
Universally Composable Key-Management

Steve Kremer1, Robert Künnemann2, and Graham Steel2

1 LORIA & INRIA Nancy – Grand-Est, France
2 INRIA Paris – Rocquencourt, France

Abstract. We present the first universally composable key-management func-
tionality, formalized in the GNUC framework by Hofheinz and Shoup. It allows
the enforcement of a wide range of security policies and can be extended by di-
verse key usage operations with no need to repeat the security proof. We illustrate
its use by proving an implementation of a security token secure with respect to
arbitrary key-usage operations and explore a proof technique that allows the stor-
age of cryptographic keys externally, a novel development in simulation-based
security frameworks.

1 Introduction

Security critical applications often store keys on dedicated hardware security modules
(HSM) or key-management servers to separate highly sensitive cryptographic opera-
tions from more vulnerable parts of the network. Access to such devices is given to
protocol parties by the means of Security APIs, e.g., the RSA PKCS#11 standard [1],
IBM’s CCA [2] and the trusted platform module (TPM) [3] API, all of which pro-
tect keys by providing an API that allows to address keys only indirectly, via pointers
which are called handles. Recent work has tried to define appropriate security notions
for APIs in terms of cryptographic games [4, 5]. This approach has two major disad-
vantages: first, it is not clear how the security notion will compose with other protocols
implemented by the API. Second, it is difficult to see whether a definition covers the at-
tack model completely, since the game may be tailored to a specific API. Since security
APIs are foremost used as building blocks in other protocols, composability is crucial.
In this work, we adapt the more general approach to API security of Kremer et al. [5]
to a framework that allows for composition.

Composability can be proven in frameworks for simulation-based security, such as
GNUC [6], a deviation of the Universal Composability (UC) framework [7]. The re-
quirements of a protocol are formalized by abstraction: an ideal functionality computes
the protocol’s inputs and outputs securely, while a ‘secure’ protocol is one that emulates
the ideal functionality. Simulation-based security naturally models the composition of
the API with other protocols, so that proofs of security can be performed in a modular
fashion. We decided to use the GNUC model because it avoids shortcomings of the
original UC framework which have been pointed out over the years.

Contributions. We present, to the best of our knowledge, the first composable defi-
nition of secure key-management in the form of a key-management functionality FKM.
It assures that keys are transferred correctly from one security token to another, that the

global security policy is respected (even though the keys are distributed on several to-
kens) and that operations which use keys are computed correctly. The latter is achieved
by describing operations unrelated to key-management by so-called key-usage func-
tionalities. FKM is parametric in the policy and the set of key-usage functionalities,
which can be arbitrary. This facilitates revision of API designs, because changes to op-
erations that are not part of the key-management or the addition of new functions do not
affect the emulation proof. To achieve this extensibility, we investigate what exactly a
“key” means in simulation-based security. Common functionalities in such settings do
not allow two parties to share the same key. In fact, they do not have a concept of keys,
but a concept of “the owner of a functionality” instead. The actual key is kept in the
internal state of a functionality, used for computation, but never output. Dealing with
key-management, we need the capability to export and import keys and we propose an
abstraction of the concept of keys, that we call credentials. The owner of a credential
can not only compute a cryptographic operation, but he can also delegate this capacity
by transmitting the credential. We think this concept is of independent interest, and as
a further contribution, subsequently introduce a general proof method that allows the
substitution of credentials by actual keys when instantiating a functionality.

Limitations. Our key-management functionality is currently tightly coupled with
the employment of a deterministic, symmetric authenticated encryption scheme that is
secure against key-dependant messages for key export and import. While practitioners
indeed favour deterministic key-encryption in protocol design and standardization ef-
forts (see, e. g., RFC 3394), it restricts the analysis to security devices providing this
kind of encryption. We have not yet covered asymmetric encryption of keys in FKM

(but we cover asymmetric encryption of user-supplied data), although FKM could be
extended to support this. Second, adaptive corruption of parties, or of keys that pro-
duce an encryption, provokes the well-known commitment problem [8], so we place
limitations on the types of corruptions that the environment may produce.

Related Work. Building on the work of Longley and Rigby [9] and Bond and An-
derson [10] on API attacks, several recent papers have investigated the security of APIs
on the logical level adapting symbolic techniques for protocol analysis [11–13], finding
many new attacks. As discussed before, recent work on appropriate security notions for
APIs in terms of cryptographic games [4, 5] lacks composability. Some aspects of the
ideal functionality Fcrypto by Küsters et al. [14] are similar to our key-management
functionality in that they both provide cryptographic primitives to a number of users
and enjoy composability. However, the Fcrypto approach aims at abstracting a specified
set of cryptographic operations on client machines to make the analysis of protocols
in the simulation-based security models easier, and addresses neither key-management
nor policies. A full version of this paper with complete proofs is available at [15].

2 Background: GNUC

Hofheinz and Shoup [6] recently proposed the GNUC (“GNUC is Not UC”) framework
as an attempt to address several known shortcomings in UC. These shortcomings are
also addressed to a greater or lesser extent by other altenative frameworks [17, 18]: we
chose GNUC because it is similar in spirit to the original UC yet rigorous and well

documented. We now give a short introduction to GNUC and refer the reader to [6] for
additional details.

2.1 Machines and interaction

In GNUC a protocol π is modeled as a library of programs, that is, a function from pro-
tocol names to code. This code will be executed by interactive Turing machines. There
are two distinguished machines, the environment and the adversary, that π does not de-
fine code for. All other machines are called protocol machines. Protocol machines can
be divided into two subclasses: regular and ideal. They come to life when they are called
by the environment and are addressed using machine ids. A machine id <pid,sid>
contains two parts: the party id pid, which is of the form <reg,basePID> for reg-
ular protocol machines and <ideal> for ideal protocol machines, and the session id
sid. Session ids are structured as pathnames of the form < α1, . . . , αk >. The last
component αk specifies which protocol is run with which protocol parameters. A ma-
chine can come to life by being called by the environment or by a subroutine call. In
this case, the session id of the caller has to be a prefix of the session id of the subrou-
tine. Two protocol machines, regular or ideal, are peers if they have the same session id.
Programs have to declare which other programs they will call as subroutines, defining
a static call graph which must be acyclic and have a program r with in-degree 0 – then
we say that the protocol is rooted at r.

