not use here the initial definition expansion the-th augmentation o6 € C can be computed
but the one exploiting the notion of “augmentations”. The in linear time.
interested reader can find in Appendix 8.1 the initial defini-
tion of bounded expansion.

Let G be a graph. Al-transitive fraternal augmentation
of G is any graplH with the same vertex set & and the
same colors of vertices, including all edges®{with their
orientation) and such that for any three verticeg, z of G
we have the following:

LEMMA 2. [17] Let C be a class of bounded expansion.
For eachG € C and eachi, G; is computable fron@;_; in
timeO(|G;_1])-

In particular, Lemma 2 implies that for ea@ € C and
eachi, G, is computable fron® in time O(|G|).

(transitivity) if () and(y, =) are edges i6, then(z, 2) 2.3 Graphs of bounded in-degree as functional

is an edge irH structures
(fraternity) if (z, z) and(y, z) are edges i3, then at least For the rest of _this section we fix a cla_Sg;)f graphs with
one of the edgeg, y), (y,) isinH, bounded expansion and [E¢ be the function given by Def-

inition 1. For any grapl& € C its transitive fraternal aug-
f mentationG = Gy € G; C G, C ... is such that for all

1, G; has in-degree bounded By (¢). It will be convenient

for us to represent the grap@s as functional structures.

Note that the notion of-transitive fraternal augmentation A functional signaturés atuples = (f1,..., fi, P1,-.., Pm),
is not a deterministic operation. Although transitivity in eachf; being a functional symbol of arity and eachP; be-
duces precise edges, fraternity implies nondeterminisin an ing an unary predicate. functional structurevero is then
thus there can possibly be many differértansitive frater- defined as for relational structures. FO is defined as usual
nal augmentations. We care here about choosing the orientaover the functional signature. In particular, it can usereo
tions of the edges resulting from the fraternity rule in arde of the form f(f(f(z))), which is crucial for the quantifier
to minimize the maximal in-degree. elimination step of Section 3 as the usual relational repre-

Following [17] we fix a deterministic algorithm comput- sentation would require existential quantification for dien
ing a “good” choice of orientations of the edges induced by ing the same element. A gra@of in-degred and colored
the fraternity property. The precise definition of the algo- with m colors can be represented as a functional structure
rithm is not important for us, it only matters here that the G, where the unary predicates encode the various colors and
algorithm runs in time linear in the size of the input graph v = f;(u) if v is thei™ element (according to some arbitrary
(see Lemma 2 below). With this algorithm fixed, we can order that will not be relevant in the sequel) such that:)
now speak ofhe 1-transitive fraternal augmentation Gf is an edge of5. We call such node thei" predecessoof

Let G be a graph. Théansitive fraternal augmentation u (where ™" predecessor” should really be viewed as an ab-
of G is the sequenc& = Gy C G; C G, C ... such that breviation for “the node such thatf;(u) = v” and not as a
for eachi > 1 the graphG;; is the 1-transitive fraternal reference to the chosen order). If we do not care about the
augmentation o6;. We will say thatG; is thei-th augmen- and we only want to say thatis the image of, under some
tation of G. function, we call it gpredecessoof u. GivenG € C we de-
fine G to be the functional representation®fas described

(strictness) moreover, ifH contains an edge that was not
present inG, then it must have been added by one o
the previous two rules.

above. Note tha6 is computable in time linear ifiG| and
that for each first order quer(z) one can easily compute a
first order query)(z) such thap(G) = ¥ (G).

ExAamMPLE A-3. With the functional point of view, the query
computing nodes at distance 2 is of the form:
\ flg@) =y v g(fy)) == Vv f(z) =g(y) v
foco Jz flz)=ang(z)=y
where there is one disjunct per possible orientation of the

edges on the path fromto y. We have removed the inner
nodez whenever this was possible.

ExampLE B-3. Similarly, the query of Example B-1 is
equivalent to:

V A (h(x) # z Ah(z) #)
f,g€o heo
A [(f(x)=yAgly) ==2)
Vi(r=f(y) Ngly) = 2)
V(f(x)=yAy=g(z))
Vi(z=fly) Ny =g(2))]

class of functional representations of all recolorings lbf a
p-th augmentations of graphs frofh Note that all graphs
from C,, are recolorings of a structure & (p), hence they
use at mosty: (p) function symbols.

From now on we assume that all graphs frénand all
gueries are in their functional representation. It folldvesn
the discussion above that this is without loss of generality

2.4 From structures to graphs

Theadjacency graplof a relational structur®, denoted
by AdjacencyD), is a functional graph defined as follows.
The set of vertices of Adjacen@) is D U T whereT is
the set of tuples occurring in some relationf For each
relation R, in the schema db, there is a unary symbat,
coloring the elements df belonging toR;. For each tuple
t = (a1, ,ar,) suchthaD = R;(t) for some relatiork;
of arity r;, we have an edgg; (t) = a; forall j < r;.

OBSERVATION 1. Itisimmediate to see that for every re-
lational structureD we can compute Adjacen®) in time
o(Dl).

Let C be a class of relational structures. We say that
hasbounded expansioif the classC’ of adjacency graphs

Recall that the augmentation steps only introduce new edges structures fron has bounded expansion.

and do not affect the vertex set. In particular, extra fuorcti

symbols need to be added in order to encode the graph re-

sulting from an augmentation step. However, the definition

REMARK 1. In the literature, for instance [10, 12], a
classC of relational structures is said to have bounded ex-

of bounded expansion guarantees that the number of extrgpansion if the class of their Gaifman graphs has bounded ex-

function symbols needed when moving from thth aug-
mentation tqi+ 1)-th augmentation is bounded By (i +1)
and does not depend on the graph.

From this it follows that we have functional signatures
oc(0) C o¢(l) C o¢(2) C ... such that for any graph
G € C and for alli:

1. G, is a functional structure over (i),

2.G; C Giyq andG,,; is computable in linear time
from G;,

3. for every FO querys(Z) overoc(i) and everyj > i
we have thath(G,) = ¢(G;).

We denote byc(i) the number of function symbols of
oc(i). It follows from the discussion above that (i) =
Y,<ilc(4). It would be tempting to reduce this number by
reusing function symbols, but that would then be problem-
atic to enforce 3. (See Appendix 8.2.)

We say that a functional signaturéis arecoloringof o if
it extendss with some extra unary predicates (colors), while
the functional part remains intact. Similarly, a functibna

—/ . . — . .
structureG over ¢’ is arecoloring of G overc if ¢’ is a

recoloring ofs and G is ao’-expansion oG (i.e. it does

not differ fromG on the predicates iar). We write¢ is over

a recoloring ofs if ¢ is overs’ ando’ is a recoloring ob.
For eachp > 0 we defineC, to be the class of all recol-

oringsG,, of G, for someG € C. In other word<, is the

pansion. Our definition is more liberal (possibly equiva)en
as shown in Appendix 8.3. As it gives directly an oriented
graph, it is more convenient for us.

Let "¢ be the function given by Definition 1 fa’. The
following lemma is immediate.

LEMMA 3. LetC be a class of relational structures with
bounded expansion and Iétbe the underlying class of ad-
jacency graphs. Lep(z) € FO. In time linear in the size
of ¢ we can find a query)(z) overoc/(0) such that for all
D € C we havep(D) = ¢(AdjacencyD)).

As a consequence of Lemma 3 it follows that model check-
ing, enumeration and counting of first-order queries over re
lational structures reduce to the graph case. Therefore in
the rest of the paper we will only concentrate on the graph
case (viewed as a functional structure), but the readeddhou
keep in mind that all the results stated over graphs extend to
relational structures via this lemma.

