
The Parametric Ordinal-Recursive Complexity

of Post Embedding Problems∗

Prateek Karandikar1,2 Sylvain Schmitz2

1CMI, Chennai, India
2LSV, ENS Cachan & CNRS, France

Abstract

Post Embedding Problems are a family of decision problems based on
the interaction of a rational relation with the subword embedding or-
dering, and are used in the literature to prove non multiply-recursive
complexity lower bounds. We refine the construction of Chambart and
Schnoebelen (LICS 2008) and prove parametric lower bounds depending
on the size of the alphabet.

1 Introduction

Ordinal Recursive functions and subrecursive hierarchies (Rose, 1984; Fairt-
lough and Wainer, 1998) are employed in computability theory, proof theory,
Ramsey theory, rewriting theory, etc. as tools for bounding derivation sizes and
other objects of very high combinatory complexity. A standard example is the
ordinal-indexed extended Grzegorczyk hierarchy Fα (Löb and Wainer, 1970),
which characterizes classical classes of functions: for instance, F2 is the class
of elementary functions,

⋃
k<ω Fk of primitive-recursive ones, and

⋃
k<ω Fωk of

multiply-recursive ones. Similar tools are required for the classification of deci-
sion problems arising with verification algorithms and logics, prompting the still
young investigation of fast-growing complexity classes Fα and their associated
complete problems (Friedman, 1999; Schmitz and Schnoebelen, 2012).

Post Embedding Problems (PEPs) have been introduced by Chambart and
Schnoebelen (2007) as a tool to prove the decidability of safety and termination
problems in unreliable channel systems. The most classical instance of a PEP
is called “regular” by Chambart and Schnoebelen (2007), but we will follow
Barceló et al. (2012) and rather call it rational in this paper:

Rational Embedding Problem (EP[Rat])

input A rational relation R in Σ∗ × Σ∗.
question Is the relation R ∩ v empty?

∗Research partially funded by the ANR ReacHard project (ANR 11 BS02 001 01). The
first author is partially funded by the Tata Consultancy Service. Part of this research was
conducted while the second author was visiting the Department of Computer Science at Oxford
University thanks to a grant from the ESF Games for Design and Verification activity.

1

ar
X

iv
:1

21
1.

52
59

v1
  [

cs
.L

O
] 

 2
2 

N
ov

 2
01

2



Space Fωk (k + 2)-LR[1-bld]

(k + 2)-EP[Rat]

(k + 3)-EP[Sync]

(k + 2)-LCS

(k + 2)-LT[1-bld]

Prop. 2

Prop. 4

Prop. 5

Prop. 6

Prop. 7

Figure 1: Relationships between PEPs and similar decision problems.

Here, the v relation denotes the subword embedding ordering, which relates
two words w and w′ if w = c1 · · · cn and w′ = w0c1w1 · · ·wncnwn+1 for some
symbols ci in Σ and words wi in Σ∗; in other words, w can be obtained from w′

by “losing” some symbol occurrences (maybe none).
Although PEPs appear naturally in relation with channel systems (Cham-

bart and Schnoebelen, 2007, 2008a; Jančar et al., 2012) and queries on graph
databases (Barceló et al., 2012), their main interest lies in their use in lower
bound proofs for other, sometimes seemingly distantly related problems (Ouak-
nine and Worrell, 2007; Lasota and Walukiewicz, 2008; Atig et al., 2010): in spite
of their simple formulation, they are known to be of non multiply-recursive com-
plexity in general. In fact, this motivation has been present from their inception
in (Chambart and Schnoebelen, 2007): find a “master” decision problem com-
plete for Fωω , the class of hyper-Ackermannian problems, solvable with non
multiply-recursive complexity, but no less—much like SAT is often taken as
the canonical NPTime-complete problem, or the Post Correspondence Prob-
lem for Σ0

1. This has also prompted a wealth of research into variants and
related questions (Chambart and Schnoebelen, 2008b, 2010a,b; Barceló et al.,
2012; Karandikar and Schnoebelen, 2012).

In this paper, we revisit and simplify the original proof of Chambart and
Schnoebelen (2008c) that established the hardness of PEPs, and prove tight
parameterized lower bounds when the size of the alphabet Σ is fixed. More pre-
cisely, we show that the (k+ 2)-rational embedding problem, i.e. the restriction
of EP[Rat] to alphabets Σ of size at most k + 2, is hard for Fωk the class of
k-Ackermannian problems if k ≥ 2. As the problem can be shown to be in
Fωk+1+1 (Schmitz and Schnoebelen, 2011; Karandikar and Schnoebelen, 2012),
we argue this to be a rather tight bound. The hyper-Ackermannian lower bound
of Fωω first proven by Chambart and Schnoebelen then arises when |Σ| is not
fixed but depends on the instance.

Overview. Technically, our results rely on an implementation of the computa-

tions for the Hardy functions Hωω
k

and their inverses by successive applications
of a relation with a fixed bounded length discrepancy. The main difficulty here is
that this implementation should be robust for the symbol losses associated with
the embedding relation. It requires in particular a robust encoding of ordinals

below ωω
k

as sequences over an alphabet of k + 2 symbols, for which we adapt
the constructions of (Chambart and Schnoebelen, 2008c; Haddad et al., 2012);
see Section 3.

This allows us to show in Section 4 that the following problem is Fωk -hard
when k ≥ 2, |Σ| = k + 2, and R has a bounded length discrepancy of 1:

Lossy Rewriting (LR[Rat])
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input A rational relation R in Σ∗ × Σ∗ and two words w and w′ in Σ∗.
question Does (w,w′) belong to the reflexive transitive closure R~

w?

Here Rw denotes the “lossy version” of the relation R, defined formally as the
composition w # R # w. We denote the restricted problem when the rational
relation R has a bounded length discrepancy of 1 by LR[1-bld].

We then show in Section 5 that LR[1-bld] can easily be reduced to EP[Rat]
and other (parameterized) embedding problems—including EP[Sync], a restric-
tion of EP[Rat] introduced by Barceló et al. (2012) where the relation R is
synchronous (aka regular), and which required a complex lower bound proof.
Figure 1 summarizes the lower bounds presented in this paper. In a sense, LR is
our own champion for the title of “master” problem for Fωω . Besides its rather
simple statement, note that the related question of whether (w,w′) belongs to
R~ is undecidable by an easy reduction from the acceptance problem for Turing
machines.

Let us now turn to the necessary formal background on PEPs in Section 2.
Due to space constraints, some proof details will be found in the appendices.

2 Post Embedding Problems

Rational Relations (Elgot and Mezei, 1965) play an important role in the
following, as they provide a notion of finitely presentable relations over strings
more powerful than string rewrite systems, and come with a large body of theory
and results (see e.g. Sakarovitch, 2009, Chap. IV). Let us quickly skim over the
notations and definitions that will be needed in this paper.

We assume the reader to be familiar with the basic characterizations of
rational relations R between two finite alphabets Σ and ∆ by

closure of the finite relations in Σ∗ × ∆∗ under union, concatenation, and
Kleene star,1

finite transductions defined by normalized transducers T = 〈Q,Σ,∆, δ, I, F 〉
where Q is a finite set of states, δ ⊆ Q × ((Σ × {ε}) ∪ ({ε} ×∆)) ×Q (ε
denoting the empty word of length |ε| = 0), initial set of states I ⊆ Q,
and final set of states F ⊆ Q,

decomposition into a regular language L over some finite alphabet Γ and two
morphisms u: Γ∗ → Σ∗ and v: Γ∗ → ∆∗ s.t. R = u−1 # IdL # v, where IdL
is the identity function over the restricted domain L.

This last characterization is known as Nivat’s Theorem, and shows that
EP[Rat] can be stated alternatively as taking as input a rational language L in
Γ∗ and two morphisms u and v from Γ∗ to Σ∗ and asking whether there exists
some word x in L s.t. u(x) v v(x) (Chambart and Schnoebelen, 2007). This
justifies the name of “Post Embedding Problem”, as the related Post Corre-
spondence Problem asks instead given u and v whether there exists x in Γ+ s.t.
u(x) = v(x).