GNUC imposes the following communication constraints on a regular protocol ma-
chine M : it can only send messages to the adversary, to its ideal peer (i. e., a machine
with party id <ideal> and the same session id), its subroutines and its caller. As a con-
sequence, regular protocol machines cannot talk directly to regular peers , but via the
adversary, modelling an insecure network, or via the ideal peer, who can communicate
with all regular protocol parties and the adversary.

The code of the machines is described by a sequence of steps similarly to [6, § 12].
Each step is a block of the form name [conditions]: P. The label name identi-
fies the step. The logical expression [conditions] is a guard that must be satisfied
to trigger a step. We omit the guard when it is true. A step name in the guard expression
evaluates to true if the corresponding step has been triggered at some previous point. P
is the code (whose semantics we expect to be clear) to be executed whenever the guard
evaluates to true. In particular P may contain accept-clauses that describe the form of
the message that can be input. The accept clause, too, might have logical conditions
that must be satisfied in order to continue the execution of the step. Any message not
triggering any step is processed by sending an error message to A.

2.2 Defining security via ideal functionalities

As in other universal composability frameworks, the security of a protocol is specified
by a so-called ideal functionality, which acts as a third party and is trusted by all partici-
pants. Formally, an ideal functionality is a protocol that defines just one protocol name,
say r. The behavior defined for this protocol name depends on the type of machine:
all regular protocol machines act as “dummy parties” and forward messages received
by their caller (which might be the environment) to their ideal peer. The ideal protocol

machine interacts with the regular parties and the adversary: using the inputs of the
parties, the ideal functionality defines a secure way of computing anything the protocol
shall compute, explicitly computing the data that is allowed to leak to the attacker. For
instance, an authenticated channel is specified as a functionality that takes a message
from Alice and sends it to the attacker, exposing its content to the network, but only
accepting a message from the attacker (the network) if it is the same message Alice
sent in the first place.

Now we can define a second protocol, which is rooted at r, and does not necessarily
define any behaviour for the ideal party, but for the regular protocol machines. The role
of the environment Z is to distinguish whether it is interacting with the ideal system
(dummy users interacting with an ideal functionality) or the real system (users executing
a protocol). We say that a protocol π emulates a functionality F if for all attackers
interacting with π, there exists an attacker, the simulator Sim , interacting with F , such
that no environment can distinguish between interacting with the attacker and the real
protocol π, or the simulation of this attack (generated by Sim) and F . It is actually
not necessary to quantify over all possible adversaries: the most powerful adversary is
the so-called dummy attacker AD that merely acts as a relay forwarding all messages
between the environment and the protocol [6, Theorem 5].

Let Z be a program defining an environment, i. e., a program that satisfies the com-
munication constraints that apply to the environment (e. g., it sends messages only to
regular protocol machines or to the adversary). LetA be a program that satisfies the con-
straints that apply to the adversary (e. g., it sends messages only to protocol machines
(ideal or regular) it previously received a message from). The protocol π together with
A and Z defines a structured system of interactive Turing machines (formally defined
in [6, § 4]) denoted [π,A,Z]. The execution of the system on external input 1η is a ran-
domized process that terminates if Z decides to stop running the protocol and output a
string inΣ∗. The random variable Exec[π,A, Z](η) describes the output of Z at the end
of this process (or Exec[π,A, Z](η) = ⊥ if it does not terminate). Let Exec[π,A, Z]
denote the family of random variables {Exec[π,A, Z](η)}∞η=1. An environment Z is
well-behaved if the data-flow from Z to the regular protocol participants and the adver-
sary is limited by a polynomial in the security parameter η. We say that Z is rooted at
r, if it only invokes machines with the same session identifier referring to the protocol
name r. We do not define the notion of a poly-time protocol and a bounded adversary
here due to space constraints and refer the reader to the definition in [6, § 6].

Definition 1 (emulation w.r.t. the dummy adversary). Let π and π′ be poly-time pro-
tocols rooted at r. We say that π′ emulates π if there exists an adversary Sim that is
bounded for π, such that for every well-behaved environment Z rooted at r, we have

Exec[π,Sim, Z] ≈ Exec[π′,AD, Z].

where ≈ is the usual notion of computational indistinguishability.

3 An ideal key management functionality and its implementation

The network we want to show secure has the following structure: a set of users which
takes input from the environment, each of which is connected to his security token.

Each security tokens is a network entity, just like the users, but has a secure channel
to the user it belongs to. Cryptographic keys are stored on the token, but are not given
directly to the user – instead, at creation of a key, the user (and thus the environment)
receives a handle to the key.

We consider such a network secure if it emulates a network in which the users are
communicating with a single entity, the key-management functionality FKM, instead
of their respective security token. It gives the users access to its operations via handles,
too, and is designed to model the “ideal” way of performing key-management. To show
the security of the operations that have nothing to do with key-management, it accesses
several other functionalities which model the security of the respective operations. This
allows us to have a definition that is applicable to many different cases.

In this section we motivate and define our ideal functionality for key management.
We explain first its architecture, then our concept of key usage functionalities which
cover all the usual cryptographic operations we might want to perform with our man-
aged keys. We then describe our notion of security policies for key management, and
finally give an implementation of such a functionality.

3.1 Architecture

Policies. The goal of key-management is to preserve some kind of policy on a global
level. Our policies express two kinds of requirements: usage policies of the form “key A
can only be used for tasks X and Y”, and dependency policies of the form “the security
of key A may depend on the security of keys B and C”. The difficulty lies in enforcing
this policy globally when key-management involves a number of distributed security
tokens that can communicate only via an untrusted network. Our ideal key-management
functionality considers a distributed set of security tokens as a single trusted third party.
It makes sure that every use of a key is compliant with the (global) policy. Therefore,
if a set of well-designed security tokens with a sound local policy emulates the ideal
key-management functionality, they can never reach a state where a key is used for an
operation that is contrary to the policy. The functionality associates some meta-data, an
attribute, to each key. This attribute defines the key’s role, and thus its uses. Existing
industrial standards [1] and recent academic proposals [4, 5] are similar in this respect.

