
On the state complexity of closures and interiors of
regular languages with subwords and superwords

P. Karandikara,c,1, M. Niewerthb,2, Ph. Schnoebelenc,3

aChennai Mathematical Institute
bUniversity of Bayreuth

cLSV, ENS Cachan, CNRS

Abstract

The downward and upward closures of a regular language L are obtained by
collecting all the subwords and superwords of its elements, respectively. The
downward and upward interiors of L are obtained dually by collecting words
having all their subwords and superwords in L, respectively. We provide lower
and upper bounds on the size of the smallest automata recognizing these clo-
sures and interiors. We also consider the computational complexity of decision
problems for closures of regular languages.

Keywords: Finite automata and regular languages; Subwords and
superwords; State complexity; Combined operations; Closures and interiors of
regular languages.

1. Introduction

State complexity is a standard measure of the descriptive complexity of
regular languages. The most common state complexity problems ask, given a
regularity-preserving operation f on languages, to bound the size of an automa-
ton recognizing fpLq when L is recognized by an n-state automaton. We refer
to [26, 46] for a survey of the main known results in the area.

In this article, we consider language operations based on subwords. Recall
that a (scattered) subword of some word x is a word obtained from x by re-
moving any number of letters at arbitrary positions in x, see formal definitions
in Section 2. Symmetrically, a superword is obtained by inserting letters at
arbitrary positions. Subwords and superwords occur in many areas of computer
science, from searching in texts and databases [4] to the theory of codes [29],
computational linguistics [40], and DNA computing [33].

For a language L Ď Σ˚, we write ÓL for the set of all its subwords and ÒL
for the set of all its superwords (in Σ˚) and call them the downward closure and

1Partially funded by Tata Consultancy Services.
2Supported by Grant MA 4938/21 of the DFG.
3Supported by Grant ANR-11-BS02-001.

Preprint submitted to Elsevier October 11, 2015

upward closure of L, respectively. Dual to closures are interiors. The upward
interior and downward interior of L, denoted ßL and þL, are the largest
upward-closed and downward-closed sets included in L. It has been known
since [22] that ÓL and ÒL are regular for any L. Then þL and ßL are regular
too by duality, as expressed in the following equalities:

þL “ Σ˚ r ÒpΣ˚ r Lq , ßL “ Σ˚ r ÓpΣ˚ r Lq . (1)

Computing closures and interiors has several applications in computer-aided
reasoning [32] and program verification. Computing closures is an essential
ingredient in the verification of safety properties of channel systems – see [1, 20] –
while computing interiors is required for the verification of their game-theoretical
properties [5]. More generally, the regularity of upward and downward closures
make them good overapproximations of more complex languages – see [3, 21, 47]
– and interiors can be used as regular underapproximations.

Recently Gruber et al. explicitly raised the issue of the state complexity
of downward and upward closures of regular languages [18, 19] (less explicit
precursors exist, for example, [7]). Given an n-state automaton A that rec-
ognizes L, automata AÓ and AÒ that recognize ÓL and, ÒL respectively can
be obtained by simply adding extra transitions to A. However, when A is a
deterministic automaton (a DFA), the resulting AÓ and AÒ are in general not
deterministic (are NFAs), and their determinization may entail an exponential
blowup. With n denoting the number of states of A, Gruber et al. proved a
2Ωp

?
n lognq lower bound on the number of states of any DFA recognizing ÓL

or ÒL [19], to be compared with the 2n ´ 1 upper bound that comes from the
simple closure+determinization method.

Okhotin improved on these results by showing an improved 2
n
2´2 lower

bound for ÓL. He also established the exact state complexity for ÒL by proving
a 2n´2 ` 1 upper bound and showing that this is tight [39].

All the above lower bounds assume an unbounded alphabet, and Okhotin
showed that his 2n´2` 1 state complexity for ÒL requires n´ 2 distinct letters.
He then considered the case of languages over a fixed alphabet and, in the 3-letter

case, he demonstrated exponential 2
?

2n`30´6 and 1
54
?
n{2n´

3
4 lower bounds for

ÓL and ÒL respectively [39]. In the 2-letter case, Héam had previously proved

an Ωpr
?
nq lower bound for ÒL, here with r “ p 1`

?
5

2 q
1?
2 [23]. Regarding ÓL, the

question whether its state complexity is exponential even when |Σ| “ 2 was left
open (note that the one-letter case is trivial).

The state complexity of interiors has not yet been considered in the liter-
ature. When working with DFAs, complementation is essentially free so that
computing interiors reduces to computing closures, thanks to duality. How-
ever, when working with NFAs, the simple complement+closure+complement
method comes with a quite large 22n

upper-bound on the number of states of
an NFA that recognizes ßL or þL – it actually yields DFAs – and one would
like to improve on this, or to prove a matching lower bound. As we explain
in Section 5.3, this is related to the state complexity of closures when working

2

with alternating automata (AFAs), a question recently raised in [25].

Our contribution. Regarding closures with DFAs, we prove in Section 3 a tight
2n´1 state complexity for downward closure and show that its tightness re-
quires unbounded alphabets. In Section 4 we prove an exponential lower bound
on both ÓL and ÒL in the case of a two-letter alphabet, answering the open
question raised above. Regarding interiors on NFAs, we show in Section 5
doubly-exponential lower bounds for downward and upward interiors, assuming
an unbounded alphabet. We also provide improved upper bounds, lower than
the naive 22n

but still doubly exponential. Table 1 shows a summary of the re-
sults. Finally, Section 6 proves lower bounds on unambiguous automata for the
witness languages used in Section 3, and Section 7 considers the computational
complexity of some basic decision problems for sets of subwords or superwords
described by automata.

Table 1: A summary of the results on state complexity for closures and interiors, where ψpnq

(ď22n
) is the nth Dedekind’s number5.

Operation Unbounded alphabet Fixed alphabet

ÒL (DFA to DFA) “2n´2 ` 1 for |Σ|ěn´2 2Ωpn1{2
q for |Σ|“2

ÓL (DFA to DFA) “2n´1 for |Σ|ěn´1 2Ωpn1{3
q for |Σ|“2

ÒL (AFA to AFA) ě2tn´3
2 u and ă2n for |Σ| in 2Ωpnq

...

ÓL (AFA to AFA) ě2tn´4
3 u and ď2n for |Σ| in 2Ωpnq (unknown)

ßL (NFA to NFA) ą22tn´4
3 u

and ďψpnq for |Σ| in 2Ωpnq
...

þL (NFA to NFA) ě22tn´3
2 u

and ďψpnq for |Σ| in 2Ωpnq
...

Related work. We already mentioned previous work on the closure of regular
languages: it is also possible to compute closures by subwords or superwords
for larger classes like context-free languages or Petri net languages, see [3, 21,
47] and the references therein for applications and some results on descriptive
complexity.

Interiors are duals of closures and should not be confused with the inverse op-
erations considered in [6], or the shuffle residuals from [29]. Duals of regularity-
preserving operations have the form “complement–operation–complement” and
thus can be seen as special cases of the combined operations studied in [44]

5Recall that the nth Dedekind number ψpnq is the number of antichains in the lattice of
subsets of an n-element set, ordered by inclusion [34]. Kahn [30, Corollary 1.4] shows

´ n

tn{2u

¯

ď log2 ψpnq ď

ˆ

1`
2 logpn` 1q

n

˙

´ n

tn{2u

¯

.

3

and following papers. Dual operations occur naturally in algorithmic or logi-
cal contexts but have not yet been considered widely from a state-complexity
perspective: we are only aware of [8] studying the dual of L ÞÑ Σ˚ ¨ L.

2. Basic notions and results

Subwords. We assume familiarity with regular languages and the automata that
recognize them. We write x, y, u, v, . . . to denote words over a finite alphabet
Σ “ ta, b, . . .u, with |x| denoting the length of a word x. For 1 ď i ď |x|, we let
xris denote the i-th letter of x. The empty word is denoted ε and concatenation
is denoted multiplicatively.

We say that a word x is a subword of y, written x Ď y, when y can be written
in the form y “ y0 x1 y1 ¨ ¨ ¨ ym´1 xm ym for some factors such that x “ x1 ¨ ¨ ¨xm.
For example, ε Ď a b Ď a c b a. Equivalently, x Ď y when there are positions
0 ă p1 ă p2 ă ¨ ¨ ¨ ă p` ď |y| such that xris “ yrpis for all 1 ď i ď ` “ |x|.
When x Ď y we also say that x embeds in y, or that y is a superword of x.

Closures. For a language L Ď Σ˚, we define ÒL
def
“ tx P Σ˚ | Dy P L : y Ď xu

and ÓL
def
“ tx P Σ˚ | Dy P L : x Ď yu, and call them the upward and downward

closures of L respectively.6

The Kuratowski closure axioms are satisfied:

ÓH “ H , L Ď ÓL “ ÓÓL , Ó
`

ď

i

Li
˘

“
ď

i

ÓLi , Ó
`

č

i

ÓLi
˘

“
č

i

ÓLi ,

and similarly for upward closures. We say that a language L Ď Σ˚ is downward-
closed if L “ ÓL and that a language is upward-closed if L “ ÒL. Note that L
is downward-closed if, and only if, its complement Σ˚ rL is upward-closed but
the complement of ÓL is not ÒL.

Regularity. The upward-closure Òx of a word x “ a1 ¨ ¨ ¨ a` is a regular lan-
guage given by the regular expression Σ˚a1Σ˚ ¨ ¨ ¨ a`Σ

˚. Since, by Higman’s
Lemma [24], any language L only contains finitely many elements that are min-
imal for the subword ordering, one deduces that ÒL is regular for any L Ď Σ˚, a
result also known as Haines’s Theorem [22]. Then ÓL, being the complement of
an upward-closed language, is regular too. In fact, upward-closed languages are
simple star-free languages. They correspond exactly to the level 1

2 of Straub-
ing’s hierarchy [41], and coincide with the shuffle ideals, that is, the languages
that satisfy L “ L� Σ˚ [9]. Downward-closed languages coincide with strictly
piecewise-testable languages [43].

