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ABSTRACT
We consider the evaluation of first-order queries over classes
of databases withbounded expansion. The notion of bounded
expansion is fairly broad and generalizes bounded degree,
bounded treewidth and exclusion of at least one minor. It
was known that over a class of databases with bounded ex-
pansion, first-order sentences could be evaluated in time lin-
ear in the size of the database. We first give a different proof
of this result. Moreover, we show that answers to first-order
queries can be enumerated with constant delay after a linear
time preprocessing. We also show that counting the number
of answers to a query can be done in time linear in the size
of the database.

1. INTRODUCTION
Query evaluation is certainly the most important problem

in databases. Given a queryq and a databaseD it is to com-
pute the setq(D) of all tuples in the output ofq onD. How-
ever, the setq(D) may be larger than the database itself as
it can have a size of the formnl wheren is the size of the
database andl the arity of the query. It can therefore require
too many of the available resources to compute it entirely.

There are many solutions to overcome this problem. For
instance one could imagine that a small subset ofq(D) can
be quickly computed and that this subset will be enough for
the user needs. Typically one could imagine computing the
top-ℓ most relevant answers relative to some ranking func-
tion or to provide a sampling ofq(D) relative to some distri-
bution. One could also imagine computing only the number
of solutions|q(D)| or providing an efficient test for whether
a given tuple belongs toq(D) or not.

In this paper we consider a scenario consisting in enu-
meratingq(D) with constant delay. Intuitively, this means
that there is a two-phases algorithm working as follows: a
preprocessing phase that works in time linear in the size of
the database, followed by an enumeration phase outputting
one by one all the elements ofq(D) with a constant delay
between any two consecutive outputs. In particular, the first
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answer is output after a time linear in the size of the database
and once the enumeration starts a new answer is being out-
put regularly at a speed independent from the size of the
database. Altogether, the setq(D) is entirely computed in
time f(q)(n + |q(D)|) for some functionf depending only
on q and not onD.

One could also view a constant delay enumeration algo-
rithm as follows. The preprocessing phase computes in lin-
ear time an index structure representing the setq(D) in a
compact way (of size linear inn). The enumeration algo-
rithm is then a streaming decompression algorithm.

One could also require that the enumeration phase outputs
the answers in some given order. Here we will consider the
lexicographical order based on a linear order on the domain
of the database.

There are many problems related to enumeration. The
main one is the model checking problem. This is the case
when the query is boolean, i.e. outputs only0 or 1. In
this case a constant delay enumeration algorithm is a Fixed
Parameter Linear (FPL) algorithm for the model checking
problem ofq, i.e. it works in timef(q)n. This is a rather
strong constraint as even the model checking problem for
conjunctive queries is not FPL (modulo some hypothesis in
parametrized complexity) [19]. Hence, in order to obtain
constant delay enumeration algorithms, we need to make re-
strictions on the queries and/or on the databases. Here we
consider first-order (FO) queries over classes of structures
having “bounded expansion”.

The notion of class of graphs with bounded expansion was
introduced by Nešetřil and Ossona de Mendez in [16]. Its
precise definition can be found in Section 2.2. At this point
it is only useful to know that it contains the class of graphs
of bounded degree, the class of graphs of bounded treewidth,
the class of planar graphs, and any class of graphs excluding
at least one minor. This notion is generalized to classes of
structures via their Gaifman graphs or adjacency graphs.

For the class of structures with bounded degree and FO
queries the model checking is in FPL [20] and there also
are constant delay enumeration algorithms [9, 13]. In the
case of structures of bounded treewidth and FO queries (ac-
tually even MSO queries with first-order free variables) the
model checking is also in FPL [8] and are constant delay
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enumeration algorithms [4, 14]. For classes of structures
with bounded expansion the model checking problem for FO
queries was recently shown to be in FPL [10, 12].

Our results can be summarized as follows. For FO
queries and any class of structures with bounded expansion:
• we provide a new proof that the model checking prob-

lem can be solved in FPL,
• we show that the set of solutions to a query can be enu-

merated with constant delay,
• we show that computing the number of solutions can be

done in FPL,
• we show that, after a preprocessing in time linear in the

size of the database, one can test on inputā whetherā ∈
q(D) in constant time.

Concerning model checking, our method uses a different
technique than the previous ones. There are several charac-
terizations of classes having bounded expansion [16]. Among
them we find the “low tree depth coloring” and the “transi-
tive fraternal augmentations”. The previous methods were
based on the low tree depth coloring characterization while
ours is based on transitive fraternal augmentations. We ar-
gue that the use of transitive fraternal augmentations gives
a simpler proof. The reason is that it gives a useful nor-
mal form on quantifier-free formulas that will be the core of
our algorithms for constant delay enumeration and for count-
ing the number of solutions. As for the previous proofs, we
exhibit a quantifier elimination method, also based on our
normal form. Our quantifier elimination method results in a
quantifier-free formula but over a recoloring of a functional
representation of a “fraternal and transitive augmentation”
of the initial structure.

Our other algorithms (constant delay enumeration, count-
ing the number of solution or testing whether a tuple is a
solution or not) start by eliminating the quantifiers as for the
model checking algorithm. Note that for all these problems,
the quantifier-free case is already non trivial and require the
design and the computation of new index structures. For in-
stance consider the simple queryR(x, y). Given a pair(a, b)
we would like to test whether(a, b) is a tuple of the database
in constant time. In general, index structures can do this
with logn time. We will see that we can do constant time,
assuming bounded expansion.

In the presence of a linear order on the domain of the
database, our constant delay algorithm can output the an-
swers in the corresponding lexicographical order.

Related work.
We make use of a functional representation of the initial

structures. Without this functional representations we would
not be able to eliminate first-order quantifiers. Indeed, with
this functional representation we can talk of a node at dis-
tance 2 fromx using the quantifier-free termf(f(x)), avoid-
ing the existential quantification of the middle point. This
idea was already taken in [9] for eliminating first-order quan-
tifiers over structures of bounded degree. Our approach dif-

fers from theirs in the fact that in the bounded degree case
the functions can be assumed to be permutations (in partic-
ular they are invertible) while this is no longer true in our
setting, complicating significantly the combinatorics.

Once we have a quantifier-free formula, constant delay
enumeration could also be obtained using the characteriza-
tion of bounded expansion based on low tree depth color-
ings. Indeed, using this characterization one can easily show
that enumerating a quantifier-free formula over structuresof
bounded expansion amounts in enumerating an MSO query
over structures of bounded tree-width and for those known
algorithms exist [4, 14]. However, the known enumeration
algorithms of MSO over structures of bounded treewidth are
rather complicated while our direct approach is fairly simple.
Actually, our proof shows that constant delay enumeration of
FO queries over structures of bounded treewidth can be done
using simpler algorithms than for MSO queries. Moreover,
it gives a constant delay algorithm outputting the solutions
in lexicographical order. No such algorithms were known
for FO queries over structures of bounded treewidth. In the
bounded degree case, both enumeration algorithms of [9, 13]
output their solutions in lexicographical order.

Similarly, counting the number of solutions of a quantifier-
free formula over structures of bounded expansion reduces
to counting the number of solutions of a MSO formula over
structures of bounded treewidth. This latter problem is known
to be in FPL [3]. We give here a direct and simple proof of
this fact for FO queries over structures of bounded expan-
sion.

2. PRELIMINARIES
In this paper a database is a finite relational structure. A

relational signatureis a tupleσ = (R1, . . . , Rl), eachRi
being a relation symbol of arityri. A relational structure
over σ is a tupleD =

(

D,RD
1 , . . . , R

D
l

)

, whereD is the
domainof D andRD

i is a subset ofDri . We fix a reasonable
encoding of structures by words over some finite alphabet,
as in [1] for instance. Thesizeof D is denoted by||D|| and is
the length of the encoding ofD.

By query we mean a formula written in the first-order
logic, FO, built from atomic formulas of the formx = y
or Ri(x1, . . . , xri) for some relationRi, and closed under
the usual Boolean connectives (¬,∨,∧) and existential and
universal quantifications (∃, ∀). We writeφ(x̄) to denote a
query whose free variables arēx, and the number of free
variables is called thearity of the query. A sentenceis a
query of arity 0. Given a structureD and a queryφ, an
answerto q in D is a tupleā of elements ofD such that
D |= φ(ā). We writeφ(D) for the set of answers toq in D,
i.e. φ(D) = {ā | D |= φ(ā)}. As usual,|φ| denotes the size
of φ.

Let C be a class of structures. The model checking prob-
lem of FO overC is the computational problem of given a
sentenceq ∈ FO and a databaseD ∈ C to test whether
D |= q or not.
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We now introduce our running examples.

EXAMPLE A-1. The first query has arity 2 and returns
pairs of nodes at distance two in a graph. We use the clas-
sical notion of distance that ignores the possible orientation
of the edges. The query is of the form∃zE(x, z) ∧ E(z, y),
whereE is the symmetric closure of the input relation.

Testing the existence of a solution to this query can be
easily done in time linear in the size of the database. For
instance one can go trough all nodes of the database and
check whether it has degree two. The degree of each node
can be computed in linear time by going through all edges
of the database and incrementing the counters associated to
its endpoints.

EXAMPLE B-1. The second query has arity 3 and returns
triples (x, y, z) such thaty is connected tox and z via an
edge butx is not connected toz. The query is of the form
E(x, y) ∧ E(y, z) ∧ ¬E(x, z), whereE is the symmetric
closure of the input relation.

It is not clear at all how to test the existence of a solu-
tion to this query in time linear in the size of the database.
The problem is similar to the one of finding a triangle in
a graph, for which the best know algorithm has complexity
even slightly worse than matrix multiplication [2]. If the de-
gree of the input structure is bounded by a constantd, we
can test the existence of a solution in linear time by the fol-
lowing algorithm. We first go through all edges(x, y) of
the database and addy to a list associated tox andx to a
list associated toy. It remains now to go through all nodes
y of the database, consider all pairs(x, z) of nodes in the
associated list (the number of such pairs is bounded byd2)
and then test whether there is an edge betweenx andz (by
testing whetherx is in the list associated toz).