2.5 Normal form for quantifier-free first-order
queries

We conclude this section by proving a normal form on
guantifier-free FO formulas. This normal form will be the
ground for all our algorithms later on. It basically saysttha
modulo performing some extra augmentation steps, a for-
mula has a very simple form.

Fix classC of graphs with bounded expansion. Recall that a linear order on its predecessors as described by Lemma 5
we are now implicitly assuming that graphs are representedand specifies all the relations between these predecessors i

as functional structures. G'. Note that for a givem there are only finitely many pos-

A formula is simpleif it does not contain atoms of the sjple p-types and that each of them can be specified with a
form f(g(z)), i.e. it does not contain any compositions of - conjunctive formula over (q).

functions. Observe that, modulo augmentations, any for- \we now state the normal form result.
mula can be transformed into a simple one.
PROPOSITION 1. Let ¢(Zy) be a simple quantifier-free
LEMMA 4. Let(z) be a formula over a recoloring of query over a recoloring of¢(p). There exists; that de-
oc(p). Then, forg = p + ||, there is a simple formula pends only op and ¢ and a quantifier-free queny over a
V'(z) overa recoloring obr (g? such that: recoloring ofoc(g) that is a disjunction of formulas:
for all G € C, there is aG € C, computable in time D1(7) A T(y) A A=(3y) A A (Ty), (1)

linear in |G| such thaty)(G) = w’(é/). . o
o , o wherer(y) contains ap-type ofy; A=(Zy) is either empty
PROOF This is a simple consequence of transitivity. Any 1 -ontains one clause of the form= f(x;) or one clause
composition of two functions i represents a transitive pair - ¢ the formf(y) = g(a;) for some suitable, f andg; and
of edges and becomes an single edge inlttaegmentation A+ (z) contains arbitrarily many clauses of the fomn:#
H of (E Thenf(g(x)) overGis equivalenttai(z) APy, g » () F(x:) o f(y) # g(x;). Moreovery is such that:
overH, where the newly introduced coldt; , , holds for foral @ € C T o
. 9 th G ¢ tabl t
those nodes, for which thef(g(v)) = h(v). As the nest- oral & € &y Ierels a® < &, compuiable in ime
ing of compositions of functions is at most|, the result lin€arin [G] with ¢(G) = 4(G).
follows. The linear time computability is immediate from PROOF. Setq as given by Lemma 5. We first putinto a
Lemma?2. O disjunctive normal form (DNF) and in front of each such dis-
junct we add a big disjunction over all possibl¢ypes ofy

We make one more observation before proving the normal (recall that a type can be specified as a conjunctive formula)

form: We deal with each disjunct separately.

LEMMA 5. LetG e C,. Letu be a node o, LetS Note that each disjunct is a query over(q) of the form:
be all the predecessors ofin G and sety = p + I'e(p). V1(Z) AT(y) A AT (Ty) A A7 (Ty),

=/ . =

LetG € C, be the(q — p)-th augmentation 0G. There yhere all sub-formulas except far= are as desired. More-
exists a linear ordek induced onS by G, such that for all over, ¢ (z), A=(zy) and A7 (zy) are in fact queries over
v,v" € S, v < v impliesv’ = f(v) is an edge oft for oc(p). Atthis pointA= contains arbitrarily many clauses of
some functiory fromo¢(q). the formy = f(x;) or f(y) = g(x;). If it contains at least

one clause of the form = f(x;), we can replace each other
occurrence of by f(z;) and we are done.

Assume now thatA= contains several conjuncts of the
form f;(y) = g(xr). Assume wlog that is such thaff; (y) <
faly) < ---, wherefi(y), f2(y),--- are all the predeces-
sors ofy from o¢(p). Letip be the smallest indeksuch
that a clause of the fornfi(y) = g(xx) belongs toA=. We
havef;, (y) = g(xx) in A= and observe that specifies for
i < j afunctionh; ; in oc(q) such that, ;(fi(y)) = f;(y).
Then, ag; is of typer, a clause of the fornf; (y) = h(zx)
with iy < j is equivalenttah,, ;(g(zx)) = h(zg). O

PrROOF This is because all nodes Sfare fraternal and
the size ofS is at mostI'¢(p). Hence, after one step of
augmentation, all nodes & are pairwise connected and,
after at most'¢(p) — 1 further augmentation steps, if there is
a directed path from one nodeof S to another node of .S,
then there is also a directed edge frano v. By induction
on |S| we show that there exists a nodec S such that for
all v € S there is an edge fromto w. If |S| = 1 there is
nothing to prove. Otherwise fix € S and letS’ = S\ {v}.
By induction we get a: in S’ satisfying the properties. If
there is an edge fromto u, u also works forS and we are

done. Otherwise there must be an edge frotio v. But ExXAMPLE A-4. Let us see what Lemma 4 and the nor-

then there is a path of length 2 from any node56to v. By malization algorithm do fop = 0 and some of the disjuncts

transitivity this means that there is an edge from any node of gf the query of Example A-3:

S’ tov andv is the node we are looking for. In the case off (¢(x)) = y note that by transitivity, in the
We then set: as the minimal element of our order 8 augmented graph, this clause is equivalent to one of the form

and we repeat this argument wish\ {u}. O y = h(x) A Py, ,(2) (this case is handled by Lemma 4).

o . _— Consider nowdz f(z) =z A g(z) = y. It will be conve-
Lemma 5 justifies the following definition. prtyper, (u) nient to view this queEy)vvhwpla)Es)the role ofy in Proposi-

ofanode: of G € C, is a quantifier-free formula expressing o 1. Notice thatin this case it is not in normal formAs
all the properties of; in the (¢ — p)-th augmentatios of contains two elements. However, the two edfies = =

—

G, whereg is given by Lemma 5. In particular, it induces and f(z) = y are fraternal. Hence, after one augmentation

step, a new edge is added betweeandy and we either
havey = h(x) or z = h(y) for someh in the new signature.

Let 7, ,4(2) beO-type stating that(f(z)) = g(z) and
Th,g.f(#) be0O-type stating that(g(z)) = f(z). Itis now
easy to see that the queBe f(z) = z A g(z) = y is
equivalent to

Jz \/y =
= h(y) A Thg,r(2) A

3. MODEL CHECKING

f(z) =
f(z) =

T) A Th,f,q(2) A

We assume wlog thatcontains a-type enforcingf; (y) <
faly) < ---, wheref(y), f2(y),--- are all the images of
y by a function fromo¢(p). Moreover, for each < j, 7
contains an atom of the for, ;(f;(y)) = f;(y) for some
functionh; ; € oc(q).

If A= isy = g(x) for some functiory and some, then
we replacey with g(z) everywhere inj(zy) resulting in a
formulag(z) having obviously the desired properties.

Assume now that\~= is f(y) = g(z;). Wlog assume that
fis fi, in the order specified by thetyper and that = 1.
Hence we havé;, (y) = g(x1) in A=,

We will introduce extra colors in order to simulate all in-

In this section we show that the model checking problem teractions betweepnandz.
of FO over a class of structures with bounded expansioncan LetG” be the(qg — p)-th augmentation of. We construct

be done in time linear in the size of the structure. This gives
a new proof of the result of [10]. Recall that by Lemma 3 it
is enough to consider oriented graphs viewed as functional

structures.

in time linear in||(§”|| a set WTNEsS(v) for eachv of ¢

such that for all tuples of ¢’ if & E ¢(vu) for some
nodew, then there is a node’ € WITNESS(g(v1)) such

thatG' = v (ou’). Moreover, for ally, [WITNESS(v)| < N

THEOREM 1. [10] LetC be a class of graphs with bounded whereN is a number depending only gn We then encode

expansion and lep be a sentence dfO. Then, for allG ¢
C, testing whethe6 = ¢ can be done in tim&(|G])).

