
On the state complexity of closures and interiors
of regular languages with subwords

P. Karandikar12‹ and Ph. Schnoebelen2‹‹

1 Chennai Mathematical Institute
2 LSV, ENS Cachan, CNRS

Abstract. We study the state complexity of the set of subwords and su-
perwords of regular languages, and provide new lower bounds in the case
of languages over a two-letter alphabet. We also consider the dual inte-
rior sets, for which the nondeterministic state complexity has a doubly-
exponential upper bound. We prove a matching doubly-exponential lower
bound for downward interiors in the case of an unbounded alphabet.

1 Introduction

Quoting from [1], “State complexity problems are a fundamental part of automata
theory that has a long history. [. . .] However, many very basic questions, which
perhaps should have been solved in the sixties and seventies, have not been con-
sidered or solved.”

In this paper, we are concerned with (scattered) subwords and the associated
operations on regular languages: computing closures and interiors (see defini-
tions in Section 2). Our motivations come from automatic verification of channel
systems, see, e.g., [2, 3]. Other applications exist in data processing or bioinfor-
matics [4]. Closures and interiors wrt subwords and superwords are very basic
operations, and the above quote certainly applies to them.

It has been known since [5] that ÓL and ÒL, the downward closure and,
respectively, the upward closure, of a language L Ď Σ˚, are regular for any L.

In [6], Gruber et al. explicitely raised the issue of the state complexity of
downward and upward closures of regular languages (less explicit precursors
exist, e.g. [7]). Given a n-state automaton A, constructing an automaton A1

for ÓLpAq or for ÒLpAq can be done by simply adding extra transitions to A.
However, when A is a DFA, the resulting A1 is in general not deterministic, and
determinization of A1 may entail an exponential blowup in general. Gruber et
al. proved a 2Ωp

?
n lognq lower bound on the number of states of any DFA for

ÓLpAq or ÒLpAq, to be compared with the 2n upper bound that comes from the
simple closure+determinization algorithm.

Okhotin improved on these results by showing a 2
n
2´2 and a 2n´2 ` 1 lower

bound for ÓLpAq and, respectively, ÒLpAq (again for an unbounded alphabet).

‹ Partially funded by Tata Consultancy Services.
‹‹ Supported by Grant ANR-11-BS02-001.

2 P. Karandikar and Ph. Schnoebelen

The second bound is known to be tight [8, 9]. However, all these lower bounds
assume an unbounded alphabet.

Okhotin also considered the case of languages over a fixed alphabet with
|Σ| “ 3 letters, in which case he demonstrated an exponential 2

?
2n`30´6 and

1
54
?
n{2n´

3
4 lower bound for ÓLpAq and, respectively, ÒLpAq [8]. The construc-

tion and the proof are quite involved, and they leave open the case where |Σ| “ 2
(the 1-letter case is trivial). It turns out that, in the 2-letter case, Héam had

already proved a Ωpr
?
nq lower bound for ÒLpAq, here with r “ p 1`

?
5

2 q
1?
2 [10], so

that the main remaining question is whether ÓLpAq may require an exponential
number of states even when |Σ| “ 2.

Dual to closures are interiors. The upward interior and downward interior
of a language L, denoted ßL and þL, are the largest upward-closed and, resp.,
downward-closed, sets included in L. Building closures and interiors are essen-
tial operations when reasoning with subwords, e.g., when model-checking lossy
channel systems [11]. The state complexity of interiors has not yet been consid-
ered in the literature. When working with DFAs, computing interiors reduces
to computing closures, thanks to duality. However, when working with NFAs,
the simple complement+closure+complement algorithm only yields a quite large
22
n

upper-bound on the number of states of an NFA for ßLpAq or þLpAq —it
actually yields DFAs— and one would like to improve on this, or to prove a
matching lower bound.

Our contribution. Regarding closures, we prove in Section 3 an exponential lower
bound on ÓLpAq in the case of a two-letter alphabet, answering the open question
raised above. We also give some new proofs for known results, usually relying
on simpler examples demonstrating hard cases. For example, we prove a tighter
2n´1 lower bound for ÓLpAq when the alphabet is unbounded.

Regarding interiors on NFAs, we show in Section 4 a doubly-exponential
lower bound for downward interiors when the alphabet is not bounded. In the
case of upward interiors, or in the case of fixed alphabets, we are left with an
exponential gap between lower bounds and upper bounds. A partial result is
a doubly-exponential lower bound for a restricted version of these problems.
Table 1 shows a summary of the known results.