We aim at generalizing this kind of reasoning to structures
with bounded expansion.

Given a queryq, we care about “enumerating”q(D) effi-
ciently. LetC be a class of structures. For a queryq(x̄), the
enumeration problem ofq overC is, given a databaseD ∈ C,
to output the elements ofq(D) one by one with no repetition.
The maximal time between any two consecutive outputs of
elements ofq(D) is calledthe delay. The definition below re-
quires a constant time between any two consecutive outputs.
We formalize these notions in the forthcoming sections.

2.1 Model of computation and enumeration
We use Random Access Machines (RAM) with addition

and uniform cost measure as a model of computation. For
further details on this model and its use in logic see [9].
In the sequel we assume that the input relational structure
comes with a linear order on the domain. If not, we use
the one induced by the encoding of the database as a word.
Whenever we iterate through all nodes of the domain, the
iteration is with respect to the initial linear order.

We say that the enumeration problem ofq over a classC of
structures is in the class CONSTANT-DELAY lin, or equivalently

that we can enumerateq overC with constant delay, if it can
be solved by a RAM algorithm which, on inputD ∈ C, can
be decomposed into two phases:

• a precomputationphase that is performed in timeO(||D||),
• an enumeration phase that outputsq(D) with no rep-

etition and a constant delay between two consecutive
outputs. The enumeration phase has full access to the
output of the precomputation phase but can use only a
constant total amount of extra memory.

Notice that if we can enumerateq with constant delay,
then all answers can be output in timeO(||D|| + |q(D)|) and
the first output is computed in time linear in||D||. In the par-
ticular case of boolean queries, the associated model check-
ing problem must be solvable in time linear in||D||.

We may in addition require that the enumeration phase
outputs the answers toq using the lexicographical order. We
then say that we can enumerateq overC with constant delay
in lexicographical order.

EXAMPLE A-2. Over the class of all graphs, we cannot
enumerate pairs of nodes at distance 2 with constant de-
lay unless the Boolean Matrix Multiplication problem can
be solved in quadratic time [6]. However, over the class of
graphs of degreed, there is a simple constant delay enumer-
ation algorithm. During the preprocessing phase, we asso-
ciate to each node the list of all its neighbors at distance 2.
This can be done in time linear in the database as in Ex-
ample B-1. We then color in blue all nodes having a non
empty list and make sure each blue node points to the next
blue node (according to the linear order on the domain).
This also can be done in time linear in the database and
concludes the preprocessing phase. The enumeration phase
now goes through all blue nodesx using the pointer struc-
ture and, for each of them, outputs all pairs(x, y) wherey
is in the list associated tox.

EXAMPLE B-2. Over the class of all graphs, the query
of this example cannot be enumerated in constant delay be-
cause, as mentioned in Example B-1, testing whether there is
one solution is already non linear. Over the class of graphs
of bounded degree, there is a simple constant delay enumer-
ation algorithm, similar to the one from Example A-2.

Note that in general constant delay enumeration algorithms
are not closed under any boolean operations. For instance
it is not because we can enumerateq andq′ with constant
delay, that we can enumerateq ∨ q′ with constant delay as
enumerating one query after the other would break the “no
repetition” requirement. However, if we can enumerate with
constant delay in the lexicographical order, then a simple ar-
gument that resembles the problem of merging two sorted
lists shows closure under union:

LEMMA 1. If both queriesq(x̄) and q′(x̄) can be enu-
merated in lexicographical order with constant delay then
the same is true forq(x̄) ∨ q′(x̄).
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It will follow from our results that the enumeration prob-
lem of FO over the class of structures with “bounded ex-
pansion” is in CONSTANT-DELAY lin. The notion of bounded
expansion was defined in [16] for graphs and then it was gen-
eralized to structures via their Gaifman or Adjacency graphs.
We start with defining it for graphs.

2.2 Graphs with bounded expansion and aug-
mentation

In this paper a graph is a directed graph with colors on
vertices. We can then view a graph as a relational structure
G = (V,E, P1, . . . , Pl), whereV is the set of nodes,E ⊆
V 2 is the set of oriented edges and, for each1 ≤ i ≤ l, Pi
is a predicate of arity1. A pair (u, v) ∈ E represents an
edge from nodeu to nodev. The in-degreeof a nodev is
the number of nodesu such that(u, v) ∈ E. By ∆−(G) we
mean the maximal in-degree of a node ofG.

In [16] several equivalent definitions of bounded expan-
sion were shown. We will not use here the initial definition
but the one exploiting the notion of “augmentations”. The
interested reader can find in Appendix 8.1 the initial defini-
tion of bounded expansion.

Let G be a graph. A1-transitive fraternal augmentation
of G is any graphH with the same vertex set asG and the
same colors of vertices, including all edges ofG (with their
orientation) and such that for any three verticesx, y, z of G
we have the following:

(transitivity) if (x, y) and(y, z) are edges inG, then(x, z)
is an edge inH,

(fraternity) if (x, z) and(y, z) are edges inG, then at least
one of the edges:(x, y), (y, x) is in H,

(strictness) moreover, ifH contains an edge that was not
present inG, then it must have been added by one of
the previous two rules.

Note that the notion of1-transitive fraternal augmentation
is not a deterministic operation. Although transitivity in-
duces precise edges, fraternity implies nondeterminism and
thus there can possibly be many different1-transitive frater-
nal augmentations. We care here about choosing the orienta-
tions of the edges resulting from the fraternity rule in order
to minimize the maximal in-degree.

Following [17] we fix a deterministic algorithm comput-
ing a “good” choice of orientations of the edges induced by
the fraternity property. The precise definition of the algo-
rithm is not important for us, it only matters here that the
algorithm runs in time linear in the size of the input graph
(see Lemma 2 below). With this algorithm fixed, we can
now speak ofthe 1-transitive fraternal augmentation ofG.

Let G be a graph. Thetransitive fraternal augmentation
of G is the sequenceG = G0 ⊆ G1 ⊆ G2 ⊆ . . . such that
for eachi ≥ 1 the graphGi+1 is the1-transitive fraternal
augmentation ofGi. We will say thatGi is thei-th augmen-
tation ofG.

DEFINITION 1. [16] Let C be a class of graphs.C has
bounded expansion if there exists a functionΓC : N → R

such that for each graphG ∈ C the transitive fraternal aug-
mentationG = G0 ⊆ G1 ⊆ G2 ⊆ . . . of G is such that for
eachi ≥ 0 we have∆−(Gi) ≤ ΓC(i).

Consider for instance a graph of degreed. Notice that the
1-transitive fraternal augmentation introduces an edge be-
tween nodes that were at distance at most 2 in the initial
graph. Hence, when starting with a graph of degreed, we
end up with a graph of degree at mostd2. This observa-
tion shows that the class of graphs of degreed has bounded
expansion as witnessed by the functionΓ(i) = d2

i

. Exhibit-
ing the functionΓ for the other examples of classes with
bounded expansion mentioned in the introduction: bounded
treewidth, planar graphs, graphs excluding at least one mi-
nor, requires more work [16].

The following lemma shows that within a classC of bounded
expansion thei-th augmentation ofG ∈ C can be computed
in linear time.

LEMMA 2. [17] Let C be a class of bounded expansion.
For eachG ∈ C and eachi, Gi is computable fromGi−1 in
timeO(||Gi−1||).

In particular, Lemma 2 implies that for eachG ∈ C and
eachi, Gi is computable fromG in timeO(||G||).

2.3 Graphs of bounded in-degree as functional
structures

For the rest of this section we fix a classC of graphs with
bounded expansion and letΓC be the function given by Def-
inition 1. For any graphG ∈ C its transitive fraternal aug-
mentationG = G0 ⊆ G1 ⊆ G2 ⊆ . . . is such that for all
i, Gi has in-degree bounded byΓC(i). It will be convenient
for us to represent the graphsGi as functional structures.

A functional signatureis a tupleσ = (f1, . . . , fl, P1, . . . , Pm),
eachfi being a functional symbol of arity1 and eachPi be-
ing an unary predicate. Afunctional structureoverσ is then
defined as for relational structures. FO is defined as usual
over the functional signature. In particular, it can use atoms
of the formf(f(f(x))), which is crucial for the quantifier
elimination step of Section 3 as the usual relational repre-
sentation would require existential quantification for denot-
ing the same element. A graphG of in-degreel and colored
with m colors can be represented as a functional structure
~G, where the unary predicates encode the various colors and
v = fi(u) if v is theith element (according to some arbitrary
order that will not be relevant in the sequel) such that(v, u)
is an edge ofG. We call such nodev the ith predecessorof
u (where “ith predecessor” should really be viewed as an ab-
breviation for “the nodev such thatfi(u) = v” and not as a
reference to the chosen order). If we do not care about thei
and we only want to say thatv is the image ofu under some
function, we call it apredecessorof u. GivenG ∈ C we de-
fine ~G to be the functional representation ofG as described
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above. Note that~G is computable in time linear in||G|| and
that for each first order queryφ(x̄) one can easily compute a
first order queryψ(x̄) such thatφ(G) = ψ(~G).

EXAMPLE A-3. With the functional point of view, the query
computing nodes at distance 2 is of the form:

∨

f,g∈σ

f(g(x)) = y ∨ g(f(y)) = x ∨ f(x) = g(y) ∨

∃z f(z) = x ∧ g(z) = y

where there is one disjunct per possible orientation of the
edges on the path fromx to y. We have removed the inner
nodez whenever this was possible.

EXAMPLE B-3. Similarly, the query of Example B-1 is
equivalent to:

∨

f,g∈σ

∧

h∈σ

(h(x) 6= z ∧ h(z) 6= x)

∧ [(f(x) = y ∧ g(y) = z)

∨ (x = f(y) ∧ g(y) = z)

∨ (f(x) = y ∧ y = g(z))

∨ (x = f(y) ∧ y = g(z))].