The proof of Theorem 1 is done using a quantifier elimi-

nation procedure: given a queryz) with at least one free
variable we can compute a quantifier-free quéfy) that is

these witness sets using suitable extra colors.

Computation of the Witness function.
We start by initializing WTNESS(v) = 0 for all v.

We then successively investigate all nodexf G" and do

“equivalent” tot). Again, the equivalence should be under- the following. IfG" |= —~7(u) then we move on to the next

stood modulo some augmentation steps for a number of aug-u. If G / E 7(u)

mentation steps depending only 6and||. When starting
with a sentence) we end-up withy being a boolean com-

bination of formulas with one variable. Those can be easily

) then letuy, - -
WITNESS(f;, (1)).

Let 8, beac(p)(ac(p) + 1)|Z| + 1.

Let ¢ be minimal such that there exisfswith f;(u;) =

-, u; be the current value of

tested in linear time in the size of the augmented structure, f;(u) and seti = ac(p) + 1 if such ani does not exists.

which in turns can be computed in time linear from the ini- LetS; = {fi_1(u;) | fi(u;) = fi(u)
tial structure by Lemma 2. The result follows. We now state in the case wheré = 1.

precisely the quantifier elimination step:

PROPOSITION 2. LetC be a class of graphs with bounded
expansion witnessed by the functibp. Let ¢ (Zy) be a
quantifier-free formula over a recoloring ef. (p). Then one
can compute g and a formula quantifier-free formula(z)
over a recoloring ob¢(g) such that:

forall G € C, there is aG € C, such that:

$(G) = (Byy)(G)

MoreoverG is computable in tim&(|G|).

PROOF Wlog (modulo augmentations, see Lemma 4 for the corresponding elements ofiYWEsS(g(v1)).

details) we assume thatis simple.
We apply Proposition 1 t¢y andp and obtain a; and an

}, wherefo(u;) is u;
If |S;| < B, then we addu to
WITNESS(fi, (u)).

The algorithmiis linear time and the size of WESS(v) <
(Bp+1)P»*1. It remains to show that it has the desired prop-
erties.

Analysis of the Witness function.
AssumeG’ = ¢(ou). If u € WITNESS(g(v1)) we are

done. Otherwise note thgt, (u) = g(v1) and thatG” =
7(u). Leti andS; be as described in the algorithm when
investigatingu. As « was not added to WNESS(f;, (u)),
we must haveS;| > 3,. LetS; = {u;,--- ,ug,,---} be
Among
these data values, for eaghat mostac(p) of them may be

a predecessor af;. Similarly, for each’ < ¢ and eacly, at

equivalent formula in DNF, where each disjunct has the spe- MoStac (p) of them may be such that their image iy is

cial form given by (1). As disjunction and existential quan-

a predecessor af;. For eachi’ > i their image is exactly

tification commute, it is enough to treat each part of the dis- /i () and it does not falsify any inequality conjunctsyof

junction separately.
We thus assume that(zy) is a quantifier-free conjunctive
formula over a recoloring af¢(g) of the form (1):

1(Z) AT(y) AAT(Ty) A AT (TY).

Hence, at mostc(p)(ac(p) + 1)|7| of them may falsify at
least one of the inequality conjuncts®f We can therefore
find in WITNESS(g(v1)) at least one element satisfying the
formula, agS;| > ac(p)(ac(p) + 1)|v|.

. —//
Recoloring ofG .
=1/
Based on WrNEsswe recolorG as follows. Lety, =

(B, + 1)P»*1 Foreach € G" we order WTNESS(v). We
can now speak of thé" witness ofu.
For eachi < ~, we introduce a new unary predicale

and for eachy € G” we setP; (u) if WITNESS(u) contains
at least elements.
For eachi < ~, and eachh,h’ € ac(g) we introduce

a new unary predicat®; ;, ,» and for eachy € é” we set
P; .1 (v) if the it witness ofh(v) is an element: with
K (u) = .

For eachi < ~,, h € ac(¢) we introduce a new unary
predicate?); », and for eachy € G” we setQ; 5 (v) if the ith
witness ofh(v) is v.

We denote b)é/ the resulting graph and notice that it can
be computed in linear time froi@.

Finally, note that ify is thei” witness ofy(x), the equal-
ity fi(y) = h(zx) with j < 4o is equivalent oveG' to
hiio (Mak)) = g(x1) A Pin, .1, (h(xx)) and the equality

y = h(zy,) is equivalent ove@ to fi, (h(z1)) = g(z1) A
Qi f,, (h(xx)). From the definition op-type, the equality
fi(y) = h(zx) with j > iy is equivalent tah,, ;(g(z1)) =

Computation ofs.
In view of the analysis above)(z, y) is equivalent to a
formula:

\/ v1(@) A ()

i<vp

wherey!(z) checks that thé!” witness ofg(x;) makes the
initial formula true. In view of the above, this formujd (z)
is defined by

Pi(g(@1)) A N —(hsio(h(zx)) = g(@1) A Pin 5, (R(x))

Fi(W)#h(zy)EAT
i<io

A A hig.j(9(21)) # h(zy)
£ () #h(zy)eA?
j>io
A N\ ~(fio (h(ar)) = g(x1) A Qi z, (h(xk)))

y#h(zy) AT

The special case whekh= is empty is a simpler version of
the previous case, only this time it is enough to construct a
set WITNESs which does not depend an For details see
Appendix 8.4. O

ExampLE A-5. Consider one of the quantified formulas
as derived by Example A-4:

2z y=h(@) A1 qe(2) A f(2) ==
The resulting quantifier-free query has the form:
P(x)ANh(z)=y

whereP(x) is a newly introduced color sayingi% 7, f 4 (2)A
f(z) = a”. The key point is that this new predicate can be
computed in linear time by iterating through all nodes
testing whether,, ; ,(z) is true and, if this is the case, col-
oring f(z) with color P.

Applying the quantifier elimination process from inside
out using Proposition 2 for each step and then applying Ledhma
to the result yields:

THEOREM 2. Let C be a class of graphs with bounded
expansion. Let)(z) be a query ofFO over a recoloring of
oc(0) with at least one free variable. Then one can com-
pute ap and a simple quantifier-free formula(z) over a
recoloring ofo¢(p) such that:

vG € C, we can constructin tim@(|G|) agraphé/ €Cp
such that

$(G) = ¥(G)

We will make use of the following useful consequence of
Theorem 2:

COROLLARY 1. LetC be a class of graphs with bounded
expansion and lep(z) be a formula ofFO overo¢ (0) with
at least one free variable. Then, for &l € C, after a pre-
processing in time)(|G|), we can test, given as input,
whetherG = (@) in constant time.

PrROOF By Theorem 2itis enough to consider quantifier-
free simple queries. Hence it is enough to consider a query
consisting in a single atom of eithd?(x) or P(f(x)) or
z = f(y)or f(z) = g(y).

During the preprocessing phase we associate to each node
v of the input graph a lisL(v) containing all the predicates
satisfied byv and all the images of by a function symbol
from the signature. This can be computed in linear time by
enumerating all relations of the database and updating the
appropriate lists with the corresponding predicate or tite ¢
responding image.

Now, because we use the RAM model, giverwe can
in constant time recover the ligt(u). Using those lists it
is immediate to check all atoms of the formula in constant
time. O

Theorem 1is a direct consequence of Theorem 2 and Corol-
lary 1: Starting with a sentence, and applying Theorem 2
for eliminating quantifiers from inside out we end up with
a Boolean combination of formulas with one variable. Each
such formula can be testedd¥(|G|) by iterating through all
nodes of G and in constant time (using Corollary 1) check-
ing if v can be substituted for the sole existentially quantified
variable.