Sharing Secrets. A key created on one security token is a priori only available to
users that have access to this token (since it is hidden from the user). Many crypto-
graphic protocols require that the participants share some key, so in order to be able
to run a protocol between two users of different security tokens, we need to be able to
“transfer” keys between devices without revealing them. There are several ways to do
this, e. g., using semantically secure symmetric or asymmetric encryption, but we will
opt for the simplest, key-wrapping (the encryption of one key by another). While it is
possible to define key-management with a more conceptual view of “transferring keys”
and allow the implementation to decide for an option, we think that since key-wrapping
is relevant in practice (it is defined in RFC 3394), the choice for this option allows us to
define the key-management in a more comprehensible way.

Secure Setup. The use of key-wrapping requires some initial shared secret values to
be available before keys can be transferred. We model the setup in the following way: a

subset of users, Room , is assumed to be in a secure environment during a limited setup-
phase. Afterwards, the only secure channel is between a user Ui, and his security token
ST i. The intruder can access all other channels, and corrupt any party at any time, as
well as corrupt keys, i. e., learn the value of the key stored inside the security token.
This models the real world situation where tokens can be initialised securely but then
may be lost or subject to, e. g., side channel attacks once deployed in the field.

Operations required. These requirements give a set of operations that key-manage-
ment demands: creating keys, changing their attributes, transferring keys and secure
setup. We argue that a reasonable definition of secure key-management has to provide
at least those operations. Furthermore, a user must be able to use the keys for crypto-
graphic operations, e. g., generate a digital signature. This allows the following classi-
fication: the first group of operations defines key-management, the second key-usage.
While key-management operations, for example wrap, might operate on two keys of
possibly different types, key-usage operations are restricted to calling an operation on a
single key and user-supplied data.

3.2 Key-usage (KU) functionalities

We now define an abstract notion of a functionality making use of a key which we call
a key usage (KU) functionality. For every KU operation, FKM calls the corresponding
KU functionality, receives the response and outputs it to the user. We define FKM for
arbitrary KU operations, and consider a security token secure, with respect to the im-
plemented KU functionalities, if it emulates the ideal functionality FKM parametrized
by those KU functionalities. This allows us to provide an implementation for secure
key-management independent of which KU functionalities are used.

Credentials. Many existing functionalities, e. g., [7], bind the roles of the parties,
e. g., signer and verifier, to a machine ID. In implementations, however, the privilege
to perform an operation is linked to the knowledge of a key rather than a machine ID.
While for most applications this is not really a restriction, it is for key-management. The
privilege to perform an operation of a KU functionality must be transferable as some
piece of information, which however cannot be the actual key: a signing functionality,
for example, that exposes its keys to the environment is not realizable. Our solution is
to generate a key, but only send out a credential, which is a hard-to-guess pointer that
refers to this key. We actually use the key generation algorithm to generate credentials.
As opposed to the real world, where security tokens map handles to keys, and compute
the results based on the keys, in the ideal world, FKM maps handles to credentials,
and uses those credentials to address KU functionalities, which compute the results.
The implementation of a KU functionality maps credentials to cryptographic keys (see
Definition 2). While credentials are part of the FKM and the KU-functionality, they are
merely devices used for abstracting keys. They are used in the proofs, but disappear in
the reference implementation presented in Section 3.4.

Our approach imposes assumptions on the KU functionalities, as they need to be
implementable in a key-manageable way.

Definition 2 (key-manageable implementation). A key-manageable implementation
Î is defined by (i) a set of commands Cmds that can be partitioned into private and

public commands, as well as key-(and credential-)generation, i. e., C = Cpriv] Cpub]
{new}, and (ii) a set of PPT algorithms implementing those commands, {implC}C∈C ,
such that for the key-generation algorithm implnew it holds that

– for all k, Pr[k′ = k|(k′, public)← implnew(1
η)] is negligible in η, and,

– Pr[|k1| 6= |k2||(k1, p1)← implnew(1
η); (k2, p2)← implnew(1

η)] is negligible in η.

Î is a protocol in the sense of [6, §5], i. e., a run-time library that defines only one
protocol name. The session parameter encodes a machine id P . When called on this
machine, the code below is executed. If called on any other machine no message is
accepted. From now on in our code we follow the convention that the response to a
query (Command, sid, . . .) is always of the form (Command•, sid, . . .), or ⊥. The
variable L holds a set of pairs and is initially empty.

new: accept <new> from parentId;
(key , public)← implnew(1

η); (credential ,)← implnew(1
η);

L← L ∪ {(credential , key)}; send <new•, credential , public> to parentId
command: accept <C, credential ,m> from parentId;

if (credential , key) ∈ L for some key send <C•, implC(key ,m)> to parentId
public_command: accept <C, public,m> from parentId;

send <C•, implC(public,m)> to parentId
corrupt: accept <corrupt , credential> from parentId;

if (credential , key) ∈ L for some key send <corrupt•, key> to parentId
inject: accept <inject,k> from parentId;
(c, <ignore>)← implnew(1

η); L← L ∪ {(c, k)}; send <inject•,c> to parentId �
The definition requires that each command C can be implemented by an algorithm
implC . If C is private implC takes the key as an argument. Otherwise it only takes
public data (typically the public part of some key, and some user data) as arguments.
In other words, an implementation Î emulating F is, once a key is created, stateless
w.r.t. queries concerning this key. The calls 〈corrupt〉 and 〈inject〉 are necessary
for cases where the adversary learns a key, or is able to insert dishonestly generated
key-material.

Definition 3 (key-manageable functionality). A poly-time functionality F (to be pre-
cise, an ideal protocol [6, § 8.2]) is key-manageable iff it is poly-time, and there is a
set of commands C and implementations, i. e., PPT algorithms ImplF = {implC}C∈C ,
defining a key-manageable implementation Î (also poly-time) which emulates F .

3.3 Policies

Since all credentials on different security tokens in the network are abstracted to a cen-
tral storage, FKM can implement a global policy. Every credential in FKM is associated
to an attribute from a set of attributesA and to the KU functionality it belongs to (which
we will call its type). Keys that are used for key-wrapping are marked with the type KW.

Definition 4 (Policy). Given the KU functionalities Fi, i ∈ {1, . . . , l} and correspond-
ing sets of commands Ci, a policy is a quaternary relation Π ⊂ {F1, . . . ,Fl, KW} ×
∪i∈{1,...,l}Cprivi ∪ {new, wrap, unwrap, attribute change} ×A×A.

FKM is parametrized by a policy Π . If (F , C, a, a′) ∈ Π and if

– C = new, then FKM allows the creation of a new key for the functionality F with
attribute a.

