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Abstract The Regular Post Embedding Problem extended with partial (co)di-
rectness is shown decidable. This extends to universal and/or counting ver-
sions. It is also shown that combining directness and codirectness in Post
Embedding problems leads to undecidability.

1 Introduction

The Regular Post Embedding Problem (PEP for short, named by analogy with
Post’s Correspondence Problem, aka PCP) is the problem of deciding, given
two morphisms on words u, v : Σ∗ → Γ ∗ and a regular language R ∈ Reg(Σ),
whether there is σ ∈ R such that u(σ) is a (scattered) subword of v(σ). One
then calls σ a solution of the PEP instance.

We use “v” to denote the subword relation, also called embedding : u(σ) v
v(σ)

def⇔ u(σ) can be obtained by erasing some letters from v(σ), possibly all
of them, possibly none. Equivalently, PEP is the question whether a rational
relation, or a transduction, T ⊆ Γ ∗×Γ ∗ intersects non-vacuously the subword
relation [5], hence it is a special case of the intersection problem for two rational
relations.

This problem, introduced in [8], is new and quite remarkable: it is decidable
but surprisingly hard since it is not primitive-recursive.1 The problem is in fact
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1 But the problem becomes easy, decidable in linear-time and logarithmic space [8], when
restricted to R = Σ+ as in PCP.
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Fωω -complete [17], that is, it sits at the first level above multiply-recursive in
the Ordinal-Recursive Complexity Hierarchy [25].

A variant problem was introduced in [8]: PEPdir asks for the existence of a
direct solution, i.e., some σ ∈ R such that u(τ) v v(τ) for every prefix τ of σ.
It turns out that PEP and PEPdir are inter-reducible (though not trivially) [10]
and have the same complexity.

In this article we introduce PEPpartial
dir , or “PEP with partial directness”:

Instead of requiring u(τ) v v(τ) for all prefixes of a solution (as in PEPdir), or

for none (as in PEP), PEPpartial
dir lets us select, by means of a regular language,

which prefixes should verify the requirement. Thus PEPpartial
dir generalizes both

PEP and PEPdir.

Our main result is that PEPpartial
dir and the mirror problem PEPpartial

codir are
decidable. The proof combines two ideas. Firstly, by Higman’s Lemma, a long
solution must eventually contain “comparable” so-called cutting points, from
which one deduces that the solution is not minimal (or unique, or . . . ). Sec-
ondly, the above notion of “eventually”, that comes from Higman’s Lemma,
can be turned into an effective upper bound thanks to a Length Function
Theorem [26].

The decidability of PEPpartial
dir not only generalizes the decidability of PEP

and PEPdir: it is also simpler than the earlier proofs for PEP or PEPdir, and it
easily leads to an Fωω complexity upper bound.

In a second part of the article, we extend our main result and show the
decidability of universal and/or counting versions of the extended PEPpartial

dir

problem. We also explain how our attempts at further generalisation, most
notably by considering the combination of directness and codirectness in a
same instance, lead to undecidable problems.

Applications to channel machines. Our interest in PEP and its variants comes
from their close connection with fifo channel machines, a family of computa-
tional models that play a central role in some areas of program and system
verification (see [7,1,22,4]) and that also provide decidable automata models
for problems on Real-Time and Metric Temporal Logic, modal logics, data
logics, etc. [2,24,21,19,23,5]. Here, PEP and its variants provide abstract ver-
sions of problems on channel machines, bringing greater clarity and versatility
in both decidability and undecidability (more generally, hardness) proofs.

In this context, a further motivation for considering PEPpartial
dir is that it

allows solving the decidability of UCSTs, i.e., unidirectional channel systems
(with one reliable and one lossy channel) extended with the possibility of testing
the contents of channels [16]. We recall that PEP was introduced for UCSs,
unidirectional channel systems where tests on channels are not supported [10,
9], and that PEPdir corresponds to LCSs, i.e., lossy channel systems, for which
decidability use techniques from WSTS theory [3,14,11,6]. Fig. 1 depicts the
resulting situation.
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Fig. 1 Three decidability proofs for PEP and variants

Outline of the article. Section 2 recalls basic notations and definitions. In
particular, it lists basic results about how the subword relation interacts with
concatenations and factorization. Section 3 explains the Length Function The-
orem for Higman’s Lemma. Section 4 contains our main result, a direct de-
cidability proof for PEPpartial

dir , a problem subsuming both PEP and PEPdir.
Section 5 builds on this result and shows the decidability of counting problems
on PEPpartial

dir . Section 6 further shows the decidability of universal variants of
these questions. Section 7 contains undecidability results for some extensions
of PEPpartial

dir .

2 Words and subwords

Words. Concatenation of words is denoted multiplicatively, with ε denoting
the empty word. We write |s| for the length of a word s, and |Γ | for the size of
a finite alphabet Γ . If s is a prefix of a word t, s−1t denotes the unique word s′

such that t = ss′ (otherwise s−1t is not defined). Similarly, when s is a suffix of

t, ts−1 is t with the s suffix removed. For a word s = a0 . . . an−1, s̃
def
= an−1 . . . a0

is the mirrored word. The mirror of a language R is R̃
def
= {s̃ | s ∈ R}.

With a language R ⊆ Γ ∗ one associates a congruence (wrt concatenation)

given by s ∼R t
def⇔ ∀x, y(xsy ∈ R ⇔ xty ∈ R) and called the Myhill con-

gruence (also, the syntactic congruence). This equivalence has finite index if
(and only if) R is regular. For regular R, let µ(R) denote this index: it sat-

isfies µ
(
R̃
)

= µ(Γ ∗ r R) = µ(R) and µ(R ∩ R′) ≤ µ(R)µ(R′). Also, µ(R) is
computable from R, and in particular, µ(R) ≤ mm when R is recognized by a
m-state complete DFA [15].

Subwords. We write s v t when s is a subword (subsequence) of t. Formally,
a0 . . . an−1 v t iff t is some concatenation t0a0t1a1 . . . an−1tn. An embedding of
s = a0 . . . an−1 into s′ = a′0 . . . a

′
m−1 is a strictly monotonic map h : {0, . . . , n−

1} → {0, . . . ,m − 1} such that ai = a′h(i) for all 0 ≤ i < n. Clearly, s v s′ iff

there exists an embedding of s into s′.
The subword relation is an ordering that is compatible with the monoid

structure: ε v s for all words s, and ss′ v tt′ when s v t and s′ v t′.