On top of Theorem 1 the following corollary is immediate
from Theorem 2 and Corollary 1:

COROLLARY 2. LetC be a class of graphs with bounded
expansion and lep(z) be a formula ofFO overo¢ (0) with
one free variable. Then, for as € C, computing the set
¥(G) can be done in timé(|G])).

4. ENUMERATION

In this section we consider first-order formulas with free

A= ={f(y) = g(z;)} we setW(a) = g(a;) and defineL
using the following procedure. We initialize(v) to () for

=1/
variables and show that we can enumerate their answers oveeachv € V. Then, for each € ¥/(G), we addv to the set
any class with bounded expansion with constant delay. More-L(f(v)).

over, assuming a linear order on the domain of the input

Notice thatZ can be computed in time linear |n§"|| (us-

structure, we will see that the answers can be output in theing Corollary 2), that each list(v) is sorted with respect

lexicographical order. As before we only state the result fo
graphs, but it immediately extends to arbitrary structimes
Lemma 3.

THEOREM 3. LetC be aclass of graphs with bounded ex-
pansion and lep(z) be a first-order query overc(0). Then
the enumeration problem gfoverC is in CoNSTANT-DELAY j;, .
Moreover, in the presence of a linear order on the vertices
of the input graph, the answers gocan be output in lexico-
graphical order.

PROOF. Fix a clas<C of graphs with bounded expansion
and a query)(z) with k free variables. Le6 be the input
graph and/ be its set of vertices.

The proofis by induction on the number of free variables.
The caseé: = 1 is done by Corollary 2. Assume now that
k > 1 and thatz andy are the free variables af, where
|z =k — 1.

We apply Theorem 2 to get a simple quantifier-free query
p(zy) and a structur€ ¢ C,, for somep that does not

depend orG, such that(G') = ¢(G) andG can be com-
puted in linear time fronG.
We normalize the resulting simple quantifier-free query

using Proposition 1, and obtain an equivalent quantifiee-fr
formulay and a structur€’ € C4, Whereg depends only
on p and o, G" can be computed in linear time froé/,
<p((§/) z/;(é”) and is a disjunction of formulas of the
form (1):

D1(Z) AT(y) A AT (TY) A AT (TY),

whereA=(zy) is either empty or contains one clause of the
formy = f(x;) or one clause of the forrfi(y) = g(x;) for
some suitablé, f andg; and A7 (zy) contains arbitrarily

many clauses of the form# f(z;) or f(y) # g(z;).

By Lemma 1 it is enough to show that we can enumerate
each disjunct separately. In the sequel we then assume that

1 has the form described in (1). We k&t(y) be the formula
3z (zy) andy” (z) the formuladyy (Zy).

If A= contains an equality of the formn= f(x;) then we
replacey by f(x;) in 7 andA7, enumerate by induction the
formulay” and replace each of its outputvith (af(a;)) in

to the linear order on the domain and that, giveriV (o)
can be computed in constant time. Moreover, for each
6" = o(vu) impliesu € L(W (7)) and ifu € L(W (7))
thenA=(vu) is true.

By induction we can enumeratg’ (z) with constant de-
lay.

On top of the linear time preprocessing necessary for enu-
meratingy” we do the following extra preprocessing. We
first computeL (v) for all v € V. Then, for eachy € V, we
perform the following procedure oh(v). Each procedure
will work in time linear in the size of.(v), hence the total
preprocessing will take tim@(|V|).

Fix v and setl = L(v). We denote by the order onL.
(Recall that this order is consistent with the initial order
the domain.)

ForSi,...,Sac(q) €V we define
NEXT £1,81,..., furp () See o) () 1O DE the first element > u
of L such thatf1 (’LU) ¢ S1yeen, andfac(q) (’LU) ¢ Sac(q)' If
suchw does notexist, the value 8EXTy, s, fu () ,Sac (o) (U
is NULL. When allS; are empty, we write nexfw) and by
the above definitions we always have ngx) = u. We
denote such functions ahortcut pointers of.. We write
NEXTflvsi ----- fac(q)vs,)(u) j NEXTflel 1111 fac(Q)vsac(q) (u)

ac(q
if for each1l < i < ac(q) we haveS! C S;. Note that
for a givenu the < relation is a partial order on the set

of shortcut pointers of.. A trivial observation is that if

NEXT £1,50,... fae (00t (o) (u) X NEXTf, 81, fag (@)1 Serg () (W)
then
NEXTy s7,..., facm,S;c(q) (u) < NEXTy 5,0 fac (@) Sac(a) (u)

Thessizeof a shortcut POINENEXT, 5, fu (4) Sag (o) (1)
is the sum of sizes of the sefs.

In order to avoid writing too long expressions containing
shortcut pointers, we introduce the following abbreviasio

,,,,, Fae()Sac@ (u) is denoted WIttNEXT g(u),
o NEXTy, 81w fi 8 U{ui by Fag (@) 1S g (@) (u) is denoted with

NEXT 55, +—{us}] (w).

Setf, = (k—1)- aC(Q)2'
Computing all shortcut pointers of sizg, would take

order to obtain the desired constant delay enumeration algo more than linear time. We therefore compute a subset of

rithm. We therefore now assume that does not contain
such equality.

We now define two function& : V — 2¥V andW :
VF=1 5 V depending on whethek= is empty or consists
of a single clause of the fortfi(y) = g(x;). If A= is empty

=1/

we pick an arbitrary noder in G~ and setL(w) = '(G),
L(v) = 0 forv # w, andW (o) = w for all tuplesv. If

those, denoted SG that will be sufficient for our needs.
SC;, is defined in an inductive manner. Forallnexy(u) €
SCy. Moreover, if the shortcut pointer NULE NEXT g(u) €
SC;, and has a size smaller th@ap, then, for eachi,
NEXT g, —(u,y () € SCr, Whereu; = fi(NEXTz(u)).
We then say thalEXT (u) is theorigin of NEXT g4

f

[Si+={u:

u).
he f

Note that SG contains all the shortcut pointers of orm

NEXTy, ()} (u) foru € L and these are exactly the short-
cut pointers ofu of sizel. By SC(u) C SC;, we denote
the shortcut pointers af that are in SG.

The set S has the following properties:

CLAIM 1. LetNEXTz(u) be a shortcut pointer of size not
greater than3,. Then there existSEXT g, (u) € SCp, such
thatNEXTg(u)_ = NEXTg, (y). Moreover, SUCINEXT g, (u)
can be found in constant time.

PROOF. The desired shortcut pointem&XT g, (u) € SCr,
that is maximal in terms of size shortcut pointerwosuch
thatNEXT g (u) < NEXTg(u). (See Appendix 8.5.)]

CLAIM 2. There exists a constantq, k) such that for
every node:, we haveSCr, (u)| < ((q, k).

PROOF The proof is a direct consequence of the recur-
sive definition of SG (u). (See Appendix 8.5.)O

The following claim guarantees that $G&an be com-
puted in linear time and has therefore a linear size.

CLAIM 3. SC, can be computed in time linear |i|.

PROOF SC;, can be constructed in an inductive manner
starting from the last node on the listand moving back-

By the definition of setsS; andNEXT z(u), for eachu <
w < ' there is a suitablé andj such thay(v;) = fi(w)
andg(z;) # fi(y) is a conjunct ofA7. This way the algo-
rithm does not skip any solutions at Step 1 and so it outputs
exactlyy (é”) .

It remain to show that there is a constant time between any
two outputs.