– F = Fi and C ∈ Cprivi , then FKM will permit sending the command C to F , if the
key is of type F and has the attribute a.

– F = KW and C = wrap, then FKM allows the wrapping of a key with attribute a′

using a wrapping key with attribute a.
– F = KW and C = unwrap, then FKM allows to unwrapping a wrap with attribute
a′ using a wrapping key with attribute a.

– if C = attribute change, then FKM allows the changing of a key’s attribute
from a to a′.

Note that a′ is only relevant for the commands wrap, unwrap and attribute change.
Because of the last command, a key can have different attributes set for different users
of FKM, corresponding to different security tokens in the real word.

Example 1. To illustrate the definition of policy consider the case of a single KU func-
tionality for encryption Fenc. The set of attributes A is {0, 1}: intuitively a key with

attribute 1 is allowed for wrapping and a key withF Cmd attr1 attr2
KW new 1 *
Fenc new 0 *
KW wrap 1 0
KW unwrap 1 0
Fenc enc 0 *

Fig. 1: Security policy

attribute 0 for encryption. The following table de-
scribes a policy that allows wrapping keys to wrap
encryption keys, but not other wrapping keys, and
allows encryption keys to perform encryption on
user-data, but nothing else – even decryption is dis-
allowed. The policy Π consists of the following 4-
tuples (F ,Cmd,attr1,attr2) defined in Figure 1.

3.4 The key-management functionality and reference implementation

We are now in a position to give a full definition of FKM together with an implementa-
tion. We give a description of FKM in the Listings 2 to 7. For book-keeping purposes
FKM maintains a set Kcor of corrupted keys and a wrapping graph W whose vertices
are the credentials. An edge (c1, c2) is created whenever (the key corresponding to) c1
is used to wrap (the key corresponding to) c2.

Structure. FKM acts as a proxy service to the KU functionalities. It is possible
to create keys, which means that FKM asks the KU functionality for the credentials
and stores them, but outputs only a handle referring to the key. This handle can be the
position of the key in memory, or a running number – we just assume that there is a way
to draw them such that they are unique. When a command C ∈ Cprivi is called with a
handle and a message, FKM substitutes the handle with the associated credential, and
forwards the output to Fi. The response from Fi is forwarded unaltered. All queries are
checked against the policy. The environment may corrupt parties connected to security
tokens, as well as individual keys.

Definition 5 (Parameters to a security token network). We summarize the param-
eters of a security token Network as two tuples, (U ,Uext,ST ,Room) and (F , C, Π).

Z

U1 . . . Un Uext
1 . . . Uext

m

Fsetup

ST 1 . . . STn

(a) Distributed security tokens in the network

Z

U1 . . . Un Uext
1 . . . Uext

m

ST 1

F1 . . . Fl

FKM

(b) An idealized functionality FKM in the
same network

Fig. 2: Distributed security tokens in the network (left-hand side) and idealized func-
tionality FKM in the same network (right-hand side).

The first tuple defines network parameters: U = {U1, . . . , Un} are the party IDs of
the users connected to a security token and Uext = {U ext

1 , . . . , U ext
m } are the party

IDs of external users, i. e., users that do not have access to a security token. ST =
{ST 1, . . . ,STn} are the party IDs of the security tokens accessed by U1, . . . , Un.
Room ⊂ U . The second tuple defines key-usage parameters: F = {F1, . . . ,Fl},
C = {C1, . . . , Cl} are key-manageable functionalities with corresponding sets of com-
mands. Note that KW 6∈ {F1, . . . ,Fl}, and that each Ci ∈ C is partitioned into the
private Cprivi and public commands Cpubi , as well as the singleton set consisting of new.
Π is a policy for F (cf. Definition 4) and a membership test on Π can be performed
efficiently.

Network setup. Figure 2 shows the network of distributed users and security to-
kens on the left, and their abstraction FKM on the right. There are two kinds of users:
U1, . . . , Un =: U , each of whom has access to exactly one security token ST i, and
external users U ext

1 , . . . , U ext
m =: Uext, who cannot access any security token. The se-

curity token ST i can only be controlled via the user Ui. The functionality Fsetup in
the real world captures our setup assumptions, which need to be achieved using phys-
ical means. Among other things, Fsetup assures a secure channel between each pair
(Ui,ST i). The necessity of this channel follows from the fact that a) GNUC forbids
direct communication between two regular protocol machines (indirect communication
via A is used to model an insecure channel) and b) U1, . . . , Un can be corrupted by the
environment, while ST 1, . . . ,STn are incorruptible, since security tokens are designed
to be better protected against physical attacks, as well as worms, viruses etc. Although
we assume that the attacker cannot gain full control of the device (party corruption), he
might obtain or inject keys in our model (key corruption).

ST i makes subroutine calls to the functionality Fsetup which subsumes our setup
assumptions. Fsetup provides two things: 1. a secure channel between each pair Ui and
ST i, 2. a secure channel between some pairs ST i and ST j during the setup phase (see
below). ST i receives commands from a machine Ui ∈ U , which is formally defined
in the full version [15], and relays arbitrary commands sent by the environment via
Fsetup. The environment cannot talk directly to ST i, but the attacker can send queries

on behalf of any corrupted user, given that the user has been corrupted previously (by
the environment).

Setup phase. The setup is implemented by the functionality Fsetup, defined in
Appendix A in the full version of this paper [15]. All users in Room are allowed to
share keys during the setup phase. This secure channel between two security tokens ST
is only used during the setup phase. Once the setup phase is finished, the expression
setup finished evaluates to true and the functionality enters the run phase. During
the run phase, Fsetup provides only a secure channel between a user Ui, which takes
commands from the environment, and his security token ST i.

Implementation. The implementation ST is inspired by [5] and is parametric on the
KU parameters F , C, Π and the implementation functions Impl := {ImplF}F∈F . It is
composable in the following sense: if a device performs the key-management according
to our implementation, it does not matter how many, and which functionalities it enables
access to, as long as those functionalities provide the amount of security the designer
aims to achieve (cf. Corollary 1). In Section 5, we show how to instantiate those KU
functionalities to fully instantiate a “secure” security token, and how FKM facilitates
analysis of this configuration.