Effective construction of a finite-state automaton recognizing ÓL or ÒL is easy
when L is regular (see Section 3), is possible when L is context-free [14, 35], and
is not possible in general since this would allow deciding the emptiness of L.

6Formally ÒL should more precisely be denoted ÒΣL since it depends on the underlying
alphabet but in the rest of this article Σ will always be clear from the context.

4

Interiors. The upward interior of a language L over Σ is ßL
def
“ tx P Σ˚ | Òx Ď

Lu. Its downward interior is þL
def
“ tx P Σ˚ | Óx Ď Lu. Alternative charac-

terizations are possible, for example, by noting that ßL or þL are the largest
upward-closed or downward closed languages, respectively, included in L, or by
using the duality equations from page 2. These equations show that þL and ßL
are regular for any L. They also show how, when L is regular, one may com-
pute automata recognizing the interiors of L by combining complementations
and closures.

State complexity. When considering a finite automaton A “ pΣ, Q, δ, I, F q, we
usually write n for |Q|, k for |Σ|, and LpAq for the language recognized by A. In
the context of a fixed automaton A we often write q

a
ÝÑ q1 to mean q1 P δpq, aq.

We also write q
w
ÝÑ q1 where w P Σ˚ to denote the existence of a w-labeled path

from q to q1 in the graph of A. In Section 6 we consider unambiguous automata
(UFAs): recall that an NFA A is unambiguous if every word w P LpAq has a
single accepting run [12].

For a regular language L, nDpLq, nNpLq and nUpLq denote the minimum
number of states of a DFA, an NFA, and a UFA, respectively, that accepts
L. Note that NFAs are allowed to have multiple initial states, and DFAs need
not be complete. Since any DFA is unambiguous, one obviously has nNpLq ď
nUpLq ď nDpLq for any regular language. In cases where nNpLq “ nDpLq we
may use nN&DpLq to denote the common value.

An application of the fooling set technique. The following lemma is a well-known
tool for proving lower bounds on nNpLq.

Lemma 2.1 (Extended fooling set technique, [17]) Let L be a regular lan-
guage. Suppose that there exists a set of pairs of words S “ tpxi, yiqu1ďiďn,
called a fooling set, such that xi yi P L for all i “ 1, . . . , n, and such that for all
j ‰ i, at least one of xi yj and xj yi is not in L. Then nNpLq ě n.

Proof. Let A “ pΣ, Q, δ, I, F q be an NFA recognizing L. For each i “ 1, . . . , n,

xiyi P L, so A has an accepting run of the form si
xi
ÝÑ qi

yi
ÝÑ fi, starting at some

initial state si P I, ending at some accepting state fi P F , and visiting some
intermediary state qi P Q. Observe that if qi “ qj for i ‰ j then A has accepting
runs for both xiyj and xjyi, which contradicts the assumption. Hence the states
q1, q2, . . . , qn are all distinct and |Q| ě n. l

In preparation for Section 3, let us apply the fooling set technique to the
following languages, where Σ is an arbitrary finite alphabet:

UΣ
def
“ tx P Σ˚ | @a P Σ : Di : xris “ au , U 1Σ

def
“ Σ ¨ UΣ ,

VΣ
def
“ tx P Σ˚ | @i ‰ j : xris ‰ xrjsu .

Note that UΣ consists of all words where every letter in Σ appears at least once
while VΣ consists of all words where no letter appears twice. A word in U 1Σ
consists of an arbitrary letter from Σ followed by a word in UΣ. Note that UΣ

and U 1Σ are upward-closed while VΣ is downward-closed.

5

Lemma 2.2 nN&DpUΣq “ nN&DpVΣq “ 2|Σ| and, if Σ is not empty, nN&DpU
1
Σq “

2|Σ| ` 1.

Proof. Let us start with the lower bounds for nNpUΣq and nNpVΣq: With any
Γ Ď Σ, we associate two words xΓ and x Γ, where xΓ has exactly one occurrence
of each letter from Γ, and where x Γ has exactly one occurrence of each letter
not in Γ. Then xΓx Γ belongs to UΣ and VΣ, while for any ∆ ‰ Γ one of xΓx ∆

and x∆x Γ does not belong to UΣ and one does not belong to VΣ. Thus for UΣ

or VΣ we may use the same fooling set S “ tpxΓ, x ΓquΓĎΣ. By Lemma 2.1, we
conclude that nNpUΣq ě 2|Σ| and nNpVΣq ě 2|Σ|.

For U 1Σ we pick an arbitrary letter a P Σ and let our fooling set be S “
tpa xΓ, x ΓquΓĎΣ Y tpε, a xΣqu. As above a xΓx Γ belongs to U 1Σ while, for any
∆ ‰ Γ, one of a xΓx ∆ and a x∆x Γ does not belong to U 1Σ. Furthermore
ε ¨ a xΣ belongs to U 1Σ, while ε ¨ x Γ does not belong to U 1Σ for any Γ Ď Σ. By
Lemma 2.1, we conclude that nNpU

1
Σq ě 2|Σ| ` 1.

Proving the upper bounds is a well-known exercise in automata theory. One
designs DFAs using the powerset 2Σ “ tΓ,Γ1, . . .u as the set of states, that is,
automata with 2|Σ| states. With rules of the form Γ

a
ÝÑ Γ Y tau, these states

record the set of letters read so far, starting from H as initial state. In the DFA
for UΣ, one accepts when all letters have been seen. In the DFA for VΣ, all
states are accepting but it is forbidden to read a letter that has already been
seen: there are no transitions Γ

a
ÝÑ ΓY tau when a P Γ. A DFA recognizing U 1Σ

is obtained from the DFA for UΣ by adding a new initial state from which one
will read a first letter before continuing as for UΣ. l

In the following, we use Σk
def
“ ta1, . . . , aku to denote a k-letter alphabet, and

write Uk and Vk instead of UΣk
and VΣk

.

3. State complexity of closures

Let L Ď Σ˚ be a regular language recognized by an NFA A. One may
obtain NFAs recognizing the upward and downward closures ÒL and ÓL by
simply adding transitions to A, without increasing its number of states. More
precisely, an NFA AÒ recognizing ÒL is obtained from A by adding self-loops
q

a
ÝÑ q for every state q of A and every letter a P Σ. Similarly, an NFA AÓ

recognizing ÓL is obtained from A by adding a silent transition p
ε
ÝÑ q, also

called an “ε-transition”, for every original transition p
a
ÝÑ q in A.

If L is recognized by a DFA or an NFA A and we want a DFA recognizing
ÒL or ÓL, we can start with the NFA AÒ or AÓ defined above and transform it
into a DFA using the powerset construction. This shows that if L is recognized
by an n-state DFA, then both its upward and downward closures are recognized
by DFAs with at most 2n ´ 1 states.

It is possible to provide tighter upper bounds by taking advantage of specific
features of AÒ and AÓ. The next two propositions give tight upper bounds for
upward and downward closure, respectively.

6

Proposition 3.1 (State complexity of upward closure, after [39]) 1. If
L Ď Σ˚ is a regular language with nNpLq “ n then nDpÒLq ď 2n´2 ` 1.
2. Furthermore, for any n ą 1 there exists a regular language Ln with nNpLnq “
nDpLnq “ n and nDpÒLnq “ nUpÒLnq “ 2n´2 ` 1.

Proof. 1. Let A “ pΣ, Q, δ, I, F q be an n-state NFA recognizing L “ LpAq.
We can assume I X F “ H and |I Y F | ě 2 otherwise L contains ε or is empty,
resulting in a trivial ÒL with nDpÒLq “ 1.

Since AÒ has loops on all its states and for any letter, applying the pow-
erset construction yields a DFA where P

a
ÝÑ P 1 implies P Ď P 1, hence any

state P reachable from I includes I. Furthermore, if P is accepting, that is,
P X F ‰ H, and P

a
ÝÑ P 1, then P 1 is accepting too, hence all accepting states

recognize exactly Σ˚ and are equivalent. Then there can be at most 2|QrpIYF q|

states in the powerset automaton that are both reachable and not accepting. To
this we add 1 for the accepting states since they are all equivalent and will be
merged in the minimal DFA. Finally nDpÒLq ď 2n´2`1 since |IYF | is at least 2.

2. To show that 2n´2`1 states may be necessary, we first consider the case where
n “ 2: taking L2 “ tau over a 1-letter alphabet witnesses both nDpLnq “ n “ 2
and nDpÒLnq “ 2n´2 ` 1 “ 2. Further, nUpÒL2q “ 2 since clearly nNpÒL2q ą 1.

In the general case where n ą 2 we define Ln
def
“ En´2 where

Ek
def
“ ta a | a P Σku “ ta1 a1, . . . , ak aku .

In other words, Ln contains all words consisting of two identical letters from
Σ “ Σn´2. The minimal DFA recognizing Ln has n states, see Figure 1. Now
ÒLn “

Ť

aPΣ Σ˚ ¨a ¨Σ˚ ¨a ¨Σ˚, that is, ÒLn contains all words in Σ˚ where some
letter reappears. Thus ÒLn is the complement of the language we called Vn´2

above.

q0start qi qn´1

q1

qn´2

...

...

a1

ai

an´2

a1

ai

an´2

Figure 1: n-state DFA recognizing Ln “ En´2 “ ta1 a1, a2 a2, . . . , an´2 an´2u.