Finally, we analyze in Section 5 the computational complexity of deciding
whether LpAq is upward or downward-closed for a DFA or a NFA A.

2 Basic notions and results

Fix a finite alphabet Σ “ ta, b, . . .u. We say that a `-letter word x “ a1 a2 ¨ ¨ ¨ a`
is a subword of y, written x Ď y, when y “ y0 a1 y1 ¨ ¨ ¨ y`´1 a` y` for some factors
y0, . . . , y` P Σ

˚, i.e., when there are positions p1 ă p2 ă ¨ ¨ ¨ ă p` s.t. xris “ yrpis
for all 1 ď i ď ` “ |x|. For a language L Ď Σ˚, its downward closure is

ÓL
def
“ tx P Σ˚ | Dy P L : x Ď yu. Symmetrically, we consider an upward closure

On the state complexity of closures and interiors with subwords 3

Table 1. A summary of the results. Each cell shows (a bound on) the maximum
number of states that can result when the operation is applied to an automaton with
n states and the output is minimized.

Operation NFA DFA

Upward closure n 2Θpnq, and 2Ωpn
1{2q for |Σ| “ 2

Downward closure n 2Θpnq, and 2Ωpn
1{3q for |Σ| “ 2

Upward interior ď 22n , Ωp2nq same as downward closure

Downward interior 22Θpnq same as upward closure

operation and we let ÒL
def
“ tx P Σ˚ | Dy P L : y Ď xu. For singletons, we may

write Òx and Óx for Òtxu and Ótxu, e.g., Óa b b “ tε, a, b, a b, b b, a b bu. Closures
distribute over union, that is, ÒL “

Ť

xPL Òx and ÓL “
Ť

xPL Óx. A language L
is downward-closed (or upward-closed) if L “ ÓL (respectively, if L “ ÒL). Note
that L is downward-closed if, and only if, Σ˚ r L is upward-closed.

Upward-closed languages are also called shuffle ideals since they satisfy L “
L�Σ˚. They correspond exactly to level 1

2 of Straubing’s hierarchy [12].
Since, by Higman’s Lemma, any L has only finitely many minimal elements

wrt the subword ordering, one deduces that ÒL is regular for any L.
Effective construction of a finite-state automaton for ÓL or ÒL is easy when

L is regular (see Section 3), is possible when L is context-free [13, 14], and is not
possible in general since this would allow deciding the emptiness of L.

The upward interior of L is ßL
def
“ tx P Σ˚ | Òx Ď Lu. Its downward interior

is þL
def
“ tx P Σ˚ | Óx Ď Lu. Alternative characterizations are possible, e.g.,

by noting that ßL (respectively, þL) is the largest upward-closed (respectively,
downward-closed) language contained in L, or by using the following dualities:

þL “ Σ˚ r ÒpΣ˚ r Lq , ßL “ Σ˚ r ÓpΣ˚ r Lq . (1)

If L is regular, one may compute automata for the interiors of L by combining
complementations and closures as in Eq. (1).

When considering a finite automaton A “ pΣ,Q, δ, I, F q, we usually write
n for |Q| (the number of states), m for |δ| (the number of transitions, seeing
δ Ď QˆΣˆQ as a table), and k for |Σ| (the size of the alphabet). For a regular
language L, nDpLq and nNpLq denote the minimum number of states of a DFA
(resp., a NFA) that accepts L.

We now illustrate a well-known technique for proving lower bounds on nNpLq:

Lemma 2.1 (Extended fooling set technique, [15]). Let L be a regular
language. Suppose there exists a set of pairs of words S “ tpxi, yiqu1ďiďn such
that for all i, j, xi yi P L and at least one of xi yj and xj yi is not in L. Then
nNpLq ě n.

Lemma 2.2 (An application of the fooling set technique). Fix Σ and
define the following two languages:

U
def
“ tx | @a P Σ : Di : xris “ au , V

def
“ tx | @i ‰ j : xris ‰ xrjsu . (2)

4 P. Karandikar and Ph. Schnoebelen

Then nNpUq ě 2|Σ| and nNpV q ě 2|Σ|.

Proof. The same proof applies to U and V : note that U has all words where
every letter in Σ appears at least once, while V has all words where no letter
appears twice.