Executing commands in Cpriv . If the policy Π permits execution of a command
C ∈ Cpriv , FKM calls the corresponding functionality as a sub-protocol, substituting
the handle by the corresponding credential. Similarly, ST i uses the corresponding key
to compute the output of the implementation function implC of the command C (List-
ings 3.4 and 1). Note that the security token communicates with its respective user via
Fsetup, which forwards messages between ST i and Ui, serving as a secret channel.

command[finish_setup]: accept <C ∈ Cprivi ,h,m> from U ∈ U ;
if Store[U, h]=<Fi,a,c> and <Fi,C,a,∗>∈ Π and Fi 6= KW

call Fi with <C,c,m>; accept <C•,r> from Fi; send <C•,r> to U �
command[finish_setup]: accept <C ∈ Cprivi′ ,h,m> from Fsetup;
if Store[Ui, h] =<Fi′ ,a,k> and <Fi′ ,C,a,∗>∈ Π and Fi′ 6= KW

send <C•,implC(k,m)> to Fsetup �
Listing 1: Executing command C on a handle h with data m (FKM above, ST i below).

Creating keys. A user can create keys of type F and attribute a using the command
<new,F,a>. In FKM, the functionality F is asked for a new credential and some pub-
lic information. The credential is stored with the meta-data at a freshly chosen position
h in the store. Similarly, ST stores an actual key, instead of a credential. Both FKM and
ST output the handle h and the public information given by F , or produced by the key-
generation algorithm. FKM treats wrapping keys differently: it calls the key-generation
function for KW. It is possible to change the attributes of a key in future, if the policy
permits (Listing 5).

new[ready]: accept <new,F ,a> from U ∈ U ;
if <F ,new,a,∗> ∈ Π

if F =KW then (c, public)← implKWnew (1η)
else call F with <new>; accept <new•,c,public> from F
if c ∈ K ∪ Kcor then send <error> to A

else create h; Store[U, h]← <F,a,c>; K := K ∪ {c}; send <new•,h,public> to U �
new[ready]: accept <new,F ,a> from Fsetup;

if <F ,new,a,∗> ∈ Π
(k, public)← implFnew(1

η); create h; Store[Ui, h]← <F ,a,k>;
send <new•,h,public> to Fsetup �
Listing 2: Creating keys of type F , and attribute a (FKM above, ST i below).

Wrapping and Unwrapping. The commands that are important for key-management
are handled by FKM itself. To transfer a key from one security token to another in the
real world, the environment instructs, for instance, U1 to ask for a key to be wrapped
(see Listing 3). A wrapping of a key is the encryption of a key with another key, the
wrapping key. The wrapping key must of course be on both security tokens prior to that.
U1 will receive the wrap from ST 1 and forward it to the environment, which in turn
instructs U2 to unwrap the data it just received from U1. The implementation ST i just
verifies if the wrapping confirms the policy, and then produces a wrapping of c2 under
c1, with additionally authenticated information: the type and the attribute of the key,
plus a user-chosen identifier that is bound to a wrapping in order to identify which key
was wrapped. This could, e. g., be a key digest provided by the KU functionality the key
belongs to. The definition of FKM is parametric in the algorithms wrap, unwrap and
implnew used to produce the wrapping. When a handle to a credential c is corrupted,
the variable key [c] stores the corresponding key, c.f. Listing 6. We use $l to denote a
bitstring of length l drawn from a uniform distribution.

wrap[finish_setup]: accept <wrap,h1,h2,id> from U ∈ U ;
if Store[U, h1]=<KW,a1,c1> and Store[U, h2]=<F2,a2,c2> and <KW,wrap,a1,a2>∈ Π

if ∃w.<c2,<F2,a2,id>,w>∈encs[c1]
send <wrap•,w> to U

else
W ←W ∪ {(c1, c2)};
if c1 ∈ Kcor

for all c3 reachable from c2 inW corrupt c3;
w ← wrap<F2,a2,id>(c1, key [c2])

else
w ← wrap<F2,a2,id>(c1, $

|c2|)
encs[c1]← encs[c1] ∪{ <c2,<F2,a2,id>,w>}; send <wrap•,w> to U �

wrap[finish_setup]: accept <wrap,h1,h2,id> from Fsetup;
if Store[Ui, h1]=<KW,a1,k1> and Store[Ui, h2]=<F2,a2,k2>

and <KW,wrap,a1,a2>∈ Π
w ← wrap<F2,a2,id>(k1, k2); send <wrap•,w> to Fsetup �

Listing 3: Wrapping key h2 under key h1 with additional information id (FKM above,
ST i below).

When a wrapped key is unwrapped using an uncorrupted key, FKM checks if the
wrapping was produced before, using the same identifier. Furthermore, FKM checks if
the given attribute and types are correct. If this is the case, it creates another entry in

Store, i. e., a new handle h′ for the user U pointing to the correct credentials, type and
attribute type of the key. This way, FKM can guarantee the consistency of its database
for uncorrupted keys, see the following Theorem 1. If the key used to unwrap is cor-
rupted, this guarantee cannot be given, but the resulting entry in the store is marked
corrupted. It is possible to inject keys by unwrapping a key that was wrapped outside
the device. Such keys could be generated dishonestly by the adversary, that is, not us-
ing their respective key-generation function. In this keys, the 〈 inject 〉 call imports
cryptographic value of the key onto the KU functionality, which generates a new cre-
dential for this value.

unwrap[finish_setup]: accept <unwrap,h1,w,a2,F2,id> from U ∈ U ;
if Store[U, h1]=<KW,a1,c1> and <KW,unwrap,a1,a2>∈ Π ,F2 ∈ F

if c1 ∈ Kcor

c2 ← unwrap<F2,a2,id>(c1, w);
if c2 6= ⊥ and c2 6∈ K

if F2 =KW
create h2; Store[U, h2]← <F2,a2,c2>; key [c2]← c2; Kcor ← Kcor ∪ {c2}

else
call F2 with <inject,c2>; accept <inject•,c′>;
if c′ 6∈ K ∪ Kcor

create h2;
Store[U, h2]← <F2,a2,c′>; key [c′]← c2; Kcor ← Kcor ∪ {c′};

send <unwrap•,h> to U
else if c2 6= ⊥ ∧ c2 ∈ K ∧ c2 ∈ Kcor

create h2; Store[U, h2]← <F2,a2,c2>; send <unwrap•,h> to U
else // (c2 = ⊥ ∨ c2 ∈ K \ Kcor)

send <error> to A
else if (c1 /∈ Kcor and ∃!c2.<c2,<F2,a2,id>,w>∈encs[c1])

create h2; Store[U, h2]← <F2,a2,c2>; send <unwrap•,h2> to U �
unwrap[finish_setup]: accept <unwrap,h1,w,a2,F2,id> from Fsetup

if Store[Ui, h1]=<KW,a1,k1> and F2 ∈ F and <KW,unwrap,a1,a2>∈ Π
and k2 = unwrap<F2,a2,id>(k1, w) 6= ⊥

create h2; Store[U, h2]← <F2,a2,k2>; send <unwrap•,h2> to Fsetup �
Listing 4: Unwrappingw created with attribute a2, F2 and id using the key h1. ∃!x.p(x)
denotes that there exists exactly one x such that p(x) holds (FKM above, ST i below).