Lemma 1 (Subwords and concatenation) For all words y, z, s, t:
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(a) If yz v st, then y v s or z v t.
(b) If yz v st and z v t and x is the longest suffix of y such that xz v t, then

yx−1 v s.
(c) If yz v st and z 6v t and x is the shortest prefix of z such that x−1z v t,

then yx v s.
(d) If yz v st and z v t and x is the longest prefix of t such that z v x−1t,

then y v sx.
(e) If yz v st and z 6v t and x is the shortest suffix of s such that z v xt,

then y v sx−1.
(f) If sx v yt and t v s, then sxk v ykt for all k ≥ 1.
(g) If xs v ty and t v s, then xks v tyk for all k ≥ 1.

Proof Items (a–e) are easy (or see [13, Section 3]). Item (f) is proved by in-
duction on k. The claim is true for k = 1, suppose it is true for k = p. Then
sxp+1 = sxpx v yptx v ypsx v ypyt = yp+1t. Item (g) is obtained from (f)
by mirroring. ut

3 Higman’s Lemma and the length of bad sequences

It is well-known that for words over a finite alphabet, v is a well-quasi-
ordering, that is, any infinite sequence of words x1, x2, x3, . . . contains an in-
finite increasing subsequence xi1 v xi2 v xi3 v · · · [20]. This result is called
Higman’s Lemma.

For n ∈ N, we say that a sequence (finite or infinite) of words is n-good if it
contains an increasing subsequence of length n. It is n-bad otherwise. Higman’s
Lemma states that every infinite sequence is n-good for every n. Hence every
n-bad sequence is finite.

It is often said that Higman’s Lemma is “non-effective” or “non-construc-
tive” since it does not come with any explicit information on the maximal
length of bad sequences. Consequently, when one uses Higman’s Lemma to
prove that an algorithm terminates, no meaningful upper-bound on the algo-
rithm’s running time is derived from the proof. However, the length of bad
sequences can be bounded if one takes into account the complexity of the se-
quences, or more precisely, of the process that generates bad sequences. The
interested reader can consult [26,27] for more details. In this article we only use
the simplest version of these results, i.e., the statement that when sequences
only grow in a restricted way then the maximal length of bad sequences is
computable, as we now explain.

For k ∈ N, we say that a sequence of words x1, x2, . . . is k-controlled if
|xi| ≤ ik for all i = 1, 2, . . . Let H(n, k, Γ ) be the maximum length (if it
exists) of an n-bad k-controlled sequence of words over a finite alphabet Γ .

Theorem 2 (Length Function Theorem) H is a computable (total) func-
tion. Furthermore, H is monotonic in its three arguments.
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Proof Any prefix of a finite k-controlled n-bad sequence is k-controlled and
n-bad. In particular, the empty sequence is. We arrange the set of all finite
k-controlled n-bad sequences into a tree denoted Tn,k,Γ , or simply T , where
the empty sequence is the root of T , and where a non-empty sequence of the
form x1, . . . , xl+1 is a child of its immediate prefix x1, . . . , xl.

If T has an infinite path, this path is a chain of finite bad sequences linearly
ordered by the prefix ordering and with which we can build an infinite k-
controlled n-bad sequence by taking a limit. Thus T has no infinite paths
since, by Higman’s Lemma, Γ ∗ has no infinite bad sequences. Furthermore
T is finitely branching, since the sequences it contains are k-controlled and
Γ is finite. Thus, by Kőnig’s Lemma, T is finite and H(n, k, Γ ) exists: it is
the length of the longest sequence appearing in T , and also the length of T ’s
longest path from the root.

H is computable since Tn,k,Γ can be constructed effectively, starting from
the root and listing the finitely many ways a current n-bad sequence can be
extended in a k-controlled way. Finally, H is monotonic since, when n′ ≤ n
and k′ ≤ k, the n-bad k-controlled sequences over Γ include in particular all
the n′-bad k′-controlled sequences over a subalphabet. ut

Remark 3 Note that there is in general no maximum length of n-bad sequences
over Γ if one does not restrict to k-controlled sequences. However, the proof
of the Length Function Theorem can accommodate more liberal notions of
controlled sequences, e.g., having |xi| ≤ f(i) for all i, where f is a given
computable function.

Note also that if |Γ | = |Γ ′| then H(n, k, Γ ) = H(n, k, Γ ′): only the num-
ber of different letters in Γ matters, and we sometimes write H(n, k, p) for
H(n, k, Γ ) where p = |Γ |. Upper bounds on H(n, k, p) can be derived from
the results given in [26] but these bounds are enormous, hard to express and
hard to understand. In this article we content ourselves with the fact that H
is computable. ut

Below, we use the Length Function Theorem contrapositively: a k-controlled
sequence of length greater than H(n, k, Γ ) is necessarily n-good, i.e., contains
an increasing subsequence xi1 v xi2 v · · · v xin of length n.

4 Deciding PEPpartial
dir , or PEP with partial directness

We introduce PEPpartial
dir , a problem generalizing both PEP and PEPdir, and

show its decidability. This is proved by showing that if a PEPpartial
dir instance

has a solution, then it has a solution whose length is bounded by a com-
putable function of the input. This is simpler and more direct than the earlier
decidability proof (for PEP only) based on blockers [8].

Definition 4 PEPpartial
dir is the problem of deciding, given morphisms u, v :

Σ∗ → Γ ∗ and regular languages R,R′ ∈ Reg(Σ), whether there is σ ∈ R such
that u(σ) v v(σ) and u(τ) v v(τ) for all prefixes τ of σ belonging to R′ (in
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which case σ is called a solution).

PEPpartial
codir is the variant problem of deciding whether there is σ ∈ R such that

u(σ) v v(σ) and u(τ) v v(τ) for all suffixes τ of σ that belong to R′.

Both PEP and PEPdir are special cases of PEPpartial
dir , obtained by taking R′ = ∅

and R′ = Σ∗ respectively. Obviously PEPpartial
dir and PEPpartial

codir are two equiv-

alent presentations, modulo mirroring, of a same problem. Given a PEPpartial
dir

or PEPpartial
codir instance, we let Ku

def
= maxa∈Σ |u(a)| denote the expansion factor

of u and define

L
def
= H(µ(R)µ(R′) + 1,Ku, Γ )

(recall that µ(R) and µ(R′) are the indexes of the Myhill congruences asso-
ciated with R and R′, while H(n, k, Γ ) is defined with the Length Function
Theorem).

In this section we prove:

Theorem 5 A PEPpartial
codir instance has a solution if, and only if, it has a

solution of length at most 2L.
This entails that PEPpartial

codir is decidable.

Decidability is an obvious consequence since the length bound is computable,
and since it is easy to check whether a candidate σ is a solution.