1We use different symbols “∗” and “+” for Kleene star and Kleene plus, i.e. iteration
of concatenation “·” on the one hand, and “~” and “⊕” for reflexive transitive closure and
transitive closure, i.e. iteration of composition “#” on the other hand. Rational relations and
length-preserving relations are closed under Kleene star, but none of the classes of relations
we consider is closed under reflexive transitive closure.
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Synchronous Relations are a restricted class of rational relations that dis-
play closure under intersection and complement, in addition to e.g. the closure
under composition and inverse that all rational relations enjoy. A rational re-
lation has b-bounded length discrepancy if the absolute value of |u| − |v| is at
most b for all (u, v) in R, and has bounded length discrepancy (bld) if there
exists such a finite b. In particular, it is length-preserving if |u| = |v|, i.e.
if it has bld 0. A synchronous relation is a finite union of relations of form
{(u, vw) | (u, v) ∈ R ∧ w ∈ L} and {(uw, v) | (u, v) ∈ R ∧ w ∈ L} where R
ranges over length-preserving rational relations and L over regular languages.
In terms of classes of relations in Σ∗ ×∆∗, we have the strict inclusions

lp = 0-bld ( · · · ( b-bld ( (b+ 1)-bld ( · · · ( bld ( Sync ( Rat . (1)

Post Embedding Problems, as we have seen in the introduction, are con-
cerned with the interplay of a rational relation R in Σ∗ × Σ∗ with the subword
embedding ordering v. The latter is a particular case of a (deterministic) ratio-
nal relation that is not synchronous. Both EP[Rat] and LR[Rat] are particular
instances of more general, undecidable problems: the emptiness of intersection
of two rational relations for EP[Rat], and the word problem in the reflexive tran-
sitive closure of a rational relation for LR[Rat]. We can add another natural
problem to the set of PEPs:

Lossy Termination (LT[Rat])

input A rational relation R over Σ and a word w in Σ∗.
question Does R~

w terminate from w, i.e. is every sequence w = w0 Rw w1 Rw
· · ·Rw wi Rw · · · with w0, w1, . . . , wi, . . . in Σ∗ finite?

Again, this is a variant of the termination problem, which is in general unde-
cidable when the relation is not lossy.

Restrictions. We parameterize PEPs with the subclass of rational relations
under consideration for R and the cardinal of the alphabet Σ; for instance,
(k+2)-EP[Sync] is the variant of EP[Rat] where the relation is synchronous and
|Σ| = k+2. We are interested in this paper in providing Fωk lower bounds with
the smallest possible class of relations and smallest possible alphabet size, but
we should also mention that some (rather strong) restrictions become tractable:

• Barceló et al. (2012) show that EP[Rec]—where a recognizable relation
is a finite union of products L × L′ where L and L′ range over regular
languages—is in NLogSpace, because the intersection R ∩v is rational,
and can effectively be constructed and tested for emptiness on the fly,

• Chambart and Schnoebelen (2007) show that EP[2Morph]—where a 2-
morphic relation (Latteux and Leguy, 1983) is the composition R = (u−1 #
v) \ {(ε, ε)} of two morphisms u and v from Γ∗ to Σ∗—is in LogSpace,
because it reduces to checking whether there exists a in Γ s.t. u(a) v v(a),

• the case EP[Rewr] of rewrite relations is similarly in LogSpace: a rewrite
relation R is defined from a semi-Thue system, i.e. a finite set Υ of rules
(u, v) in Σ∗ ×Σ∗, as →Υ = {(wuw′, wvw′) | w,w′ ∈ Σ∗ ∧ (u, v) ∈ Υ}, and
EP[Rewr] reduces to checking whether u v v for some rule (u, v) of Υ,
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• the unary alphabet case of 1-EP[Rat] is in NLogSpace: this can be seen
using Parikh images and Presburger arithmetic; see App. A for details:

Proposition 1. The problem 1-EP[Rat] is in NLogSpace.

3 Hardy Computations

We use the Hardy hierarchy as our main subrecursive hierarchy (Löb and Wainer,
1970; Rose, 1984; Fairtlough and Wainer, 1998). Although we will only use the
lower levels of this hierarchy, its general definition is worth knowing, as it is
archetypal of ordinal-indexed subrecursive hierarchies; see (Schmitz and Sch-
noebelen, 2012) for a self-contained presentation.

3.1 The Hardy Hierarchy

Ordinal Terms. Let ε0 be the smallest solution of the equation ωx = x. It is
well-known that any ordinal α < ε0 can be written uniquely in Cantor Normal
Form (CNF) as a sum

α = ωβ1 + · · ·+ ωβn (2)

where βn ≤ · · · ≤ β1 < α and each βi is itself in CNF. This ordinal α is 0 if n = 0
in (2), a successor ordinal if βn is 0, and a limit ordinal otherwise. Subrecursive
hierarchies are defined through assignments of fundamental sequences (λn)n<ω
for limit ordinals λ < ε0, satisfying λn < λ for all n and λ = supn λn. A
standard assignment is defined by:(

γ + ωα+1
)
n

def
= γ + ωα · n,

(
γ + ωλ

)
n

def
= γ + ωλn , (3)

thus verifying ωn = n. Let Ω
def
= ωω

ω

; this yields for instance Ωk = ωω
k

and, if

k > 0, (Ωk)n = ωω
k−1·n.

Hardy Hierarchy. The Hardy hierarchy (Hα)α<ε0 is an ordinal-indexed hi-
erarchy of functions Hα:N→ N defined by

H0(n)
def
= n Hα+1(n)

def
= Hα(n+ 1) Hλ(n)

def
= Hλn(n) . (4)

Observe that H1 is simply the successor function, and more generally Hα is
the αth iterate of the successor function, using diagonalisation to treat limit
ordinals. A related hierarchy is the fast growing hierarchy (Fα)α<ε0 , which can

be defined by Fα
def
= Hωα , resulting in F0(n) = H1(n) = n+1, F1(n) = Hω(n) =

Hn(n) = 2n, F2(n) = Hω2

(n) = 2nn being exponential, F3 = Hω3

being non-

elementary, Fω = Hωω = HΩ1 being an Ackermannian function, Fωk = HΩk a
k-Ackermannian function, and Fωω = HΩ an hyper-Ackermannian function.

Fast-Growing Complexity Classes. Our intention is to establish the “Fωk
hardness” of Post embedding problems. In order to make this statement more
precise, we define the class Fωk of k-Ackermannian problems as a specific in-
stance of the fast-growing complexity classes defined for α ≥ 3 by

Fα
def
=

⋃
p∈

⋃
β<α Fβ

DTime(Fα(p(n))) , Fα =
⋃
c<ω

FDTime(F cα(n)) , (5)
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where Fα defined above is the αth level of the extended Grzegorczyk hierarchy
(Löb and Wainer, 1970) when α ≥ 2. The classes Fα are naturally equipped with⋃
β<α Fβ as class of reductions. For instance, because

⋃
k<ω Fωk is exactly the

set of multiply-recursive functions, Fωω captures the intuitive notion of hyper-
Ackermannian problems closed under multiply-recursive reductions.2

Hardy Computations. The fast-growing and Hardy hierarchies have been
used in several publications to establish Ackermannian and higher complexity
bounds (Chambart and Schnoebelen, 2008c; Schmitz and Schnoebelen, 2011;
Haddad et al., 2012; Schmitz and Schnoebelen, 2012). The principle in their
use for lower bounds is to view (4), read left-to-right, as a rewrite system over
ε0×N, and later implement it in the targeted formalism. Formally, a (forward)
Hardy computation is a sequence

α0, n0 −→ α1, n1 −→ α2, n2 −→ · · · −→ α`, n` (6)

of evaluation steps implementing the equations in (4) seen as left-to-right rewrite
rules over Hardy configurations α, n. It guarantees α0 > α1 > α2 > · · ·
and keeps Hαi(ni) invariant. We say it is complete when α` = 0 and then
n` = Hα0(n0) (we also consider incomplete computations). A backward Hardy
computation is obtained by using (4) as right-to-left rules. For instance,

ωω
k

, n→ ωω
k−1·n, n→ ωω

k−1·(n−1)+ωk−2·n, n (7)

constitute the first three steps of the forward Hardy computation starting from
Ωk, n if k > 1 and n > 0.