The simplest way to recognize ÒLn is via a DFA that records, in its states,
the set of letters previously read and accepts when one reappears. This will
use 2|Σ| ` 1 “ 2n´2 ` 1 states, one for each subset of previously read letters,

7

to which one adds a single accepting state. This DFA is minimal: given any
two words x and y that reach distinct states, one finds a z such that x z P ÒLn
and y z R ÒLn or vice versa. We conclude that nDpÒLnq “ 2n´2 ` 1 and deduce
nNpLnq “ n (that is, we rule out nNpLnq ă n) from the first part of the lemma.

We refer to Proposition 6.5 in Section 6 for a proof that recognizing ÒLn
requires 2n´2 ` 1 states even for UFAs. l

Proposition 3.2 (State complexity of downward closure) 1. If L Ď Σ˚

is recognized by an n-state NFA with a single initial state then nDpÓLq ď 2n´1.
2. Furthermore, for any n ą 1 there exists a language L1n with nNpL

1
nq “

nDpL
1
nq “ n and nDpÓL

1
nq “ nUpÓL

1
nq “ 2n´1.

Proof. 1. Assume that L is recognized by A “ pΣ, Q, δ, tqinitu, F q, an NFA
where all states are reachable from qinit, the single initial state. From A one
derives an NFA AÓ recognizing ÓL by adding ε-transitions q

ε
ÝÑ q1 for all pairs

of states q, q1 such that q1 is reachable from q. In particular, AÓ contains tran-
sitions qinit

ε
ÝÑ q for all states q P Q, and the language accepted from q is a

subset of the language accepted from qinit. Hence, in the deterministic powerset
automaton obtained from AÓ, all states P Ď Q that contain qinit are equivalent.
This powerset automaton also has up to 2n´1 ´ 1 nonempty states that do not
contain qinit. Thus 1`2n´1´1 bounds the number of non-equivalent nonempty
states in the powerset automaton obtained from AÓ, showing nDpÓLq ď 2n´1.

2. To show that 2n´1 states are sometimes necessary, we assume n ą 1 and let
L1n

def
“ Dn´1 where

Dk
def
“ tx P Σ`k | @i ą 1 : xris ‰ xr1su “

ď

aPΣk

a ¨
`

Σk r a
˘˚
.

Thus L1n contains all words in Σ`n´1 where the first letter does not reappear. The
minimal DFA recognizing L1n has n states, see Figure 2. Every NFA for L1n has
at least n states, as shown by considering the following fooling set:

S “

"

pε, a1a2a3 ¨ ¨ ¨ an´1q, pa1, a2a3a4 ¨ ¨ ¨ an´1q, pa2, a1a3a4 ¨ ¨ ¨ an´1q,
pa3, a1a2a4 ¨ ¨ ¨ an´1q, . . . , pan´1, a1a2a3 ¨ ¨ ¨ an´2q

*

.

We now turn to ÓL1n “ tx | Da P Σn´1 : @i ą 1 : xris ‰ au. That is, ÓL1n
contains all words x such that the first suffix xr2..s does not use all letters.
Equivalently x P ÓL1n if, and only if x P L1n or x does not use all letters, that
is, ÓL1n is the union of L1n and the complement of the language we called Un´1

above.
To show that nDpL

1
nq “ 2n´1, we start with a DFA A that reads a first

letter and then starts recording which letters have been encountered after the
first one, in a manner similar to the construction of a DFA for U 1Σ in the proof
of Lemma 2.2. All the states of A are accepting but, in states of the form Σra,
the DFA has no a-labelled transitions, hence Σ is not a reachable state. Finally
A has 1 ` 2|Σ| ´ 1 “ 2n´1 states: the initial state reading the first letter, and

8

q0start qi

q1

qn´1

...

...

a1

ai

an´1

taj | j ‰ 1u

taj | j ‰ iu

taj | j ‰ n´ 1u

Figure 2: n-state DFA recognizing L1n “ Dn´1 “
Ť

aPΣ a ¨ pΣ´ tauq
˚ with |Σ| “ n´ 1.

one state for each strict subset of Σ. This DFA is minimal: as in the previous
proof, one checks that no two states in A are equivalent. Alternatively, one can
refer to Section 6 where we prove – see Proposition 6.4 – that recognizing ÓL1n
requires 2n´1 states even for UFAs. l

Remark 3.3 The condition of a single initial state in Proposition 3.2 cannot
be lifted. It is possible to have nDpÓLq “ nUpÓLq “ 2n´1 when nNpLq “ n. For
example, the downward-closed language L “ Σ˚n r Un of all words that do not
use all letters is recognized by an n-state NFA (see Figure 3) but its minimal
DFA has 2n´1 states. In fact, any UFA recognizing L has at least 2n´1 states
(see Proposition 6.3 in Section 6).

q1start ¨ ¨ ¨ qistart ¨ ¨ ¨ qnstart

a2, . . . , an a1, . . . , ai´1, ai`1, . . . , an a1, . . . , an´1

Figure 3: n-state NFA recognizing Σ˚n r Un.

The language families pLnqnPN and pL1nqnPN used to prove that the upper
bounds given in Propositions 3.1 and 3.2 are tight use alphabets with a size
linear in n.

It is known that the size of the alphabets matter for the state complexity
of closure operations. The automata witnessing tightness in Figures 1 and 2
use the smallest possible alphabets. Okhotin showed that the 2n´2 ` 1 state
complexity for ÒL cannot be achieved with an alphabet of a size smaller than
n´2, see [39, Lemma 4.4]. We now prove a similar result for downward closures:

Lemma 3.4 For n ą 2, let L Ď Σ˚ be a regular language accepted by an n-state
NFA with a single initial state. If |Σ| ă n´ 1 then nDpÓLq ă 2n´1.

9

Proof. We assume that L is accepted by A “ pΣ, Q, δ, tqinitu, F q with |Q| “ n,
that nDpÓLq “ 2n´1 and deduce that |Σ| ě n´ 1.

We write Q “ tqinit, q1, . . . , qn´1u to denote the states of A. As we saw in
the proof of the first part of Proposition 3.2, the powerset automaton built from
AÓ can only have 2n´1 non-equivalent reachable states if all non-empty subsets
of Q r qinit are reachable. Since AÓ has ε-transitions doubling all transitions
from A, it is possible to construct the powerset automaton with Q as its initial
state. Then all edges P

a
ÝÑ P 1 in the powerset automaton satisfy P Ě P 1. As a

consequence, if P
x
ÝÑ P 1 for some x P Σ˚ then in particular one can pick x with

|x| ď |P r P 1|.
Since every non-empty subset of Q r qinit is reachable from Q there is, for

every i “ 1, . . . , n ´ 1, some xi of length 1 or 2 such that Q
xi
ÝÑ Q r qinit, qi

(here Q r q, q1 is shorthand for Q r tq, q1u). For a given i, there are three

Qstart Qr qinit Qr qinit, qj

Qr qinit, qi

Qr q` Qr qinit, q`

ai

bj

d`

cj

e`

Figure 4: A part of the powerset automaton of AÓ

possible cases (see Figure 4): xi “ ai is a single letter (type 1), or xi is some

bi ci with Q
bi
ÝÑ Q r qinit

ci
ÝÑ Q r qinit, qi (type 2), or xi is some di ei with

Q
di
ÝÑ Qr qi

ei
ÝÑ Qr qinit, qi.

We now claim that the ai’s for type-1 states, the ci’s for type-2 states and
the di’s for type-3 states are all distinct, hence |Σ| ě n´ 1.

Clearly the ai’s and the di’s are pairwise distinct since they take Q to dif-
ferent states in the deterministic powerset automaton. Similarly, the ci’s are
pairwise distinct, taking Qr qinit to different states.

Assume now that ai “ cj for a type-1 qi and a type-2 qj . Then Qr qinit
cj
ÝÑ

Q r qinit, qj and Q
aip“cjq
ÝÝÝÝÑ Q r qinit, qi, implying qi “ qj by monotonicity of δ

(the fact that P1 Ď P2 implies δpP1, aq Ď δpP2, aq for any a P Σ).

Similarly, assuming d` “ cj leads to Q r qinit
cj
ÝÑ Q r qinit, qj and Q

cjp“d`q
ÝÝÝÝÑ

Qr q`, implying q` “ qj by monotonicity of δ. Thus we can associate a distinct
letter with each state q1, . . . , qn´1, which concludes the proof. l

In view of the above results, the main question is whether, in the case of a
fixed alphabet, exponential lower bounds still apply for the (deterministic) state
complexity of upward and downward closures. The 1-letter case is degenerate
since, when |Σ| “ 1, both nDpÒLq and nDpÓLq are at most nDpLq. In the 3-letter
case, exponential lower bounds for upward and downward closures were shown
by Okhotin [39].

10

In the critical 2-letter case, say Σ “ ta, bu, an exponential lower bound for
upward closure was shown by Héam with the following witness: For n ą 0, let
L2n “ ta

ib a2jb ai | i ` j ` 1 “ nu. Then nDpL
2
nq “ pn ` 1q2, while nDpÒL

2
nq ě

1
7 p

1`
?

5
2 qn when n ě 4 [23, Proposition 5.11]. Regarding downward closures for

languages over a 2-letter alphabet, the question was left open and we answer it
in the next section.

4. Exponential state complexity of closures in the 2-letter case

In this section we show an exponential lower bound for the state complexity
of downward closure in the case of a two-letter alphabet. Interestingly, the same
lower bound for upward closure can be proved using the same witnesses, but
Héam already gave a stronger lower bound for upward closure [23].

Theorem 4.1 (State complexity of closures with |Σ| “ 2) The determin-
istic state complexity of downward closure for languages over the binary alphabet

Σ “ ta, bu is in 2Ωpn1{3
q. The same result holds for upward closure.