For the proof of Theorem 5, we consider an arbitrary PEPpartial
codir instance

(Σ,Γ, u, v,R,R′) and a solution σ. Write N = |σ| for its length, σ[0, i) and
σ[i,N) for, respectively, its prefix of length i and its suffix of length N − i.
Two indices i, j ∈ [0, N ] are congruent if σ[i,N) ∼R σ[j,N) and σ[i,N) ∼R′
σ[j,N). When σ is fixed, as in the rest of this section, we use shorthand
notations like u0,i and vi,j to denote the images, here u(σ[0, i)) and v(σ[i, j)),
of factors of σ.

We prove two “cutting lemmas” giving sufficient conditions for “cutting”
a solution σ = σ[0, N) along certain indices a < b, yielding a shorter solution
σ′ = σ[0, a)σ[b,N), i.e., σ with the factor σ[a, b) cut out. Here the following
notation is useful. We associate, with every suffix τ of σ′, a corresponding

suffix, denoted S(τ), of σ: if τ is a suffix of σ[b,N), then S(τ)
def
= τ , otherwise,

τ = σ[i, a)σ[b,N) for some i < a and we let S(τ)
def
= σ[i,N). In particular

S(σ′) = σ.
An index i ∈ [0, N ] is said to be blue if ui,N v vi,N , it is red otherwise.

In particular, N is blue trivially, 0 is blue since σ is a solution, and i is blue
whenever σ[i,N) ∈ R′. If i is a blue index, let li ∈ Γ ∗ be the longest suffix of
u0,i such that li ui,N v vi,N and call it the left margin at i.

Lemma 6 (Cutting lemma for blue indices) Let a < b be two congruent
and blue indices. If la v lb, then σ′ = σ[0, a)σ[b,N) is a solution (shorter than
σ).

Proof Clearly σ′ ∈ R since σ ∈ R and a and b are congruent. Also, for all
suffixes τ of σ′, S(τ) ∈ R′ iff τ ∈ R′.
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We claim that, for any suffix τ of σ′, if u(S(τ)) v v(S(τ)) then u(τ) v v(τ).
This is obvious when τ = S(τ), so we assume τ 6= S(τ), i.e., τ = σ[i, a)σ[b,N)
and S(τ) = σ[i,N) for some i < a. Assume u(S(τ)) v v(S(τ)), i.e., ui,N v
vi,N . Now both ui,a and la are suffixes of u0,a, so that one is a suffix of the
other, which gives two cases.

1. If ui,a is a suffix of la, then

u(τ) = ui,a ub,N v la ub,N since ui,a is a suffix of la,

v lb ub,N since la v lb by assumption,

v vb,N by definition of lb,

v vi,a vb,N = v(τ) .

2. Otherwise, ui,a = x la for some x, as illustrated in Fig. 2 where slanted
arrows follow the rightmost embedding of u(σ) into v(σ). Here ui,N v vi,N

(rightmost embedding)

0 i a b N

u(σ):
︸ ︷︷ ︸

u0,i

︸ ︷︷ ︸

ui,a

︸ ︷︷ ︸

ua,b

︸ ︷︷ ︸

ub,N

v(σ):

v0,i
︷ ︸︸ ︷

vi,a
︷ ︸︸ ︷

va,b
︷ ︸︸ ︷

vb,N
︷ ︸︸ ︷

x la lb

Fig. 2 Schematics for Lemma 6, with la v lb

rewrites as x la ua,N v vi,a va,N . Now, and since la is (by definition) the longest
suffix for which la ua,N v va,N , Lemma 1.b entails x v vi,a. Then

u(τ) = ui,a ub,N = x la ub,N

v vi,a lb ub,N since x v vi,a and la v lb,
v vi,a vb,N = v(τ) by definition of lb.

We can now infer u(τ) v v(τ) for any suffix τ ∈ R′ (or for τ = σ′) from
the corresponding u(S(τ)) v v(S(τ)). This shows that σ′ is a solution. ut

If i is a red index, i.e., if ui,N 6v vi,N , let ri ∈ Γ ∗ be the shortest prefix
of ui,N such that r−1i ui,N v vi,N (equivalently ui,N v ri vi,N ) and call it the
right margin at i.

Lemma 7 (Cutting lemma for red indices) Let a < b be two congruent
and red indices. If rb v ra, then σ′ = σ[0, a)σ[b,N) is a solution (shorter than
σ).

Proof Write x for r−1b ub,N . Then ub,N = rb x and x v vb,N . We proceed as for
Lemma 6 and show that u(S(τ)) v v(S(τ)) implies u(τ) v v(τ) for all suffixes
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(rightmost embedding)

0 i a b N

u(σ):
︸ ︷︷ ︸

u0,i

︸ ︷︷ ︸

ui,a

︸ ︷︷ ︸

ua,b

︸ ︷︷ ︸

ub,N

v(σ):

v0,i
︷ ︸︸ ︷

vi,a
︷ ︸︸ ︷

va,b
︷ ︸︸ ︷

vb,N
︷ ︸︸ ︷

ra rb x

Fig. 3 Schematics for Lemma 7, with rb v ra

τ of σ′. Assume u(S(τ)) v v(S(τ)) for some τ . The only interesting case is
when τ 6= S(τ), i.e., when τ = σ[i, a)σ[b,N) for some i < a (see Fig. 3).

From ui,N = ui,a ua,N v vi,a va,N = vi,N , i.e., u(S(τ)) v v(S(τ)), and
ua,N 6v va,N (since a is a red index), Lemma 1.c entails ui,a ra v vi,a by
definition of ra. Then

u(τ) = ui,a ub,N = ui,a rb x v ui,a ra vb,N since rb v ra and x v vb,N ,

v vi,a vb,N = v(τ) since ui,a ra v vi,a. ut

For the next step let g1 < g2 < · · · < gN1
be all the blue indices in σ, and

let b1 < b2 < · · · < bN2 be the red indices. Observe that N1 +N2 = N+1 since
each index in 0, . . . , N is either blue or red. We consider the corresponding
sequences (lgi)i=1,...,N1

of left margins and (rbi)i=1,...,N2
of right margins.

Lemma 8 |lgi | ≤ (i−1)×Ku for all i = 1, . . . , N1, and |rbi | ≤ (N2−i+1)×Ku

for all i = 1, . . . , N2. In other words, the sequence of left margins and the
reversed sequence of right margins are Ku-controlled.

Proof We prove that |lgi | ≤ (i− 1)×Ku by induction on i, showing |lg1 | = 0
and |lgi | − |lgi−1

| ≤ Ku for i > 1.
The base case i = 1 is easy: obviously g1 = 0 since 0 is a blue index, and

l0 = ε since it is the only suffix of u0,0 = ε, so that |lg1 | = 0.
For the inductive step i > 1, write p for gi−1 and q for gi. By definition, lp

is the longest suffix of u0,p with lp up,N = lp up,q uq,N v vp,N . Since lq uq,N v
vq,N v vp,N , lq must be a suffix of lp up,q, hence |lq| ≤ |lp| + |up,q| ≤ |lp| +
Ku(q− p). This proves the claim in the case where q = p+ 1, i.e., when p and
p+ 1 are blue.