Termination of Hardy Computations. Because α0 > α1 > · · · > α` in
a forward Hardy computation like (6), it necessarily terminates. For inverse
computations, this is less immediate, and we introduce for this a norm ‖α‖ of
an ordinal α in ε0 as its count of “ω” symbols when written as an ordinal term:
formally, ‖.‖: ε0 → N is defined by

‖0‖ def
= 0 ‖ωα‖ def

= 1 + ‖α‖ ‖α+ α′‖ def
= ‖α‖+ ‖α′‖ . (8)

Observe that ‖α ·m‖ = ‖α‖ ·m. We can check by transfinite induction on α > 0
that, for any limit ordinal λ, ‖λn‖ > ‖λ‖ whenever n > 1. Indeed, if α = β+ 1,
then ‖λn‖ = ‖γ + ωβ · n‖ = ‖γ‖ + (1 + ‖β‖)n > ‖γ‖ + 2 + ‖β‖ = ‖λ‖, and in
the limit case, ‖λn‖ = ‖gamma‖ + 1 + ‖αn‖ > ‖γ‖ + 1 + ‖α‖ = ‖λ‖ by ind.
hyp. Therefore, if n is larger than 1 in a configuration α, n of an inverse Hardy
computation following (4) from right to left, either we apply the successor rule
and reach α+ 1, n− 1 with a decreased n, or we apply the limit rule and reach
α′, n s.t. α = α′n with a decreased ‖α‖: in a backward Hardy computation, the
pair (n, ‖α‖) decreases for the lexicographic ordering over N2. As this is a well-
founded ordering, we see that backward computations terminate if n remains
larger than 1—which is a reasonable hypothesis for the following.

2Note that, at such high complexities, the usual distinctions between deterministic vs.
nondeterministic, or time-bounded vs. space-bounded computations become irrelevant. In
particular, F2 is the set of elementary functions, and F3 the class of problems with a tower of
exponentials of height bounded by some elementary function of the input as an upper bound.
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3.2 Encoding Hardy Configurations

Our purpose is now to encode Hardy computations as relations over Σ∗. This
entails in particular (1) encoding configurations α, n in Ωk×N of a Hardy com-
putation as finite sequences using cumulative ordinal descriptions or “codes”,
which we do in this subsection, and (2) later in Section 3.3 designing a 1-bld
relation that implements Hardy computation steps over codes. A constraint on
codes is that they should be robust against losses, i.e. if π(x) and π(x′) are the
ordinals associated to the codes x and x′, then Hπ(x)(n) ≤ Hπ(x′)(n)—pending
some hygienic conditions on x and x′, see Lem. 2.

Finite Ordinals below k can be represented as single symbols a0, . . . , ak−1

of an alphabet Σk along with a bijection

ϕ(ai)
def
= i . (9)

Small Ordinals below ωk are then easily encoded as finite words over Σk:
given a word w = b1 · · · bn over Σk, we define its associated ordinal in ωk as

β(w)
def
= ωϕ(b1) + · · ·+ ωϕ(bn) . (10)

Note that β is surjective but not injective: for instance, β(a0a1) = β(a1) = ω.
By restricting ourselves to pure words over Σk, i.e. words satisfying ϕ(bj) ≥
ϕ(bj+1) for all 1 ≤ j < n, we obtain a bijection between ωk and p(Σ∗k) the set
of pure finite words in Σ∗k, because then (10) is the CNF of β(w).

Large Ordinals below Ωk are denoted by codes (Chambart and Schnoebe-
len, 2008c; Haddad et al., 2012), which are #-separated words over the ex-

tended alphabet Σk#
def
= Σk ] {#}. A code x can be seen as a concatenation

w1#w2# · · ·#wp#wp+1 where each wi is a word over Σk. Its associated ordinal
π(x) in Ωk is then defined as

π(x)
def
= ωβ(w1w2···wp) + · · ·+ ωβ(w1w2) + ωβ(w1) , (11)

or inductively by

π(w)
def
= 0, π(w#x)

def
= ωβ(w) · π(x) + ωβ(w) (12)

for w a word in Σ∗k and x a code. For instance, π(a1a0#) = ωω+1 = π(a0a1a0#a3),
or, closer to our concerns, the initial ordinal in our computations is π(ank−1#) =
(Ωk)n when k > 0.

Observe that π is surjective, but not injective. We can mend this by defining
a pure code x = w1# · · ·#wp#wp+1 as one where wp+1 = ε and every word
wi for 1 ≤ i ≤ p is pure—note that it does not force the concatenation of
two successive words wiwi+1 of x to be pure. This is intended, as this is the
very mechanism that allows π to be a bijection between Ωk and p(Σ∗k#) (see
App. B.1):

Lemma 1. The function π is a bijection from p(Σ∗k#) to Ωk.

We also define p(x) to be the unique pure code x′ verifying π(x) = π(x′);
then p(x) v x, and x v x′ implies p(x) v p(x′).
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Hardy Configurations α, n are finally encoded as sequences c = π−1(α) p #n

using a separator “p”, i.e. as sequences in the language Confs
def
= p(Σ∗k#)·{p}·{#}∗.

This is a regular language over Σk#]{p}, but the most important fact about this
encoding is that it is robust against symbol losses as far as the corresponding
computed Hardy values are concerned. Robustness is a critical part of hardness
proofs based on Hardy functions. The main difficulty rises from the fact that
the Hardy functions are not monotone in their ordinal parameter: for instance,
Hω(n) = Hn(n) = 2n is less than Hn+1(n) = 2n + 1. Code robustness is
addressed in (Chambart and Schnoebelen, 2008c, Prop. 4.3), and in (Haddad

et al., 2012, Prop. 16) for a more complex encoding of ordinals below ωω
ωk

as vector sequences. Robustness is the limiting factor that prevents us from
reducing languages in Fα for α > Ω into PEPs.

Lemma 2 (Robustness). Let c = x p #n and c′ = x′ p #n′ be two sequences in
Confs. If c v c′, then Hπ(x)(n) ≤ Hπ(x′)(n′).

3.3 Encoding Hardy Computations

It remains to present a 1-bld relation that implements Hardy computations over
Hardy configurations encoded as sequences in Confs. We translate the equations
from (4) into a relation RH = (R0 ∪R1 ∪R2) ∩ (Confs× Confs), which can be
reversed for backward computations:

R0
def
= {(#x p #n, x p #n+1) | n ≥ 0, x ∈ Σ∗k#} (13)

R1
def
= {(wa0#x p #n, w#np(a0x) p #n) | n > 1, w ∈ Σ∗k, x ∈ Σ∗k#} (14)

R2
def
= {(wai#x p #n, wani−1#p(aix) p #n) | n > 1, i > 0, w ∈ Σ∗k, x ∈ Σ∗k#} (15)

The relation R0 implements the successor case, while R1 and R2 implement the
limit case of (3) for ordinals of form γ + ωα+1 and γ + ωλ respectively. The
restriction to n > 1 in R1 and R2 enforces termination for backward computa-
tions; it is not required for correctness. Because RH is a direct translation of
(4) over Confs:

Lemma 3 (Correctness). For all α, α′ in Ωk and n, n′ > 1, (π−1(α) p #n)(RH∪
R−1
H )~(π−1(α′) p #n′) iff Hα(n) = Hα′(n′).

Unfortunately, although R0 is a length-preserving rational relation, R1 and
R2 are not 1-bld, nor even rational. However, they can easily be broken into
smaller steps, which are rational—as we are applying a reflexive transitive clo-
sure, this is at no expense in generality. This requires more complex encodings
of Hardy configurations, with some “finite state control” and a working space
in order to keep track of where we are in our small steps. Because we do not
want to spend new symbols in this encoding, given some finite set Q of states,
we work on sequences in

Seqs
def
= {a0, a1}dlog |Q|e · {p} · p(Σ∗k) · {#}∗ · {p} · p(Σ∗k#) · {p} · {#, a0, a1}∗ . (16)

with four segments separated by “p”: a state, a working segment, an ordinal
encoding, and a counter. Given a state q in Q, we use implicitly its binary
encoding as a sequence of fixed length over {a0, a1}. Our sequences in “normal”
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mode look like “q pp π−1(α) p #n” with an empty working segment and only #’s
as counter symbols.