By construction, for each, L = L(W (%)) contains an
elementy such thafvu) is a solution. We therefore need to
show that there is a constant time between any two outputs
involving an element inL. Step 1 takes constant time due
to Claim 1. From there the algorithm either immediately
outputs a solution at Step 2 or jumps to Step 3. This means

that G" = (ou'), but from the definitions of list., sets
S; and shortcut pointensexT z(u) it is only the A7 that is
falsified and it is because of an inequality of the foyrg
g(z;) for some suitablgy andj (whereg may possibly be
identity). This implies that’ = g(v;). As all the elements
on L are distinct, the algorithm can skip over Step 2 up to
(k—1) - (ac(q) + 1) times for each tuple (there are up
to that many different images of nodes franunderac(q)
different functions and the initial values @f. This way
the delay is bounded by up - (ac(q) + 1) consecutive
applications of Claim 1 and is in fact constant.

As the listL was sorted with respect to the linear order on

ward. Claim 1 plays the key role in constructing each short- the domain, it is clear that the enumeration procedure out-
cut pointer in constant time, while Claim 2 guarantees that puts the set of solutions in lexicographical order.

the total size of S is linear in|L|. (See Appendix 8.5.)O

This concludes the proof of the theorent]

The computation of Sgconcludesthe preprocessingphases;, COUNTING

and it follows from Claim 3 that it can be done in linear time.
We now turn to the enumeration phase.

We enumerate one by one the solutiongtdz) by sim-
ulating the enumeration algorithm obtained from the induc-
tion.

Having a solutiorv to ¢” by construction we know that

all nodesu such thaG” E ¢(vu) are inL = L(W(9)).
Recall also that all elements € L maker(u) A A= (Tu)
true. Forl < i < ac(q) we setS; = {g(v;) : g(z;) #
fi(y) is a conjunct ofA7 }. Starting withu the first node of
the sorted list., we apply the following procedure:

1. If u = NULL, finish the nested enumeration procedure
for o. If not, let NEXTg, (u) be the shortcut pointer
from the application of Claim 1 talEXTg(u). Set
u' = NEXTg(u). If u' = NULL, finish the nested

enumeration procedure for

2. 116" = w(3u), output(vu).

3. Reinitializeu to the successor of in L and continue
with Step 1.

We now show that the algorithm is correct, i.e. that it
—//
outputs alky(G) with no repetition.
—//
The algorithm clearly outputs a subset/diG) as it tests

whetherG" = ¢(vu’) before outputting tupléou”).

10

In this section we investigate the problem of counting the
number of solutions to a query, i.e. computigD)|. As
usual we only state and prove our results over graphs but they
generalize to arbitrary relational structures via Lemma 3.

THEOREM 4. LetC be class of graphs with bounded ex-
pansion and let)(z) be a first-order formula. Then, for all
G € C, we can computgs(G)| in time O(|G])).

PROOF The key idea is to prove a weighted version of
the desired result. Assunggz) has exactly: free variables
and forl < ¢ < k we have functiongt; : V. — N. We will
compute in time linear ifG| the following number:

Gy = D> T #ilw).
ﬂEdD(G) 1<i<k
By setting all#; to be constant functions with valuewe

get the regular counting problem. Hence Theorem 4 is an
immediate consequence of the next lemma.

LEMMA 6. LetC be class of graphs with bounded expan-
sion and let)(z) be a first-order formula with exactly free
variables.

For1 <i < klet#; : V — N be functions such that for
eachw the value of#;(v) can be computed in constant time.
Then, for allG € C, we can computgs(G)|4 in timeO(|G])).

PROOF The proof is by induction on the number of free
variables.

The casé: = 1is trivial: in time linear in|G| we compute
o(G) using Corollary 2. By hypothesis, for eaghe ¢(G G),
we can compute the value ¢f; (v) in constant time. There-

fore the value
> #v)

vER(G)

can be computed in linear time as desired.
Assume now that > 1 and thatz andy are the free
variables ofp, where|z| = k£ — 1.

bothz/; and™ in order to compute bothy~ (G

[+ (G")| and derivey (G| 4.
It remains to show the base of the inner induction. In the

following we assume thak# is empty. The rest of the proof
is a case analysis on the contentsf. Due to space limita-
tions we analyze in full details only the situation wharm
consists of an atom of the forgn = f(z1). Although this
case is not the most difficult, we find it the most explanatory
and still generic enough.

Assume then thah= consists of an atom of the forpn=

f(aa).
Note that the solutions t¢ are of the form(af(a1)). We

")| and

We apply Theorem 2 to get a simple quantifier-free query have:

p(zy) and a structur€ ¢ C,, for somep that does not
depend orG, such thats(G') = ¢(G) andG can be com-

puted in linear time fron®. Note thaf¢(G)| 4 = | (G g’
so it is enough to compute the latter value.

We normalize the resulting simple quantifier-free query
using Proposition 1, and obtain an equivalent quantifiee-fr

formula+ and a structur€’ € Cq, Whereg depends only
on p and o, G” can be computed in linear time froé/,
—/ =1/
»(G) = (G) and® is a disjunction of formulas of the
form (1):
D1(Z) AT(y) A AT (TY) A AT (TY),

whereA=(zy) is either empty or contains one clause of the
formy = f(x;) or one clause of the forryfi(y) = g(z;) for
some suitablé, f andg; and A7 (zZy) contains arbitrarily
many clauses of the form# f(z;) or f(y) # g(x;). Note

that|ga(é/)|# = |1/)((§N)|#, so it is enough to compute the
latter value.

)

Observe that it is enough to solve the weighted counting
problem for each disjunct separately, as we can then com-
bine the results using a simple inclusion-exclusion reason

ing. In the sequel we then assume tiiahas the form de-
scribed in (1).

The proof now goes by induction on the number of in-
equalities inA7. While the inductive step turns out to be
fairly easy, the difficult part is the base step of the indurtti

We start with proving the inductive step. Lefy) #
f(z;) be an arbitrary inequality from\# (whereg might
possibly be the identity). Lep~ be) with this inequality
removed and)™ = ¢~ A g(y) = f(=x;). Of coursey and
1™ have disjoint sets of solutions and we have:

16(G") = [0~ (G| — 141G)4

Note thaty)~ andy* have one less conjunct in*. The
problem is that)™ is not of the form (1) as it may now con-
tain two elements iM\=. However it can be seen that the
removal of the extra equality iA= as described in the proof
of Proposition 1 does not introduce any new elementstn

(G4 = > (#k(v) II #i(ui)>
(av)eyp(G") 1<i<k—1
= > (#k(f(“l)) II #i(%’))
(af(u1))€p(G") 1<i<k—1
= > (#l(ul)#k(f(ul)) 11 #i(ui)>
(uf(ul))ew(é”) 2<i<k—1

In linear time we now iterate through all node G and
set

#1(u) = #1(u) - #x(f (u))
#i(u) = #i(u)

Let¥(z) bew with all occurrences of replaced withf (x1).
>

We then have:
(#i(ul) 11 #2(“0)
(af(ur))ep(G”) 25ishk—l

= > Il #w

aey(G) 15i<k—1

11
= [9(G)|y

for2<i<k-—1.

(G)y =

By induction on the number of free variables, #5(u)
can be computed in constant time for ea@ndw, we can

computeld(G")| in time linear in|G” | and we are done.

f(z1)

For the case wheA= consists of an atom(y) =
we use the same approach, only this time we set:

#1(u) = #1(u) - > #i(v)
{ve@zy(zy))(E")
g(v)=u}
#i(u) := #i(u) for2<i<k-—1

and conclude with(3yy (zy))(G)|w = |[¥(G)|«. For
more details on this and the case wh&n is empty, see
Appendix 8.6. [

See also Appendix 8.6. We can therefore remove the extra

elementinA™ and assume that™ has the desired form. We
can now use the inductive hypothesis on the sizA6fto

11

As we said earlier, Theorem 4 is an immediate consequence
of Lemma 6. O

6. CONCLUSIONS
Queries written in first-order logic can be efficiently pro-

cessed over the class of structures having bounded expan—m
sion. We have seen that over this class the problems inves-

tigated in this paper can be computed in time linear in the

size of the input structure. The constant factor however is
not very good. The approach taken here, as well as the ones [

of [10, 12], yields a constant factor that is a tower of ex-

ponentials whose height depends on the size of the query.
This nonelementary constant factor is unavoidable already

on the class of unranked trees, assuming FRW [«] [11].
In comparison, this factor can be triply exponential in the
size of the query in the bounded degree case [20, 13].