There remains the case where q > p + 1 and where all the indices from
p+ 1 to q − 1 are red. Thus in particular uq−1,N = uq−1,q uq,N 6v vq−1,N . On
the other hand q is blue and lq uq,N v vq,N v vq−1,N . We conclude that lq
must be a suffix of uq−1,q, so that |lq| ≤ Ku which proves the claim.

The reasoning for |rbi | is similar:
If bi+1 = bi + 1, then both bi and the next index are red. Then rbi is a

prefix of ubi,bi+1 rbi+1
so that |rbi | ≤ Ku + |rbi+1

|.
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If bi+1 > bi + 1, then bi + 1 is blue and rbi is a prefix of ubi,bi+1 so that
|rbi | ≤ Ku.

For the base case, we have bN2
< N since N is blue. Hence bN2

+ 1 is blue
and |rbN2

| ≤ Ku as above.

Finally, |rbi | ≤ (N2 + 1− i)×Ku for all i = 1, . . . , N2. ut

We are now ready to conclude the proof of Theorem 5. LetNc
def
= µ(R)µ(R′)+

1 and L
def
= H(Nc,Ku, Γ ) and assume that N > 2L. Since N1 + N2 = N + 1,

either σ has at least L + 1 blue indices and, by definition of L and H, there
exist Nc blue indices a1 < a2 < · · · < aNc with la1 v la2 v · · · v laNc

, or σ has
at least L + 1 red indices and there exist Nc red indices a′1 < a′2 < · · · < a′Nc

with ra′Nc
v · · · v ra′2 v ra′1 (since it is the reversed sequence of right margins

that is controlled). Out of Nc = µ(R)µ(R′)+1 indices, two must be congruent,
fulfilling the assumptions of either Lemma 6 or Lemma 7. Therefore σ can be
cut to obtain a shorter solution.

Since PEPpartial
dir and PEPpartial

codir are equivalent problems modulo mirroring

of R, u and v, we deduce that PEPpartial
dir too is decidable, and more precisely:

Corollary 9 A PEPpartial
dir instance has a solution if, and only if, it has a

solution of length at most 2L.

5 Counting the number of solutions

We consider two counting questions: ∃∞PEPpartial
dir is the question whether a

PEPpartial
dir instance has infinitely many solutions (a decision problem), while

#PEPpartial
dir is the problem of computing the number of solutions of the in-

stance (a number in N ∪ {∞}). For technical convenience, we often deal with

the (equivalent) codirected versions, ∃∞PEPpartial
codir and #PEPpartial

codir .

For an instance (Σ,Γ, u, v,R,R′), we let Kv
def
= maxa∈Σ |v(a)| and define

M
def
= H(µ(R)µ(R′) + 1,Kv, Γ ) , M ′

def
= H

(
(2M + 2)µ(R)µ(R′) + 1,Ku, Γ

)
.

In this section we prove:

Theorem 10 For a PEPpartial
dir or PEPpartial

codir instance, the following are equiv-
alent:

(a) it has infinitely many solutions;
(b) it has solution of length N with 2M < N ;
(c) it has a solution of length N with 2M < N ≤ 2M ′.

This entails the decidability of ∃∞PEPpartial
dir and ∃∞PEPpartial

codir , and the com-

putability of #PEPpartial
dir and #PEPpartial

codir .
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As with Theorem 5, the length bounds 2M and 2M ′ are computable, so that
∃∞PEPpartial

dir and ∃∞PEPpartial
codir can be decided by finite enumeration. When

the number of solutions is finite, counting them can also be done by finite
enumeration since we know all solutions have then length at most 2M .

For the proof of Theorem 10, we first observe that if the instance has

a solution of length N > 2M , it has a solution with R replaced by R>
def
=

R ∩ Σ2M+1Σ∗. The syntactic congruence associated with R> has index at
most (2M + 2)µ(R). From Theorem 5, we deduce that the modified instance
has a solution of length at most 2M ′. Hence (b) and (c) are equivalent.

It remains to show that (b) implies (a) since obviously (a) implies (b). For

this we fix an arbitrary PEPpartial
codir instance (Σ,Γ, u, v,R,R′) and consider a

solution σ, of length N . We develop two so-called “iteration lemmas” that are
similar to the cutting lemmas from Section 4, with the difference that they
expand σ instead of reducing it.

As before, an index i ∈ [0, N ] is said to be blue if ui,N v vi,N , and red
otherwise. With a blue (resp., a red) index i ∈ [0, N ] we associate a word
si (resp., ti) in Γ ∗. The si’s and ti’s are analogous to the li’s and ri’s from
Section 4, however they are factors of v(σ), not of u(σ) like li or ri, and this
explains the difference between M and L. The terms “left margin” and “right
margin” will be reused here for these factors.

We start with blue indices. For a blue index i ∈ [0, N ], let si be the longest
prefix of vi,N such that ui,N v s−1i vi,N (equivalently, such that si ui,N v vi,N )
and call it the right margin at i.

Lemma 11 Suppose a < b are two blue indices with sb v sa. Then for all
k ≥ 1, sa(ua,b)

k v (va,b)
ksb.

Proof sa ua,N v va,N expands as (sa ua,b)ub,N v va,b vb,N . Since b is blue,
ub,N v vb,N and, by definition of sb, Lemma 1.d further yields sa ua,b v va,b sb.
One concludes with Lemma 1.f, using sb v sa. ut

Lemma 12 (Iteration lemma for blue indices) Let a < b be two congru-
ent blue indices. If sb v sa, then for every k ≥ 1, σ′ = σ[0, a).σ[a, b)k.σ[b,N)
is a solution.

Proof Let τ be any suffix of σ′. We show that u(τ) v v(τ) when τ ∈ R′ or
τ = σ′, which will complete the proof. There are three cases, depending on
how long τ is.

– τ is a suffix of σ[a,N). Then τ is a suffix of σ itself, and this case is trivial
since σ is a solution.

– τ is σ[i, b)σ[a, b)pσ[b,N) for some p ≥ 1 and a < i ≤ b. Since a and
b are congruent, τ ∈ R′ implies σ[i,N) ∈ R′. Thus ui,N v vi,N , hence
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ui,b v vi,b sb (since ub,N v vb,N ).

u(τ) = ui,b(ua,b)
p ub,N

v vi,b sb(ua,b)p ub,N
v vi,b sa(ua,b)

p ub,N since sb v sa
v vi,b(va,b)p sb ub,N by Lemma 11

v vi,b(va,b)p vb,N by definition of sb

= v(τ) .