Recall that the augmentation steps only introduce new edges
and do not affect the vertex set. In particular, extra function
symbols need to be added in order to encode the graph re-
sulting from an augmentation step. However, the definition
of bounded expansion guarantees that the number of extra
function symbols needed when moving from thei-th aug-
mentation to(i+1)-th augmentation is bounded byΓC(i+1)
and does not depend on the graph.

From this it follows that we have functional signatures
σC(0) ⊆ σC(1) ⊆ σC(2) ⊆ . . . such that for any graph
G ∈ C and for alli:

1. ~Gi is a functional structure overσC(i),

2. ~Gi ⊆ ~Gi+1 and ~Gi+1 is computable in linear time
from ~Gi,

3. for every FO queryφ(x̄) overσC(i) and everyj ≥ i

we have thatφ(~Gi) = φ(~Gj).

We denote byαC(i) the number of function symbols of
σC(i). It follows from the discussion above thatαC(i) =
Σj≤iΓC(j). It would be tempting to reduce this number by
reusing function symbols, but that would then be problem-
atic to enforce 3. (See Appendix 8.2.)

We say that a functional signatureσ′ is arecoloringof σ if
it extendsσ with some extra unary predicates (colors), while
the functional part remains intact. Similarly, a functional

structure~G
′

over σ′ is a recoloring of ~G over σ if σ′ is a

recoloring ofσ and ~G
′

is aσ′-expansion of~G (i.e. it does
not differ from~G on the predicates inσ). We writeφ is over
a recoloring ofσ if φ is overσ′ andσ′ is a recoloring ofσ.

For eachp ≥ 0 we defineCp to be the class of all recol-

orings~G
′

p of ~Gp for someG ∈ C. In other wordsCp is the

class of functional representations of all recolorings of all
p-th augmentations of graphs fromC. Note that all graphs
from Cp are recolorings of a structure inσC(p), hence they
use at mostαC(p) function symbols.

From now on we assume that all graphs fromC and all
queries are in their functional representation. It followsfrom
the discussion above that this is without loss of generality.

2.4 From structures to graphs
Theadjacency graphof a relational structureD, denoted

by Adjacency(D), is a functional graph defined as follows.
The set of vertices of Adjacency(D) is D ∪ T whereT is
the set of tuples occurring in some relation ofD. For each
relationRi in the schema ofD, there is a unary symbolPRi

coloring the elements ofT belonging toRi. For each tuple
t = (a1, · · · , ari) such thatD |= Ri(t) for some relationRi
of arity ri, we have an edgefj(t) = aj for all j ≤ ri.

OBSERVATION 1. It is immediate to see that for every re-
lational structureD we can compute Adjacency(D) in time
O(||D||).

Let C be a class of relational structures. We say thatC
hasbounded expansionif the classC’ of adjacency graphs
of structures fromC has bounded expansion.

REMARK 1. In the literature, for instance [10, 12], a
classC of relational structures is said to have bounded ex-
pansion if the class of their Gaifman graphs has bounded ex-
pansion. Our definition is more liberal (possibly equivalent)
as shown in Appendix 8.3. As it gives directly an oriented
graph, it is more convenient for us.

Let ΓC′ be the function given by Definition 1 forC’. The
following lemma is immediate.

LEMMA 3. Let C be a class of relational structures with
bounded expansion and letC’ be the underlying class of ad-
jacency graphs. Letφ(x̄) ∈ FO. In time linear in the size
of φ we can find a queryψ(x̄) overσC′(0) such that for all
D ∈ C we haveφ(D) = ψ(Adjacency(D)).

As a consequence of Lemma 3 it follows that model check-
ing, enumeration and counting of first-order queries over re-
lational structures reduce to the graph case. Therefore in
the rest of the paper we will only concentrate on the graph
case (viewed as a functional structure), but the reader should
keep in mind that all the results stated over graphs extend to
relational structures via this lemma.

2.5 Normal form for quantifier-free first-order
queries

We conclude this section by proving a normal form on
quantifier-free FO formulas. This normal form will be the
ground for all our algorithms later on. It basically says that,
modulo performing some extra augmentation steps, a for-
mula has a very simple form.
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Fix classC of graphs with bounded expansion. Recall that
we are now implicitly assuming that graphs are represented
as functional structures.

A formula is simple if it does not contain atoms of the
form f(g(x)), i.e. it does not contain any compositions of
functions. Observe that, modulo augmentations, any for-
mula can be transformed into a simple one.

LEMMA 4. Let ψ(x̄) be a formula over a recoloring of
σC(p). Then, forq = p + |ψ|, there is a simple formula
ψ′(x̄) over a recoloring ofσC(q) such that:

for all ~G ∈ Cp there is a~G
′
∈ Cq computable in time

linear in ||~G|| such thatψ(~G) = ψ′(~G
′
).

PROOF. This is a simple consequence of transitivity. Any
composition of two functions in~G represents a transitive pair
of edges and becomes an single edge in the1-augmentation
~H of ~G. Thenf(g(x)) over~G is equivalent toh(x)∧Pf,g,h(x)
over ~H, where the newly introduced colorPf,g,h holds for
those nodesv, for which thef(g(v)) = h(v). As the nest-
ing of compositions of functions is at most|ψ|, the result
follows. The linear time computability is immediate from
Lemma 2.

We make one more observation before proving the normal
form:

LEMMA 5. Let ~G ∈ Cp. Let u be a node of~G. Let S
be all the predecessors ofu in ~G and setq = p + ΓC(p).

Let ~G
′
∈ Cq be the(q − p)-th augmentation of~G. There

exists a linear order< induced onS by ~G
′
, such that for all

v, v′ ∈ S, v < v′ impliesv′ = f(v) is an edge of~G
′

for
some functionf fromσC(q).

PROOF. This is because all nodes ofS are fraternal and
the size ofS is at mostΓC(p). Hence, after one step of
augmentation, all nodes ofS are pairwise connected and,
after at mostΓC(p)−1 further augmentation steps, if there is
a directed path from one nodeu of S to another nodev of S,
then there is also a directed edge fromu to v. By induction
on |S| we show that there exists a nodeu ∈ S such that for
all v ∈ S there is an edge fromv to u. If |S| = 1 there is
nothing to prove. Otherwise fixv ∈ S and letS′ = S \ {v}.
By induction we get au in S′ satisfying the properties. If
there is an edge fromv to u, u also works forS and we are
done. Otherwise there must be an edge fromu to v. But
then there is a path of length 2 from any node ofS′ to v. By
transitivity this means that there is an edge from any node of
S′ to v andv is the node we are looking for.

We then setu as the minimal element of our order onS
and we repeat this argument withS \ {u}.

Lemma 5 justifies the following definition. Ap-typeτp(u)
of a nodeu of ~G ∈ Cp is a quantifier-free formula expressing

all the properties ofu in the(q − p)-th augmentation~G
′

of
~G, whereq is given by Lemma 5. In particular, it induces

a linear order on its predecessors as described by Lemma 5
and specifies all the relations between these predecessors in
~G

′
. Note that for a givenp there are only finitely many pos-

siblep-types and that each of them can be specified with a
conjunctive formula overσC(q).

We now state the normal form result.

PROPOSITION 1. Let φ(x̄y) be a simple quantifier-free
query over a recoloring ofσC(p). There existsq that de-
pends only onp andφ and a quantifier-free queryψ over a
recoloring ofσC(q) that is a disjunction of formulas:

ψ1(x̄) ∧ τ(y) ∧∆=(x̄y) ∧∆6=(x̄y), (1)

whereτ(y) contains ap-type ofy; ∆=(x̄y) is either empty
or contains one clause of the formy = f(xi) or one clause
of the formf(y) = g(xi) for some suitablei, f andg; and
∆6=(x̄y) contains arbitrarily many clauses of the formy 6=
f(xi) or f(y) 6= g(xj). Moreover,ψ is such that:

for all ~G ∈ Cp there is a~G
′
∈ Cq computable in time

linear in ||~G|| with φ(~G) = ψ(~G
′
).

PROOF. Setq as given by Lemma 5. We first putφ into a
disjunctive normal form (DNF) and in front of each such dis-
junct we add a big disjunction over all possiblep-types ofy
(recall that a type can be specified as a conjunctive formula).
We deal with each disjunct separately.

Note that each disjunct is a query overσC(q) of the form:

ψ1(x̄) ∧ τ(y) ∧∆=(x̄y) ∧∆6=(x̄y),

where all sub-formulas except for∆= are as desired. More-
over,ψ1(x̄), ∆=(x̄y) and∆6=(x̄y) are in fact queries over
σC(p). At this point∆= contains arbitrarily many clauses of
the formy = f(xi) or f(y) = g(xi). If it contains at least
one clause of the formy = f(xi), we can replace each other
occurrence ofy by f(xi) and we are done.

Assume now that∆= contains several conjuncts of the
formfi(y) = g(xk). Assume wlog thatτ is such thatf1(y) <
f2(y) < · · · , wheref1(y), f2(y), · · · are all the predeces-
sors ofy from σC(p). Let i0 be the smallest indexi such
that a clause of the formfi(y) = g(xk) belongs to∆=. We
havefi0(y) = g(xk) in ∆= and observe thatτ specifies for
i < j a functionhi,j in σC(q) such thathi,j(fi(y)) = fj(y).
Then, asy is of typeτ , a clause of the formfj(y) = h(xk′ )
with i0 < j is equivalent tohi0,j(g(xk)) = h(xk′ ).

EXAMPLE A-4. Let us see what Lemma 4 and the nor-
malization algorithm do forp = 0 and some of the disjuncts
of the query of Example A-3:

In the case off(g(x)) = y note that by transitivity, in the
augmented graph, this clause is equivalent to one of the form
y = h(x) ∧ Pf,g,h(x) (this case is handled by Lemma 4).

Consider now∃z f(z) = x ∧ g(z) = y. It will be conve-
nient to view this query whenz plays the role ofy in Proposi-
tion 1. Notice that in this case it is not in normal form as∆=

contains two elements. However, the two edgesf(z) = x
andf(z) = y are fraternal. Hence, after one augmentation
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step, a new edge is added betweenx and y and we either
havey = h(x) or x = h(y) for someh in the new signature.