There is an improvement that became apparent during the emulation proof (see Sec-
tion 4). When unwrapping with a corrupted key,FKM checks the attribute to be assigned
to the (imported) key against the policy, instead of accepting that a corrupted wrapping-
key might import any wrapping the attacker generated. This prevents, e.g., a corrupted
wrapping-key of low security from creating a high-security wrapping-key by unwrap-
ping dishonestly produced wrappings. This detail enforces a stronger implementation
than the one in [5]: ST validates the attribute given with a wrapping, enforcing that
it is sound according to the policy, instead of blindly trusting the authenticity of the
wrapping mechanism. Hence our implementation is more robust.

Changing attributes of keys. The attributes associated with a key with handle h can
be updated using the command <attr change,h,a′>.

attr_change[finish_setup]: accept <attr_change,h,a′> from U ∈ U ;
if Store[U, h]=<F ,a,c> and<F ,attr_change,a,a′>∈ Π
Store[U, h]=<F ,a′,c>; send <attr_change•> to U �

attr_change[finish_setup]: accept <attr_change,h,a′> from Fsetup;
if Store[Ui, h]=<F ,a,k> and <F ,attr_change,a,a′>∈ Π
Store[Ui, h]=<F ,a′,k>; send <attr_change•> to Fsetup �

Listing 5: Changing the attribute of h to a′ (FKM above, ST i below).

Corruption. Since keys might be used to wrap other keys, we would like to know
how the loss of a key to the adversary affects the security of other keys. When an
environment “corrupts a key” in FKM, the adversary learns the credentials to access the
functionalities. Since corruption can occur indirectly, via the wrapping command, too,
we factored this out into Listing 6. ST implements this corruption by outputting the
actual key to the adversary.

procedure for corrupting a credential c:

Kcor ← Kcor ∪ {c}
for any Store[U, h] =< F, a, c >

if F = KW

key [c]← c; send <corrupt•,h,c> to A
else

call F with <corrupt,c>; accept <corrupt•,k> from F
key [c]← k; send <corrupt•,h,k> to A �

Listing 6: Corruption procedure used in steps corrupt and wrap

corrupt[finish_setup]: accept <corrupt,h> from U ∈ U ;
if Store[U, h] =< F, a, c >

for all c′ reachable from c inW corrupt c′ �
corrupt[finish_setup]: accept <corrupt,h> from Fsetup;

if Store[Ui, h] =< F, a, k > send <corrupt•,h,k> to A �
Listing 7: Corrupting h (FKM above, ST i below).

Public key operations. Some cryptographic operations (e. g., digital signatures) al-
low users without access to a security token to perform certain operations (e. g., sig-
nature verification). Those commands do not require knowledge of the credential (in
FKM), or the secret part of the key (in ST). They can be computed using publicly
available information. In the case where participants in a high-level protocol make use
of, e. g., signature verification, but nothing else, the protocol can be implemented with-
out requiring those parties to have their own security tokens. Note that FKM relays this
call to the underlying KU functionality unaltered, and independent of its store and pol-
icy (see Figure 8). The implementation ST i does not implement this step, since Ui,
U ext
i compute implC(public,m) themselves.

public_command: accept <C,public,m> from U ∈ U ∪ Uext;
if C ∈ Ci,pub

call Fi with <C,public,m>; accept <C•,r> from Fi; send <C•,r> to U �
Listing 8: Computing the public commands C using public andm (FKM, note that ST i

does not implement this step).

Before we give the formal definition of FKM, note that FKM is not an ideal protocol
in the sense of [6, § 8.2], since not every regular protocol machine runs the dummy party
protocol – the party <reg,Fi> relays the communication with the KU functionalities.

Definition 6 (FKM). Given the KU parametersF , C, Π , and polytime algorithms wrap,
unwrap and implnew , let the ideal protocols Fp+1, . . . ,Fl be rooted at prot-Fp+1,
. . . ,prot-Fl. In addition to those protocols names, FKM defines the protocol name
prot-fkm. For prot-fkm, the protocol defines the following behaviour: a regular
protocol machine with machine id <<reg,Fi>,sid> for Fi ∈ {F1, . . . ,Fl} runs the
following code:

ready: accept <ready> from parentId
send <ready> to <ideal,sid> (= FKM)

relay_to: accept <m> from <ideal,sid> (= FKM)
send <m> to <<reg,Fi>,<sid ,<prot−Fi,<>>> (= Fi)

relay_from: accept <m> from <<reg,Fi>,<sid ,<prot−Fi,<>>>
send <m> to <ideal,sid> (= FKM) �

The ideal party runs the logic for FKM described in Listings 2 to 7.

Remark 1: Credentials for different KU functionalities are distinct. It is nonetheless
possible to encrypt and decrypt arbitrary credentials using <wrap> and <unwrap>.
Suppose a designer wants to prove a Security API secure which uses shared keys for
different operations. One way or another, she would need to prove that those roles do not
interfere. For this case, we suggest providing a functionality that combines the two KU
functionalities, and proving that the implementation of the two operations combined
emulates the combined functionality. It is possible to assign different attributes to keys
of the same KU functionality, and thus restrict their use to certain commands, effectively
providing different roles for credentials to the same KU functionality. This can be done
by specifying two attributes for the two roles and defining a policy that restricts which
operation is permitted for a key of each attribute.

Remark 2: Many commonly used functionalities are not caller-independent, often
the access to critical functions is restricted to a network party that is encoded in the
session identifier. However, we think that it is possible to construct caller-independent
functionalities for many functionalities, if the implementation relies on keys but is oth-
erwise stateless. A general technique for transforming such functionalities into key-
manageable functionalities that preserves existing proofs is work in progress.