We define two relations Fw and Bw with domain and range Seqs that imple-
ment forward and backward computations with RH . A typical case is that of
computations with R1, which can be implemented as the closure of the union:

qFw pp wa0#x p #n+2 Fw1 qFw1 p w# p p(a0x) p #n+1a0 (17)

qFw1
p w#m p x p #n+1ap+1

0 Fw1 qFw1
p w#m+1 p x p #nap+2

0 (18)

qFw1
p w#m+1 p x p an+2

0 Fw1 qFw1
pp w#m+1x p #n+2 (19)

for m,n, p in N, w in p(Σ∗k), and x in p(Σ∗k#). Note that p(a0x) returns a0x if x
begins with # or a0, and x otherwise. The corresponding backward computation
for R1 inverses the relations in (17–19) and substitutes qBw and qBw1

for qFw and
qFw1

. The reader should be able to convince herself that this is indeed feasible in
a rational 1-bld fashion; for instance, (18) can be written as a rational expression[

qFw1
p

qFw1
p

]
· IdΣ∗k

·
[
#
#

]∗
·
[
ε
#

]
·
[
p
p

]
· IdΣ∗k#

·
[
p
p

]
·
[
#
#

]∗
·
[
#
ε

]
·
[
a0

a0

]+
·
[
ε
a0

]
. (20)

A full description of Fw and Bw can be found in App. B.2.
Observe that separators “p” are reliable, and that losses cannot pass unno-

ticed in the constant-sized state segment of a sequence in Seqs; thus we can use
lemmas 2 and 3 to prove that Fw~

w and Bw~
w are “weak” implementations of Hα

and its inverse when α is in Ωk. Not any reformulation of RH as the closure
of a rational relation would work here: our relation also needs to be robust to
losses; see App. B.2 for details.

Lemma 4 (Weak Implementation). The relations Fw and Bw are 1-bld and
terminating. Furthermore, if k ≥ 1, m,n > 1 and α ∈ Ωk,

(qFw pp π−1(α) p #n) Fw~
w (qFw ppp #m) implies m ≤ Hα(n)

(qBw ppp #m) Bw~
w (qBw pp π−1(α) p #n) implies m ≥ Hα(n)

and there exists rewrites verifying m = Hα(n) in both of the above cases.

4 The Parametric Complexity of LR[1-bld]

Now equipped with suitable encodings for Hardy computations, we can turn
to the main result of the paper: Prop. 2 below shows the Fωk -hardness of
(k + 2)-LR[1-bld]. As we obtain almost matching upper bounds in Section 4.2,
we deem this to be rather tight.

4.1 Lower Bound

Thanks to the relations over Σk#]{p} defined in Section 3, we know that we can
weakly compute with Fw a “budget space” as a unary counter of size Fωk(n),
and later check that this budget has been maintained by running through Bw.
We are going to insert the simulation of an Fωk -hard problem between these
two phases of budget construction and budget verification, thereby constructing
Fωk -hard instances of (k + 2)-LR[1-bld].

Proposition 2. Let k ≥ 2. Then (k + 2)-LR[1-bld] is Fωk -hard.

9



Bounded Semi-Thue Reachability. The problem we reduce from is a space-
bounded variant of the semi-Thue reachability problem (aka semi-Thue word
problem): as already mentioned in Section 2, a semi-Thue system Υ over an
alphabet is a finite set of rules (u, v) in Σ∗×Σ∗, defining a rewrite relation →Υ.

Semi-Thue Reachability (R[Rewr])

input A semi-Thue system Υ over an alphabet Σ, and words y and y′ in Σ∗.
question Is it the case that y →~

Υ y′?

This problem is in general undecidable, as one can express the “next configu-
ration” relation of a Turing machine as a semi-Thue system. Its Fωk -bounded
version for some k ≥ 1 takes as input an instance 〈Υ, y, y′〉 of size n where, if
y →~

Υ x, then |x| ≤ Fωk(n). This is easily seen to be hard for Fωk , even for a
binary alphabet Σ:

Fact 1. The Fωk -bounded semi-Thue reachability problem is Fωk -complete, al-
ready for |Σ| = 2.

Reduction. Let 〈Υ, y, y′〉 be an instance of size n > 1 of Fωk -bounded R[Rewr]
over the two-letters alphabet {a0, a1}. We build a (k+ 2)-LR[1-bld] instance in
which the rewrite relation R performs the following sequence:

1. Weakly compute a budget of size Fωk(n), using Fw described in Section 3.

2. In this allocated space, simulate the rewrite steps of Υ starting from y.

3. Upon reaching y′, perform a reverse Hardy computation using Bw and
check that we obtain back the initial Hardy configuration. This check
ensures that the lossy rewrites were in fact reliable (i.e., no symbols were
lost).

For Phase 2, we define a #-padded version Sim of→Υ that works over Seqs:

Sim
def
= {(qSim ppp u#p, qSim ppp v#q) | u→Υ v, |u|+ p = |v|+ q} . (21)

This is a length-preserving rational relation. We define two more length-preserving
rational relations Init and Fin that initialize the simulation with y on the budget
space, and launch the verification phase if y′ appears there, allowing to move
from Phase 1 to Phase 2 and from Phase 2 to Phase 3, respectively:

Init
def
= {(qFw ppp #`+|y|, qSim ppp y#`) | ` ≥ 0} , (22)

Fin
def
= {(qSim ppp y′#`, qBw ppp #`+|y′|) | ` ≥ 0} . (23)

Finally, because Fωk(n) = H(Ωk)n(n), we define our source and target by

w
def
= qFw pp ank−1# p #n , w′

def
= qBw pp ank−1# p #n , (24)

and we let R be the 1-bld rational relation Fw ∪ Init ∪ Sim ∪ Fin ∪ Bw.

Claim 1. The given R[Rewr] instance is positive if and only if 〈R,w,w′〉 is a
positive instance of the (k + 2)-LR[1-bld] problem.

Proof. Suppose w R~
w w′. It is easy to see that the separator symbol “p” and

the encodings of states from Q are reliable. Because of the way the relations
treat the states, we in fact get

w Fw~
w (qFw ppp #`1) Initw (qSim ppp z1) Sim~

w (qSim ppp z2) Finw (qSim ppp #`2) Bw~
w w

′

10



for some strings z1, z2 and naturals `1, `2 ∈ N. By Lem. 4, we have `1 ≤ Fωk(n)
and `2 ≥ Fωk(n). Since Init, Sim, and Fin are length-preserving, we get

Fωk(n) ≥ `1 ≥ |z1| ≥ |z2| ≥ `2 ≥ Fωk(n) (25)

Thus equality holds throughout, and therefore the lossy steps of Simw in Phase 2
were actually reliable, i.e. were steps of Sim. This allows us to conclude that
the original R[Rewr] instance was positive.

Suppose conversely that the R[Rewr] instance is positive. We can translate
this into a witnessing run for w R~

w w
′, in particular, for w Fw~ # Init # Sim~ #

Fin # Bw~ w′, because any successful run from the R[Rewr] instance can be
plugged into the Sim~ phase; Lem. 4 and the fact that the configurations of Υ
are bounded by Fωk(n) together ensure that this can be done.

4.2 Upper Bound

Well-Structured Transition Systems. As a preliminary, let us show that
the lossy rewriting problem is decidable. Indeed, the relation Rw can be viewed
as the transition relation of an infinite transition system over the state space
Σ∗. Furthermore, by Higman’s Lemma, the subword embedding ordering v is a
well quasi ordering (wqo) over Σ∗, and the relation Rw is compatible with it: if
uRw v and u v u′ for some u, v, u′ in Σ∗, then there exists v′ in Σ∗ s.t. u′Rw v

′:
here it suffices to use v′ = v by transitivity of w.

A transition system S = 〈S,→,≤〉 with a wqo (S,≤) as state space and
a compatible transition relation → is called a well-structured transition system
(WSTS), and several problems are decidable on such systems under very light
effectiveness assumptions (Abdulla et al., 2000; Finkel and Schnoebelen, 2001),
among which the coverability problem, which asks given a WSTS S and two
states s and s′ in S whether there exists s′′ ≥ s′ s.t. s→~ s′′. The lossy rewrite
problem when w 6w w′ can be restated as a coverability problem for the WSTS
〈Σ∗, Rw,v〉 and w and w′, since if there exists w′′ w w′ with w R~

w w
′′, then

w R~
w w

′ also holds by transitivity of w.