With any Γ Ď Σ, we associate two words xΓ and yΓ , where xΓ (respectively,
yΓ) has exactly one occurrence of each letter from Γ (respectively, each letter
not in Γ). Then xΓ yΓ is in U and V , while for any ∆ ‰ Γ one of xΓ y∆ and
x∆yΓ is not in U (and one is not in V). One concludes with Lemma 2.1. [\

3 State complexity of closures

3.1 Nondeterministic automata

For a regular language L, an NFA for the upward or downward closure of L
is obtained by simply adding transitions to an NFA for L, without increasing
the number of states. More precisely, given an NFA A for L, an NFA for ÒL is
obtained by adding to A self-loops q

a
ÝÑ q for every state q of A and every letter

a P Σ. Similarly, an NFA for ÓL is obtained by adding to A epsilon transitions
p
ε
ÝÑ q for every transition p ÝÑ q of A (on any letter).

3.2 Deterministic automata

Since every DFA is an NFA, Section 3.1 along with the powerset construction
shows that if a language has an n-state DFA, then both its upward and down-
ward closures have DFAs with at most 2n states. An exponential blowup is also
necessary as we now illustrate.

Let Σ “ ta1, . . . , aku and define L1
def
“ ta a | a P Σu, i.e., L1 contains all

words consisting of two identical letters. The minimal DFA for L1 has n “ k` 2
and m “ 2k, see Fig. 1.

in

start

i fi

1

k

...

...

a1

ai

ak

a1

ai

ak

in

start

i

1

k

...

...

a1

ai

ak

taj | j ‰ 1u

taj | j ‰ iu

taj | j ‰ ku

Fig. 1. DFAs for L1 “
Ť

aPΣ a a (left) and L2 “
Ť

aPΣ a ¨ pΣ r aq˚ (right).

Now ÒL1 “ tx P Σ
ě2 | Dj ą i : xris “ xrjsu “

Ť

aPΣ Σ
˚ ¨ a ¨Σ˚ ¨ a ¨Σ˚, i.e.,

ÒL1 has all words where some letter reappears, i.e., ÒL1 is the complement of V
from Lemma 2.2. A DFA for ÒL1 has to record all letters previously read: the
minimal (complete) DFA has 2k` 1 states. Hence 2n´2` 1 states are sometimes

On the state complexity of closures and interiors with subwords 5

required for the minimal DFA recognizing the upward closure of an n-state DFA.

Further define L2
def
“ tx P Σ` | @i ą 1 : xris ‰ xr1su “

Ť

aPΣ a ¨
`

Σ r tau
˘˚

,
i.e., L2 has words where the first letter does not reappear. The minimal DFA for
L2 has n “ k ` 1 and m “ k2, see Fig. 1. Now ÓL2 “ tx | Da P Σ : @i ą 1 :

xris ‰ au “ ε ` Σ ¨
Ť

aPΣ

`

Σ r tau
˘˚

, i.e., ÓL2 has all words x such that the
first suffix xr2, . . . , `s does not use all letters. Equivalently x P ÓL2 iff x P L2

or x does not use all letters, i.e., ÓL2 is the union of L2 and the complement
of U from Lemma 2.2. The minimal DFA for ÓL2 just records all letters previ-
ously encountered except the first, hence has exactly 2k states. Thus 2n´1 states
may be required for a DFA recognizing the downward closure of an n-state DFA.

The above simple examples use a linear-sized alphabet to establish the lower
bounds. This raises the question of whether exponential lower bounds still apply
in the case of a fixed alphabet. The 1-letter case is degenerate since then both
nDpÒLq and nDpÓLq are ď nDpLq. In the 3-letter case, exponential lower bounds
are shown in [8].

In the 2-letter case, an exponential lower bound for upward closure is shown
with the following witness: For n ą 0, let Ln “ taib a2jb ai | i ` j ` 1 “ nu.

Then nDpLnq “ pn` 1q2, while nDpÒLnq ě
1
7 p

1`
?
5

2 qn for n ě 4 [10, Prop. 5.11].
However, the downward closure of these languages does not demonstrate a state
blowup, in fact nDpÓLnq “ n2 ` 3n´ 1 for n ě 2.

We now show an exponential lower bound for downward closures in the case
of a two-letter alphabet. Interestingly, the same languages can also serve as hard
case for upward closure (but it gives weaker bounds than in [10]).

Theorem 3.1. The state complexity of computing downward closure for DFAs

is in 2Ωpn
1{3
q. The same result holds for upward closure.

We now prove the theorem. Fix a positive integer n. Let

S “ tn, n` 1, . . . , 2nu ,

and define morphisms c, h : S˚ Ñ ta, bu˚ with, for any i P S:

cpiq
def
“ ai b3n´i , hpiq

def
“ cpiq cpiq .