We now prove the theorem. Fix Σ “ ta, bu and n P N. Let

H “ tn, n` 1, . . . , 2nu ,

and define morphisms c, d : H˚ Ñ Σ˚ by

cpiq
def
“ ai b3n´i , dpiq

def
“ cpiq cpiq , (2)

for i P H. Note that cpiq always has length 3n, begins with at least n a’s, and
ends with at least n b’s. Let

Ln
def
“ tcpiqn | i P Hu .

The language Ln is finite and contains n` 1 words, each of length 3n2 so that
nDpLnq is in Opn3q. In fact, nDpLnq “ 3n3 ` 1.

In the rest of this section we show that, for n even and strictly positive, both

nDpÒLnq and nDpÓLnq are greater than or equal to
`

n`1
n{2

˘

. Since
`

n`1
n{2

˘

« 2n`3{2
?
πn

and nDpLnq “ 3n3 ` 1, the languages pLnqn“2,4,6,... witness the lower bound
claimed in Theorem 4.1.

For each i P H, let the morphisms ηi, θi : H˚ Ñ pN,`q be defined by

ηipjq
def
“

#

1 if i ‰ j ,

2 if i “ j ,
θipjq

def
“

#

2 if i ‰ j ,

1 if i “ j .

Thus for σ “ p1 p2 ¨ ¨ ¨ ps P H
˚, ηipσq is s plus the number of occurrences of i in

σ, while θipσq is 2s minus the number of these occurrences of i.

Lemma 4.2 Let σ P H˚. The smallest ` such that cpσq is a subword of cpiq` is
θipσq.

11

Proof. We write σ “ p1 p2 ¨ ¨ ¨ ps and prove the result by induction on s. The
case of s “ 0 is trivial. For the case of s “ 1, note that for any p1 and i,
cpp1q Ď dpiq “ cpiq2 and that cpp1q Ď cpiq if and only if p1 “ i.

Assume now that s ą 1, write σ “ σ1ps and let `1 “ θipσ
1q. By the induction

hypothesis, cpσ1q Ď cpiq`
1
´1 and cpσ1q Ď cpiq`

1

“ cpiq`
1
´1aib3n´i. Write now

cpiq`
1

“ w v where w is the shortest prefix of cpiq`
1

with cpσ1q Ď w. Since cpσ1q
ends with some b that only embeds in the suffix aib3n´i of cpiq`

1

, v is necessarily
br for some r. So, for all z P Σ˚, cppsq Ď z if and only if cppsq Ď v z. We
have cppsq Ď cpiqθippsq and cppsq Ď v cpiqθippsq´1. Noting that σ “ σ1ps, we get
cpσq Ď cpiqθipσq and cpσq Ď cpiqθipσq´1. l

We now derive the announced lower bound on nDpÓLnq. Recall that n is
even and strictly positive. For every subset X of H of size n{2, let wX P Σ˚ be
defined as follows: let the elements of X be p1 ă p2 ă ¨ ¨ ¨ ă pn{2 and let

wX
def
“ cpp1p2 ¨ ¨ ¨ pn{2q .

Note that θipp1p2 ¨ ¨ ¨ pn{2q “ n if i R X and θipp1p2 ¨ ¨ ¨ pn{2q “ n´ 1 if i P X.

Lemma 4.3 Let X and Y be subsets of H of size n{2 with X ‰ Y . There
exists a word v P Σ˚ such that wXv P ÓLn and wY v R ÓLn.

Proof. Let i P X r Y . Let v “ cpiq. By Lemma 4.2, wX Ď cpiqn´1, and so
wXv Ď cpiqn, hence wXv P ÓLn.

By Lemma 4.2, the smallest ` such that wY v Ď cpiq` is n` 1. Similarly, for
j ‰ i, the smallest ` such that wY v Ď cpjq` is at least n´1`2 “ n`1 (at least
n´ 1 for the wY factor and 2 for the v factor). So wY v R ÓLn. l

This shows that for any DFA A “ pΣ, Q, δ, q1, F q recognizing ÓLn, the states
of the form δpq1, wXq for a subset X Ď H with |X| “ n{2 are all distinct. Thus
A has at least

`

n`1
n{2

˘

states as claimed.

For nDpÒLnq, the reasoning is similar:

Lemma 4.4 1. For i, j P H, the longest prefix of cpiqω that is a subword of
dpjq “ cpjq cpjq is cpiq if i ‰ j and cpiq cpiq if i “ j.

2. Let σ P H˚. For all i P H, the longest prefix of cpiqω that is a subword of
dpσq is cpiqηipσq.

Proof. 1. The statement is trivial when i “ j, so we now assume i ‰ j.
Equation (2) entails cpiq Ď cpjqcpjq since n ď i, j ď 2n. It remains to
show that no longer prefix of cpiqω embeds in cpjqcpjq, that is, that cpiqa Ď
cpjqcpjq. But this is clear when one considers the leftmost embedding of
cpiqa in cpjqcpjq: this is illustrated by Figure 5 in the case of i ą j, the
case of i ă j being similar.

2. By induction on the length of σ, as above. l

12

a ¨ ¨ ¨ a a a b b b b ¨ ¨ ¨ b a a ¨ ¨ ¨ a a a b b b b ¨ ¨ ¨ b

a ¨ ¨ ¨ a a a a a b b ¨ ¨ ¨ b a ¨ ¨ ¨ a a a a a b b ¨ ¨ ¨ b a ¨ ¨ ¨ a a a a a b b ¨ ¨ ¨ b

cpjq cpjq

cpiq cpiq cpiq

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨ ?

dpjq :

cpiqω :

Figure 5: Case “i ą j” in Lemma 4.4 (here with n “ 5, i “ n` 4 and j “ n` 2).

Recall that n is even and strictly positive. For every subset X of H of size
n{2, let w1X P Σ˚ be defined as follows: let the elements of X be p1 ă p2 ă

¨ ¨ ¨ ă pn{2 and let

w1X
def
“ dpp1p2 ¨ ¨ ¨ pn{2q “ cpp1p1p2p2 ¨ ¨ ¨ pn{2pn{2q .

Lemma 4.5 Let X and Y be subsets of H of size n{2 with X ‰ Y . There
exists a word v P Σ˚ such that w1Xv P ÒLn and w1Y v R ÒLn.

Proof. Let i P X r Y . Let v “ cpiqn´pn{2`1q “ cpiqn{2´1. By Lemma 4.4,
cpiqn{2`1 Ď w1X , thus cpiqn Ď w1Xv, hence w1Xv P ÒLn.

We now show that w1Y v R ÒLn. By Lemma 4.4, the longest prefix of cpiqn

that embeds in w1Y v is a prefix of cpiq` where ` “ n{2` n{2´ 1 “ n´ 1. Thus
w1Y v R Òcpiq

n. For j ‰ i, we show cpjqn Ď w1Y v by contradiction. Suppose
cpjqn Ď w1Y v. The longest prefix of cpjqn that is a subword of w1Y is a prefix of
cpjqn{2`1. Thus cpjqn{2´1 Ď v. But cpjqn{2´1 and v are different words of the
same length, so this is not possible. Thus cpjqn Ď w1Y v. Finally w1Y v R ÒLn. l

With Lemma 4.5 we reason exactly as we did for nDpÓLnq after Lemma 4.3 and
conclude that nDpÒLnq is at least

`

n`1
n{2

˘

.

5. State complexity of interiors

Recall Equation (1) expressing interiors with closures and complements.
Since complementation of DFAs does not increase the number of states, ex-
cept perhaps adding a single state if we start with an incomplete DFA, the
state complexity of interiors, seen as DFA to DFA operations, is essentially the
same as the state complexity of closures modulo swapping of up and down.

The remaining question is the nondeterministic state complexity of interiors,
now seen as NFA to NFA operations. For this, Equation (1) provides an obvious
22n

upper bound on the nondeterministic state complexity of both upward and
downward interiors, simply by combining the powerset construction for comple-
mentation and the results of Section 3. Note that this procedure yields DFAs

13

for the interiors while we are happy to accept NFAs if this improves the state
complexity.

In the rest of this section, we prove that the nondeterministic state com-

plexity of upward and downward interiors is in 22Θpnq

. Sections 5.1 and 5.2
establish the upper and lower bounds, respectively. Section 5.3 mentions the
consequences on representations based on alternating automata.

5.1. Upper bounds for interiors and the approximation problem

We first give an upper bound for the state complexity of interiors that
slightly improves on the obvious 22n

upper bound. For this we adapt a tech-
nique from [13, 38] and rely on the fact, already used in [11, Theorem 6.1], that
the state complexity of a positive Boolean combination of left-quotients of some
regular language L is at most ψpnNpLqq.

Proposition 5.1 Let L Ď Σ˚ be a regular language with nNpLq “ n. Then
nDpßLq ă ψpnq and nDpþLq ă ψpnq.

Proof. We handle both interiors in a uniform way.
Let K0 and K1, . . . ,Kp be arbitrary languages in Σ˚ (these need not be

regular). With the Ki’s we associate an alphabet Γ “ tb1, . . . , bpu and a sub-

stitution σ given inductively by σpεq
def
“ K0 and σpw biq

def
“ σpwq ¨ Ki. With a

language L Ď Σ˚, we associate the language W Ď Γ˚ defined by

W
def
“ tx P Γ˚ | σpxq Ď Lu . (3)

Claim. If L is regular then W is regular.

To prove this first claim, assume A1 “ pΣ, Q, δ1, I1, F1q is an n-state NFA
recognizing L. Using the powerset construction, one obtains a DFA A2 “

pΣ, Q2, δ2, i2, F2q recognizing L. We have as usual Q2 “ 2Q, with typical
elements S, S1, . . ., δ2 given by δ2pS, aq “

Ť

qPS δ1pq, aq, i2 “ I1, and F2 “

tS | S X F1 ‰ Hu.
From A2 we now derive a DFA A3 “ pΓ, Q3, δ3, i3, F3q given by Q3 “ 2Q2 ,

with typical elements U,U 1, . . .; δ3pU, bjq “ tδ2pS, zq | S P U, z P Kju; i3 “
tδ2pi2, zq | z P K0u; and F3 “ 2F2 “ tU | U Ď F2u.