Let τh,f,g(z) be 0-type stating thath(f(z)) = g(z) and
τh,g,f (z) be 0-type stating thath(g(z)) = f(z). It is now
easy to see that the query∃z f(z) = x ∧ g(z) = y is
equivalent to

∃z
∨

h

y = h(x) ∧ τh,f,g(z) ∧ f(z) = x ∨

x = h(y) ∧ τh,g,f (z) ∧ f(z) = x

3. MODEL CHECKING
In this section we show that the model checking problem

of FO over a class of structures with bounded expansion can
be done in time linear in the size of the structure. This gives
a new proof of the result of [10]. Recall that by Lemma 3 it
is enough to consider oriented graphs viewed as functional
structures.

THEOREM 1. [10] Let C be a class of graphs with bounded
expansion and letψ be a sentence ofFO. Then, for all~G ∈
C, testing whether~G |= ψ can be done in timeO(||~G||).

The proof of Theorem 1 is done using a quantifier elimi-
nation procedure: given a queryψ(x̄) with at least one free
variable we can compute a quantifier-free queryφ(x̄) that is
“equivalent” toψ. Again, the equivalence should be under-
stood modulo some augmentation steps for a number of aug-
mentation steps depending only onC and|ψ|. When starting
with a sentenceψ we end-up withφ being a boolean com-
bination of formulas with one variable. Those can be easily
tested in linear time in the size of the augmented structure,
which in turns can be computed in time linear from the ini-
tial structure by Lemma 2. The result follows. We now state
precisely the quantifier elimination step:

PROPOSITION 2. LetC be a class of graphs with bounded
expansion witnessed by the functionΓC . Let ψ(x̄y) be a
quantifier-free formula over a recoloring ofσC(p). Then one
can compute aq and a formula quantifier-free formulaφ(x̄)
over a recoloring ofσC(q) such that:

for all ~G ∈ Cp there is a~G
′
∈ Cq such that:

φ(~G
′
) = (∃yψ)(~G)

Moreover,~G
′
is computable in timeO(||~G||).

PROOF. Wlog (modulo augmentations, see Lemma 4 for
details) we assume thatψ is simple.

We apply Proposition 1 toψ andp and obtain aq and an
equivalent formula in DNF, where each disjunct has the spe-
cial form given by (1). As disjunction and existential quan-
tification commute, it is enough to treat each part of the dis-
junction separately.

We thus assume thatψ(x̄y) is a quantifier-free conjunctive
formula over a recoloring ofσC(q) of the form (1):

ψ1(x̄) ∧ τ(y) ∧∆=(x̄y) ∧∆6=(x̄y).

We assume wlog thatτ contains ap-type enforcingf1(y) <
f2(y) < · · · , wheref1(y), f2(y), · · · are all the images of
y by a function fromσC(p). Moreover, for eachi < j, τ
contains an atom of the formhi,j(fi(y)) = fj(y) for some
functionhi,j ∈ σC(q).

If ∆= is y = g(xk) for some functiong and somek, then
we replacey with g(xk) everywhere inψ(x̄y) resulting in a
formulaφ(x̄) having obviously the desired properties.

Assume now that∆= is f(y) = g(xi). Wlog assume that
f is fi0 in the order specified by thep-typeτ and thati = 1.
Hence we havefi0(y) = g(x1) in ∆=.

We will introduce extra colors in order to simulate all in-
teractions betweeny andx̄.

Let ~G
′′

be the(q−p)-th augmentation of~G. We construct

in time linear in||~G
′′
|| a set WITNESS(v) for eachv of ~G

′

such that for all tuples̄v of ~G
′′
, if ~G

′′
|= ψ(v̄u) for some

nodeu, then there is a nodeu′ ∈ WITNESS(g(v1)) such

that ~G
′
|= ψ(v̄u′). Moreover, for allv, |WITNESS(v)| ≤ N

whereN is a number depending only onp. We then encode
these witness sets using suitable extra colors.

Computation of the Witness function.
We start by initializing WITNESS(v) = ∅ for all v.

We then successively investigate all nodesu of ~G
′′

and do

the following. If ~G
′′
|= ¬τ(u) then we move on to the next

u. If ~G
′′
|= τ(u) then letu1, · · · , ul be the current value of

WITNESS(fi0(u)).
Let βp beαC(p)(αC(p) + 1)|x̄|+ 1.
Let i be minimal such that there existsj with fi(uj) =

fi(u) and seti = αC(p) + 1 if such ani does not exists.
Let Si = {fi−1(uj) | fi(uj) = fi(u)}, wheref0(uj) is uj
in the case wherei = 1. If |Si| ≤ βp then we addu to
WITNESS(fi0(u)).

The algorithm is linear time and the size of WITNESS(v) ≤
(βp+1)βp+1. It remains to show that it has the desired prop-
erties.

Analysis of the Witness function.
Assume~G

′′
|= ψ(v̄u). If u ∈ WITNESS(g(v1)) we are

done. Otherwise note thatfi0(u) = g(v1) and that~G
′′
|=

τ(u). Let i andSi be as described in the algorithm when
investigatingu. As u was not added to WITNESS(fi0(u)),
we must have|Si| > βp. Let Si = {ui1 , · · · , uβp

, · · · } be
the corresponding elements of WITNESS(g(v1)). Among
these data values, for eachj at mostαC(p) of them may be
a predecessor ofvj . Similarly, for eachi′ ≤ i and eachj, at
mostαC(p) of them may be such that their image byfi′ is
a predecessor ofvj . For eachi′ > i their image is exactly
fi′(u) and it does not falsify any inequality conjuncts ofψ.
Hence, at mostαC(p)(αC(p) + 1)|v̄| of them may falsify at
least one of the inequality conjuncts ofψ. We can therefore
find in WITNESS(g(v1)) at least one element satisfying the
formula, as|Si| > αC(p)(αC(p) + 1)|v̄|.

7



Recoloring of~G
′′
.

Based on WITNESS we recolor~G
′′

as follows. Letγp =

(βp + 1)βp+1. For eachv ∈ ~G
′′

we order WITNESS(v). We
can now speak of theith witness ofv.

For eachi ≤ γp we introduce a new unary predicatePi
and for eachv ∈ ~G

′′
we setPi(u) if W ITNESS(u) contains

at leasti elements.
For eachi ≤ γp and eachh, h′ ∈ αC(q) we introduce

a new unary predicatePi,h,h′ and for eachv ∈ ~G
′′

we set
Pi,h,h′(v) if the ith witness ofh(v) is an elementu with
h′(u) = v.

For eachi ≤ γp, h ∈ αC(q) we introduce a new unary

predicateQi,h and for eachv ∈ ~G
′′

we setQi,h(v) if the ith

witness ofh(v) is v.

We denote by~G
′
the resulting graph and notice that it can

be computed in linear time from~G.
Finally, note that ify is theith witness ofg(x1), the equal-

ity fj(y) = h(xk) with j < i0 is equivalent over~G
′

to
hj,i0(h(xk)) = g(x1) ∧ Pi,hj,i0 ,fj

(h(xk)) and the equality

y = h(xk) is equivalent over~G
′

to fi0(h(xk)) = g(x1) ∧
Qi,fi0 (h(xk)). From the definition ofp-type, the equality
fj(y) = h(xk) with j > i0 is equivalent tohi0,j(g(x1)) =
h(xk).

Computation ofφ.
In view of the analysis above,ψ(x̄, y) is equivalent to a

formula:
∨

i≤γp

ψ1(x̄) ∧ ψ
i(x̄)

whereψi(x̄) checks that theith witness ofg(x1) makes the
initial formula true. In view of the above, this formulaψi(x̄)
is defined by

Pi(g(x1)) ∧
∧

fj(y) 6=h(xk)∈∆ 6=

j<i0

¬
(

hj,i0(h(xk)) = g(x1) ∧ Pi,hj,i0 ,fj
(h(xk))

)

∧
∧

fj(y) 6=h(xk)∈∆ 6=

j≥i0

hi0,j(g(x1)) 6= h(xk)

∧
∧

y 6=h(xk)∈∆ 6=

¬
(

fi0 (h(xk)) = g(x1) ∧Qi,fi0
(h(xk))

)

The special case when∆= is empty is a simpler version of
the previous case, only this time it is enough to construct a
set WITNESS which does not depend onv. For details see
Appendix 8.4.

EXAMPLE A-5. Consider one of the quantified formulas
as derived by Example A-4:

∃z y = h(x) ∧ τh,f,g(z) ∧ f(z) = x

The resulting quantifier-free query has the form:

P (x) ∧ h(x) = y

whereP (x) is a newly introduced color saying “∃z τh,f,g(z)∧
f(z) = x”. The key point is that this new predicate can be
computed in linear time by iterating through all nodesz,
testing whetherτh,f,g(z) is true and, if this is the case, col-
oring f(z) with colorP .

Applying the quantifier elimination process from inside
out using Proposition 2 for each step and then applying Lemma4
to the result yields:

THEOREM 2. Let C be a class of graphs with bounded
expansion. Letψ(x̄) be a query ofFO over a recoloring of
σC(0) with at least one free variable. Then one can com-
pute ap and a simple quantifier-free formulaφ(x̄) over a
recoloring ofσC(p) such that:

∀~G ∈ C, we can construct in timeO(||~G||) a graph~G
′
∈ Cp

such that

φ(~G
′
) = ψ(~G)

We will make use of the following useful consequence of
Theorem 2:

COROLLARY 1. LetC be a class of graphs with bounded
expansion and letψ(x̄) be a formula ofFO overσC(0) with
at least one free variable. Then, for all~G ∈ C, after a pre-
processing in timeO(||~G||), we can test, given̄u as input,
whether~G |= ψ(ū) in constant time.

PROOF. By Theorem 2 it is enough to consider quantifier-
free simple queries. Hence it is enough to consider a query
consisting in a single atom of eitherP (x) or P (f(x)) or
x = f(y) or f(x) = g(y).