Note that cpiq always has length 3n, begins with at least n a’s, and ends with
at least n b’s. If we now let

L
def
“ tcpiqn | i P Su ,

L is a finite language of n` 1 words, each of length 3n2 so that clearly nDpLq is
in 3n3 ` Opn2q. (In fact, nDpLq “ 3n3 ` 1.) In the rest of this section we show
that both nDpÒLq and nDpÓLq are in 2Ωpnq.

Lemma 3.2. For i, j P S, the longest prefix of cpiqω that embeds in hpjq “
cpjq cpjq is cpiq if i ‰ j and cpiq cpiq if i “ j.

6 P. Karandikar and Ph. Schnoebelen

¨ ¨ ¨

a ¨ ¨ ¨ a a a b b b b ¨ ¨ ¨ b a a ¨ ¨ ¨ a a a b b b b ¨ ¨ ¨ b

a ¨ ¨ ¨ a a a a a b b ¨ ¨ ¨ b a ¨ ¨ ¨ a a a a a b b ¨ ¨ ¨ b a ¨ ¨ ¨ a

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨ ?

hpjq:

cpiqω:

Fig. 2. Case “i ą j” in Lemma 3.2: here i “ n` 4 and j “ n` 2 for n “ 5.

Proof (Sketch). The case i “ j is clear. Fig. 2 displays the leftmost embedding
of cpiqω in hpjq in a case where i ą j. The remaining case, i ă j, is similar. [\

For each i P S, let the morphisms ηi, θi : S˚ Ñ pN,`q be defined by

ηipjq
def
“

#

1 if i ‰ j ,

2 if i “ j ,
θipjq

def
“

#

2 if i ‰ j ,

1 if i “ j .

Thus for σ “ p1 p2 ¨ ¨ ¨ ps P S
˚, ηipσq is s plus the number of occurrences of i in

σ, while θipσq is 2s minus the number of these occurrences of i.

Lemma 3.3. Let σ P S˚. The smallest ` such that cpσq embeds in cpiq` is θipσq.

Proof. We write σ “ p1 p2 ¨ ¨ ¨ ps and prove the result by induction on s. The
s “ 0 case is trivial. The s “ 1 case follows from Lemma 3.2, since for any p1
and i, cpp1q Ď cpiq iff p1 “ i, and cpp1q Ď hpiq “ cpiq2 always.

Assume now s ą 1, write σ “ σ1ps and let `1 “ θipσ
1q. By the induction

hypothesis, cpσ1q Ď cpiq`
1
´1 and cpσ1q Ď cpiq`

1

“ cpiq`
1
´1aib3n´i. Write now

cpiq`
1

“ w v where w is the shortest prefix of cpiq`
1

with cpσ1q Ď w. Since cpσ1q
ends with a b that only embeds in the aib3n´i suffix of cpiq`

1

, v is necessarily
br for some r. So for all z P ta, bu˚, cppsq Ď z if and only if cppsq Ď v z. We
have cppsq Ď cpiqθippsq and cppsq Ď v cpiqθippsq´1. Noting that σ “ σ1ps, we get
cpσq Ď cpiqθipσq and cpσq Ď cpiqθipσq´1. [\

We now derive a lower bound on the number of states in the minimal complete
DFA for ÓL. For every subset X of S of size n{2 (assume n is even), let wX P

ta, bu˚ be defined as follows: let the elements of X be p1 ă p2 ă ¨ ¨ ¨ ă pn{2 and
let

wX
def
“ cpp1p2 ¨ ¨ ¨ pn{2q .

Note that θipp1p2 ¨ ¨ ¨ pn{2q “ n if i R X and θipp1p2 ¨ ¨ ¨ pn{2q “ n´ 1 if i P X.

Lemma 3.4. Let X and Y be subsets of S of size n{2 with X ‰ Y . There exists
a word v P ta, bu˚ such that wXv P ÓL and wY v R ÓL.

Proof. Let i P X r Y . Let v “ cpiq. Then

– By Lemma 3.3, wX Ď cpiqn´1, and so wXv Ď cpiqn. So wXv P ÓL.
– By Lemma 3.3, the smallest ` such that wY v Ď cpiq` is n` 1. Similarly, for
j ‰ i, the smallest ` such that wY v Ď cpjq` is at least n´ 1` 2 “ n` 1 (the
wY contributes at least n´ 1 and the v contributes 2). So wY v R ÓL. [\

On the state complexity of closures and interiors with subwords 7

This shows that for any complete DFA A recognizing ÓL, the state of A
reached from the start state by every word in twX | X Ď S, |X| “ n{2u is dis-

tinct. Thus A has at least
`

n`1
n{2

˘

states, which is « 2n`3{2
?
πn

.