The intention is that A3 will recognize W , so let us check, using induction
on w P Γ˚, that δ3pi3, wq “ tδ2pi2, zq | z P σpwqu: For the base case, one has
δ3pi3, εq “ i3 “ tδ2pi2, zq | z P K0u by definition, and σpεq “ K0. For the
inductive case, one has

δ3pi3, w bjq “ δ3pδ3pi3, wq, bjq

“ δ3ptδ2pi2, zq | z P σpwqu, bjq (induction hypothesis)

“

δ2pS, z
1q | S P tδ2pi2, zq | z P σpwqu, z

1 P Kj

(

(definition of δ3)

“ tδ2pδ2pi2, zq, z
1q | z P σpwq, z1 P σpbjqu (rearrange, use σpbjq “ Kj)

“ tδ2pi2, z
2q | z2 P σpw bjqu .

14

Now, for all w P Γ˚, one has

w PW ðñ σpwq Ď L (definition of W)

ðñ @z P σpwq : δ2pi2, zq P F2 (since A2 recognizes L)

ðñ tδ2pi2, zq | z P σpwqu Ď F2

ðñ δ3pi3, wq P F3 . (as just shown)

This proves that A3 recognizes W . In particular, W is regular as claimed.

Claim. nDpW q ă ψpnq.

The DFA A3 that recognizes W has |Q3| “ 22n

states. We now examine our
construction more closely to detect equivalent states in A3. Observe that the
powerset construction for A2 in terms of A1 is “existential”, that is, a state
of A2 is accepting if and only if at least one of its constituent states from A1

is accepting. In contrast, the powerset construction for A3 in terms of A2 is
“universal”, that is, a state of A3 is accepting if and only if all of its constituent
states from A2 are accepting. Suppose S, S1 P Q2 are two states of A2 with
S Ď S1. Then if some word is accepted by A2 starting from S, it is also
accepted starting from S1. If a state of A3 contains both S and S1, then S
already imposes a stronger constraint than S1, and so S1 can be eliminated. We
make this precise below:

Define an equivalence relation ” on Q3 as follows:

U ” U 1
def

ðñ p@S P U : DS1 P U 1 : S1 Ď Sq ^ p@S1 P U 1 : DS P U : S Ď S1q .

We now claim that, in A3, ”-equivalent states accept the same language. First
U ” V and U P F3 imply V P F3 since for any S1 P V , there is S P U with
S Ď S1, and since S P F2, also S1 P F2. Furthermore U ” V and bj P Γ imply
δpU, bjq ” δpV, bjq: each element of δ3pU, bjq is some δ2pS, zq with S P U and
z P Kj . There exists S1 P V such that S1 Ď S, and then δ2pS

1, zq belongs to
δ3pV, bjq and is a subset of δ2pS, zq because δ2 is monotone in its first argument.
The reasoning in the reverse direction is similar.

Thus we can quotient the DFA A3 by ” to get an equivalent DFA recognizing
W . Further, we can remove (the equivalence class of) the sink state tHu, so
that nDpW q ă |Q3{”|.

Let us now show that |Q3{”| is exactly ψp|Q|q. A state U P Q3 is called an
antichain if it does not contain some S, S1 P Q2 with S Ĺ S1. Every U P Q3

is ”-equivalent to the antichain Umin obtained by retaining only the elements
of U that are minimal by inclusion. Further, two distinct antichains cannot be
”-equivalent. Thus the number of equivalence classes in Q3{” is exactly the
number of subsets of 2Q which are antichains, and this is the Dedekind number
ψpnq, see [34]. This shows nDpW q ă ψpnq, completing the proof of our second
claim.

We may now instantiate the above construction for the upward and down-
ward interiors. Choose alphabets Σ “ Γ “ tb1, . . . , bku and let K0 “ Σ˚

15

and Ki “ Σ˚biΣ
˚. Then Equation (3) yields W “ ßpLq and we deduce

nDpßpLqq ă ψpnq. Letting now K0 “ tεu and Ki “ tbi, εu yields W “ þpLq and
again we deduce nDpþpLqq ă ψpnq. This concludes the proof of Proposition 5.1.

l

Remark 5.2 In the usual setting – see [38, Section 6] – W is defined with
σpεq “ tεu and there is no need for K0. The idea is that W is the best under-
approximation of L by sums of products of Ki’s, and Conway showed that if L
is regular then W is too [13]. We allowed σpεq “ K0 to account directly for
upward interiors.

5.2. Lower bounds for interiors

Proposition 5.3 (Downward interior) There exists a family of languages

pLnqn“3,4,... with nNpLnq ď n and nNpþLnq “ 22tn´3
2 u

.

Proof. Fix n ě 3 and let ` “
X

n´3
2

\

. We let Σ “ t0, 1, 2, . . . , 2` ´ 1u, so that
|Σ| “ 2`. Let

Ln
def
“ Σ˚ r ta a | a P Σu “ ta b | a, b P Σ, a ‰ bu Y tw P Σ˚ | |w| ‰ 2u .

That is, Ln contains all words over Σ consisting of two different letters and all
words whose length is not 2.

We first prove that nNpLnq ď 2`` 3 ď n: Two letters in Σ, viewed as `-bit
sequences, are distinct if and only if they differ in at least one bit. Figure 6
displays an NFA recognizing ta b P Σ2 | a ‰ bu with 2` ` 2 states: the idea is
that the NFA reads a, guesses the position of a bit where a and b differ, records
the value of a’s corresponding bit and checks b’s bit at that position.

...
...

2` 2´

1` 1´

`` `´

instart fi

1,
3,

5,
. . .

0, 2
, 4,
. . . 0, 2, 4, . . .

1, 3, 5, . . .

2, 3,
6, 7,

. . .

0, 1, 4
, 5, . .

. 0, 1, 4, 5, . . .

2, 3, 6, 7, . . .

0, 1, . . . , 2`´1
´ 1

2 `´1, 2 `´1
` 1, . . . , 2 `´ 1 2`

´1 , 2
`´1 ` 1, . .

. , 2
` ´ 1

0, 1, .
. . , 2

`´1 ´ 1

Figure 6: NFA recognizing ta b | a, b P Σ2` , a ‰ bu with 2`` 2 states.

We then modify this NFA so that it also accepts all words whose length is
not 2. This can be done by adding a single new state and appropriate transi-
tions, and making all original states accepting. The resulting NFA has 2` ` 3

16

states.

It remains to prove that nNpþLnq “ 22`

, but þLn consists of all words in
Σ˚ of pairwise distinct letters, the language called VΣ in Lemma 2.2 where we

showed nNpVΣq “ 2|Σ| “ 22`

. l

Proposition 5.4 (Upward interior) There exists a family of languages pLnqn“7,8,...

with nNpLnq ď n and nNpßLnq ě 22tn´4
3 u

` 1.

Proof. Fix n ě 7 and let ` “
X

n´4
3

\

. We use two subalphabets: Γ
def
“

t0, 1, . . . , 2` ´ 1u and Υ
def
“ t1, . . . , `u, letting Σ

def
“ ΓYΥ. The symbols in Γ, de-

noted x, y, . . . are disjoint from the symbols in Υ, denoted k, k1, . . . (for example,
we can imagine that they have different colors) and one has |Σ| “ 2` ` `.

For x, y P Γ and k P Υ, we write x “k y when x and y, viewed as `-bit
sequences, have the same kth bit. We consider the following languages:

L1n
def
“ txw y k w1 P Γ ¨ Σ˚ ¨ Γ ¨Υ ¨ Σ˚ | x “k yu ,

L2n
def
“ Γ ¨ pΓ ¨Υq˚ ,

Ln
def
“ L1n Y pΣ

˚ r L2nq .

In other words, L1n contains all words such that the initial letter x P Γ has one
common bit with a later y P Γ and this bit is indicated by the k P Υ that
immediately follows the occurrence of y.

Claim. nNpL
1
nq ď 3`` 2 and nNpLnq ď n.

Figure 7 displays the schematics of an NFA for L1n. In order to recognize inputs
of the form xw y k w1 P Γ ¨ Σ˚ ¨ Γ ¨ Υ ¨ Σ˚ with x “k y, the NFA reads the
first letter x, nondeterministically guesses k, and switches to a state r`k or r´k
depending on what the kth bit of x is. From there it waits nondeterministically
for the appearance of a factor y k with x “k y before accepting. This uses 3``2
states. Adding states for Σ˚ r L2n, one obtains nNpLnq ď 3`` 4 ď n.

We now consider the upward interior of Ln. Let UΓ, U
1
Γ Ď Γ˚ be as in

Lemma 2.2: a word w is in UΓ if it uses each letter from Γ at least once, and
U 1Γ

def
“ Γ ¨ UΓ.

Claim. Γ˚ XßLn “ U 1Γ.

We first show Γ˚ XßLn Ď U 1Γ by showing the contrapositive. Let w P Γ˚ rU 1Γ.
If w “ ε, then clearly w R ßLn. Otherwise, w “ z z1 ¨ ¨ ¨ zp, where z, zi P Γ.
Since z1 ¨ ¨ ¨ zp is not in UΓ, there is some x P Γ that differs from all the zi’s.
Pick k1, . . . , kp witnessing this, that is, such that x ‰ki zi for all i. If x “ z

we let w1
def
“ z z1 k1 ¨ ¨ ¨ zp kp so that w1 P L2n and w1 R L1n, that is, w1 R Ln. If

x ‰ z we let w1
def
“ x z k z1 k1 ¨ ¨ ¨ zp kp R Ln for some k witnessing x ‰ z, so that

w1 R Ln. In both cases w Ď w1 R Ln and we deduce w R ßLn.