During the preprocessing phase we associate to each node
v of the input graph a listL(v) containing all the predicates
satisfied byv and all the images ofv by a function symbol
from the signature. This can be computed in linear time by
enumerating all relations of the database and updating the
appropriate lists with the corresponding predicate or the cor-
responding image.

Now, because we use the RAM model, givenu we can
in constant time recover the listL(u). Using those lists it
is immediate to check all atoms of the formula in constant
time.

Theorem 1 is a direct consequence of Theorem 2 and Corol-
lary 1: Starting with a sentence, and applying Theorem 2
for eliminating quantifiers from inside out we end up with
a Boolean combination of formulas with one variable. Each
such formula can be tested inO(||~G||) by iterating through all
nodesv of ~G and in constant time (using Corollary 1) check-
ing if v can be substituted for the sole existentially quantified
variable.

On top of Theorem 1 the following corollary is immediate
from Theorem 2 and Corollary 1:

COROLLARY 2. LetC be a class of graphs with bounded
expansion and letψ(x) be a formula ofFO overσC(0) with
one free variable. Then, for all~G ∈ C, computing the set
ψ(~G) can be done in timeO(||~G||).
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4. ENUMERATION
In this section we consider first-order formulas with free

variables and show that we can enumerate their answers over
any class with bounded expansion with constant delay. More-
over, assuming a linear order on the domain of the input
structure, we will see that the answers can be output in the
lexicographical order. As before we only state the result for
graphs, but it immediately extends to arbitrary structuresby
Lemma 3.

THEOREM 3. LetC be a class of graphs with bounded ex-
pansion and letφ(x̄) be a first-order query overσC(0). Then
the enumeration problem ofφ overC is in CONSTANT-DELAY lin.
Moreover, in the presence of a linear order on the vertices
of the input graph, the answers toφ can be output in lexico-
graphical order.

PROOF. Fix a classC of graphs with bounded expansion
and a queryφ(x̄) with k free variables. Let~G be the input
graph andV be its set of vertices.

The proof is by induction on the number of free variables.
The casek = 1 is done by Corollary 2. Assume now that
k > 1 and thatx̄ andy are the free variables ofφ, where
|x̄| = k − 1.

We apply Theorem 2 to get a simple quantifier-free query

ϕ(x̄y) and a structure~G
′
∈ Cp, for somep that does not

depend on~G, such thatϕ(~G
′
) = φ(~G) and~G

′
can be com-

puted in linear time from~G.
We normalize the resulting simple quantifier-free query

using Proposition 1, and obtain an equivalent quantifier-free

formulaψ and a structure~G
′′
∈ Cq, whereq depends only

on p andϕ, ~G
′′

can be computed in linear time from~G
′
,

ϕ(~G
′
) = ψ(~G

′′
) andψ is a disjunction of formulas of the

form (1):

ψ1(x̄) ∧ τ(y) ∧∆=(x̄y) ∧∆6=(x̄y),

where∆=(x̄y) is either empty or contains one clause of the
form y = f(xi) or one clause of the formf(y) = g(xi) for
some suitablei, f andg; and∆6=(x̄y) contains arbitrarily
many clauses of the formy 6= f(xi) or f(y) 6= g(xj).

By Lemma 1 it is enough to show that we can enumerate
each disjunct separately. In the sequel we then assume that
ψ has the form described in (1). We letψ′(y) be the formula
∃x̄ψ(x̄y) andψ′′(x̄) the formula∃yψ(x̄y).

If ∆= contains an equality of the formy = f(xi) then we
replacey by f(xi) in τ and∆6=, enumerate by induction the
formulaψ′′ and replace each of its outputā with (āf(ai)) in
order to obtain the desired constant delay enumeration algo-
rithm. We therefore now assume that∆= does not contain
such equality.

We now define two functionsL : V → 2V andW :
V k−1 → V depending on whether∆= is empty or consists
of a single clause of the formf(y) = g(xi). If ∆= is empty

we pick an arbitrary nodew in ~G
′′

and setL(w) = ψ′(~G
′′
),

L(v) = ∅ for v 6= w, andW (v̄) = w for all tuplesv̄. If

∆= = {f(y) = g(xi)} we setW (ā) = g(ai) and defineL
using the following procedure. We initializeL(v) to ∅ for

eachv ∈ V . Then, for eachv ∈ ψ′(~G
′′
), we addv to the set

L(f(v)).

Notice thatL can be computed in time linear in||~G
′′
|| (us-

ing Corollary 2), that each listL(v) is sorted with respect
to the linear order on the domain and that, givenv̄, W (v̄)
can be computed in constant time. Moreover, for eachv̄u,
~G

′′
|= ψ(v̄u) impliesu ∈ L(W (v̄)) and if u ∈ L(W (v̄))

then∆=(v̄u) is true.
By induction we can enumerateψ′′(x̄) with constant de-

lay.
On top of the linear time preprocessing necessary for enu-

meratingψ′′ we do the following extra preprocessing. We
first computeL(v) for all v ∈ V . Then, for eachv ∈ V , we
perform the following procedure onL(v). Each procedure
will work in time linear in the size ofL(v), hence the total
preprocessing will take timeO(|V |).

Fix v and setL = L(v). We denote by< the order onL.
(Recall that this order is consistent with the initial orderon
the domain.)

ForS1, . . . , SαC(q) ⊆ V we define
NEXTf1,S1,...,fαC(q),SαC(q)

(u) to be the first elementw ≥ u

of L such thatf1(w) /∈ S1, . . . , andfαC(q)(w) /∈ SαC(q). If
suchw does not exist, the value ofNEXTf1,S1,...,fαC(q),SαC(q)

(u)

is NULL. When allSi are empty, we write next∅(u) and by
the above definitions we always have next∅(u) = u. We
denote such functions asshortcut pointers ofu. We write
NEXTf1,S′

1,...,fαC(q),S
′
αC(q)

(u) � NEXTf1,S1,...,fαC(q),SαC(q)
(u)

if for each1 ≤ i ≤ αC(q) we haveS′
i ⊆ Si. Note that

for a givenu the � relation is a partial order on the set
of shortcut pointers ofu. A trivial observation is that if
NEXTf1,S′

1,...,fαC(q),S
′
αC(q)

(u) � NEXTf1,S1,...,fαC(q),SαC(q)
(u),

then
NEXTf1,S′

1,...,fαC(q),S
′
αC(q)

(u) ≤ NEXTf1,S1,...,fαC(q),SαC(q)
(u).

The sizeof a shortcut pointerNEXTf1,S1,...,fαC(q),SαC(q)
(u)

is the sum of sizes of the setsSi.
In order to avoid writing too long expressions containing

shortcut pointers, we introduce the following abbreviations:

• NEXTf1,S1,...,fαC(q),SαC(q)
(u) is denoted withNEXT~S(u),

• NEXTf1,S1,...,fi,Si∪{ui},...,fαC(q),SαC(q)
(u) is denoted with

NEXT~S[Si+={ui}]
(u).

Setβq = (k − 1) · αC(q)
2.

Computing all shortcut pointers of sizeβq would take
more than linear time. We therefore compute a subset of
those, denoted SCL, that will be sufficient for our needs.
SCL is defined in an inductive manner. For allu, next∅(u) ∈
SCL. Moreover, if the shortcut pointer NULL6= NEXT~S(u) ∈
SCL and has a size smaller thanβq, then, for eachi,
NEXT~S[Si+={ui}]

(u) ∈ SCL, whereui = fi(NEXT~S(u)).
We then say thatNEXT~S(u) is theorigin of NEXT~S[Si+={ui}]

(u).
Note that SCL contains all the shortcut pointers of the form
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NEXTfi,{fi(u)}(u) for u ∈ L and these are exactly the short-
cut pointers ofu of size1. By SCL(u) ⊆ SCL we denote
the shortcut pointers ofu that are in SCL.

The set SCL has the following properties:

CLAIM 1. LetNEXT~S(u) be a shortcut pointer of size not
greater thanβq. Then there existsNEXT ~S′(u) ∈ SCL such
that NEXT~S(u) = NEXT ~S′(u). Moreover, suchNEXT ~S′(u)
can be found in constant time.

PROOF. The desired shortcut pointer isNEXT ~S′(u) ∈ SCL
that is maximal in terms of size shortcut pointer ofu such
thatNEXT ~S′(u) � NEXT~S(u). (See Appendix 8.5.)

CLAIM 2. There exists a constantζ(q, k) such that for
every nodeu we have|SCL(u)| ≤ ζ(q, k).

PROOF. The proof is a direct consequence of the recur-
sive definition of SCL(u). (See Appendix 8.5.)

The following claim guarantees that SCL can be com-
puted in linear time and has therefore a linear size.

CLAIM 3. SCL can be computed in time linear in|L|.

PROOF. SCL can be constructed in an inductive manner
starting from the last node on the listL and moving back-
ward. Claim 1 plays the key role in constructing each short-
cut pointer in constant time, while Claim 2 guarantees that
the total size of SCL is linear in|L|. (See Appendix 8.5.)

The computation of SCL concludes the preprocessing phase
and it follows from Claim 3 that it can be done in linear time.
We now turn to the enumeration phase.

We enumerate one by one the solutions toψ′′(x̄) by sim-
ulating the enumeration algorithm obtained from the induc-
tion.

Having a solution̄v to ψ′′ by construction we know that

all nodesu such that~G
′′
|= ψ(v̄u) are inL = L(W (v̄)).

Recall also that all elementsu ∈ L makeτ(u) ∧ ∆=(v̄u)
true. For1 ≤ i ≤ αC(q) we setSi = {g(vj) : g(xj) 6=
fi(y) is a conjunct of∆6=}. Starting withu the first node of
the sorted listL, we apply the following procedure:

1. If u = NULL, finish the nested enumeration procedure
for v̄. If not, let NEXT ~S′(u) be the shortcut pointer
from the application of Claim 1 toNEXT~S(u). Set
u′ = NEXT ~S′(u). If u′ = NULL, finish the nested
enumeration procedure forv̄.