For nDpÒLq, the reasoning is similar:

Lemma 3.5. Let σ P S˚. For all i P S, the longest prefix of cpiqω that embeds
in hpσq is cpiqηipσq.

Proof. By induction on the length of σ and applying Lemma 3.2. [\

For every subset X of S of size n{2 (assume n is even), let w1X P ta, bu˚ be
defined as follows: let the elements of X be p1 ă p2 ă ¨ ¨ ¨ ă pn{2 and let

w1X
def
“ hpp1p2 ¨ ¨ ¨ pn{2q “ cpp1p1p2p2 ¨ ¨ ¨ pn{2pn{2q .

Lemma 3.6. Let X and Y be subsets of S of size n{2 with X ‰ Y . There exists
a word v P ta, bu˚ such that w1Xv P ÒL and w1Y v R ÒL.

Proof. Let i P X r Y . Let v “ cpiqn´pn{2`1q “ cpiqn{2´1.

– By Lemma 3.5, cpiqn{2`1 Ď w1X , thus cpiqn Ď w1Xv, hence w1Xv P ÒL.
– By Lemma 3.5, the longest prefix of cpiqn that embeds in w1Y v is at most
cpiq` where ` “ n{2`n{2´1 “ n´1. The longest prefix of cpjqn that embeds
in w1Y v for j ‰ i is at most cpjq` where

` “
n

2
` 1`

R

n{2´ 1

2

V

ď n´ 1

Therefore cpjqn Ď w1Y v when j “ i and also when j ‰ i. Thus w1Y v R ÒL. [\

With Lemma 3.6 we reason exactly as we did for nDpÓLq after Lemma 3.4 and
conclude that nDpÒLq ě

`

n`1
n{2

˘

here too.

4 State complexity of interiors

Recall Eq. (1) that expresses interiors with closures and complements. Since
complementation of DFAs does not increase the number of states, the bounds
on interiors are the same as the bounds on closures in the case of DFAs.

For NFAs, Eq. (1) provides an obvious 22
n

upper bound on the NFA state
complexity of both the upward and the downward interior, simply by combining
the powerset construction for complementation and the results of Section 3.1.
(Alternatively, it is possible to design a “powerset-like construction” that directly
builds a DFA for the interior, upward or downward, of a language recognized by a
DFA: this returns the same DFA as with the complement+closure+complement
procedure.) Note that both procedures yield DFAs for the interiors while we are
looking for better bounds on their NFA state complexity.

8 P. Karandikar and Ph. Schnoebelen

Proposition 4.1. The NFA state complexity of the downward interior is in

22
Θpnq

(assuming an unbounded alphabet).

Proof. Let ` be a positive integer, and let Σ “ t0, 1u`, so that k “ |Σ| “ 2`. Let

L
def
“ Σ˚ r ta a | a P Σu “ tw | |w| ‰ 2u Y ta b | a, b P Σ, a ‰ bu .

Two letters in Σ, viewed as `-bit sequences, are distinct if and only if they differ
in at least one bit. An NFA can check this by guessing the position in which they
differ and checking that the letters indeed differ in this position. Fig. 3 shows an
NFA for ta b | a ‰ bu with 2`` 2 states.

...
...

2` 2´

1` 1´

`´ ``

instart fi

1,
3,

5,
. . .

0, 2
, 4,
. . .

0, 2, 4, . . .

1, 3, 5, . . .

2, 3,
6, 7,

. . .

0, 1, 4
, 5, . .

. 0, 1, 4, 5, . . .

2, 3, 6, 7, . . .

0, 1, . . . , 2`´1
´ 1

2 `´1
, 2 `´1

` 1, . . . , 2 `´ 1 2
`´1 , 2

`´1 ` 1, . .
. , 2

` ´ 1
0, 1, .

. . , 2
`´1 ´ 1

Fig. 3. DFA for ta b | a, b P Σ, a ‰ bu with 2`` 2 states and `2` transitions.

Since now tw | |w| ‰ 2u is recognized by an NFA with 4 states, L is recognized
by an NFA with n “ 2`` 6 states.

Finally, þL consists of all words where every letter is distinct (equivalently,
no letter appears more than once), a language called V in Eq. (2). We conclude

with Lemma 2.2 showing nNpV q ě 2|Σ| “ 22
`

“ 22
n{2´3

. [\

Proposition 4.2. The NFA state complexity of the upward interior is in Ωp2nq
(assuming an unbounded alphabet).