Properties. In order to identify some properties we get from the design of FKM, we
introduce the notion of an attribute policy graph:

Definition 7. We define a family of attribute policy graphs (AΠ,F), one for each KU
functionality F and one for key-wrapping (in which case F = KW) as follows: a is

a node in AΠ,F if (F , C, a, a′) ∈ Π for some C, a′, and additionally marked new if
(F , new, a, a′) ∈ Π . An edge (a, a′) is in AΠ,F whenever (F , attribute change,
a, a′) ∈ Π .

Example 2. For the policy Π described in Example 1, the attribute policy graph AΠ,KW
contains one node 1 connected to itself and marked new. Similarly, the attribute policy
graph AΠ,Fenc

contains one node 0 connected to itself and marked new.

The following theorem shows that (i) the set of attributes an uncorrupted key can
have in FKM is determined by the attribute policy graph, (ii) second, there are exactly
three ways to corrupt a key, and (iii) KU-functionalities receive the corrupt message
only if a key is corrupted. The proof of these claims can be found in the full version [15].

Theorem 1 (Properties of FKM). Every instance of FKM with parameters F , C, Π
and session parameters U ,Uext,ST ,Room has the following properties:

(1) At any step of an execution of [FKM,AD, Z], the following holds for FKM: for all
Store[U, h] = 〈F , a, c〉 such that c 6∈ Kcor, there is a node a′ marked new in the
attribute policy graph AΠ,F such that a is reachable from a′ in AΠ,F and there
was a step new where Store[U ′, h′] = 〈F , a′, c〉 was added.

(2) At any step of an execution of [FKM,AD, Z], the following holds for FKM: all
c ∈ Kcor were either
(a) directly corrupted: there was a corrupt triggered by a query 〈corrupt, h〉

from U while Store[U,h]= 〈F , a, c〉, or indirectly, that is,
(b) corrupted via wrapping: there is c′ ∈ Kcor such that at some point the wrap

step was triggered by a message 〈 wrap,h′, h, id〉 from U while Store[U,
h′]= 〈KW, a′, c′〉, Store[U,h]= 〈F , a, c〉, or

(c) corrupted via unwrapping (injected): there is c′ ∈ Kcor such that at some point
the unwrap step was triggered by a message 〈 unwrap,h′,w,a,F,id〉
from U while Store[U,h′]= 〈KW, a′, c′〉 and c = unwrap

〈F,a,id〉
c′ (w) for

some a, F and id .
(3) At any step of an execution of [FKM,AD, Z], the following holds: whenever an

ideal machine Fi = 〈ideal, 〈sid, 〈Fi, F 〉〉〉, F = 〈〈reg,F〉, 〈sid〉〉 , accepts
the message 〈corrupt, c〉 for some c such that FKM in session sid has an entry
Store[U, h]= <Fi,a,c>, then c ∈ Kcor in FKM.

4 Proof overview

We show that, for arbitrary KU parametersF , C, Π , the network πF,C,Π,Impl, consisting
of the set of users U connected to security tokens ST , the set of external users Uext and
the functionality Fsetup, emulates the key-management functionality FKM. We will
only give a proof sketch here, the complete proof can be found in the full version [15].

Let πF,C,Π,Impl (in the following: π) denote the network consisting of the programs
π(prot-fkm) and π(prot-fsetup). π(prot-fkm) defines the behaviours for users in
U , Uext and ST . Parties in U ∪ Uext will act according to the convention on machine
corruption defined in [6, § 8.1], while parties in ST will ignore corruption requests

(security tokens are assumed to be incorruptible). π(prot-fkm) is totally regular, that
is, for other machines, in particular ideal machines, it responds to any message with an
error message to the adversary. The protocol π is a Fsetup-hybrid protocol.

The proof proceeds as follows: making use of the composition theorem, the last
functionality Fl in FKM can be substituted by its key-manageable implementation
ÎL. Then, FKM can simulate Î instead of calling it. Let FKM{Fl/Îl} be the result-
ing functionality. In the next step, calls to this simulation are substituted by calls to
the functions used in Î , implC for each C ∈ Cl. The resulting, partially implemented
functionality FKM{Fl/ImplFl

} saves keys rather than credentials (for Fl). We repeat
the previous steps until FKM does not call any KU functionalities anymore, i. e., we
have FKM{F1/ImplF1

, . . . ,Fn/ImplFn
}. Then we show that the network of dis-

tributed token π emulates the monolithic block FKM{F1/ImplF1
, . . . ,Fn/ImplFn

}
that does not call KU functionalities anymore, using a reduction to the security of the
key-wrapping scheme. This last step requires restricting the set of environments to those
which guarantee that keys are not corrupted after they have been used to wrap. The no-
tion of a guaranteeing environment, and the predicate corrupt-before-wrap are formally
defined in Appendix D [15]. The main result follows from the transitivity of emulation
and two lemmas describing the steps we just mentioned.

Corollary 1. Let F , C, Π be KU parameters such that all F ∈ F are key-manageable.
Let ImplFi

be the functions defining the key-manageable implementation Îi of Fi. If
KW = (implKWnew,wrap, unwrap) is a secure and correct key-wrapping scheme(See
Definition 12 in Appendix D [15]), then πF,C,Π,Impl emulates FKM for environments
that guarantee corrupt-before-wrap.