2. If ~G
′′
|= ψ(v̄u′), output(v̄u′).

3. Reinitializeu to the successor ofu′ in L and continue
with Step 1.

We now show that the algorithm is correct, i.e. that it

outputs allψ(~G
′′
) with no repetition.

The algorithm clearly outputs a subset ofψ(~G
′′
) as it tests

whether~G
′′
|= ψ(v̄u′) before outputting tuple(v̄u′).

By the definition of setsSi andNEXT~S(u), for eachu ≤
w < u′ there is a suitablei andj such thatg(vj) = fi(w)
andg(xj) 6= fi(y) is a conjunct of∆6=. This way the algo-
rithm does not skip any solutions at Step 1 and so it outputs

exactlyψ(~G
′′
).

It remain to show that there is a constant time between any
two outputs.

By construction, for each̄v, L = L(W (v̄)) contains an
elementu such that(v̄u) is a solution. We therefore need to
show that there is a constant time between any two outputs
involving an element inL. Step 1 takes constant time due
to Claim 1. From there the algorithm either immediately
outputs a solution at Step 2 or jumps to Step 3. This means

that ~G
′′
6|= ψ(v̄u′), but from the definitions of listL, sets

Si and shortcut pointersNEXT~S(u) it is only the∆6= that is
falsified and it is because of an inequality of the formy 6=
g(xj) for some suitableg andj (whereg may possibly be
identity). This implies thatu′ = g(vj). As all the elements
on L are distinct, the algorithm can skip over Step 2 up to
(k − 1) · (αC(q) + 1) times for each tuplēv (there are up
to that many different images of nodes from̄v underαC(q)
different functions and the initial values of̄v). This way
the delay is bounded by up tok · (αC(q) + 1) consecutive
applications of Claim 1 and is in fact constant.

As the listL was sorted with respect to the linear order on
the domain, it is clear that the enumeration procedure out-
puts the set of solutions in lexicographical order.

This concludes the proof of the theorem.

5. COUNTING
In this section we investigate the problem of counting the

number of solutions to a query, i.e. computing|q(D)|. As
usual we only state and prove our results over graphs but they
generalize to arbitrary relational structures via Lemma 3.

THEOREM 4. Let C be class of graphs with bounded ex-
pansion and letφ(x̄) be a first-order formula. Then, for all
~G ∈ C, we can compute|φ(~G)| in timeO(||~G||).

PROOF. The key idea is to prove a weighted version of
the desired result. Assumeφ(x̄) has exactlyk free variables
and for1 ≤ i ≤ k we have functions#i : V → N. We will
compute in time linear in||~G|| the following number:

|φ(~G)|# :=
∑

ū∈φ(~G)

∏

1≤i≤k

#i(ui).

By setting all#i to be constant functions with value1 we
get the regular counting problem. Hence Theorem 4 is an
immediate consequence of the next lemma.

LEMMA 6. LetC be class of graphs with bounded expan-
sion and letφ(x̄) be a first-order formula with exactlyk free
variables.
For 1 ≤ i ≤ k let #i : V → N be functions such that for
eachv the value of#i(v) can be computed in constant time.
Then, for all~G ∈ C, we can compute|φ(~G)|# in timeO(||~G||).

10



PROOF. The proof is by induction on the number of free
variables.

The casek = 1 is trivial: in time linear in||~G|| we compute
φ(~G) using Corollary 2. By hypothesis, for eachv ∈ φ(~G),
we can compute the value of#1(v) in constant time. There-
fore the value

|φ(~G)|# =
∑

v∈φ(~G)

#1(v)

can be computed in linear time as desired.
Assume now thatk > 1 and thatx̄ and y are the free

variables ofφ, where|x̄| = k − 1.
We apply Theorem 2 to get a simple quantifier-free query

ϕ(x̄y) and a structure~G
′
∈ Cp, for somep that does not

depend on~G, such thatϕ(~G
′
) = φ(~G) and~G

′
can be com-

puted in linear time from~G. Note that|φ(~G)|# = |ϕ(~G
′
)|#,

so it is enough to compute the latter value.
We normalize the resulting simple quantifier-free query

using Proposition 1, and obtain an equivalent quantifier-free

formulaψ and a structure~G
′′
∈ Cq, whereq depends only

on p andϕ, ~G
′′

can be computed in linear time from~G
′
,

ϕ(~G
′
) = ψ(~G

′′
) andψ is a disjunction of formulas of the

form (1):

ψ1(x̄) ∧ τ(y) ∧∆=(x̄y) ∧∆6=(x̄y),

where∆=(x̄y) is either empty or contains one clause of the
form y = f(xi) or one clause of the formf(y) = g(xi) for
some suitablei, f andg; and∆6=(x̄y) contains arbitrarily
many clauses of the formy 6= f(xi) or f(y) 6= g(xj). Note

that |ϕ(~G
′
)|# = |ψ(~G

′′
)|#, so it is enough to compute the

latter value.
Observe that it is enough to solve the weighted counting

problem for each disjunct separately, as we can then com-
bine the results using a simple inclusion-exclusion reason-
ing. In the sequel we then assume thatψ has the form de-
scribed in (1).

The proof now goes by induction on the number of in-
equalities in∆6=. While the inductive step turns out to be
fairly easy, the difficult part is the base step of the induction.

We start with proving the inductive step. Letg(y) 6=
f(xi) be an arbitrary inequality from∆6= (whereg might
possibly be the identity). Letψ− beψ with this inequality
removed andψ+ = ψ− ∧ g(y) = f(xi). Of courseψ and
ψ+ have disjoint sets of solutions and we have:

|ψ(~G
′′
)|# = |ψ−(~G

′′
)|# − |ψ+(~G

′′
)|#.

Note thatψ− andψ+ have one less conjunct in∆6=. The
problem is thatψ+ is not of the form (1) as it may now con-
tain two elements in∆=. However it can be seen that the
removal of the extra equality in∆= as described in the proof
of Proposition 1 does not introduce any new elements in∆6=.
See also Appendix 8.6. We can therefore remove the extra
element in∆+ and assume thatψ+ has the desired form. We
can now use the inductive hypothesis on the size of∆6= to

bothψ− andψ+ in order to compute both|ψ−(~G
′′
)|# and

|ψ+(~G
′′
)|# and derive|ψ(~G

′′
)|#.

It remains to show the base of the inner induction. In the
following we assume that∆6= is empty. The rest of the proof
is a case analysis on the content of∆=. Due to space limita-
tions we analyze in full details only the situation when∆=

consists of an atom of the formy = f(x1). Although this
case is not the most difficult, we find it the most explanatory
and still generic enough.

Assume then that∆= consists of an atom of the formy =
f(x1).

Note that the solutions toψ are of the form(āf(a1)). We
have:

|ψ(~G
′′
)|#=

∑

(ūv)∈ψ(~G′′
)



#k(v)
∏

1≤i≤k−1

#i(ui)





=
∑

(ūf(u1))∈ψ(~G′′
)



#k(f(u1))
∏

1≤i≤k−1

#i(ui)





=
∑

(ūf(u1))∈ψ(~G′′
)



#1(u1)#k(f(u1))
∏

2≤i≤k−1

#i(ui)





In linear time we now iterate through all nodesu in ~G
′′

and
set

#′
1(u) := #1(u) ·#k(f(u))

#′
i(u) := #i(u) for 2 ≤ i ≤ k − 1.

Letϑ(x̄) beψ with all occurrences ofy replaced withf(x1).
We then have:

|ψ(~G
′′
)|# =

∑

(ūf(u1))∈ψ(~G′′
)



#′
1(u1)

∏

2≤i≤k−1

#′
i(ui)





=
∑

ū∈ϑ(~G′′
)

∏

1≤i≤k−1

#′
i(ui)

= |ϑ(~G
′′
)|#′

By induction on the number of free variables, as#′
i(u)

can be computed in constant time for eachi andu, we can

compute|ϑ(~G
′′
)|#′ in time linear in||~G

′′
|| and we are done.

For the case when∆= consists of an atomg(y) = f(x1)
we use the same approach, only this time we set:

#′
1(u) := #1(u) ·

∑

{v∈(∃x̄ψ(x̄y))(~G
′′
)

g(v)=u}

#k(v)

#′
i(u) := #i(u) for 2 ≤ i ≤ k − 1

and conclude with|(∃yψ(x̄y))(~G
′′
)|#′ = |ψ(~G

′′
)|#. For

more details on this and the case when∆= is empty, see
Appendix 8.6.

As we said earlier, Theorem 4 is an immediate consequence
of Lemma 6.
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6. CONCLUSIONS
Queries written in first-order logic can be efficiently pro-

cessed over the class of structures having bounded expan-
sion. We have seen that over this class the problems inves-
tigated in this paper can be computed in time linear in the
size of the input structure. The constant factor however is
not very good. The approach taken here, as well as the ones
of [10, 12], yields a constant factor that is a tower of ex-
ponentials whose height depends on the size of the query.
This nonelementary constant factor is unavoidable already
on the class of unranked trees, assuming FPT6=AW[∗] [11].
In comparison, this factor can be triply exponential in the
size of the query in the bounded degree case [20, 13].

It is possible that the results presented here can be gen-
eralized to a larger class of structures. In [18] the class of
nowhere dense graphs was introduced and it generalizes the
notion of bounded expansion. It seems that nowhere dense
graphs do enjoy good algorithmic properties. However, we
do not know yet whether the model checking problem of
first-order logic can be done in linear time over nowhere
dense structures. Actually, we do not even know whether
the model checking problem is Fixed Parameter Tractable
(FPT) over nowhere dense graphs.

The class of nowhere dense structures seems to be the
limit for having good algorithmic properties for first-order
logic. Indeed, it is known that the model checking prob-
lem of first-order logic over a class of structures that is not
nowhere dense cannot be FPT [15] (modulo some complex-
ity assumptions and closure of the class under substructures).