Proof. For Σ a k-letter alphabet we consider L3
def
“ Σ˚ r L2 with the same L2

used earlier, see Fig. 1 in Section 3.2. Thus L3 contains all words where the first
letter reappears. (It also contains the empty word). By complementing the DFA
for L2, one sees that a minimal DFA for L3 has n “ k ` 2 states.

We noted in Section 3.2 that ÓL2 “ L2YpΣ
˚rUq, where U is the language of

all words where each letter from Σ occurs at least once. Hence ßL3 “ Σ˚rÓL2 “

pΣ˚ r L2q X U “ L3 X U .
Observe now that for any a P Σ and w P Σ˚, aw P L3XU iff w P U . Thus any

NFA for L3 X U can be transformed into an NFA for U by simply changing the
initial states, and so a state lower bound for U implies the same lower bound for
L3XU . With Lemma 2.2 we get nNpßL3q “ nNpL3XUq ě nNpUq ě 2k “ 2n´2,
witnessing the required exponential lower bound. [\

On the state complexity of closures and interiors with subwords 9

The above results leave us with an exponential gap between lower and upper
bounds for nNpßLq —and even for nDpßLq— when L is given by a NFA. We
have not been able to close this gap and we do not yet feel able to formulate a

conjecture on whether an exponential 2n
Op1q

bound exists or not. Trying to find
hard cases by exhaustive or heuristic search is difficult because the search space
is huge even for small n, and for most languages the upward interior is trivial.
For NFAs with n “ 3 states and with |Σ| “ k “ 3 letters, a worst case example

is L “
`

pa` bqpa` b` cq˚pa` bq ` pb` cqpa` b` cq˚pa` cq
˘˚

. Here nNpLq “ 3

and nNpßLq “ 10, which is well below the 22
n

upper bound.

In the rest of this section, we establish a doubly exponential lower bound for
a more general construction called restricted interior.

Let Σ be an alphabet and let X Ď Σ. For words u, v, we write u ĎX v if
u is obtained from v by deleting some (occurrences of) letters in X, necessarily
keeping letters in Σ r X intact. For example, a b b a Ďtb,cu a b c b c b c a c, but
b b a Ďtb,cu a b c b c b c a c. Closures and interiors are defined as one would expect:

ÓXL
def
“ tw | Dv P L : w ĎX vu, þXL

def
“ tw | ÓXtwu Ď Lu “ Σ˚ r ÒXpΣ˚ r Lq,

ÒXL
def
“ tw | Dv P L : v ĎX wu, ßXL

def
“ tw | ÒXtwu Ď Lu “ Σ˚ r ÓXpΣ˚ r Lq.

Theorem 4.3. The NFA state complexity of the restricted upward interior is

ď 22
n

and in 22
Ωp
?
nq

. The lower bound holds with a 3-letter alphabet.

As with ÓL, one can obtain an NFA for ÓXL from an NFA for L by simply
adding transitions, without adding new states. Hence the upper bound is clear
in Theorem 4.3, and we only need to prove the lower bound.

Fix n P N. Let Σ “ t0, 1,#u, and Σ01 “ t0, 1u. Define the following lan-
guages:

– N is the set of all words over Σ in which the sum of the number of 0s and
the number of 1s is divisible by n;

– B “ ppε`#qp0` 1qnq˚. Note that B Ď N ;
– H2 is the set of all words over Σ with exactly two occurrences of #.

Let L Ď Σ˚ consists of all the following words:

– words in pN rH2q Y pN rBq;
– words in H2XB such that the factors of length n immediately following the

two occurrences of # are distinct.

Both N rH2 and N rB are recognized by NFAs with Opnq states. The second
summand of L is recognized by an NFA with Opn2q states, as the n-length factors
immediately following the two occurrences of # being unequal can be checked
by guessing a position at which they differ. So L is recognized by an NFA with
Opn2q states. Note that L Ď N .

Consider ßt#uL. This is the set of all words in L such that no matter how
we insert occurrences of #, the resulting word remains in L.

10 P. Karandikar and Ph. Schnoebelen

Let Γ “ t0, 1un, considered as an alphabet. Define the homomorphism h :
Γ˚ Ñ Σ˚, as hpxq “ x for all x. As in Lemma 2.2, let V Ď Γ˚ consist of all
words over Γ in which no letter appears twice, and define V 1 Ď Σ˚ as hpV q.
Note that V 1 Ď N XΣ˚01.