It is possible that the results presented here can be gen- r o X , :
In [18] the class of [10] zderek Dvarédk, Daniel Kréal, and Robin Thomas.

eralized to a larger class of structures.

nowhere dense graphs was introduced and it generalizes the
notion of bounded expansion. It seems that nowhere dense

graphs do enjoy good algorithmic properties. However, we
do not know yet whether the model checking problem of
first-order logic can be done in linear time over nowhere

dense structures. Actually, we do not even know whether))
e[12] Martin Grohe and Stephan Kreutz®todel Theoretic

the model checking problem is Fixed Parameter Tractabl
(FPT) over nowhere dense graphs.

The class of nowhere dense structures seems to be the

limit for having good algorithmic properties for first-onde
logic. Indeed, it is known that the model checking prob-
lem of first-order logic over a class of structures that is not

nowhere dense cannot be FPT [15] (modulo some complex-

ity assumptions and closure of the class under substrgture

For structures of bounded expansion, an interesting open
guestion is whether a sampling of the solutions can be per-

formed in linear time. For instance: can we compute the

j-th solution in constant time after a linear preprocessing?
This can be done in the bounded degree case [7] and in the

Constant Delay Enumeration. @onf. on Computer

Science Logic (CSlLpages 208-222, 2007.

Guillaume Bagan, Arnaud Durand, Etienne

Grandjean, and Frédéric Olive. Computing the jth

solution of a first-order querfRAIRO Theoretical

Informatics and Applicationgt2(1):147-164, 2008.

] Bruno Courcelle. Graph Rewriting: An Algebraic and
Logic Approach. IrHandbook of Theoretical
Computer Science, Volume B: Formal Models and
Sematics (B)pages 193—-242. 1990.

[9] Arnaud Durand and Etienne Grandjean. First-order
gueries on structures of bounded degree are
computable with constant del&CM Trans. on
Computational Logic (ToCL.B(4), 2007.

Deciding First-Order Properties for Sparse Graphs. In
Symp. on Foundations of Computer Science (FOCS)
pages 133-142, 2010.

[11] Markus Frick and Martin Grohe. The complexity of
first-order and monadic second-order logic revisited.
Ann. Pure Appl. Logic130(1-3):3-31, 2004.

Methods in Finite Combinatoricghapter Methods for
Algorithmic Meta Theorems. American Mathematical
Society, 2011.

[13] Wojciech Kazana and Luc Segoufin. First-order query
evaluation on structures of bounded degtemyical
Methods in Computer Science (LMC3%}2), 2011.

[14] Wojciech Kazana and Luc Segoufin. Enumeration of
monadic second-order queries on treé&SM Trans.
on Computational Logic (ToCl o appear.

[15] Stephan Kreutzer and Anuj Dawar. Parameterized

complexity of first-order logicElectronic Colloquium

on Computational Complexity (ECC)6:131, 2009.

bounded trewidth case [5]. We leave the bounded expansion/16] Jaroslav Nesét and Patrice Ossona de Mendez. Grad

case for future research.

7. REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianuroundations of
DatabasesAddison Wesley, 1995.

[2] Noga Alon, Raphael Yuster, and Uri Zwick.
Color-CodingJ. ACM 42(4):844—-856, 1995.

[3] Stefan Arnborg, Jens Lagergren, and Detlef Seese.

Easy Problems for Tree-Decomposable Graphsf

Algorithms 12(2):308—-340, 1991.

Guillaume Bagan. MSO Queries on Tree

Decomposable Structures Are Computable with

Linear Delay. InConf. on Computer Science Logic

(CSL) pages 167-181, 2006.

Guillaume BaganAlgorithmes et complexité des

problémes d’énumération pour I'évaluation de

requétes logique$hD thesis, Université de Caen,

2009.

Guillaume Bagan, Arnaud Durand, and Etienne

Grandjean. On Acyclic Conjunctive Queries and

[4]

[5]

[6]

12

and classes with bounded expansion .
Decompositionstur. J. Comh.29(3):760-776, 2008.

[17] Jaroslav NeSét and Patrice Ossona de Mendez. Grad
and classes with bounded expansion II. Algorithmic
aspectskur. J. Comh.29(3):777-791, 2008.

[18] Jaroslav NesSét and Patrice Ossona de Mendez. On
nowhere dense grapHsuropean J. of Combinatori¢s
32(4):600-617,2011.

[19] Christos H. Papadimitriou and Mihalis Yannakakis.
On the Complexity of Database Queridson
Computer and System Sciences (JCSS)
58(3):407-427,1999.

[20] Detlef Seese. Linear Time Computable Problems and
First-Order DescriptiondMathematical Structures in
Computer Scien¢®(6):505-526, 1996.

8. APPENDIX

8.1 Graphs with bounded expansion

To avoid confusion with the notion of size of a structure,
we use the following notion in the case of graphs: we write
|G|verr to denote the number of nodes Gf(i.e. the size
of V from the sequel), while we writf5 |epce to denote the
number of edges d& (i.e. the size ofr from the sequel).

LetG = (V, E) be an uncolored graph. Itisiorientedf
for each(u, v) € E we also have tha, u) € E. Assumes
is unoriented. For any nodec V and anyr € N we denote
by B, (v) ther-ball aroundw, i.e. the set of nodes @ that
are reachable from by paths of lengths up ta We say that
a graphH is ar-minor of G if all the nodesvy, ..., v, of H
are also nodes @& and forl < 7 < k there existd < r; <
r, such that, insidés, the ballsB,, (v1),..., B, (v;) are
pairwise non-overlapping and there is an edge betwegen
andv, in H iff there is an edge i from a node ofB,, (v;)
to a node of3;,, (v;). The set of alr-minors ofG is denoted
by GV,.. For a graplG thegreatest reduced average density
(grad) of G with rankr is:

|H |EDGE

V-(G) = max .
) HeGV, |H|verr

THEOREM 5. [16] Let C be a class of graphs. The fol-
lowing conditions are equivalent:

1. there exists a computable functifn N — R such that
for all graphsG € C and for all» € N we have:

Vi (G) < f(r),
2. C has bounded expansion.

In fact in [16] it is stated the other way around: the initial
definition of class of graphs with bounded expansion is the
one from point 1 from the above theorem and its equivalence
with Definition 1 is a theorem there.

8.2 Aremark about oc(i)

It would be tempting to set¢(¢) to be the functional
structure withl'¢(¢) functional symbols that would then be
used to encode up ¢ (i) predecessors of each node. We
could then easily have properties 1 and 2, but it would not
be the case for property 3. To see this consider the following
simple example:

ExampLE 1. Cissuchthal¢ (i) = 2foralliandG € C
is defined ass = (V = {u,v,w}, E = {(u,w), (v,w)}).
Wilog assume that the functional structure describigs
G = (V = {w,v,w}, {fi(w) = u}, {f2(w) = v}) and
so we need to show a transitive fraternal augmentaﬁOﬂ
Gy C G, C G2 C ... with the desired properties 1, 2 and 3.

Note that(u,v) is a fraternal pair of nodes irG; and
so G, must describe an edge betweemndv (in at least

13

one of the directions). To match prerrtyég must con-
tain G; and wlog we may assume th@g contains(V =
{u, v, wh, {fi(w) = u, fi(u) = v}, {fo(w) = v}).