Parameterized Upper Bound. In many cases, a combinatory algorithm can
be employed instead of the classical backward coverability algorithm for WSTS:
we can find a particular coverability witness w′ = w0v #R−1w1 · · ·w`−1v #R−1

w` v w of length ` bounded by a function akin to Fωk−1 using the Length Func-
tion Theorem of (Schmitz and Schnoebelen, 2011). This is a generic technique
for coverability explained in (Schmitz and Schnoebelen, 2012), and the reader
will find it instantiated for (k + 2)-LR[Rat] in App. C.1:

Proposition 3 (Upper Bound). The problem (k + 2)-LR[Rat] is in Fωk+1 .

The small gap of complexity we witness here with Prop. 2 stems from the
encoding apparatus, which charges us with one extra symbol. We have not
been able to close this gap; for instance, the encoding breaks if we try to work
without our separator symbol “p”.

11



5 Applications

We apply in this section the proof of Prop. 2 to prove parametric complexity
lower bounds for several problems. In three cases (propositions 4, 5, and 7
below), we proceed by a reduction from the LR problem, but take advantage
of the specifics of the instances constructed in the proof Prop. 2 to obtain
tighter parameterized bounds. The hardness proof for the LT problem in Prop. 6
requires more machinery, which needs to be incorporated to the construction of
Section 4.1 in order to obtain a reduction.

Rational Embedding. We first deal with the classical embedding problem:
We reduce from a (k + 2)-LR[Rat] instance and use Prop. 2. The issue is to
somehow convert an iterated composition into an iterated concatenation—the
idea is similar to the one typically used for proving the undecidability of PCP.

Proposition 4. Let k ≥ 2. Then (k + 2)-EP[Rat] is Fωk -hard.

Proof. Assume without loss of generality that w 6= w′ in a (k + 2)-LR[Rat]
instance 〈R,w,w′〉. We consider sequences of consecutive configurations of w #
(R #w)⊕ of form

w = v0 w u0 R v1 w u1 R v2 w · · ·R vn w un = w′ (26)

that prove the LR instance to be positive. Let $ be a fresh symbol; we construct
a new relation R′ that attempts to read the ui’s on its first component and the
vi’s on the second, using the $’s for synchronization:

R′
def
=

[
$w′$

$

]
·
(
R ·
[
$
$

])+

·
[
ε
w$

]
(27)

Observe that in any pair of words (u, v) of R′, one finds the same number of
occurrences of the separator $ in u and v, i.e. we can write u = $un$ · · · $u0$
and v = $vn$ · · · $v0$ with n > 0, verifying v0 = w, un = w′, and ui R vi+1 for
all i.

Assume u v v: the embedding ordering is restricted by the $ symbols to the
factors ui v vi. We can therefore exhibit a sequence of form (26). Conversely,
given a sequence of form (26), the corresponding pair (u, v) belongs to R′ ∩ v.

In order to conclude, observe that we can set $
def
=p in the proof of Prop. 2

and adapt the previous arguments accordingly, since “p” is preserved by R and
appears in both w and w′ in the particular instances we build.

Synchronous Embedding. Turning now to the case of synchronous rela-
tions, we proceed as in the previous prooffor Prop. 4 , but employ an extra
padding symbol ⊥ to construct a length-preserving version of the relation R in
an instance of (k + 2)-LR[Sync], allowing us to apply the Kleene star operator
while remaining regular.

Proposition 5. Let k ≥ 2. Then (k + 3)-EP[Sync] is Fωk -hard.

Proof. Let 〈R,w,w′〉 be an instance of (k + 2)-LR[Sync] with w 6= w′ and let $
and ⊥ be two fresh symbols. Because R · {($, $)} is a synchronous relation, we
can construct a padded length-preserving relation

R⊥
def
= {(u$⊥m, v$⊥p) | m, p ≥ 0 ∧ (u, v) ∈ R ∧ |u$⊥m| = |v$⊥p|} (28)
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and define a relation similar to (27):

R′⊥
def
=

[
$w′$

$

]
·R+
⊥ ·
[
ε
w$

]
·
[
ε
⊥

]∗
. (29)

Let us show that R′⊥ is regular: {($w′$, $)} and {(ε, w$)} are relations with
bounded length discrepancy and R∗⊥ is length preserving, thus their concatena-
tion has bounded length discrepancy, and can be effectively computed by resyn-
chronization (Sakarovitch, 2009). Suffixing {(ε,⊥)}∗ thus yields a synchronous
relation.

As in the proof of Prop. 4, R′⊥ preserves the $ separators, thus if (u, v)
belongs to R′⊥, then we can write

u = $ un $ ⊥mn un−1 $ ⊥mn−1 · · · $ ⊥m1 u0 $ ⊥m0 ,
v = $ vn $ ⊥pn vn−1 $ ⊥pn−1 · · · $ ⊥p1 v0 $ ⊥p0 .

(30)
with n > 0 andmn = 0. Furthermore, v0 = w, un = w′, and (ui$⊥mi , vi+1$⊥pi+1)
belongs to R⊥, thus uiRvi+1 for all i. If the EP instance is positive, i.e. if u v v,
then ui v vi and mi ≤ pi for all i, and we can build a sequence of form (26)
proving the LR instance to be positive. Conversely, if the LR instance is pos-
itive, there exists a sequence of form (26), and we can construct a pair (u, v)
as in (30) above by guessing a sufficient padding amount p0 that will allow to
carry the entire rewriting.

Finally, as in the proof of Prop. 4, we can set $
def
=p.

Lossy Termination. In contrast with the previous cases, our hardness proof
for the LT problem does not reduce from LR but directly from a semi-Thue
word problem, by adapting the proof of Prop. 2 in such a way that R~

w is
guaranteed to terminate. The main difference is that we reduce from a semi-
Thue system where the length of derivations is bounded, rather than the length
of configurations—this is still Fωk -hard since the distinction between time and
space complexities is insignificant at such high complexities. The simulation of
such a system then builds two copies of the initial budget in Phase 1: a space
budget, where the derivation simulation takes place, and a time budget, which
gets decremented with each new rewrite of Phase 2, and enforces its termination
even in case of losses. See App. D.1 for details.

Proposition 6. Let k ≥ 2. Then (k + 2)-LT[1-bld] is Fωk -hard.

Lossy Channel Systems. By over-approximating the behaviours of a chan-
nel system by allowing uncontrolled, arbitrary message losses, Abdulla, Cécé,
et al. (Cécé et al., 1996; Abdulla and Jonsson, 1996) obtain decidability re-
sults on an otherwise Turing-complete model. Many variants of this model have
been studied in the literature (Chambart and Schnoebelen, 2007, 2008a; Jančar
et al., 2012), but our interest here is that LCSs were originally used as the formal
model for the Fωω lower bound proof of Chambart and Schnoebelen (2008c),
rather than a PEP.

Formally, a lossy channel system (LCS) is a finite labeled transition system
〈Q,Σ, δ〉 where transitions in δ ⊆ Q × {?, !} × Σ × Q read and write on an
unbounded channel. An channel system defines an infinite transition system
over its set of configurations Q × Σ∗—holding the current state and channel

13



content—, with transition relation q, x→ q′, x′ if either δ holds a read (q, ?m, q′)
and x = mx′, or if it holds a write (q, !m, q′) and xm = x′. The operational
semantics of an LCS then use the lossy version →w of this transition relation.
In the following, we consider a slightly extended model, where transitions carry
sequences of instructions instead, i.e. δ is a finite set included in Q × ({?, !} ×
Σ)∗×Q. The natural decision problem associated with a LCS is its reachability
problem:

Lossy Channel System Reachability (LCS)

input A LCS C and two configurations (q, x) and (q′, x′) of C.
question Is (q′, x′) reachable from (q, x) in C, i.e. does q, x→~

w q
′, x′?

The lossy rewriting problem easily reduces to a reachability problem in a
LCS: the LCS cycles through the channel contents thanks to a distinguished
symbol, and applies the rational relation at each cycle; see App. D.2 for details.

Proposition 7. Let k ≥ 2. Then (k + 2)-LCS is Fωk -hard.