Lemma 4.4. V 1 “ pßt#uLq XΣ
˚
01.

Proof. (Ď:) Let w P V 1 and v be such that w Ďt#u v. Since V 1 Ď N “ Òt#upNq,
we know that v P N . If v R H2 X B, then v P L. Otherwise, if v P H2 X B, then
by the definition of V , it is easy to see that v P L.

(Ě:) Conversely, let w P pßt#uLq XΣ
˚
01. In particular, w P L, and so w P N .

|w| is divisible by n, and so w “ hpxq for some x P Γ˚. By inserting two copies of
at suitable positions in w, and using the fact that the resulting word belongs
to L, one concludes that x P V , and so w P V 1. [\

Lemma 4.5. 22
n

ď nNpV q ď nNpV
1q ď nNpßt#uLq.

Proof. Lemma 2.2 gives 22
n

ď nNpV q. Then V “ h´1pV 1q gives nNpV q ď nNpV
1q

since it is easy to transform an NFA for V 1 into an NFA for h´1pV 1q (for any
morphism h, in fact) with the same number of states. Finally, V 1 “ pßt#uLqXΣ

˚
01

gives nNpV
1q ď nNpßt#uLq since an NFA for V 1 can be obtained from an NFA

for ßt#uL by deleting all transitions labelled by #. [\

Since nNpLq is in Opn2q, Lemma 4.5 concludes the proof of Theorem 4.3.

5 Complexity of decision problems on subwords

In automata-based procedures for logic and verification, the state complexity of
automata constructions is not always the best measure of computational com-
plexity. In this section we give elementary proofs showing that the problem of
deciding whether LpAq is upward-closed, or downward-closed, is unsurprisingly
PSPACE-complete for NFAs, and NL-complete for DFAs. (For upward-closedness,
this is already shown in [10], and quadratic-time algorithms that decide upward-
closedness of LpAq for a DFA A already appear in [16, 12].)

Proposition 5.1. Deciding whether LpAq is upward-closed or downward-closed
is PSPACE-complete when A is a NFA, even in the 2-letter alphabet case.

Proof (Sketch). A PSPACE algorithm simply tests for inclusion between two
automata, A and its closure. PSPACE-hardness can be shown by adapting the
proof for hardness of universality. Let R be a length-preserving semi-Thue system

and x, x1 two strings of same length. It is PSPACE-hard to say whether x
˚
ÝÑR x

1,
even for a fixed R over a 2-letter alphabet Σ. We reduce (the negation of) this
question to our problem.

Fix x and x1 of length n ą 1: a word x1 x2 ¨ ¨ ¨xm of length n ˆm encodes
a derivation if x1 “ x, xm “ x1, and xi ÝÑR xi`1 for all i “ 1, . . . ,m ´ 1. The
language L of words that do not encode a derivation from x to x1 is regular

On the state complexity of closures and interiors with subwords 11

and recognized by a NFA with Opnq states. Now, there is a derivation x
˚
ÝÑR x

1

iff L ‰ Σ˚. Since L contains all words of length not divisible by n ą 1, it is

upward-closed, or downward-closed, iff L “ Σ˚, iff px
˚
ÝÑR x

1q. [\

Proposition 5.2. Deciding whether LpAq is upward-closed or downward-closed
is NL-complete when A is a DFA, even in the 2-letter alphabet case.

Proof. Since L is downward-closed if, and only if, Σ˚rL is upward-closed, and
since one easily builds a DFA for the complement of LpAq, it is sufficient to prove
the result for upward-closedness.

We rely on the following easy lemma: L is upward-closed iff for all u, v P Σ˚,
u v P L implies u a v P L for all a P Σ. Therefore, LpAq is not upward-closed —for
A “ pΣ,Q, δ, tiu, F q— iff there are states p, q P Q, a letter a, and words u, v such
that δpi, uq “ p, δpp, aq “ q, δpp, vq P F and δpq, vq R F . If such words exist, in
particular one can take u and v of length ă n “ |Q| and respectively ă n2. Hence
testing (the negation of) upward-closedness can be done in nondeterministic
logarithmic space by guessing u, a, and v within the above length bounds, finding
p and q by running u and then a from i, then running v from both p and q.