For structures of bounded expansion, an interesting open
question is whether a sampling of the solutions can be per-
formed in linear time. For instance: can we compute the
j-th solution in constant time after a linear preprocessing?
This can be done in the bounded degree case [7] and in the
bounded trewidth case [5]. We leave the bounded expansion
case for future research.
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8. APPENDIX

8.1 Graphs with bounded expansion
To avoid confusion with the notion of size of a structure,

we use the following notion in the case of graphs: we write
|G|VERT to denote the number of nodes ofG (i.e. the size
of V from the sequel), while we write|G|EDGE to denote the
number of edges ofG (i.e. the size ofE from the sequel).

Let G = (V,E) be an uncolored graph. It isunorientedif
for each(u, v) ∈ E we also have that(v, u) ∈ E. AssumeG
is unoriented. For any nodev ∈ V and anyr ∈ N we denote
byBr(v) ther-ball aroundv, i.e. the set of nodes ofG that
are reachable fromv by paths of lengths up tor. We say that
a graphH is ar-minor of G if all the nodesv1, . . . , vk of H
are also nodes ofG and for1 ≤ i ≤ k there exists1 ≤ ri ≤
r, such that, insideG, the ballsBr1(v1), . . . , Brk(vk) are
pairwise non-overlapping and there is an edge betweenvi
andvj in H iff there is an edge inG from a node ofBri(vi)
to a node ofBrj (vj). The set of allr-minors ofG is denoted
by G∇r. For a graphG thegreatest reduced average density
(grad) ofG with rankr is:

∇r(G) = max
H∈G∇r

|H|EDGE

|H|VERT

.

THEOREM 5. [16] Let C be a class of graphs. The fol-
lowing conditions are equivalent:

1. there exists a computable functionf : N → R such that
for all graphsG ∈ C and for allr ∈ N we have:

∇r(G) ≤ f(r),

2. C has bounded expansion.

In fact in [16] it is stated the other way around: the initial
definition of class of graphs with bounded expansion is the
one from point 1 from the above theorem and its equivalence
with Definition 1 is a theorem there.

8.2 A remark about σC(i)
It would be tempting to setσC(i) to be the functional

structure withΓC(i) functional symbols that would then be
used to encode up toΓC(i) predecessors of each node. We
could then easily have properties 1 and 2, but it would not
be the case for property 3. To see this consider the following
simple example:

EXAMPLE 1. C is such thatΓC(i) = 2 for all i andG ∈ C
is defined asG = (V = {u, v, w}, E = {(u,w), (v, w)}).
Wlog assume that the functional structure describingG is
~G1 = (V = {u, v, w}, {f1(w) = u}, {f2(w) = v}) and
so we need to show a transitive fraternal augmentation~G =
~G0 ⊆ ~G1 ⊆ ~G2 ⊆ . . . with the desired properties 1, 2 and 3.

Note that(u, v) is a fraternal pair of nodes in~G1 and
so ~G2 must describe an edge betweenu and v (in at least

one of the directions). To match property 2,~G2 must con-
tain ~G1 and wlog we may assume that~G2 contains(V =
{u, v, w}, {f1(w) = u, f1(u) = v}, {f2(w) = v}).

Consider now the following queryφ overσC(0):
φ(x, y) ≡ f1(x) = y ∨ f2(x) = z.
Clearly (u, v) ∈ φ(~G2), but(u, v) /∈ φ(~G1) and although

∆−(~G2) ≤ 2, two functional symbols inσC(1) are not enough
to retain property 3.

The general idea behind the above example is that in order
to have property 3, we cannot “re-use” functions used in~Gi

to encode edges that appeared in~Gi+1.

8.3 From structures to graphs
In this section we use the definition of bounded expansion

from Theorem 5.
Recall the definition of Adjacency(D) from Section 2.4.

In particular, nodes of Adjacency(D) are divided into two
sets:D andT . Note that Adjacency(D) is a bipartite graph
(neither any two nodes fromD nor any two nodes fromT are
ever connected) and the maximal in-degree of a node from
T is bounded by the maximal arity of a relation inA. We
call nodes fromD real nodesand nodes fromT tuple nodes.

The Gaifman graphof a relational structureD, denoted
by Gaifman(D), is defined as follows: the set of vertices of
Gaifman(D) isD and there is an edge(a, b) in Gaifman(D)
iff there exists a relationRi and a tuplet ∈ Ri such that both
a andb occur int.

In the literature, a classC of relational structures is said to
have bounded expansion if the classC’ of Gaifman graphs
of structures fromC has bounded expansion. Our definition
is more liberal (possibly equivalent).

Let D be a relational structure over signatureσ with uni-
verseV , letR be a relation fromσ of arity r and lett ∈ R
be a tuple ofR in D. Theeffective arity oft is the number of
different elements int.

LEMMA 7. LetC be class of relational structures and let
C’ be the underlying class of Gaifman graphs of structures
from C. If C’ has bounded expansion, then there exists a
constantk such that for any structureD ∈ C and for any
tuplet ∈ D the effective arity oft is less thank.

PROOF. Fix classC of structures and letC’ be the class
of Gaifman graphs of structures fromC. Let f be the func-
tion from Theorem 5 witnessing the fact thatC’ has bounded
expansion.

Setk = 2f(0). LetD ∈ C andt be an arbitrary tuple from
D with effective aritys. LetA = {a1, . . . , as} be the set of
different elements int. By the definition of Gaifman(D) ver-
tices fromA are pairwise connected. Consider the0-minor
H of Gaifman(D) induced byA. We have that|H|EDGE

|H|VERT
=

|A|·(|A|−1)
2|A| = s−1

2 . By the definition∇0(Gaifman(D)) ≥
|H|EDGE

|H|VERT
≥ s−1

2 . On the other hand the definition of bounded
expansion from Theorem 5 givesf(0) ≥ ∇0(Gaifman(D))
and we havek > s as desired.
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PROPOSITION 3. LetC be a class of structures such that
the classC’ of Gaifman graphs of structures fromC has
bounded expansion. Then the classC” of adjacency graphs
of structures fromC also has bounded expansion.

It is a consequence of the following lemma.

LEMMA 8. Let C be a class of structures such that the
classC’ of Gaifman graphs of structures fromC has bounded
expansion. There exists a constantk such that for any struc-
ture D ∈ C and for any natural numberr we have that
∇r(Adjacency(A)) ≤ ∇r(Gaifman(A)) + k.

PROOF. Fix classC of structures such that the classC’
of Gaifman graphs of structures fromC has bounded expan-
sion.

Let k be the constant given by Lemma 7.
Let D ∈ C and letr be a natural number andH be ar-

minor of Adjacency(D). FromH we construct a graphH′

which is ar-minor of Gaifman(D) and such that:

|H|EDGE

|H|VERT
≤ |H′|EDGE

|H′|VERT
+ k.

This immediately yields the result.
Recall from Section 2.4 that Adjacency(D) is a bipartite

graph that containstuplenodes andreal nodes and such that
neither any two tuple nodes nor any two real nodes are con-
nected. By the definition of constantk from Lemma 7, each
tuple node has up tok neighbors in Adjacency(D).

Consider a nodev of H. By construction,v is derived
from arv-ballSv of Adjacency(D), where1 ≤ rv ≤ r.

If Sv contains no real nodes, then it simply is a single
tuple node. As each tuple node has up tok neighbors in
Adjacency(D), then if Sv contains no real nodes,v has at
mostk neighbors inH. LetX be the set of all such nodesv
in H.

Otherwise, letS′
v be the set of real nodes ofSv. By defini-

tionS′
v is not empty and it is easy to verify that it forms arv2 -

ball in Gaifman(D): for everyu ∈ S′
v the longest path from

v tou in Sv is v = u1, t(1,2), u2, t(2,3), . . . , t( rv
2 −1, rv2 ), u rv

2
=

u, where eacht(i,i+1) is a tuple node. By the definition of
Gaifman(D) we have thatui is connected toui+1 (which is
witnessed byt(i,i+1)), which yields thatv = u1, u2, . . . , u rv

2
=

u is a path inS′
v. Let H′ be ther-minor of Gaifman(D) con-

structed from the elementsS′
v, v 6∈ X .

By construction we have :|H′|VERT + |X | = |H|VERT.
Consider now an edge(u, v) in H where bothu and v

are not inX . This means that there is an edge(a, b) in
Adjacency(A) with a ∈ Su andb ∈ Sv. As Adjacency(A) is
bipartite, this means thata is a real node andb a tuple node
(or vice versa). Wlog assume thata is the real node. Asv is
not inX , Sv contains a real nodeb′ adjacent tob. Henceb
witnesses that(a, b′) is an edge in Gaifman(D) and so(u, v)
is an edge inH′. As we have seen that there are at most
k · |X | edges(u, v) in H where eitheru or v belongs toX ,
we get:|H|EDGE ≤ |H′|EDGE + k|X |.

Summing up we get:

|H|EDGE

|H|VERT
≤ |H′|EDGE+k·|X|

|H′|VERT+|X| ≤ |H′|EDGE

|H′|VERT+|X| +
k·|X|

|H′|VERT+|X| ≤
|H′|EDGE

|H′|VERT
+ k.

as desired.

8.4 Model checking
We now give the details of the skipped part of the proof of

Proposition 2, namely the case when∆= is empty.
In this case we construct a set WITNESS which does not

depend onv. It is constructed as in the previous case and

verifies: for all tuples̄v of ~G
′′
, if ~G

′′
|= ψ(v̄u) for some

nodeu, then there is a nodeu′ ∈ WITNESSsuch that~G
′′
|=

ψ(v̄u′). Moreover,|WITNESS| ≤ γp.

Recoloring of~G
′′
.

Based on WITNESS we recolor~G
′′

as follows. Letγp =
(βp+1)βp+1. We order WITNESSand we can now speak of
theith witness.

For eachi ≤ γp we introduce a new unary predicatePi
and for eachv ∈ ~G

′′
we setPi(v) if W ITNESS contains at

leasti elements.
For eachi ≤ γp and eachh ∈ σC(q) we introduce a new

unary predicatePi,h and for eachv ∈ ~G
′′

we setPi,h(v) if
theith witness is a elementu with h(u) = v.