– τ is σ[i, a)σ[a, b)kσ[b,N) for some 0 ≤ i < a. Since a and b are congruent,
τ ∈ R′ (or τ = σ) implies ui,N ∈ R′ (or ui,N = σ) so that ui,N v vi,N ,
from which we deduce ui,a v vi,a sa as in the previous case. Then, using
Lemma 11 and sb ub,N v vb,N , we get

u(τ) = ui,a(ua,b)
k ub,N

v vi,a sa(ua,b)
k ub,N

v vi,a(va,b)
k sb ub,N by Lemma 11

v vi,a(va,b)
k vb,N by definition of sb

= v(τ) . ut

Now to red indices. For a red index i ∈ [0, N ], let ti be the shortest suffix
of v0,i such that ui,N v ti vi,N . This is called the left margin at i. Thus, for a
blue j such that j < i, uj,N v vj,N implies uj,i ti v vj,i by Lemma 1.e.

Lemma 13 (Iteration lemma for red indices) Let a < b be two congruent
red indices. If ta v tb, then for every k ≥ 1, σ′ = σ[0, a).σ[a, b)k.σ[b,N) is a
solution.

Proof Let τ be any suffix of σ′. We show that u(τ) v v(τ) when τ ∈ R′ or
τ = σ′, which will complete the proof. There are three cases, depending on
how long τ is.

– τ is a suffix of σ[a,N). Then τ is a suffix of σ itself, and this case is trivial
since σ is a solution.

– τ is σ[i, b)σ[a, b)pσ[b,N) for some p ≥ 1 and a < i ≤ b. Since a and b are
congruent, τ ∈ R′ implies σ[i,N) ∈ R′ and so ui,N v vi,N . By definition of
ta, we have ua,bub,N v (tava,b)vb,N . Using Lemma 1.e and the definition of
tb we get ua,b tb v ta va,b, and then (ua,b)

p tb v ta(va,b)
p with Lemma 1.g.

Then

u(τ) = ui,b(ua,b)
p ub,N

v ui,b(ua,b)p tb vb,N by definition of tb

v ui,b ta(va,b)
p vb,N as above

v ui,b tb(va,b)p vb,N since ta v tb
v vi,b(va,b)p vb,N since ui,N v vi,N , b is red, Lemma 1.e

= v(τ) .
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– τ is σ[i, a)σ[a, b)kσ[b,N) for some 0 ≤ i < a and k ≥ 1. Since a and b
are congruent, τ ∈ R′ (or τ = σ) implies ui,N ∈ R′ (or ui,N = σ) so that
ui,N v vi,N , from which we deduce ui,a ta v vi,a as in the previous case.
Then

u(τ) = ui,a(ua,b)
k ub,N

v ui,a(ua,b)
k tb vb,N by definition of tb

v ui,a ta (va,b)
k vb,N as before

v vi,a(va,b)
k vb,N as above

= v(τ) . ut

We may now prove that the PEPpartial
codir instance has infinitely many solu-

tions if it has solution of length N > 2M , i.e., that (b) implies (a) in Theo-
rem 10.

Suppose there are N1 blue indices in σ, say g1 < g2 < · · · < gN1
; and N2

red indices, say b1 < b2 < · · · < bN2
.

Lemma 14 |sgi | ≤ (N1 − i + 1) × Kv for all i = 1, . . . , N1, and |tbi | ≤
(i − 1) × Kv for all i = 1, . . . , N2. That is, the reversed sequence of right
margins and the sequence of left margins are Kv-controlled.

Proof We start with blue indices and right margins.

Lemma 15 Suppose a < b are two blue indices. Then sa is a prefix of va,b sb.

Proof Both sa and va,bsb are prefixes of va,N , hence one of them is a prefix
of the other. Assume, by way of contradiction, that va,b sb is a proper prefix
of sa, say sa = va,b sb x for some x 6= ε. Then sa ua,N v va,N rewrites as
va,b sb xua,N v va,b vb,N . Cancelling va,b on both sides gives sb xua,N v vb,N ,
i.e., (sb xua,b)ub,N v vb,N , which contradicts the definition of sb. ut

We now show that sgN1
, . . . , sg1 is Kv-controlled. N is a blue index, and

|sN | = 0. For i ∈ [0, N), if both i and i+1 are blue indices, then by Lemma 15,
|si| ≤ |si+1| + Kv. If i is blue and i + 1 is red, then it is easy to see that si
is a prefix of v(σi), and hence |si| ≤ Kv. So we get that sgN1

, . . . , sg1 is Kv-
controlled.

Now to red indices and left margins. 0 is not a red index. For i ∈ [0, N), if
both i and i+ 1 are red, then it is easy to see that ti+1 is a suffix of ti v(σi),
and so |ti+1| ≤ |ti| + Kv. If i is blue and i + 1 is red, then ti+1 is a suffix of
v(σi), and so |ti+1| ≤ Kv. So we get that tb1 , . . . , tbN2

is Kv-controlled. ut

Assume that σ is a long solution of length N > 2M . At least M +1 indices
among [0, N ] are blue, or at least M+1 are red. We apply one of the two above
claims, and from either sgN1

, . . . , sg1 (if N1 > M) or tb1 , . . . , tbN2
(if N2 >

M) we get an increasing subsequence of length µ(R)µ(R′) + 1. Among these
there must be two congruent indices. Then we get infinitely many solutions
by Lemma 12 or Lemma 13.
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6 Universal variants of PEPpartial
dir

We consider universal variants of PEPpartial
dir (or rather PEPpartial

codir for the sake of

uniformity). Formally, given instances (Σ,Γ, u, v,R,R′) as usual, ∀PEPpartial
codir is

the question whether every σ ∈ R is a solution, i.e., satisfies both u(σ) v v(σ)

and u(τ) v v(τ) for all suffixes τ that belong to R′. Similarly, ∀∞PEPpartial
codir

is the question whether “almost all”, i.e., all but finitely many, σ in R are
solutions, and #¬PEPpartial

codir is the associated counting problem that asks how
many σ ∈ R are not solutions.

These universal questions can also be seen as Post non-embedding prob-
lems, asking whether there exists some σ ∈ R such that u(σ) 6v v(σ)? In-
troduced in [13] with ∀PEP, they are significantly less challenging than the
standard PEP problems, and decidability is easier to establish. For this rea-
son, we just show in this article how ∀PEPpartial

codir and ∀∞PEPpartial
codir reduce to

∀∞PEP whose decidability was shown in [13]. The point is that partial codi-
rectness constraints can be eliminated since universal quantifications commute
with conjunctions (and since the codirectness constraint is universal itself).