For hardness, one may reduce from vacuity of DFAs, a well-known NL-hard
problem that is essentially equivalent to GAP, the Graph Accessibility Problem.
Note that for any DFA A (in fact any NFA) the following holds:

LpAq “ H iff LpAq XΣăn “ H iff LpAq XΣăn is upward-closed,

where n is the number of states of A. This provides the required reduction since,
given a FSA A, one easily builds a FSA for LpAq XΣăn. [\

6 Concluding remarks

For words ordered by the (scattered) subword relation, we considered the state
complexity of computing closures and interiors, both upward and downward, of
regular languages given by finite-state automata. These operations are essential
when reasoning with subwords, e.g., in symbolic model checking for lossy channel
systems, see [11, Section 6]. We completed the known results on closures by
demonstrating an exponential lower bound on downward closures even in the
case of a two-letter alphabet.

The state complexity of interiors is a new problem that we introduced in
this paper and for which we only have partial results: we show that the doubly-
exponential upper bound for interiors of NFAs is matched by a doubly-expo-
nential lower bound in the case of downward interiors when the alphabet is
unbounded. For upward interiors of NFAs, or for fixed alphabets, there remains
an exponential gap between the existing upper and lower bounds.

These results contribute to a more general research agenda: what are the right
data structures and algorithms for reasoning with subwords and superwords?
The algorithmics of subwords has mainly been developed in string matching and
combinatorics [4, 17] but other applications exist that require handling sets of

12 P. Karandikar and Ph. Schnoebelen

strings rather than individual strings, e.g., model-checking and constraint solv-
ing. For these applications, there are many different ways of representing closed
sets and automata-based representation are not always the preferred option, see,
e.g., the SREs used for downward-closed languages in [2]. The existing trade-
offs between all the available options are not yet well understood and certainly
deserve scrutiny.

Acknowledgments. We thank S. Schmitz and the anonymous reviewers for
their helpful comments.

References

1. Sheng Yu. State complexity: Recent results and open problems. Fundamenta
Informaticae, 64(1–4):471–480, 2005.

2. P. A. Abdulla, A. Collomb-Annichini, A. Bouajjani, and B. Jonsson. Using forward
reachability analysis for verification of lossy channel systems. Formal Methods in
System Design, 25(1):39–65, 2004.

3. Ch. Haase, S. Schmitz, and Ph. Schnoebelen. The power of priority channel sys-
tems. In Proc. CONCUR 2013, volume 8052 of Lecture Notes in Computer Science,
pages 319–333. Springer, 2013.

4. R. A. Baeza-Yates. Searching subsequences. Theoretical Computer Science,
78(2):363–376, 1991.

5. L. H. Haines. On free monoids partially ordered by embedding. Journal of Com-
binatorial Theory, 6(1):94–98, 1969.

6. H. Gruber, M. Holzer, and M. Kutrib. More on the size of Higman-Haines sets:
Effective constructions. Fundamenta Informaticae, 91(1):105–121, 2009.

7. J.-C. Birget. Partial orders on words, minimal elements of regular languages and
state complexity. Theoretical Computer Science, 119(2):267–291, 1993.

8. A. Okhotin. On the state complexity of scattered substrings and superstrings.
Fundamenta Informaticae, 99(3):325–338, 2010.

9. J. A. Brzozowski, G. Jirásková, and Baiyu Li. Quotient complexity of ideal lan-
guages. Theoretical Computer Science, 470:36–52, 2013.

10. P.-C. Héam. On shuffle ideals. RAIRO Theoretical Informatics and Applications,
36(4):359–384, 2002.

11. N. Bertrand and Ph. Schnoebelen. Computable fixpoints in well-structured sym-
bolic model checking. Formal Methods in System Design, 43(2):233–267, 2013.

12. J.-É. Pin and P. Weil. Polynomial closure and unambiguous product. Theory of
Computing Systems, 30(4):383–422, 1997.

13. J. van Leeuwen. Effective constructions in well-partially-ordered free monoids.
Discrete Mathematics, 21(3):237–252, 1978.

14. B. Courcelle. On constructing obstruction sets of words. EATCS Bulletin, 44:178–
185, 1991.

15. H. Gruber and M. Holzer. Finding lower bounds for nondeterministic state com-
plexity is hard. In Proc. DLT 2006, volume 4036 of Lecture Notes in Computer
Science, pages 363–374. Springer, 2006.

16. M. Arfi. Polynomial operations on rational languages. In Proc. STACS ’87, volume
247 of Lecture Notes in Computer Science, pages 198–206. Springer, 1987.

17. C. H. Elzinga, S. Rahmann, and Hui Wang. Algorithms for subsequence combina-
torics. Theoretical Computer Science, 409(3):394–404, 2008.