17

ti

t1

t`

fiinstart

r`1

r´1

r`i

r´i

r´`

r``

¨ ¨ ¨

¨ ¨ ¨

z P ΓYΥ

z P ΓYΥ
z P ΓYΥ

1,
3,

5,
. .
.

0,
2,

4,
. .
.

x P
Γ : xr

is “
1

x P Γ : xris “ 0
0, 1, . . . , 2 `´

1
´

1

2 `´
1
, 2 `´

1
`

1, . . . , 2 `
´

1

y P Γ : yris “ 1

y P Γ : yr
is “

0

i P Υ
1
P

Υ

`
P

Υ

Figure 7: NFA recognizing L1n with 3`` 2 states.

We now show U 1Γ Ď Γ˚ X ßLn. Let w “ z z1 ¨ ¨ ¨ zp P U
1
Γ. We show that

w P ßLn by showing that w1 P Ln for every w1 such that w Ď w1. If w1 R L2n,
then w1 P Ln. So assume w1 “ x y1 k1 ¨ ¨ ¨ yn kn P L

2
n. There is some i such

that x “ zi (since w P U 1Γ) and some j such that zi “ yj (since w Ď w1). We
then have x “kj yj (this does not depend on the actual value of kj). Hence
w1 P L1n Ď Ln. Thus w P ßLn.

We are now ready to conclude the proof of Proposition 5.4. Recall that
nNpLX Γ˚q ď nNpLq holds for any regular L and any alphabet Γ. In particular

the above claim entails nNpU
1
Γq ď nNpßLnq. Combining with nNpU

1
Γq “ 22`

` 1

from Lemma 2.2 yields the required nNpßLnq ě 22tn´4
3 u

` 1. l

The doubly-exponential lower bounds exhibited in Propositions 5.3 and 5.4
rely on alphabets of exponential size. It is an open question whether, in the
case of a fixed alphabet, the nondeterministic state complexity of downward or
upward interiors is still doubly-exponential.

5.3. On alternating automata for closures

The state-complexity analysis of interiors can be used to show lower bounds
on the computation of closures for regular languages represented via alternating
automata (AFAs). The question was recently raised in [25] where it is suggested
that the construction of a piecewise-testable separator could be done more ef-
ficiently by using AFAs for representing regular languages. It is indeed natural
to ask whether an AFA recognizing ÓL or ÒL can be built efficiently from an

18

AFA recognizing L, perhaps in the same spirit as the constructions for closures
on NFAs.

In the rest of this section we briefly justify the claims on AFAs made in
Table 1 in the introduction of this article. We assume basic knowledge of AFAs
(otherwise see [11, Section 6]) and write nApLq to denote the minimal number
of states of an AFA recognizing L.

For the upper bounds, recall that an AFA A can be transformed into an
equivalent NFA A1 with the powerset construction. If A has n states, A1 has 2n

states. We deduce that if nApLq “ n, then nApÒLq ď nNpÒLq ď nNpLq ď 2n

and nApÓLq ď nNpÓLq ď nNpLq ď 2n.

For the lower bounds, we can reuse the witness languages from Section 5.2.
Recall the properties of Ln Ď Σ˚ from Proposition 5.3. We showed that
nNpLnq ď n, entailing nApLnq ď n. Hence nApΣ

˚ r Lnq ď n since one can
complement an AFA without any increase in the number of states. Let A be an
`-state AFA recognizing ÒpΣ˚ r Lnq. By complementing A, we get an `-state
AFA recognizing Σ˚rÒpΣ˚rLnq, that is, þLn. Transforming this into an NFA,
we get a 2`-state NFA that recognizes þLn. Using Proposition 5.3 we deduce

` ě 2tn´3
2 u. Thus the languages pΣ˚ r Lnqn“3,4,... witness the lower bound for

nApÒLq claimed in Table 1.
For nApÓLq we use the same reasoning, with up and down interchanged, and

based on the witnesses pLnqn“7,8,... used in Proposition 5.4.

6. On unambiguous automata

Recall that an unambiguous automaton (a UFA) is an NFA A in which
every accepted word is accepted by exactly one run. When handling regular
languages it is sometimes interesting to work with UFAs since, like NFAs, they
can be exponentially more succinct than DFAs and, like DFAs, they admit
polynomial-time algorithms for testing inclusion or equality, see [12] and ref-
erences therein. With this in mind, it was natural to state in Section 3 that
upward or downward closures are in general not more succinct when given in
the form of UFAs. We now prove these specific claims.

Lower bounds on the size of UFAs can be shown via the following lemma:

Lemma 6.1 (Fooling sets for unambiguous automata, after Schmidt)
Given a regular language L and a set of m pairs of words S “ tpxi, yiqu1ďiďm,
let ML,S be the mˆm matrix given by M ri, js “ 1 if xiyj P L, and M ri, js “ 0
otherwise. Let r “ rankpML,Sq. Then any UFA for L has at least r witness
states, where a witness state is any state that accepts at least one of the yi’s.

The above lemma is actually a refinement of Theorem 2 from [37] where the
lower bound is given for nUpLq: the proof by Leung easily adapts to Lemma 6.1

19

since non-witness states contribute a null row in the matrix M 1 one derives from
M in [37].

We shall also use the following result by Leung:

Lemma 6.2 ([36]) Let X be an n-element set and consider MX , the 2n ˆ 2n

matrix with rows and columns indexed by subsets of X, given by M rY, Zs “ 1 if
Y X Z ‰ H, M rY, Zs “ 0 otherwise. Then rankpMXq “ 2n ´ 1.

As a first application, let us consider the language Σ˚nrUn from Remark 3.3
(see also Figure 3). Recall that Σ˚n r Un contains all words where at least one
letter from Σn does not occur.

Proposition 6.3 For any n ą 0, nUpΣ
˚
n r Unq “ 2n ´ 1.

Proof. The upper bound is clear since already nDpΣ
˚
n r Unq “ 2n ´ 1.

For the lower bound, consider S “ tpx Γ, x ΓquΓĎΣn (recall that the words
xΓ and x Γ with Γ Ď Σ were introduced in the proof of Lemma 2.2). The
associated matrix has MΣ˚nrUn,S

rx Γi
, x Γj

s “ 1 if x Γi
x Γj

R Un, that is,
if Γi X Γj ‰ H. Note that this is exactly the MX matrix from Lemma 6.2,
instantiated with X “ Σn. So rankpMΣ˚nrUn,S

q “ 2n ´ 1 and, by Lemma 6.1,
we can conclude that nUpΣ

˚
n r Unq ě 2n ´ 1. l

The language ÓDn from Section 3 is a small variation: recall that ÓDn

contains all words x P Σ˚n whose first suffix xr2..s does not use all letters.

Proposition 6.4 For any n ą 0, nUpÓDnq “ 2n.

Proof. The upper bound is clear since already nDpÓDnq “ 2n.
For the lower bound, consider S “ tpa1x Γ, x ΓquΓĎΣn Y tpε, x Hqu where

a1 is the first letter of Σn. The associated matrix MÓDn,S has

MÓDn,Sra1x Γi , x Γj s “ 1 if and only if Γi X Γj ‰ H ,

MÓDn,Srε, x Hs “ 1 , MÓDn,Sra1x Γi
, x Hs “ 0 ,

that is,

MÓDn,S “

¨

˚

˚

˝

MΣn

0
...
0

1 ¨ ¨ ¨ 1 1

˛

‹

‹

‚

.

We note that the column representing x H (that is, the last column) occurs
twice in MÓDn,S , as the word x H occurs twice as the second component in S.
One has rankpMÓDn,Sq “ rankpMΣn

q`1 “ 2n since the rightmost column forbids
combining the last row with any of the earlier rows. We deduce nUpÓDnq ě 2n

with Lemma 6.1. l

20

We finally consider ÒEn from Section 3. Recall that ÒEn contains all words
over Σn in which at least one letter reappears.

Proposition 6.5 For any n ą 0, nUpÒEnq “ 2n ` 1.

Proof. The upper bound is clear since already nDpÒEnq “ 2n ` 1.
For the lower bound, consider S “ tpxΓ, xΓquΓĎΣn

Y tpa1a1, εqu. The asso-
ciated matrix MÒEn,S has

MÒEn,SrxΓi
, xΓj

s “ 1 if and only if Γi X Γj ‰ H ,

MÒEn,Sra1a1, xΓj
s “ 1 , MÒEn,SrxΓi

, εs “ 0 ,

that is,

MÒEn,S “

¨

˚

˚

˝

MΣn

0
...
0

1 ¨ ¨ ¨ 1 1

˛

‹

‹

‚

.

Again one has rankpMÒEn,Sq “ 2n so that, by Lemma 6.1, any UFA for ÒEn has
at least 2n witness states. Note however that the pairs pxi, yiq in S are such
that no yi belongs to ÒEn. Hence in any automaton accepting ÒEn the initial
state is not a witness state. We conclude that nUpÒEnq ě 2n ` 1. l

7. Complexity of decision problems on closures

In automata-based procedures for logic and verification, the state complexity
of automata constructions is not always the best measure of computational
complexity. In this section we gather some elementary results on the complexity
of subword-related decision problems for automata: for finite automata A, B
we want to know whether the accepted language LpAq is downward or upward
closed, respectively, and whether LpAq and LpBq have the same downward or
upward closures. These questions are in the spirit of the work done in [10, 31, 42]
for various notions of closures. Some of the results we give are already known but
are scattered in the literature and sometimes even reappear as open questions
(see, for example, [16]).

7.1. Deciding closedness

Deciding whether LpAq is upward-closed or downward-closed is, unsurpris-
ingly, PSPACE-complete for NFAs, and NL-complete for DFAs. For upward-
closedness this is already shown in [23], and quadratic-time algorithms that
decide upward-closedness of LpAq for a DFA A already appear in [2, 41].