6 Concluding Remarks

Post embedding problems provide a high-level packaging of hyper-Ackermannian
decision problems—and thanks to our parametric bounds, for k-Ackermannian
problems—, compared to e.g. reachability in lossy channel systems (as used
in (Chambart and Schnoebelen, 2008c)). The lossy rewriting problem is a promi-
nent example: because it is stated in terms of a rational relation instead of a
machine definition, it beneficiates automatically from the theoretical toolkit and
multiple characterizations associated with rational relations. For a simple ex-

ample, the increasing rewriting problem, which employs Rv
def
= v #R #v instead

of Rw, is immediately seen to be equivalent to LR, by substituting R−1 for R
and exchanging w and w′.

Interestingly, this inversion trick allows to show the equivalence of the lossy
and increasing variants of all our problems, except for lossy termination:

Increasing Termination (IT[Rat])

input A rational relation R over Σ and a word w in Σ∗.
question Does R~

v terminate from w?

A related problem, termination of increasing channel systems with emptiness
tests, is known to be in F3 (Bouyer et al., 2012) instead of Fωω for LCS ter-
mination, but IT[Rat] is more involved. Like LR[Rat] or EP[Rat], it provides
a high-level description, this time of fair termination problems in increasing
channel systems, which are known to be equivalent to satisfiability of safety
metric temporal logic (Ouaknine and Worrell, 2007, 2006; Jenkins, 2012). The
exact complexity of IT[Rat] is open, with a gigantic gap between the Fωω upper
bound provided by WSTS theory, and an F4 lower bound by Jenkins (2012).
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Cécé, G., Finkel, A., and Purushothaman Iyer, S., 1996. Unreliable channels are
easier to verify than perfect channels. Information and Computation, 124(1):20–31.
doi:10.1006/inco.1996.0003.

Chambart, P. and Schnoebelen, Ph., 2007. Post embedding problem is not primitive
recursive, with applications to channel systems. In Arvind, V. and Prasad, S.,
editors, FSTTCS 2007 , 27th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, volume 4855 of Lecture Notes in
Computer Science, pages 265–276. Springer. doi:10.1007/978-3-540-77050-3 22.

Chambart, P. and Schnoebelen, Ph., 2008a. Mixing lossy and perfect fifo channels.
In van Breugel, F. and Chechik, M., editors, CONCUR 2008 , 19th International
Conference on Concurrency Theory, volume 5201 of Lecture Notes in Computer
Science, pages 340–355. Springer. doi:10.1007/978-3-540-85361-9 28.

Chambart, P. and Schnoebelen, Ph., 2008b. The ω-regular Post embedding problem. In
Amadio, R., editor, FoSSaCS 2008 , 11th International Conference on Foundations
of Software Science and Computational Structures, volume 4962 of Lecture Notes in
Computer Science, pages 97–111. Springer. doi:10.1007/978-3-540-78499-9 8.

Chambart, P. and Schnoebelen, Ph., 2008c. The ordinal recursive complexity of lossy
channel systems. In LICS 2008 , 23rd Annual IEEE Symposium on Logic in Com-
puter Science, pages 205–216. IEEE Press. doi:10.1109/LICS.2008.47.

Chambart, P. and Schnoebelen, Ph., 2010a. Computing blocker sets for the regular
Post embedding problem. In DLT 2010 , International Conference on Developments
in Language Theory, volume 6224 of Lecture Notes in Computer Science, pages 136–
147. Springer. doi:10.1007/978-3-642-14455-4 14.

Chambart, P. and Schnoebelen, Ph., 2010b. Pumping and counting on the regular
Post embedding problem. In Abramsky, S., Meyer auf der Heide, F., and Spirakis,
P., editors, ICALP 2010 , 37th International Colloquium on Automata, Languages
and Programming, volume 6199 of Lecture Notes in Computer Science, pages 64–75.
Springer. doi:10.1007/978-3-642-14162-1 6.

Elgot, C.C. and Mezei, J.E., 1965. On relations defined by generalized finite automata.
IBM Journal of Research and Development, 9(1):47–68. doi:10.1147/rd.91.0047.

Fairtlough, M. and Wainer, S.S., 1998. Hierarchies of provably recursive functions.
In Buss, S., editor, Handbook of Proof Theory, volume 137 of Studies in Logic and
the Foundations of Mathematics, chapter III, pages 149–207. Elsevier. doi:10.1016/
S0049-237X(98)80018-9.

Finkel, A. and Schnoebelen, Ph., 2001. Well-structured transition systems ev-
erywhere! Theoretical Computer Science, 256(1–2):63–92. doi:10.1016/
S0304-3975(00)00102-X.

15

http://dx.doi.org/10.1006/inco.1999.2843
http://dx.doi.org/10.1145/1706299.1706303
http://dx.doi.org/10.1145/1706299.1706303
http://dx.doi.org/10.1109/LICS.2012.23
http://dx.doi.org/10.1007/s00165-012-0234-7
http://dx.doi.org/10.1006/inco.1996.0003
http://dx.doi.org/10.1007/978-3-540-77050-3_22
http://dx.doi.org/10.1007/978-3-540-85361-9_28
http://dx.doi.org/10.1007/978-3-540-78499-9_8
http://dx.doi.org/10.1109/LICS.2008.47
http://dx.doi.org/10.1007/978-3-642-14455-4_14
http://dx.doi.org/10.1007/978-3-642-14162-1_6
http://dx.doi.org/10.1147/rd.91.0047
http://dx.doi.org/10.1016/S0049-237X(98)80018-9
http://dx.doi.org/10.1016/S0049-237X(98)80018-9
http://dx.doi.org/10.1016/S0304-3975(00)00102-X
http://dx.doi.org/10.1016/S0304-3975(00)00102-X


Friedman, H.M., 1999. Some decision problems of enormous complexity. In LICS
1999 , 14th Annual IEEE Symposium on Logic in Computer Science, pages 2–13.
IEEE Press. doi:10.1109/LICS.1999.782577.

Haddad, S., Schmitz, S., and Schnoebelen, Ph., 2012. The ordinal-recursive complexity
of timed-arc Petri nets, data nets, and other enriched nets. In LICS 2012 , 27th An-
nual IEEE Symposium on Logic in Computer Science, pages 355–364. IEEE Press.
doi:10.1109/LICS.2012.46.
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A Unary Alphabet: Prop. 1

We prove here Prop. 1: 1-EP[Rat] is in NLogSpace.

Parikh Images. The proof employs the semilinear view of unary rational
relations: a semilinear set S is a subset of Zk described by a finite union of
linear sets (b,P) defined as {b+

∑m
i=1 xipi | x1, . . . , xm ∈ N} where b is a base

in Zk and P is a set of m periods p1, . . . ,pm, each in Zk. It is well known that
the Parikh image (aka commutative image) Ψ(L) of a regular language L over
an alphabet Σ is a semilinear set in N|Σ| telling for each symbol of Σ how many
times it occurs in a word of L. Formally, let Σ = {a1, . . . , an}, then a vector u
is in Ψ(L) iff there exists a word u in L s.t. for all 1 ≤ i ≤ n, u(i) = |u|ai the
number of occurrences of ai in u.

Proof of Prop. 1. Given a rational relation R over the unary alphabet Σ = {a},
we can view its normalized transducer T = 〈Q,Σ,Σ, δ, I, F 〉 as a nondeter-
ministic finite automaton A = 〈Q,∆, δ, I, F 〉 over the two-letters alphabet
∆ = {(a, ε), (ε, a)}. The Parikh image of L(A) is then a semilinear set S ⊆ N2

verifying
S = {(m,n) | (am, an) ∈ R} . (31)

Assume R ∩ v 6= ∅, i.e. there exists a pair (m,n) in S with m ≤ n. Then,
there exists a linear set (b,P) in S s.t. either b = (b1, b2) with b1 ≤ b2, or
b1 > b2 but there exists a period p = (p1, p2) in P verifying p1 < p2—and then
there exists x in N s.t. b1 + x1p1 ≤ b2 + xp2.

It therefore suffices to check in NLogSpace for the existence of such a non-
decreasing basis b or such an increasing period p in the normalized transducer
T for R. This is rather straightforward:

• a basis b is read along a simple accepting run in T , hence a run of length
at most |Q|, while

• a period p is read along a simple loop on some state q of Q; we have to
check that q is both accessible and co-accessible, thus q should lie on an
accepting run of length at most 2|Q| and exhibit a loop of length at most
|Q|.

In both cases it suffices to guess a suitable accepting run to find such a b or
p.