Lemma 16 ∀PEPpartial
codir and ∀∞PEPpartial

codir many-one reduce to ∀∞PEP.

Corollary 17 ∀PEPpartial
codir and ∀∞PEPpartial

codir are decidable, #¬PEPpartial
codir is

computable.

We now prove Lemma 16. First, ∀PEPpartial
codir easily reduces to ∀∞PEPpartial

codir :
add an extra letter z to Σ with u(z) = v(z) = ε and replace R and R′ with
R.z∗ and R′.z∗. Hence the second half of the lemma entails its first half by
transitivity of reductions.

For reducing ∀∞PEPpartial
codir , it is easier to start with the negation of our

question:

∃∞σ ∈ R :
(
u(σ) 6v v(σ) or σ has a suffix τ in R′ with u(τ) 6v v(τ)

)
. (∗)

Call σ ∈ R a type 1 witness if u(σ) 6v v(σ), and a type 2 witness if it has
a suffix τ ∈ R′ with u(τ) 6v v(τ). Statement (∗) holds if, and only if, there
are infinitely many type 1 witnesses or infinitely many type 2 witnesses. The
existence of infinitely many type 1 witnesses (call that “case 1”) is the negation
of a ∀∞PEP question. Now suppose that there are infinitely many type 2
witnesses, say σ1, σ2, . . . For each i, pick a suffix τi of σi such that τi ∈ R′

and u(τi) 6v v(τi). The set {τi | i = 1, 2, . . .} of these suffixes can be finite or
infinite. If it is infinite (“case 2a”), then

u(τ) 6v v(τ) for infinitely many τ ∈ (
−→
R ∩R′) , (∗∗)

where
−→
R is short for

−−→
≥0R and for k ∈ N,

−−→
≥kR

def
= {y | ∃x : (|x| ≥ k and xy ∈ R)}

is the set of the suffixes of words from R one obtains by removing at least k
letters. Observe that, conversely, (∗∗) implies the existence of infinitely many

type 2 witnesses (for a proof, pick τ1 ∈
−→
R ∩ R′ satisfying the above, choose
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σ1 ∈ R of which τ1 is a suffix. Then choose τ2 such that |τ2| > |σ1|, and
proceed similarly).

On the other hand, if {τi | i = 1, 2, . . .} is finite (“case 2b”), then there
is a τ ∈ R′ such that u(τ) 6v v(τ) and σ′τ ∈ R for infinitely many σ′. By a
standard pumping argument, the second point is equivalent to the existence
of some such σ′ with also |σ′| > kR, where kR is the size of a NFA for R

(taking kR = µ(R) also works). Write now R̂ for
−−−→
>kRR: if {τi | i = 1, 2, . . .}

is finite, then u(τ) 6v v(τ) for some τ in (R′ ∩ R̂), and conversely this implies
the existence of infinitely many type 2 witnesses.

To summarize, and since
−→
R and R̂ are regular and effectively computable

from R, we have just reduced ∀∞PEPpartial
codir to the following conjunction

∀∞σ ∈ R : u(σ) v v(σ) (not case 1)∧
∀∞τ ∈ (

−→
R ∩R′) : u(τ) v v(τ) (not case 2a)∧

∀τ ∈ (R̂ ∩R′) : u(τ) v v(τ) . (not case 2b)

This is now reduced to a single ∀∞PEP instance by rewriting the ∀PEP into
a ∀∞PEP (as explained in the beginning of this proof) and relying on a dis-
tributivity property of the form

n∧
i=1

[
∀∞σ ∈ Ri : u(σ) v v(σ)

]
≡ ∀∞σ ∈

[ n⋃
i=1

Ri

]
: u(σ) v v(σ)

to handle the resulting conjunction of 3 ∀∞PEP instances.

7 Undecidability for PEPco&dir and other extensions

The decidability of PEPpartial
dir is a non-trivial generalization of previous results

for PEP. It is a natural question whether one can further generalize the idea
of partial directness and maintain decidability. In this section we describe
two attempts that lead to undecidability, even though they remain inside the
regular PEP framework.2

Allowing non-regular R′. One direction for extending PEPpartial
dir is to allow

more expressive R′ sets for partial (co)directness. Let PEP
partial[DCFL]
codir and

PEP
partial[Pres]
codir be like PEPpartial

codir except that R′ can be any deterministic
context-free R′ ∈ DCFL(Σ) (resp., any Presburger-definable R′ ∈ Pres(Σ),
i.e., a language consisting of all words whose Parikh image lies in a given Pres-
burger, or semilinear, subset of N|Σ|). Note that R ∈ Reg(Σ) is still required.

Theorem 18 (Undecidability) PEP
partial[DCFL]
codir and PEP

partial[Pres]
codir are Σ0

1 -
complete.

2 PEP is undecidable if we allow constraint sets R outside Reg(Σ) [8]. Other extensions,
like ∃x ∈ R1 : ∀y ∈ R2 : u(xy) v v(xy), for R1, R2 ∈ Reg(Σ), have been shown undecid-
able [12].
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Since both problems clearly are in Σ0
1 , one only has to prove hardness by

reduction, e.g., from PCP, Post’s Correspondence Problem. Let (Σ,Γ, u, v)
be a PCP instance (where the question is whether there exists x ∈ Σ+ such

that u(x) = v(x)). Extend Σ and Γ with new symbols: Σ′
def
= Σ ∪ {1, 2}

and Γ ′
def
= Γ ∪ {#}. Now define u′, v′ : Σ′∗ → Γ ′∗ by extending u, v on the

new symbols with u′(1) = v′(2) = ε and u′(2) = v′(1) = #. Define now
R = 12Σ+ and R′ = {τ2τ ′ | τ, τ ′ ∈ Σ∗ and |u(ττ ′)| 6= |v(ττ ′)|}. Note that R′

is deterministic context-free and Presburger-definable.

Lemma 19 The PCP instance (Σ,Γ, u, v) has a solution if and only if the

PEP
partial[Pres]
codir and PEP

partial[DCFL]
codir instance (Σ′, Γ ′, u′, v′, R,R′) has a solu-

tion.

Proof Suppose σ is a solution to the PCP problem. Then σ 6= ε and u(σ) =

v(σ). Now σ′
def
= 12σ is a solution to the partially codirected problem since

12σ ∈ R, u′(12σ) = #u(σ) v v′(12σ) = #v(σ), and σ′ has no suffix in R′

(indeed 2σ 6∈ R′ since |u(σ)| = |v(σ)|).
Conversely, suppose σ′ is a solution to the partially codirected problem.