Proposition 7.1 Deciding whether LpAq is upward-closed or downward-closed
is PSPACE-complete when A is an NFA, even in the 2-letter alphabet case.

21

Proof. Membership in PSPACE is clear since it is enough to decide whether A
and AÒ or AÓ accept the same language.

PSPACE-hardness can be shown by adapting the proof for hardness of uni-
versality. Let R be a length-preserving semi-Thue system and x, x1 two strings

of same length. It is PSPACE-hard to say whether there is a derivation x
˚
ÝÑR x

1,
even for a fixed R over a 2-letter alphabet Σ. We reduce (the negation of) this
question to our problem.

Fix x and x1 of length n ą 1: a word x1 x2 ¨ ¨ ¨xm of length n ˆm encodes
a derivation if x1 “ x, xm “ x1, and xi ÝÑR xi`1 for all i “ 1, . . . ,m ´ 1. The
language LR,x,x1 of words that do not encode a derivation from x to x1 is regular

and recognized by an NFA with Opnq states. Now, there is a derivation x
˚
ÝÑR x

1

if and only if LR,x,x1 ‰ Σ˚. We conclude by observing that LR,x,x1 “ Σ˚ if and
only if LR,x,x1 is upward-closed or, equivalently, downward-closed; this is because
LR,x,x1 contains all words of length not divisible by n ą 1. l

Proposition 7.2 Deciding whether LpAq is upward-closed or downward-closed
is NL-complete when A is a DFA, even in the 2-letter alphabet case.

Proof. We only prove the result for upward-closure since L is downward-closed
if and only if Σ˚ r L is upward-closed, and since one easily builds a DFA for
the complement of LpAq.

For membership in NL, we first observe that L is upward-closed if and only
if, for all u, v P Σ˚, u v P L implies u a v P L for all a P Σ. Therefore, LpAq is not
upward-closed – for A “ pΣ, Q, δ, qinit, F q – if and only if there are states p, q P Q,
a letter a, and words u, v such that δpqinit, uq “ p, δpp, aq “ q, δpp, vq P F and
δpq, vq R F . If such words exist, one can, in particular, find witnesses with
|u| ă n and |v| ă n2 where n “ |Q| is the number of states of A. Hence
checking that LpAq is not upward-closed can be performed in nondeterministic
logarithmic space by guessing u, a, and v within the above length bounds,
finding p and q by running u a from qinit, then running v from both p and q.
Since coNL “ NL, we conclude that upward-closedness too is in NL.

For NL-hardness, one may reduce from vacuity of DFAs, a well-known NL-
hard problem that is essentially equivalent to GAP, the Graph Accessibility
Problem. Note that for any DFA, and in fact any NFA, A with n states the
following equivalences hold:

LpAq X Σăn is upward-closed ðñ LpAq X Σăn “ H ðñ LpAq “ H .

This provides the required reduction since, given a DFA A, one easily builds a
DFA for LpAq X Σăn in logspace. l

7.2. Deciding equivalence modulo closure

The question whether ÓLpAq “ ÓLpBq or, similarly, whether ÒLpAq “ ÒLpBq,
is relevant in some settings where closures are used to build regular over-
approximations of more complex languages.

22

Bachmeier et al. recently showed that the above two questions are coNP-
complete when A and B are NFAs [3, Section 5], hence “easier” than deciding
whether LpAq “ LpBq. Here we give an improved version of their result.

Proposition 7.3 (after [3]) 1. Deciding whether ÓLpAq Ď ÓLpBq or whether
ÒLpAq Ď ÒLpBq is coNP-complete when A and B are NFAs.

2. Deciding ÓLpAq “ ÓLpBq or ÒLpAq “ ÒLpBq is coNP-hard even when A
and B are DFAs over a two-letter alphabet.

3. These problems are NL-complete when restricting to NFAs over a 1-letter
alphabet.

Proof. 1. Let B “ pΣ, Q, δ, I, F q and nB “ |Q|. Assume that ÓLpAq Ę ÓLpBq
and pick a shortest witness x “ x1 ¨ ¨ ¨x` P Σ˚ with x P ÓLpAq and x R ÓLpBq.
We claim that |x| ă nB : indeed in the deterministic powerset automaton

obtained from BÓ, the unique run S0
x1
ÝÑ S1

x2
ÝÑ ¨ ¨ ¨

x`
ÝÑ S` of x is such that

Q “ S0 Ě S1 Ě S2 ¨ ¨ ¨ Ě S` ‰ H (recall the proof of Lemma 3.4). If Si´1 “ Si
for some i, a shorter witness is obtained by omitting the ith letter in x: this
does not affect membership in ÓLpAq since this language is downward-closed.
One concludes that the Si have strictly diminishing sizes, hence ` ă nB . This
leads to an NP algorithm deciding ÓLpAq Ę ÓLpBq: guess x in ΣănB and check
in polynomial time that it is accepted by AÓ and not by BÓ.

For upward closure the reasoning is even simpler: a shortest witness x with
x P ÒLpAq and x R ÒLpBq has length |x| ă nA: if x is longer, a pumping lemma
allows one to find a subword x1 P ÒLpAq, and x1 R ÒLpBq since x R ÒLpBq.

2. coNP-hardness is shown by reduction from validity of DNF-formulae. Con-
sider an arbitrary DNF formula φ “ C1_C2_¨ ¨ ¨_Cm consisting of m conjunc-
tions of literals where k Boolean variables v1, . . . , vk may appear, for example,
φ “ pv1^ v2^v4q_pv2^¨ ¨ ¨ q_¨ ¨ ¨ . The language of all the valuations, seen as
words in t0, 1uk, under which φ holds true is recognized by an NFA that has size

Op|φ|
2
q. We slightly modify this language so that we can use a DFA instead of

an NFA. Let Lφ “ t1
`0x1 ¨ ¨ ¨xk P t0, 1u

˚ | 0 ď ` ă m^ x1 ¨ ¨ ¨xk |ù C``1u. We
build a DFA Aφ, having mpk`2q states, that recognizes Lφ: see Figure 8 where,
for the sake of readability, the picture uses wavy edges where Aφ recognizes a
1`0 prefix, and standard edges where it recognizes the encoding of a valuation
x1 ¨ ¨ ¨xk proper.

Now let Bφ be a DFA for LφY 1m0p0` 1qk, where all valuations are allowed
after the 1m0 prefix, and observe that ÒLpAφq “ ÒLpBφq if and only if 1m0p0`
1qk Ď ÒLpAφq. However, 1m0x1 ¨ ¨ ¨xk P ÒLpAφq requires that 1`0x1 ¨ ¨ ¨xk P
LpAφq for some ` ď m. Finally, ÒLpAφq “ ÒLpBφq if and only if all valuations
make φ true, that is, if φ is valid. Since Aφ and Bφ are built in logspace from
φ, this completes the reduction for equality of upward closures.

For downward closures, we modify Aφ by adding a transition cm
1
ÝÑ c1 so

that the resulting A1φ accepts all words 1`0x1 ¨ ¨ ¨xk such that x1 ¨ ¨ ¨xk makes

C`1`1 true for `1 “ ` mod m. For B we now take a DFA for 1˚0p0 ` 1qk and

23

c1start

c2

cm

...

1

v1

0

^ v2

0

1

1

^ v4

0

1

0

1

1

v2

1

^ v5

1

1

1

0

0

0

Figure 8: DFA Aφ for φ “ pv1 ^ v2 ^ v4q _ pv2 ^ ¨ ¨ ¨ ^ v5q _ ¨ ¨ ¨ _Cm with k “ 5 variables.

see that ÓLpA1φq “ ÓLpBq if and only if all valuations make φ true.

3. In the 1-letter case, comparing upward or downward closures amounts
to comparing the length of the shortest or longest word, respectively, accepted
by the automata. This is easily done in nondeterministic logspace. And since
ÒLpAq “ ÓLpAq “ H if and only if LpAq “ H, NL-hardness is shown by reduc-
tion from emptiness of NFAs, that is, a question “is there a path from an initial
state to an accepting state” which is just another version of GAP, the Graph
Accessibility Problem. l

A special case of language comparison is testing for universality. The ques-
tion whether ÒLpAq “ Σ˚ is trivial since it amounts to asking whether ε is
accepted by A. For downward closures one has the following:

Proposition 7.4 (after [42]) Deciding whether ÓLpAq “ Σ˚ when A is an
NFA over Σ is NL-complete.

Proof. Rampersad et al. show that the problem can be solved in linear time [42,
Section 4.4]. Actually the characterization they use, namely “ÓLpAq “ Σ˚ if

and only if A “ pΣ, Q, δ, I, F q has a state q P Q with I
˚
ÝÑ q

˚
ÝÑ F and such

that for any a P Σ there is a path of the form q
˚
ÝÑ

a
ÝÑ
˚
ÝÑ q from q to itself”, is a

FO` TC sentence on A seen as a directed labeled graph, hence can be checked
in NL [28]. NL-hardness can be shown by reduction from emptiness of NFAs,
for example, by adding loops p

a
ÝÑ p on any accepting state p P F and for every

a P Σ. l

8. Concluding remarks

We considered the state complexity of “closure languages” obtained by start-
ing from an arbitrary regular language and closing it with all its subwords or
all its superwords. These closure operations are essential when reasoning with
subwords [32]. We completed the known results on closures by providing exact
state complexities in the case of unbounded alphabets, and by demonstrating an

24

exponential lower bound on downward closures even in the case of a two-letter
alphabet.

We also considered the dual notion of computing interiors. The nondeter-
ministic state complexity of interiors is a new problem that we introduced in
this article and for which we show doubly-exponential upper and lower bounds.
From this we can deduce an exponential state complexity for the upward and
downward closures of languages represented via alternating automata.