For eachi ≤ γp, h ∈ σC(q) we introduce a new unary

predicateQi and for eachv ∈ ~G
′′

we setQi(v) if the ith

witness isv.
We denote by~G

′
the resulting graph and notice that it can

be computed in linear time from~G.
Finally, note that ify is theith witness, the equalityfj(y) =

h(xk) is equivalent over~G
′
toPi,fj (h(xk)) and the equality

y = h(xk) is equivalent over~G
′
toQi(h(xk)).

The desired formulaφ is computed as for the previous
case when∆= was not empty.

8.5 Enumeration
We now present the omitted proofs from Section 4, namely

the proofs of Claims 1, 2 and 3.

CLAIM 1 Let NEXT~S(u) be a shortcut pointer of size not
greater thanβq. Then there existsNEXT ~S′(u) ∈ SCL such
that NEXT~S(u) = NEXT ~S′(u). Moreover, suchNEXT ~S′(u)
can be found in constant time.

PROOF. If NEXT~S(u) ∈ SCL, then we have nothing to
prove. Assume then thatNEXT~S(u) /∈ SCL. Let NEXT ~S′(u) ∈
SCL be a maximal in terms of size shortcut pointer ofu such
thatNEXT ~S′(u) � NEXT~S(u) (recall that this means that for
1 ≤ i ≤ αC(q) we haveS′

i ⊆ Si). Such a shortcut pointer al-
ways exists as next∅(u) � NEXT~S(u) and next∅(u) ∈ SCL.
Note that the size ofNEXT ~S′(u) is strictly smaller than the
size ofNEXT~S(u), so it is strictly smaller thanβq. Clearly,
NEXT ~S′(u) can be found in constant time. We claim that
NEXT~S(u) = NEXT ~S′(u).
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Let v = NEXT ~S′(u). We know thatv ≤ NEXT~S(u).
Assume now that there would exists1 ≤ i ≤ αC(q) such
that ui = fi(v) ∈ Sj . Thenui /∈ S′

i and as the size of
NEXT ~S′(u) is smaller thanβq, we have that
NEXT~S[Si+={ui}]

(u) ∈ SCL. But NEXT~S[Si+={ui}]
(u) has

size strictly greater thanNEXT ~S′(u) and
NEXT~S[Si+={ui}]

(u) � NEXT~S(u), which contradicts the
maximality of NEXT ~S′(u). This means that such ani does
not exist and concludes the fact thatNEXT~S(u) = NEXT ~S′(u).

CLAIM 2 There exists a constantζ(q, k) such that for ev-
ery nodeu we have|SCL(u)| ≤ ζ(q, k).

PROOF. Fixu. Note that there is exactly1 shortcut pointer
of u of size0 (next∅(u)) andαC(q) shortcut pointers ofu
of size 1. By the definition of SCL, any shortcut pointer
NEXT~S(u) can be an origin of up toαC(q) shortcut pointers
of the formNEXT~S[Si+={ui}]

(u), whereui = fi(NEXT~S(u))

and the size ofNEXT~S[Si+={ui}]
(u) is either the same as the

size of NEXT~S(u) (if ui ∈ Si) or greater by1. This way
we see that SCL(u) contains up toαC(q)

2 shortcut pointers
of size2 and, in general, up toαC(q)

s shortcut pointers of
sizes. As the maximal size of a computed shortcut pointer
is bounded byβq, we have|SCL(u)| ≤

∑

0≤i≤βq
αC(q)

i.
BothαC(q) andβq depend only onq andk, which concludes
the proof.

CLAIM 3 SCL can be computed in time linear in|L|.

PROOF. In linear time we set next∅(u) = u for u ∈ L.
We first show how to compute shortcut pointers of size1

of each nodeu ∈ L. We do it in an inductive manner, start-
ing from the last node ofL and moving backwards. Recall
that these shortcut pointers are of the formNEXTfi,{fi(u)}(u).
If u is the last node onL, then all these values are NULL.
We now assume thatu is not last onL and that for allv > u
all the shortcut pointers ofv of size1 were computed. We
show how to compute shortcut pointers ofu of size1.

For each1 ≤ i ≤ αC(q) we computeNEXTfi,{fi(u)}(u).
Let v be the node successor ofu in L. If fi(u) 6= fi(v), then
NEXTfi,{fi(u)}(u) = v. If fi(u) = fi(v), then
NEXTfi,{fi(u)}(u) = NEXTfi,{fi(next(v))}(next(v)) and the
later shortcut pointer has already been computed.

Clearly all the shortcut pointers of size1 are computed in
time linear in the size ofL.

We now turn to the computation of arbitraryNEXT~S(u) ∈
SCL for u ∈ L. We again do it in an inductive manner
starting from the last node onL and move backwards. If
u is the last node onL then we are already done as all the
shortcut pointers ofu of size1 are NULL and by definition
there are no shortcut pointers ofu of greater sizes in SCL.
We now assume thatu is not last onL and that for allv > u
set SCL(v) is computed. We show how to compute SCL(u).

Consider nowNEXT~S(u). If ∀i fi(u) 6∈ Si then we are
done, asNEXT~S(u) = u. Otherwise∃i such thatfi(u) ∈

Si. Let v = NEXTfi,{fi(u)}(u). Clearly v ≤ NEXT~S(u)
and NEXT~S(u) = NEXT~S(v). We can conclude this case
NEXT~S(v) = NEXT ~S′(v), whereNEXT ~S′(v) ∈ SCL(v) is
the shortcut pointer ofv from the application of Claim 1 to
NEXT~S(v). Claim 1 assures that we can findNEXT ~S′(v) in
constant time and thusNEXT~S(u) is computed in constant
time. As Claim 2 shows that we only need to consider con-
stantly many shortcut pointers for eachu, the whole process
takes timeO(|L|).

8.6 Counting

CLAIM 4. . There exists a queryψ+
NF such that: its size

depends only on the size ofψ+, ψ+
NF is in the normal form

given by(1), it contains an inequality conjuncth(y) 6= g1(xi)
(whereh might possibly be identity) iffψ+ also contains

such conjunct andψ+
NF(

~G
′′
) = ψ+(~G

′′
). Moreover,ψ+

NF can
be constructed in time linear in the size ofψ+.

PROOF. The proof is a simple case analysis of the content
of ∆= of ψ.

If its empty, thenψ+
NF is already in the desired form.

If it contains an atom of the formy = h2(xj), then equal-
ity g(y) = f(xi) is equivalent tog(h2(xj)) = f(xi) and we
are done.

If it contains an atom of the formh3(y) = h2(xj) andg is
identity, thenh3(y) = h2(xj) is equivalent toh3(f(xi)) =
h2(xj). If g is not identity, thenτ(y) ensures us that either
g(y) determinesh3(y) or vice versa. If we haveh4(g(y)) =
h3(y), thenh3(y) = h2(xj) is equivalent toh4(f(xi)) =
h2(xj). The other case is symmetric.

The fact thatψ+
NF does not contain any additional inequal-

ities, that it can be computed in time linear in the size of

ψ+ and thatψ+
NF(

~G
′′
) = ψ+(~G

′′
) follows from the above

construction.

LEMMA 6 LetC be class of graphs with bounded expan-
sion and letφ(x̄) be a first-order formula with exactlyk free
variables.
For 1 ≤ i ≤ k let #i : V → N be functions such that for
eachv the value of#i(v) can be computed in constant time.
Then for all~G ∈ C we can compute|φ(~G)|# in timeO(||~G||).

PROOF. We now give the omitted details from the proof
of Lemma 6, that is the remaining cases of the analysis of
the content of∆=.

Assume now that∆= consists of an atomg(y) = f(x1).
Let ψ′(y) be the formula∃x̄ψ(x̄y) andψ′′(x̄) the formula

∃yψ(x̄y). We first compute setψ′(~G
′′
) in linear time using

Corollary 2. We now define a function#′
k : V → N as:

#′
k(u) :=

∑

{v∈ψ′(~G
′′
)

g(v)=u}

#k(v).

Note that this function can be easily computed in linear time
by going through all nodesv and adding#k(v) to#′

k(g(v)).
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Finally we set:

#′
1(u) := #1(u)#

′
k(f(u))

#′
i(u) := #i(u) for 2 ≤ i ≤ k − 1.

Let u1, u2 ∈ ψ′(~G
′′
) be such thatg(u1) = g(u2). Be-

cause∆6= is empty, observe that~G
′′
|= ∀x̄(ψ(x̄u1) ↔ ψ(x̄u2)).

Based on this observation we now group the solutions toψ
according to their lastk − 1 values and get:

|ψ(~G
′′
)|# =

∑

(ūv)∈ψ(~G
′′
)



#k(v)
∏

1≤i≤k−1

#i(ui)





=
∑

ū∈ψ′′(~G
′′
)

∑

{v∈ψ′(~G
′′
)

g(v)=f(u1)}



#k(v)
∏

1≤i≤k−1

#i(ui)





=
∑

ū∈ψ′′(~G′′
)











∑

{v∈ψ′(~G′′
)

g(v)=f(u1)}

#k(v)











∏

1≤i≤k−1

#i(ui)

=
∑

ū∈ψ′′(~G′′
)



#′
k(f(u1))

∏

1≤i≤k−1

#i(ui)





=
∑

ū∈ψ′′(~G′′
)



#1(u1)#
′
k(f(u1))

∏

2≤i≤k−1

#′
i(ui)





=
∑

ū∈ψ′′(~G′′
)

∏

1≤i≤k−1

#′
i(ui)

= |ψ′′(~G
′′
)|#′

By induction on the number of free variables, as#′
i(u)

can be computed in constant time for eachi andu, we can

compute|ψ′′(~G
′′
)|#′ and we are done with this case.

The remaining case when∆= is empty is handled simi-
larly to the previous one. We then have

ψ(x̄y) = ψ1(x̄) ∧ τ(y).

After setting

#′
1(u) := #2(u) ·

∑

v∈τ(~G
′′
)

#1(v)

#′
i(u) := #i+1(u) for 2 ≤ i ≤ k − 1

we see that

|ψ(~G
′′
)|# = |ψ1(~G

′′
)|#′

and we conclude again by induction on the number of free
variables.
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