Then σ′ = 12σ for some σ 6= ε. Since u′(σ′) = #u(σ) v v′(σ′) = #v(σ),
we have u(σ) v v(σ). If |u(σ)| 6= |v(σ)|, then 2σ ∈ R′, and so we must have
u′(2σ) = #u(σ) v v′(2σ) = v(σ). This is not possible as # does not occur in
v(σ). So |u(σ)| = |v(σ)|, and u(σ) = v(σ). Thus σ is a solution to the PCP
problem. ut

Combining directness and codirectness. Another direction is to allow combin-
ing directness and codirectness constraints. Formally, PEPco&dir is the problem
of deciding, given Σ, Γ , u, v, and R ∈ Reg(Σ) as usual, whether there exists
σ ∈ R such that u(τ) v v(τ) and u(τ ′) v v(τ ′) for all decompositions σ = τ.τ ′.
In other words, σ is both a direct and a codirect solution.

Note that PEPco&dir has no R′ parameter (or, equivalently, has R′ = Σ∗)
and requires directness and codirectness at all positions. However, this re-
stricted combination is already undecidable:

Theorem 20 (Undecidability) PEPco&dir is Σ0
1 -complete.

Membership in Σ0
1 is clear and we prove hardness by reducing from the Reach-

ability Problem for length-preserving semi-Thue systems.
A semi-Thue system S = (Υ,∆) has a finite set ∆ ⊆ Υ ∗ × Υ ∗ of string

rewrite rules over some finite alphabet Υ , written ∆ = {l1 → r1, . . . , lk → rk}.
The one-step rewrite relation −→∆ ⊆ Υ ∗ × Υ ∗ is defined as usual with x−→∆y
def⇔ x = zlz′ and y = zrz′ for some rule l→ r in ∆ and strings z, z′ in Υ ∗. We
write x

m−→∆y and x
∗−→∆y when x can be rewritten into y by a sequence of m

(respectively, any number, possibly zero) rewrite steps.
The Reachability Problem for semi-Thue systems is “Given S = (Υ,∆)

and two regular languages P1, P2 ∈ Reg(Υ ), is there x ∈ P1 and y ∈ P2 s.t.

x
∗−→∆y?”. It is well-known (or easy to see by encoding Turing machines in

semi-Thue systems) that this problem is undecidable (in fact, Σ0
1 -complete)
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even when restricted to length-preserving systems, i.e., systems where |l| = |r|
for all rules l→ r ∈ ∆.

We now construct a many-one reduction to PEPco&dir. Let S = (Υ,∆),
P1, P2 be a length-preserving instance of the Reachability Problem. W.l.o.g.,
we assume ε 6∈ P1 and we restrict to reachability via an even and non-zero
number of rewrite steps. With any such instance we associate a PEPco&dir

instance u, v : Σ∗ → Γ ∗ with R ∈ Reg(Σ) such that the following Correctness
Property holds:

∃x ∈ P1, ∃y ∈ P2, ∃m s.t. x
m−→∆y (and m > 0 is even)

iff ∃σ ∈ R s.t. σ = ττ ′ implies u(τ) v v(τ) and u(τ ′) v v(τ ′) .
(CP)

The reduction uses letters like a, b and c taken from Υ , and adds † as an extra
letter. We use six copies of each such “plain” letter. These copies are obtained
by priming and double-priming letters, and by overlining. Hence the six copies
of a are a, a′, a′′, a, a′, a′′. As expected, for a “plain” word (or alphabet) x,
we write x′ and x to denote a version of x obtained by priming (respectively,
overlining) all its letters. Formally, letting Υ† being short for Υ ∪ {†}, one has

Σ = Γ
def
= Υ† ∪ Υ ′† ∪ Υ ′′† ∪ Υ† ∪ Υ ′† ∪ Υ ′′† .

We define and explain the reduction by running it on the following example:

Υ = {a, b, c} and ∆ = {ab→ bc, cc→ aa}. (Sexmp)

Assume that abc ∈ P1 and baa ∈ P2. Then P1
∗−→∆P2 since abc

∗−→∆baa as
witnessed by the following (even-length) derivation π = “abc−→∆bcc−→∆baa”.
In our reduction, a rewrite step like “abc−→∆bcc” appears in the PEP solution
σ as the letter-by-letter interleaving abbccc, denoted abc ||| bcc, of a plain
string and an overlined copy of a same-length string.

Write TI(∆), or just TI for short, for the set of all x ||| y such that x−→∆y.
Obviously, and since we are dealing with length-preserving systems, TI is a
regular language, as seen by writing it as TI =

(∑
a∈Υ aa

)∗
.
{
l ||| r | l → r ∈

∆
}
.
(∑

a∈Υ aa
)∗

, where {l ||| r | l→ r ∈ ∆} is a finite, hence regular, language.
TI accounts for odd-numbered steps. Symmetrically, for even-numbered

steps like bcc−→∆baa in π above, we use bbacac, i.e., baa ||| bcc. Here too

TJ
def
= {y |||x | x−→∆y} is regular. Finally, a derivation π of the general form

x0−→∆x1−→∆x2 . . .−→∆x2k,

where K
def
= |x0| = . . . = |x2k|, is encoded as a solution σπ of the form σπ =

ρ0σ1ρ1σ2 . . . ρ2k−1σ2kρ2k that alternates between the encodings of steps (the
σi’s) in TI ∪ TJ, and fillers, (the ρi’s) defined as follows:

σi
def
=

{
xi−1 |||xi for odd i ,

xi |||xi−1 for even i ,
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ρ0
def
= x′′0 ||| †

′′K ,

ρ2k
def
= x′′2k ||| †

′′K ,
ρi

def
=

{
†′K |||x′i for odd i ,

x′i ||| †
′K for even i 6= 0, 2k .

Note that the extremal fillers ρ0 and ρ2k use double-primed letters, when the
internal fillers use primed letters. Continuing our example, the σπ associated
with the derivation abc−→∆bcc−→∆baa is

σπ = a′′†′′b′′†′′c′′†′′︸ ︷︷ ︸
a′′b′′c′′ ||| †′′†′′†′′

abbccc︸ ︷︷ ︸
abc ||| bcc

†′b′†′c′†′c′︸ ︷︷ ︸
†′†′†′ ||| b′c′c′

bbacac︸ ︷︷ ︸
baa ||| bcc

b′′†′′a′′†′′a′′†′′︸ ︷︷ ︸
b′′a′′a′′ ||| †′′†′′†′′

.

The point with primed and double-primed copies is that u and v associate
them with different images. Precisely, we define

u(a) = a, u(a′) = †, u(†′) = †, u(a′′) = ε, u(†′′) = ε,

v(a) = †, v(a′) = a, v(†′) = wΥ , v(a′′) = a, v(†′′) = wΥ ,

where a is any letter in Υ , and where wΥ is a word listing all letters in Υ .
E.g., w{a,b,c} = abc in our running example. The extremal fillers use special
double-primed letters because we want u(ρ0) = u(ρ2k) = ε (while v behaves
the same on primed and double-primed letters). Finally, overlining is preserved

by u and v: u(x)
def
= u(x) and v(x)

def
= v(x).