These results contribute to a more general research agenda: what are the
“best” data structures and algorithms for reasoning with subwords and super-
words? The algorithmics of subwords and superwords has mainly been de-
veloped in string matching and combinatorics [4, 15]. When considering sub-
words and superwords for sets of strings rather than individual strings – in
matching and combinatorics [45] but also in other fields like model-checking
and constraint solving [27, 32] –, there are many different ways of representing
downward-closed and upward-closed sets. Automata-based representation are
not always the preferred option; see, for example, the SREs used for downward-
closed languages in [1]. The existing trade-offs between all the available options
are not yet well understood and certainly deserve more scrutiny. In this di-
rection, let us mention [7, Theorem 2.1(3)] showing that if nDpLq “ n then

minpLq
def
“ tx P L | @y P L : y Ď x ùñ y “ xu “ L r pL � Σq may

have nNpminpLqq “ pn ´ 2q2n´3 ` 2, to be contrasted with nNpÒLq ď n. This
suggests that it is more efficient to represent ÒL directly than by its minimal
elements.

Acknowledgments.

We thank S. Schmitz and the anonymous reviewers for their many comments
and suggestions that helped improve the final version of this article.

References

[1] P. A. Abdulla, A. Collomb-Annichini, A. Bouajjani, and B. Jonsson. Us-
ing forward reachability analysis for verification of lossy channel systems.
Formal Methods in System Design, 25(1):39–65, 2004.

[2] M. Arfi. Polynomial operations on rational languages. In Proc. STACS ’87,
volume 247 of Lecture Notes in Computer Science, pages 198–206. Springer,
1987.

[3] G. Bachmeier, M. Luttenberger, and M. Schlund. Finite automata for the
sub- and superword closure of CFLs: Descriptional and computational com-
plexity. In Proc. LATA 2015, volume 8977 of Lecture Notes in Computer
Science, pages 473–485. Springer, 2015.

[4] R. A. Baeza-Yates. Searching subsequences. Theoretical Computer Science,
78(2):363–376, 1991.

25

[5] N. Bertrand and Ph. Schnoebelen. Computable fixpoints in well-structured
symbolic model checking. Formal Methods in System Design, 43(2):233–
267, 2013.

[6] M. P. Bianchi, M. Holzer, S. Jakobi, C. Mereghetti, B. Palano, and
G. Pighizzini. On inverse operations and their descriptional complexity.
Journal of Automata, Languages and Combinatorics, 17(2–4):61–81, 2012.

[7] J.-C. Birget. Partial orders on words, minimal elements of regular languages
and state complexity. Theoretical Computer Science, 119(2):267–291, 1993.

[8] J.-C. Birget. The state complexity of Σ˚L and its connection with temporal
logic. Information Processing Letters, 58(4):185–188, 1996.

[9] J. A. Brzozowski, G. Jirásková, and Baiyu Li. Quotient complexity of ideal
languages. Theoretical Computer Science, 470:36–52, 2013.

[10] J. A. Brzozowski, J. Shallit, and Zhi Xu. Decision problems for convex
languages. Information and Computation, 209(3):353–367, 2011.

[11] A. K. Chandra and L. J. Stockmeyer. Alternation. In Proc. FOCS ’76,
pages 98–108. IEEE Comp. Soc. Press, 1976.

[12] Th. Colcombet. Unambiguity in automata theory. In Proc. DCFS 2015,
volume 9118 of Lecture Notes in Computer Science, pages 3–18. Springer,
2015.

[13] J. H. Conway. Regular Algebra and Finite Machines. Chapman and Hall,
London, UK, 1971.

[14] B. Courcelle. On constructing obstruction sets of words. EATCS Bulletin,
44:178–185, 1991.

[15] C. H. Elzinga, S. Rahmann, and Hui Wang. Algorithms for subsequence
combinatorics. Theoretical Computer Science, 409(3):394–404, 2008.

[16] Jie Fu, J. Heinz, and H. G. Tanner. An algebraic characterization of strictly
piecewise languages. In Proc. TAMC 2011, volume 6048 of Lecture Notes
in Computer Science, pages 252–263. Springer, 2011.

[17] H. Gruber and M. Holzer. Finding lower bounds for nondeterministic state
complexity is hard. In Proc. DLT 2006, volume 4036 of Lecture Notes in
Computer Science, pages 363–374. Springer, 2006.

[18] H. Gruber, M. Holzer, and M. Kutrib. The size of Higman-Haines sets.
Theoretical Computer Science, 387(2):167–176, 2007.

[19] H. Gruber, M. Holzer, and M. Kutrib. More on the size of Higman-Haines
sets: Effective constructions. Fundamenta Informaticae, 91(1):105–121,
2009.

26

[20] Ch. Haase, S. Schmitz, and Ph. Schnoebelen. The power of priority channel
systems. Logical Methods in Comp. Science, 10(4:4), 2014.

[21] P. Habermehl, R. Meyer, and H. Wimmel. The downward-closure of Petri
net languages. In Proc. ICALP 2010, volume 6199 of Lecture Notes in
Computer Science, pages 466–477. Springer, 2010.

[22] L. H. Haines. On free monoids partially ordered by embedding. Journal of
Combinatorial Theory, 6(1):94–98, 1969.

[23] P.-C. Héam. On shuffle ideals. RAIRO Theoretical Informatics and Appli-
cations, 36(4):359–384, 2002.

[24] G. Higman. Ordering by divisibility in abstract algebras. Proc. London
Math. Soc. (3), 2(7):326–336, 1952.

[25] Š. Holub, T. Masopust, and M. Thomazo. Alternating towers and piecewise
testable separators. arXiv:1409.3943 [cs.FL], September 2014.

[26] M. Holzer and M. Kutrib. Nondeterministic descriptional complexity of
regular languages. Int. J. Foundations of Computer Science, 14(6):1087–
1102, 2003.

[27] P. Hooimeijer and M. Veanes. An evaluation of automata algorithms for
string analysis. In Proc. VMCAI 2011, volume 6538 of Lecture Notes in
Computer Science, pages 248–262. Springer, 2011.

[28] N. Immerman. Languages that capture complexity classes. SIAM Journal
on Computing, 16(4):760–778, 1987.

[29] M. Ito, L. Kari, and G. Thierrin. Shuffle and scattered deletion closure of
languages. Theoretical Computer Science, 245(1):115–133, 2000.

[30] J. Kahn. Entropy, independent sets and antichains: A new approach to
Dedekind’s problem. Proc. Amer. Math. Soc., 130(2):371–378, 2002.

[31] Jui-Yi Kao, N. Rampersad, and J. Shallit. On NFAs where all states are
final, initial, or both. Theoretical Computer Science, 410(47–49):5010–5021,
2009.

[32] P. Karandikar and Ph. Schnoebelen. Decidability in the logic of subse-
quences and supersequences. In Proc. FST&TCS 2015, Leibniz Interna-
tional Proceedings in Informatics. Leibniz-Zentrum für Informatik, Decem-
ber 2015. To appear.

[33] L. Kari, G. Paun, G. Thierrin, and Sheng Yu. At the crossroads of
DNA computing and formal languages: Characterizing RE using insertion-
deletion systems. In DNA Based Computers III, volume 48 of DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, pages
329–347. American Mathematical Society, 1999.

27

[34] D. Kleitman. On Dedekind’s problem: The number of monotone Boolean
functions. Proc. Amer. Math. Soc., 21(3):677–682, 1969.

[35] J. van Leeuwen. Effective constructions in well-partially-ordered free
monoids. Discrete Mathematics, 21(3):237–252, 1978.

[36] Hing Leung. Separating exponentially ambiguous finite automata from
polynomially ambiguous finite automata. SIAM J. Computing, 27(4):1073–
1082, 1998.

[37] Hing Leung. Descriptional complexity of NFA of different ambiguity. Int.
J. Foundations of Computer Science, 16(5):975–984, 2005.

[38] S. Lombardy and J. Sakarovitch. The universal automaton. In J. Flum,
E. Grädel, and T. Wilke, editors, Logic and Automata: History and Per-
spectives, volume 2 of Texts in Logic and Games, pages 457–504. Amster-
dam University Press, 2008.

[39] A. Okhotin. On the state complexity of scattered substrings and super-
strings. Fundamenta Informaticae, 99(3):325–338, 2010.

[40] G. Paun. Marcus Contextual Grammars, volume 67 of Studies in Linguistics
and Philosophy. Springer, 1997.

[41] J.-É. Pin and P. Weil. Polynomial closure and unambiguous product. The-
ory of Computing Systems, 30(4):383–422, 1997.

[42] N. Rampersad, J. Shallit, and Zhi Xu. The computational complexity of
universality problems for prefixes, suffixes, factors, and subwords of regular
languages. Fundamenta Informaticae, 116(1–4):223–236, 2012.

[43] J. Rogers, J. Heinz, G. Bailey, M. Edlefsen, M. Visscher, D. Wellcome, and
S. Wibel. On languages piecewise testable in the strict sense. In Proc. MOL
2010, volume 6149 of Lecture Notes in Computer Science, pages 255–265.
Springer, 2010.

[44] A. Salomaa, K. Salomaa, and Sheng Yu. State complexity of combined
operations. Theoretical Computer Science, 383(2–3):140–152, 2007.

[45] Z. Trońıcek and A. Shinohara. The size of subsequence automaton. Theo-
retical Computer Science, 341(1–3):379–384, 2005.

[46] Sheng Yu. State complexity: Recent results and open problems. Funda-
menta Informaticae, 64(1–4):471–480, 2005.

[47] G. Zetzsche. Computing downward closures for stacked counter automata.
In Proc. STACS 2015, volume 30 of Leibniz International Proceedings in
Informatics, pages 743–756. Leibniz-Zentrum für Informatik, 2015.

28