B Codes and Hardy Computations

B.1 Pure Codes: Lem. 1

Proof of Lem. 1. Remember that ordinals are supplied with a left subtraction
operation, because if β ≤ β′, then β′ − β can be defined as the unique ordinal
verifying β + (β′ − β) = β′.

We define an inverse π−1 by induction on the CNF of ordinals; this function
yields pure codes exclusively:

π−1(0)
def
= ε , π−1

(
p∑
i=1

ωβi

)
def
= β−1(βp)#π

−1

(
p−1∑
i=1

ωβi−βp

)
.
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B.2 Computing with Rational Relations: Lem. 4

Forward and Backward Rules. We present here the two relations Fw and
Bw under the understanding that they are suitably restricted to sequences in
Seqs. The relations below are rational and even 1-bld. It suffices to give the
relations for Fw, as Bw just reverses their direction and uses states qBw, qBw1

,
and qBw2

instead of qFw, qFw1
, and qFw2

. For R0 given in (13),

qFw pp #x p #n Fw0 qFw pp x p #n+1 (32)

for all n in N and x in Σ∗k#. Let us repeat the rules for R1 given in (17–19):

qFw pp wa0#x p #n+2 Fw1 qFw1
p w# p p(a0x) p #n+1a0 (17)

qFw1
p w#m p x p #n+1ap+1

0 Fw1 qFw1
p w#m+1 p x p #nap+2

0 (18)

qFw1 p w#m+1 p x p an+2
0 Fw1 qFw1 pp w#m+1x p #n+2 (19)

where m,n, p range over N, w over Σ∗k, and x over Σ∗k#. For R2 defined in (15),

qFw pp wai#x p #n+2 Fw2 qFw2
p wai−1 p p(aix) p #n+1a0 (33)

qFw2
p wami−1 p x p #n+1ap+1

0 Fw2 qFw2
p wam+1

i−1 p x p #nap+2
0 (34)

qFw2 p wam+1
i−1 p x p an+2

0 Fw2 qFw2 pp wam+1
i−1 #x p #n+2 (35)

for i > 0, m,n, p in N, w in Σ∗k, and x in Σ∗k#.
We define Fw = Fw0 ∪ Fw1 ∪ Fw2 and analogously for Bw. The first thing

to check is that the reflexive transitive closures of Fw and Bw implement those
of RH and R−1

H as advertised. A helpful notion is that of a phase of a state q,
which is a sequence of rewrites of form

(qR pp c0)R (q p x1 p c1)R · · ·R (q p xm p cm)R (qR pp cm+1) (36)

for some cis in Confs and xis in Σ∗k#, where R is Fw or Bw and thus qR
is the corresponding state qFw or qBw, and q is an intermediate state among
{qFw1

, qFw2
, qBw1

, qBw2
}. The idea is that a phase ought to simulate exactly the

effect of a single step c0 RH cm or c0 R
−1
H cm.

Lemma 5 (Correctness of Fw and Bw). Let j be in {0, 1, 2} and c, c′ be in
Confs. Then (qFw pp c) Fw~

j (qFw pp c′) iff (qBw pp c′) Bw~
j (qBw pp c) iff c R~

j c
′.

Proof. The proof is conducted by a case analysis. Because Bw is the inverse
of Fw with substituted state names, it suffices to show the equivalence of
(qFw pp c) Fw~

j (qFw pp c′) with c R~
j c′. For j = 0, the correctness of Fw0 =

{(qFwpp, qFwpp)} ·R0 is immediate.
For j = 1, it suffices to consider a single step of R1, i.e. a pair of c = wa0#x p

#n+2 and c′ = w#n+2p(a0x) p #n+2 with n in N, w in Σ∗k, and x in Σ∗k#. Then
we have a rewrite sequence

(qFw pp c) Fw1 (qFw1
p w# p p(a0x) p #n+1a0) (by (17))

Fwn+1
1 (qFw1 p w#n+2 p p(a0x) p an+2

0 ) (by (18))

Fw1 (qFw pp w#n+2p(a0x) p #n+2) (by (19))

= (qFw pp c′) .
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Conversely, it suffices to consider a phase of qFw1
. It is necessarily of the form

above, because for (19) to be applicable, the counter segment must be in {#}∗,
but the first step (17) puts an a0 at the end of the segment. Thus Fw1 has to
go through the appropriate number of applications of (18). Therefore, a phase
of qFw1 implies a rewrite of R1.

We leave the case of j = 2 as an exercise for the reader, as it is very similar
to that of j = 1.

B.2.1 Proof of Lem. 4

The lemma contains several statements. The fact that Fw and Bw are rational
1-bld is by definition. That they are terminating is because they check that
their counters are larger than 1 in limit steps. Regarding weak implementation,
thanks to Lem. 2 and Lem. 3, we know that computations using RH are weak
implementations in the sense of Lem. 4. Therefore, it remains to prove that the
small steps defined for Fw and Bw (i) correctly implement the rules of RH and
(ii) are “robust” to losses.

Point (i) was the topic of Lem. 5, which in combination with Lem. 3 proves
the existence of rewrites

(qFw pp π−1(α) p #n) Fw~
w (qFw ppp #m) (37)

(qBw ppp #m) Bw~
w (qBw pp π−1(α) p #n) (38)

with m = Hα(n).
Turning to point (ii), in order to prove that a rewrite of form (37) implies

m ≤ Hα(n), we want to transform it into a rewrite according to (RH)~w, which
is known to imply m ≤ Hα(n) thanks to Lem. 2 and Lem. 3. We conduct a
similar proof later for (38) with (R−1

H )~w, proving (38) to imply m ≥ Hα(n).

Claim 2. If (qFw pp c) Fw~
w (qFw pp c′), then c (RH)~w c

′.

Note that this holds trivially for Fw0, thus as in the proof of Lem. 5, we can
focus on lossy phases of form

(qFw pp c0) Fw (q p w1 p c1) Fww · · · Fww (q p wm p cm) Fw (qFw pp cm+1) (39)

for some intermediate state q. We will deal with lossy phases of qFw1
here; the

proof of the claim for qFw2
is similar.

Proof of Claim for Fw1. First observe that in a lossy phase like (39) for qFw1 ,
because (17) and (19) are used at the beginning and the end of the phase, each
intermediate q p wi p ci is necessarily in the language

L1
def
= {qFw1

p w#`+1 p x p #nap0 | w ∈ p(Σ∗k), x ∈ p(Σ∗k#), ` ≥ 0,

p > 0, n+ p ≥ 2} .
(40)

Define the atomic embedding relation over an alphabet Γ as

@1
def
= {(ww′, waw′) | a ∈ Γ, w, w′ ∈ Γ∗} . (41)

Clearly,

v = @~
1 . (42)
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Moreover, if y and y′ are two sequences in L1 with y v y′, then we can find
y0, y1, . . . , yn all in L1 s.t. y = y0 @1 y1 @1 · · · @1 yn, i.e. we can find suitable
atomic embeddings while remaining in L1.

Write Fw18 for the subrelation of Fw defined by (18) and Fw19 for that of
(19). Let us show that these subrelations verify

(A1 # Fw18) ⊆ (Fw18 # A1) (A1 # Fw19) ⊆ (Fw18 # Fw19 #w) (43)

over L1 × L1. This is immediate in most cases, but there is a non-trivial case
that justifies the use of transitive closures in (43) for (19):

qFw1 p w#m+1 p x p #an+2
0 A1 qFw1

p w#m+1 p x p an+2
0

Fw19 qFw pp w#m+1x p #n+2

should be rewritten into

qFw1 p w#m+1 p x p #an+2
0 Fw18 qFw1 p w#m+2 p x p an+3

0

Fw19 qFw pp w#m+2x p #n+3

w qFw pp w#m+1x p #n+2 .

To wrap up the proof of the claim, observe that we can apply repeatedly
(43) to a lossy phase like (39) until we have obtained a proper phase of the form

(qFw pp c0)Fw17(qFw1
p w1 p c1)Fw18· · ·Fw18(qFw1

p w′m′ p c′m′)Fw19#w(qFw pp cm+1) .
(44)

Therefore, by Lem. 5, c0 (R1)w cm as desired.

Let us turn to the backward version of the claim:

Claim 3. If (qBw pp c) Bw~
w (qBw pp c′), then c (R−1

H )~w c
′.