Consider now the following queryoveroc(0):

O(w,y) = filz) =yV fola) =2

Clearly (u,v) € ¢(G2), but(u,v) ¢ ¢(G1) and although
A~ (G,) < 2, two functional symbols iei¢ (1) are not enough
to retain property 3.

The generalidea behind the above example is that in order
to have property 3, we cannot “re-use” functions use@in
to encode edges that appearein ;.

8.3 From structures to graphs

In this section we use the definition of bounded expansion
from Theorem 5.

Recall the definition of Adjacen¢®) from Section 2.4.
In particular, nodes of Adjacen() are divided into two
sets:D andT. Note that Adjacend)D) is a bipartite graph
(neither any two nodes fro® nor any two nodes frorit’ are
ever connected) and the maximal in-degree of a node from
T is bounded by the maximal arity of a relationAn We
call nodes fromD real nodesand nodes frorfi” tuple nodes

The Gaifman graphof a relational structur®, denoted
by Gaifmar{D), is defined as follows: the set of vertices of
Gaifmar(D) is D and there is an edde, b) in Gaifmar(D)
iff there exists a relatiof; and a tuple € R; such that both
a andb occur int.

In the literature, a clags of relational structures is said to
have bounded expansion if the classof Gaifman graphs
of structures fron€ has bounded expansion. Our definition
is more liberal (possibly equivalent).

Let D be a relational structure over signaturevith uni-
verseV, let R be a relation fronw of arity r and lett € R
be atuple ofr in D. Theeffective arity ot is the number of
different elements in.

LEMMA 7. LetC be class of relational structures and let
C’ be the underlying class of Gaifman graphs of structures
from C. If C' has bounded expansion, then there exists a
constantk such that for any structur® < C and for any
tuplet € D the effective arity of is less thark.

PROOF Fix classC of structures and lef’ be the class
of Gaifman graphs of structures froth Let f be the func-
tion from Theorem 5 witnessing the fact tifathas bounded
expansion.

Setk = 2f(0). LetD € C andt be an arbitrary tuple from
D with effective aritys. Let A = {a1,...,as} be the set of
different elements in. By the definition of GaifmafD) ver-
tices fromA are pairwise connected. Consider theninor
H of Gaifmar(D) induced byA. We have tha‘wvw
% . By the definitionV,(Gaifmar(D)) >

H—E; > £=1.On the other hand the definition of bounded

expansion from Theorem 5 givg40) > V(Gaifmar(D))
and we havé: > s as desired. O

Hlepce __

_ s—1
-2

PROPOSITION 3. LetC be a class of structures such that
the classC’ of Gaifman graphs of structures froifi has
bounded expansion. Then the cl@8f adjacency graphs
of structures front also has bounded expansion.

It is a consequence of the following lemma.

LEmMMA 8. LetC be a class of structures such that the
classC’ of Gaifman graphs of structures frothhas bounded
expansion. There exists a constarduch that for any struc-
ture D € C and for any natural number we have that
V. (AdjacencyA)) < V,.(Gaifmar(A)) + k.

PROOF Fix classC of structures such that the clags
of Gaifman graphs of structures frafrhas bounded expan-
sion.

Let k£ be the constant given by Lemma 7.

LetD € C and letr be a natural number artd be ar-
minor of AdjacencyD). FromH we construct a graphl’
which is ar-minor of GaifmariD) and such that:

‘H/lEDGE

|H‘VERT - ‘Hll\/ERT

[H ‘EDGE

+ k.

This immediately yields the result.
Recall from Section 2.4 that Adjacen(®) is a bipartite
graph that containsiplenodes andeal nodes and such that

[H’ |epcetk-| X |
[H [verr+] X |

< ‘H/‘EDGE
= [H|verr+]X]|
|HI|EDGE + k

[H’[verr

k| X|
+ [H Jverr+] X |

[H ‘EDGE

<

[Hlverr —

as desired. O

8.4 Model checking

We now give the details of the skipped part of the proof of
Proposition 2, namely the case whArT is empty.

In this case we construct a set'YMESS which does not
depend orv. It is constructed as in the previous case and

verifies: for all tupless of ¢ it @" & ¢(vu) for some

nodeu, then there is a nod€¢ € WITNESSsuch thaG” =
(vu'). Moreover|WITNESS < 7.

. —//
Recoloring ofG .

Based on WrNEsswe recolorG as follows. Lety,
(B, +1)%»*1. We order WTNESsand we can now speak of
thei'" witness.

For eachi < ~, we introduce a new unary predicate

—// . .
and for eachy € G we setP;(v) if WITNESS contains at
leasti elements.
For each < ~, and eachh € o¢(g) we introduce a new

unary predicate®; ;, and for eachy € G” we setP; j,(v) if

neither any two tuple nodes nor any two real nodes are con-thei*" witness is a element with h(u) = v.

nected. By the definition of constahtfrom Lemma 7, each
tuple node has up te neighbors in Adjacendy).

Consider a node of H. By constructionp is derived
from ar,-ball S, of AdjacencyD), wherel < r, <r.

If S, contains no real nodes, then it simply is a single
tuple node. As each tuple node has upktoeighbors in
AdjacencyD), then if S, contains no real nodes, has at
mostk neighbors irH. Let X be the set of all such nodes
inH.

Otherwise, lefS] be the set of real nodes §f.. By defini-
tion S, is notempty and it is easy to verify that it form&a-
ball in GaifmarD): for everyu € S. the longest path from
vtouin S, isv = u1,t(1,2), U2, t(2,3)5 - - - 5 t(%v_ Iy, ULy =
u, where eacht(; ;1 is a tuple node. By the definition of
Gaifmar(D) we have that.; is connected ta;,; (which is
witnessed by,; ;1 1)), which yields thab = uy, ua, . .
wis apathinS!. LetH’ be ther-minor of GaifmariD) con-
structed from the element, v ¢ X.

By construction we have|H'|verr + | X| = [H|verr-

Consider now an edgé:, v) in H where bothu andv
are not inX. This means that there is an ed@geb) in
AdjacencyA) witha € S, andb € S,. As AdjacencyA) is
bipartite, this means thatis a real node andla tuple node
(or vice versa). Wlog assume thais the real node. As is
not in X, S, contains a real nod& adjacent tdh. Henceb
witnesses thafa, b’) is an edge in GaifmgD) and so(u, v)

LUy =
2

For eachi < ~,, h € o¢(q) we introduce a new unary

predicate); and for eachy € G” we setQ;(v) if the i
witness isv. »

We denote by the resulting graph and notice that it can
be computed in linear time fro.

Finally, note that ify is thei* witness, the equality; (y) =

h(zy) is equivalent ove6 to P; ¢, (h(xy)) and the equality
y = h(zy,) is equivalent ove€ to Q; (h(zx)).

The desired formula is computed as for the previous
case whem\= was not empty.

8.5 Enumeration

We now present the omitted proofs from Section 4, namely
the proofs of Claims 1, 2 and 3.

CLAIM 1 LetNEXTg(u) be a shortcut pointer of size not
greater than3,. Then there existSEXTg (u) € SCr, such
thatNEXTg(u)_ = NEXTg, (y). Moreover, SUCINEXT ¢, (u)
can be found in constant time.

PROOF. If NEXTg(u) € SCy, then we have nothing to
prove. Assume thenth8EXT g(u) ¢ SCr. LEINEXTg, (u) €
SC;, be a maximal in terms of size shortcut pointeticfuch
thatNEXT & (u) < NEXT g(u) (recall that this means that for
1 <i < ac(q) we haveS, C S;). Such a shortcut pointer al-
ways exists as nextu) < NEXTg(u) and nexj(u) € SCy.

is an edge iH’. As we have seen that there are at most Note that the size ofEXTg, (u) is strictly smaller than the

k - |X| edgequ,v) in H where eithem or v belongs toX,
we get:|H|EDGE < |H/|EDGE + k/’|X|
Summing up we get:

14

size of NEXTg(u), so it is strictly smaller tham,. Clearly,
NEXTg (u) can be found in constant time. We claim that
NEXTg(u) = NEXT g (u).