This ensures that, for i > 0, u(σi) v v(ρi−1) and u(ρi) v v(σi), so that a
σπ constructed as above is a direct solution. It also ensures u(σi) v v(ρi) and
u(ρi−1) v v(σi) for all i > 0, so that σπ is also a codirect solution. One can
check it on our running example by writing u(σπ) and v(σπ) alongside:

σπ =

ρ0︷ ︸︸ ︷
a′′†′′b′′†′′c′′†′′

σ1︷ ︸︸ ︷
abbccc

ρ1︷ ︸︸ ︷
†′b′†′c′†′c′

σ2︷ ︸︸ ︷
bbacac

ρ2︷ ︸︸ ︷
b′′†′′a′′†′′a′′†′′

u(σπ) = abbccc †††††† bbacac

v(σπ) =a abc b abc c abc †††††† abc b abc c abc c †††††† b abc a abc a abc

There remains to define R. Since ρ0 ∈
(
Υ ′′†′′

)+
, since σi ∈ TI for odd i,

etc., we let

R
def
=
(
Υ ′′†′′

)+
.T∩P1

I .
(
†′Υ ′

)+
.
(
TJ.
(
Υ ′†′

)+
.TI.

(
†′Υ ′

)+)∗
.T∩P2

J .
(
Υ ′′†′′

)+
,

where T∩P1
I

def
= {x ||| y | x−→∆y ∧ x ∈ P1} = TI ∩ {x ||| y | x ∈ P1 ∧ |x| = |y|} is

clearly regular when P1 is, and similarly for T∩P2
J

def
= {y |||x | x−→∆y∧y ∈ P2}.

Since σπ ∈ R when π is an even-length derivation from P1 to P2, we deduce
that the left-to-right implication in (CP) holds.

We now prove the right-to-left implication, which concludes the proof of
Theorem 20.
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Assume that there is a σ ∈ R such that u(τ) v v(τ) and u(τ ′) v v(τ ′) for
all decompositions σ = ττ ′. By definition of R, σ must be of the form

σ = ρ0σ1ρ1(σ2ρ2σ3ρ3) . . . (. . . σ2k−1ρ2k−1)σ2kρ2k

for some k > 0, with ρ0 ∈
(
Υ ′′†′′

)+
, with σi ∈ TI for odd i and σi ∈ TJ for

even i, etc. These 4k + 1 non-empty factors, (σi)1≤i≤2k and (ρi)0≤i≤2k, are
called the “segments” of σ, and numbered s0, . . . , s4k in order.

Lemma 21 u(sp) v v(sp−1) and u(sp−1) v v(sp) for all p = 1, . . . , 4k.

Proof First note that the definition of u and v ensures that u(sp) and v(sp) use
disjoint alphabets. More precisely, all u(σi)’s and v(ρi)’s are in (ΥΥ )∗, while
the v(σi)’s and the u(ρi)’s are in (††)∗, with the special case that u(ρ0) =
u(ρ2k) = ε since ρ0 and ρ2k are made of double-primed letters.

Since σ is a direct solution, u(s0 . . . sp) v v(s0 . . . sp) for any p, and even

u(s0 . . . sp) v v(s0 . . . sp−1), (Ap)

since v(sp) has no letter in common with u(sp). We now claim that, for all
p = 1, . . . , 4k

u(s0s1 . . . sp) 6v v(s0s1 . . . sp−2), (Bp)

as we prove by induction on p. For the base case, p = 1, the claim is just the ob-
vious u(s0s1) 6v ε. For the inductive case p > 1, one combines u(s0 . . . sp−1) 6v
v(s0 . . . sp−3) (ind. hyp.) with u(sp) 6v v(sp−2) (different alphabets) and gets
u(s0 . . . sp) 6v v(s0 . . . sp−2).

We now combine (Ap), i.e., u(s0 . . . sp) v v(s0 . . . sp−1), and (Bp−1), i.e.,
u(s0s1 . . . sp−1) 6v v(s0s1 . . . sp−3), yielding u(sp) v v(sp−2sp−1), hence u(sp) v
v(sp−1) since u(sp) and v(sp−2) share no letter: we have proved one half of the
Lemma. The other half is proved symmetrically, using the fact that σ is also
a codirect solution. ut

Lemma 22 |s1| = |s2| = . . . = |s4k−1|.

Proof For any p with 0 < p < 4k, u(sp) v v(sp−1) (Lemma 21) implies
|sp| ≤ |sp−1|, as can easily be seen either when sp is some x ||| y or when sp is
some filler like †′L |||x′. Thus |s0| ≥ |s1| ≥ · · · ≥ |s4k−1|. Similarly, the other
half of Lemma 21, i.e., u(sp−1) v v(sp), entails |s1| ≤ |s2| ≤ · · · ≤ |s4k|. ut

Now pick any i ∈ {1, . . . , 2k}. If i is odd, then by definition of R, σi ∈
TI is some xi−1 ||| yi with xi−1−→∆yi and σi+1 ∈ TJ is some yi+1 |||xi with
xi−→∆yi+1. Furthermore, ρi is some †′|zi| ||| z′i. With Lemma 21, we deduce
yi v zi and xi v zi. With Lemma 22, we further deduce |yi| = |zi| = |xi|,
hence yi = xi. A similar reasoning shows that yi = xi also holds when i is
even, so that the steps xi−1−→∆yi can be chained. Finally, we deduce from
σ the existence of a derivation x0−→∆x1−→∆ · · · −→∆x2k. Since σ0 ∈ T∩P1

I and
σ2k ∈ T∩P2

J , we further deduce x0 ∈ P1 and x2k ∈ P2. Hence the existence of

σ entails P1
2k−→∆P2, which concludes the proof.
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8 Concluding remarks

We introduced partial directness in Post Embedding Problems and proved the
decidability of PEPpartial

codir and PEPpartial
dir by showing that an instance has a

solution if, and only if, it has a solution of length bounded by a computable
function of the input. (Furthermore, from Theorem 5, one may directly derive

upper bounds on the complexity of PEPpartial
codir and PEPpartial

dir using the bounds
on the Length Function H provided in [26].)

This generalizes and simplifies earlier proofs for PEP and PEPdir. The added
generality is non-trivial and leads to decidability for UCST, or UCS (that is,
unidirectional channel systems) extended with tests [16]. The simplification
lets us deal smoothly with counting or universal versions of the problem. Fi-
nally, we showed that combining directness and codirectness constraints leads
to undecidability.
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