Proof. We proceed as in the proof of the previous claim, by considering lossy
phases and transforming them into reliable ones. Focusing on Bw1, the crux of
the argument mirrors (43) with

(Bwj # A1) ⊆ (A1 # Bwj) , (45)

over L1 × L1 for j in {18, 19}. The cases can be solved rather easily thanks to
the restriction to L1 defined in (40). For instance,

qBw pp w#m+1x p #n+2 Bw19 qBw1
p w#m+1 p x p an+2

0

A1 qBw1
p w#m p x p an+2

0

necessarily has m > 0 in order to belong to L1, thus can be rewritten into

qBw pp w#m+1x p #n+2 A1 qBw pp w#mx p #n+2

Bw19 qBw1 p w#m p x p an+2
0 .

Similar arguments can be used to complete the proof.
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C Complexity Bounds

C.1 Upper Bounds: Prop. 3

Coverability Algorithm. The algorithm for deciding coverability in WSTS
is known as the backward coverability algorithm: given an instance 〈R,w,w′〉
with w 6= w′, the algorithm starts with the upward-closure v ({w′}) of w′ as
initial set of potential targets I0. The algorithm then builds the set of prede-
cessors I1 = I0 ∪ R−1

w (I0) = I0∪ v (R−1(I0)): any sequence that covers w′

has to go through I1. This process is repeated with Ii+1 = Ii∪ v (R−1(Ii))
until stabilization, which occurs since upward-closed subsets of a wqo display
the ascending chain condition: there exists n s.t. In+1 = In. As this In contains
all the words in Σ∗ that can cover w′, it remains to check whether w belongs to
the set or not. This algorithm is effective because, although the sets Ii are in-
finite, they can be represented by their v-minimal elements, which are in finite
number thanks to the wqo.

Controlled Sequence. When moving from decidability issues to complexity
ones, we need to measure the complexity of basic operations in the previous
algorithm. The key computation here is that of a minimal element ui+1 in Ii+1

given a minimal element ui of Ii. Since ui+1 is minimal, it is produced from
some vi w ui s.t. ui+1Rvi, i.e. ui = a1 · · · am and vi = v′0a1v1 · · · v′m−1amv

′
m for

some aj in Σ and v′j in Σ∗.
Given T = 〈Q,Σ,Σ, δ, I, F 〉 a normalized transducer for R, we know the

accepting run with vi as image is of form

q0
(u′0,v

′
0)−−−−→ q′0

(ε,a1)−−−−→ q1
(u′1,v

′
1)−−−−→ q′1 · · · qm−1

(u′m−1,v
′
m−1)

−−−−−−−−−→ q′m−1

(ε,am)−−−−→ qm
(u′m,v

′
m)−−−−−→ q′m

(46)
with q0 in I, q′m in F , and ui+1 = u′0u

′
1 · · ·u′m−1u

′
m as input. Then none of the

segments qj
(u′j ,v

′
j)−−−−→ q′j can have length greater than |Q|, or ui+1 would not be

a minimal element of Ii+1. Therefore, |ui+1| ≤ |Q| · (|ui|+ 1), and any ui+1 can
be computed in NLogSpace.

Proof of Prop. 3. The idea of our combinatory algorithm is to derive an upper
bound on the length of a sequence proving reachability. A nondeterministic
algorithm can then explore this search space for a witness.

Assume the (k + 2)-LR[Rat] instance to be positive. We consider now a
sequence of upward-closed sets v ({w′}) = I0 ( I1 ( · · · ( I` such that w is in
I` but not in Ii for any i < `, i.e. we do not wait for saturation of the Ii’s but stop
as soon as w appears. We can extract a particular minimal element ui+1 in each
Ii+1 \ Ii. Let g(x) = |Q| · (x+ 1); by the previous analysis, |ui+1| ≤ g(|ui|), and
of course |u0| = |w′|. The sequence u0, u1, . . . , u` is a bad sequence: for all i < j,
ui 6v uj . By the Length Function Theorem (Schmitz and Schnoebelen, 2011),
the length ` is bounded by the Cichón function h

ωωk+1 ((k − 1)|w′|) relativized
with h(x) = x · g(x) = |Q|x2 + |Q|x.

A nondeterministic algorithm can then set w0 = w′ and guess one by one a
sequence of ` words wi in Ii with wi+1 in v (R−1({wi})) until w` v w. The
space required at each step is logarithmic in |wi|, which is bounded overall by

the Hardy function hω
ωk+1

((k − 1)|w′|) for the same relativized h.
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Finally, given an instance 〈R,w,w′〉 of (k+ 2)-LR[Rat] of size n, as n ≥ |Q|
we can use h(x) = x3 + x2 instead and bound the required space of each step

by hω
ωk+1

(n). The space requisites of this algorithm place it in Fωωk+1 , as the
function h is polynomial.

D Applications

D.1 Lossy Termination: Prop. 6

We prove in this section Prop. 6: (k + 2)-LT[Rat] is Fωk -hard.

Proof Sketch of Prop. 6. We need for this proof to examine more carefully the
construction in Section 4.1. The following facts are decisive:

1. both Fw in Phase 1 and Bw in Phase 3 are terminating relations,

2. the simulation of the semi-Thue system Υ in Phase 2 can be carried instead
with a “time budget”: it employs sequences of the form γ p #t, where γ
encodes a sequence of Seqs and t tells how many steps are still allowed—
initially the same budget allocated by Phase 1, but decremented by 1 at
each rewrite. This allows to simulate a time-bounded semi-Thue system
instead of a space-bounded one, but they are equivalent as far as Fωk is
concerned.

Let us detail a bit further the changes we carry. The new relation R′ has to
be modified to work on words in Seqs · {p} · {#}∗. The relation Fw′ for Phase 1
needs to duplicate its counter increments on both sides of the last separator p in
(32), which becomes

qFw pp #x p #n p #n Fw′0 qFw pp x p #n+1 p #n+1 . (47)

The other cases of Fw′ are based on those of Fw and additionally duplicate the
contents after the last “p”: for instance, for (18):

qFw1
p w#m p x p #n+1ap+1

0 p z Fw′1 qFw1
p w#m+1 p x p #nap+2

0 p z . (48)

The simulation relation Sim′ for Phase 2 now decrements the time budget:

Sim′
def
= Sim ·

[
p
p

]
·
[
#
#

]∗
·
[
#
ε

]
. (49)

The other relations can be taken to simply preserve the time budget:

Bw′
def
= Bw ·

[
p
p

]
·
[
#
#

]∗
, (50)

Init′
def
= Init ·

[
p
p

]
·
[
#
#

]∗
, (51)

Fin′
def
= Fin ·

[
p
p

]
·
[
#
#

]∗
. (52)
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We add a new relation End that enters an infinite loop if the full simulation has
been carried:

End
def
=

([
qBw pp ank−1# p #n p
qEnd pp ank−1# p #n p

]
·
[
#
#

]∗)
+

([
qEnd
qEnd

]
· Id∗Σk#]{p}

)
. (53)

Finally, the source sequence becomes

w
def
= qFw pp ank−1# p #n p #n . (54)

The reader can check that the defined relation R′ is 1-bld and rational, and that
the constructed instance 〈R′, w〉 terminates iff the R[Rewr] instance 〈Υ, y, y′〉
was positive.

D.2 Lossy Channel Systems: Prop. 7

We prove in this section Prop. 7: (k + 2)-LCS is Fωk -hard.

Proof. We reduce from a (k+2)-LR[Rat] instance 〈R,w,w′〉 and use Prop. 2. Let
$ be a fresh symbol and T = 〈Q,Σ,Σ, δ, I, F 〉 the normalized finite transducer
for R.

We construct a LCS C = 〈Q ] {qi, qf},Σ ] {$}, δ′〉 that cycles through its
channel content: it starts with w$ as initial channel contents in some initial state
of T , applies the transitions (q, u, v, q′) of T by reading u from the channel and
writing v through a transition (q, ?u!v, q′) of δ′, and cycles back upon reading $
by transitions (q, ?$!$, q′) in δ′ for all initial states q′ ∈ I and final states q ∈ F
of T . Adding to δ′ the transitions (qi, ε, q) for q in I and (q, ε, qf ) for q in F ,
then (w,w′) belongs to R~

w iff qi, w$→~
w qf , w

′$ in C. As in the proof of Prop. 4,
we can tighten this construction by reusing p for $.
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