Letv = NEXTg(u). We know thaty < NEXTg(u).
Assume now that there would exists< ¢ < a¢(g) such
thatu; = fi(v) € S;. Thenu; ¢ S; and as the size of
NEXTg, (u) is smaller tharg,, we have that
NEXT (5, 1 {ui}] (u) € SCr. BUtNEXT
size strictly greater thaREXT g, (u) and
NEXT 5, +— {us}] (u) = NEXTg(u), which contradicts the
maximality of NEXT g (u). This means that such ardoes
not exist and concludes the fact thaetx T 5 (u) = NEXT g, (u).

Sit—{u})(w) has

O

CLAIM 2 There exists a constagfq, k) such that for ev-
ery nodeu we have SCy,(u)| < {(q, k).

PrROOF Fixu. Note that there is exactlyshortcut pointer
of u of size0 (nex{(u)) andac(g) shortcut pointers of
of size 1. By the definition of SG, any shortcut pointer
NEXT z(u) can be an origin of up tac(q) shortcut pointers
ofthe formNEXT5¢ .\ v,y (u), whereu; = f;(NEXTg(u))
and the size Olf\IEXTg[Sﬁ:{ui}] (u) is either the same as the
size of NEXTg(u) (if u; € S;) or greater byl. This way
we see that SE(u) contains up tavc(q)? shortcut pointers
of size2 and, in general, up tec(q)® shortcut pointers of
sizes. As the maximal size of a computed shortcut pointer
is bounded by3,, we have|SCy(u)| < Xo<;<5, acla)"
Bothac(¢) andg, depend only oy andk, which concludes
the proof. O

CLAIM 3 SC;, can be computed in time linear ji|.

PROOE In linear time we set nexgtu) = w foru € L.

We first show how to compute shortcut pointers of size
of each node;, € L. We do it in an inductive manner, start-
ing from the last node of. and moving backwards. Recall
that these shortcut pointers are of the fOrBX T, ¢, ()1 ().

If v is the last node ok, then all these values are NULL.
We now assume thatis not last onl. and that for aly >
all the shortcut pointers af of sizel were computed. We
show how to compute shortcut pointersuobf sizel.

For eachl < i < ac(q) we COMPUENEXTy, (7, (u)} (1)
Letv be the node successorofn L. If f;(u) # f;(v), then
NEXTﬁ;,{ﬁ;(u)}(“) =wo. If fl(u) = fi(v), then
NEXTfi,{fi(u)}(u) = NEXTfi_’{fi(next(v))}(neXl(U)) and the
later shortcut pointer has already been computed.

Clearly all the shortcut pointers of sizeare computed in
time linear in the size of.

We now turn to the computation of arbitrangxT 5(u) €
SCy for u € L. We again do it in an inductive manner
starting from the last node oh and move backwards. If
u is the last node ot then we are already done as all the
shortcut pointers of;, of size1 are NULL and by definition
there are no shortcut pointers @fof greater sizes in S
We now assume thatis not last onl. and that for alb >
set SG,(v) is computed. We show how to compute S@).

Consider NOWNEXTg(u). If Vi f;(u) ¢ S; then we are
done, aNEXTg(u) = u. Otherwisedi such thatf;(u) €

15

Si. Letv = NEXTy, 14,(u))(u). Clearlyv < NEXTg(u)
andNEXTg(u) = NEXTg(v). We can conclude this case
NEXTg(v) = NEXTg (v), WhereNEXTg (v) € SCr(v) is
the shortcut pointer of from the application of Claim 1 to
NEXTg(v). Claim 1 assures that we can fiNgXT g (v) in
constant time and thusexTz(u) is computed in constant
time. As Claim 2 shows that we only need to consider con-
stantly many shortcut pointers for eaghthe whole process
takes timeO(|L]). O

8.6 Counting

CLAIM 4. . There exists a queny, - such that: its size
depends only on the size of, ¢ is in the normal form
given by(1), it contains an inequality conjunéty) # g1 (z;)
(where h might possibly be identity) iffb™ also contains
such conjunct andi (G) = v+ (G). Moreoveryy. can
be constructed in time linear in the sizewf.

PROOF The proofis a simple case analysis of the content
of A= of ¢.

If its empty, ther)y - is already in the desired form.

If it contains an atom of the form = ha(z;), then equal-
ity g(y) = f(z;) is equivalent tgy(ha(z;)) = f(z;) and we
are done.

If it contains an atom of the forrhs (y) = he(z;) andg is
identity, thenhs(y) = ha(z;) is equivalent tdhs (f (z;)) =
ha(z;). If g is not identity, thenr(y) ensures us that either
g(y) determinediz(y) or vice versa. If we have,(g(y)) =
hs(y), thenhs(y) = ha(z;) is equivalent tohy(f(x;)) =
ha(z;). The other case is symmetric.

The fact thatyy- does not contain any additional inequal-

ities, that it can be computed in time linear in the size of
"

o+ and thaty(G”) = y+(G") follows from the above
construction. [

LEMMA 6 LetC be class of graphs with bounded expan-
sion and lety(z) be a first-order formula with exactly free
variables.

For1 <i < klet#; : V — N be functions such that for
eachwv the value of#; (v) can be computed in constant time.
Then for allG e C we can computgs(G)|4 in timeO(|G|).

PROOF We now give the omitted details from the proof
of Lemma 6, that is the remaining cases of the analysis of
the content oA=.

Assume now thaf\= consists of an atom(y) = f(z1).
Let ¢’ (y) be the formuladzy (zy) and+” (z) the formula

Jyu(zy). We first compute se;b’(é”) in linear time using
Corollary 2. We now define a functioft) : V' — N as:

#ow) = Y #iv).
{vey’(G")
g(v)=u}

Note that this function can be easily computed in linear time
by going through all nodesand adding# (v) to #;.(g(v)).

Finally we set:

#1(u) == #1(w)#5(f ()
#i(u) = #i(u) for2<i<k-—1.

Letur,us € 9/(G) be such thay(ui) = g(uz). Be-

causeA” is empty, observe thd = VZ(Y(Tur) <> Y(Tus)).
Based on this observation we now group the solutionsg to
according to their lagt — 1 values and get:

W@ e= > (#kw) I1 #xu»)

(wv)ew (@) 1sisk-1

= > > #:(0)] #i(ui)>

aey”(G") {vey’(G") lsisk—1
g(v)=f(u1)}

= > > #i(v) [1 #iw)

aey (@) | {vey/(G") 1<i<k-1
g(v)=f(u1)}

= > (#k(f(ul)) 11 #i(ui)>

aey’(G") 1<i<k—1

= > (#1(U1)#§€(f(u1)) 11 #;(ui))

aey’’(G") 2<i<k—1

= > [T #iw)
17«61[)”(6”) 1<i<k-—1

=

=["(G)y

By induction on the number of free variables, #5(u)
can be computed in constant time for eadndu, we can

computdw”(é//ﬂ#/ and we are done with this case.
The remaining case whe\= is empty is handled simi-
larly to the previous one. We then have

Y(@y) = 1(T) A T(y).
After setting
#i(w) = #a(u) - Y #i(v)
ve‘r(é”)
#i(u) == #ip1(u) for2<i<k-1
we see that
(G4 = 1 (G4

and we conclude again by induction on the number of free
variables. OJ

16