5 Realizing key-usage functionalities for a static key-hierarchy

To demonstrate the use of Corollary 1, we equip the security token with the function-
alities F1 = FRand and F2 = FSIG described below. The resulting security token
STFRand,FSIG is able to encrypt keys and random values and sign user-supplied data. It
is not able to sign keys, as this task is part of the key-management. The first functional-
ity, FRand, is unusual, but demonstrates what can be done within the design of FKM, as
well as it’s limitations. It models how random values can be stored as keys, with equal-
ity tests and corruption, which means here that the adversary learns the value of the
random value. Since our framework requires a strict division between key-management
and usage, they can be transmitted (using wrap) and compared, but not appear else-
where, since other KU functionalities shall not use them. We define FRand as follows:

new: accept <new> from parentId (=:p);
c← {0, 1}η; L← L∪ {(c, 0)}; send <new•,c,> to p

command: accept <equal,c,n> from p;
if (c, k) ∈ L for some k

if k 6∈ Kcor send <equal•,false> to p
else if n = k send <equal•,true> to p

corrupt: accept <corrupt,c> from p;
if (c, 0) ∈ L
k ← {0, 1}η; L← (L \ {(c, 0)}) ∪ {(c, k)}; Kcor = Kcor ∪ {k};

send <corrupt•, k> to A
inject: accept <inject,n> from P ;

(c,<ignore>)← {0, 1}η; Kcor ← Kcor ∪ {n}; L← L ∪ {(c, n)};
send <inject•,c> to parentId �

The two functions implnew and implequal give the key-manageable implementation:
implnew on input 1η gives output (n,) for n← {0, 1}η; implequal on input n, n′ gives
output n = n′.
Due to space restrictions, the F Cmd attr1 attr2

KW new > 0 *
6= KW new 0 *

* attribute change a a
KW wrap > 0 attr1 > attr2
KW unwrap > 0 attr1 > attr2
Fi C ∈ Cpriv 0 *

signature functionality FSIG is
presented in the full version [15].
In the following, we will con-
sider FKM for the parameters
F = {FRand,FSIG}, C = {{
equal}, {sign, verify}} and
a static key-hierarchyΠ , which
is defined as the relation that consists of all 4-tuples (F ,Cmd,attr1,attr2) such that
the conditions in one of the lines in the following table holds. Theorem 1 allows im-
mediately to conclude some useful properties on this instantiation of FKM: from (1)
we conclude that all keys with c /∈ Kcor have the attribute they were created with.
This also means that the same credential has the same attribute, no matter which user
accesses it. From (2), we can see that for each corrupted credential c ∈ Kcor, there
was either a query < corrupt, h >, where Store[U,h]=< F , a, c >, or there
exists Store[U,h′]=< KW, a′, c′ >, Store[U,h]=< F , a, c > and a query
<wrap,h′,h,id> was emitted, for c′ ∈ Kcor, or an unwrap query <unwrap,h′,w,
a, F, id> for a c ∈ Kcor was emitted. By the definition of the strict key-hierarchy policy,
in the latter two cases we have that a′ > a. It follows that, for any credential c for F ,
such that Store[U,h]=< F , a, c > for some U, h and a, c 6∈ Kcor, as long as every
corruption query < corrupt, h∗ > at U was addressed to a different key of lower or
equal rank key, i. e., Store[U,h∗]=< KW, a∗, c∗ >, c∗ 6= c and a∗ ≤ a. By (3),
those credentials have not been corrupted in their respective functionality, i. e., it has
never received a message <corrupt,c>.

6 Conclusions and outlook

We have presented a provably secure framework for key management in the GNUC
model. In further work, we are currently developing a technique for transforming func-
tionalities that use keys but are not key-manageable into key-manageable functionalities
in the sense of Definition 2. This way, existing proofs could be used to develop a secure
implementation of cryptographic primitives in a plug-and-play manner. Investigating
the restrictions of this approach could teach us more about the modelling of keys in
simulation-based security.

Acknowledgments. This work has been partially supported by the European Research
Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)
/ ERC grant agreement no 258865, project ProSecure, and by the Direction Générale de

l’Armement, contact no 11810242, Secure Interfaces. The authors thank the anonymous
reviewers as well as R. Küsters and M. Tuengerthal for their helpful comments.

References

1. RSA Security Inc.: PKCS #11: Cryptographic Token Interface Standard v2.20. (June 2004)
2. IBM: CCA Basic Services Reference and Guide. (October 2006) Available online at http:

//www-03.ibm.com/security/cryptocards/pdfs/bs327.pdf.
3. Trusted Computing Group: TPM Specification version 1.2. Parts 1–3, revision

103. http://www.trustedcomputinggroup.org/resources/tpm_main\
_specification (2007)

4. Cachin, C., Chandran, N.: A secure cryptographic token interface. In: Proc. 22th IEEE
Computer Security Foundation Symposium (CSF’09), IEEE Comp. Soc. Press (2009) 141–
153

5. Kremer, S., Steel, G., Warinschi, B.: Security for key management interfaces. In: Proc. 24th
IEEE Computer Security Foundations Symposium (CSF’11), IEEE Comp. Soc. Press (2011)
66–82

6. Hofheinz, D., Shoup, V.: GNUC: A new universal composability framework. Cryptology
ePrint Archive, Report 2011/303 (2011) http://eprint.iacr.org/.

7. Canetti, R.: Universally composable signature, certification, and authentication. In: Proc.
17th IEEE workshop on Computer Security Foundations (CSFW’04). CSFW ’04, IEEE
Computer Society (2004) 219–

8. Hofheinz, D.: Possibility and impossibility results for selective decommitments. J. Cryptol-
ogy 24(3) (2011) 470–516

9. Longley, D., Rigby, S.: An automatic search for security flaws in key management schemes.
Computers and Security 11(1) (March 1992) 75–89

10. Bond, M., Anderson, R.: API level attacks on embedded systems. IEEE Computer Magazine
(October 2001) 67–75

11. Bortolozzo, M., Centenaro, M., Focardi, R., Steel, G.: Attacking and fixing PKCS#11 se-
curity tokens. In: Proc. 17th ACM Conference on Computer and Communications Security
(CCS’10), Chicago, Illinois, USA, ACM Press (October 2010) 260–269

12. Cortier, V., Keighren, G., Steel, G.: Automatic analysis of the security of XOR-based key
management schemes. In: Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS’07). Number 4424 in LNCS (2007) 538–552

13. Delaune, S., Kremer, S., Steel, G.: Formal analysis of PKCS#11 and proprietary extensions.
Journal of Computer Security 18(6) (November 2010) 1211–1245

14. Küsters, R., Tuengerthal, M.: Ideal Key Derivation and Encryption in Simulation-Based
Security. In: Topics in Cryptology - CT-RSA’11. Volume 6558 of LNCS., Springer (2011)
161–179

15. Kremer, S., Künnemann, R., Steel, G.: Universally composable key-management (2012)
http://eprint.iacr.org/2012/189.

16. Backes, M., Dürmuth, M., Hofheinz, D., Küsters, R.: Conditional reactive simulatability.
International Journal of Information Security (IJIS) (2007)

17. Küsters, R.: Simulation-Based Security with Inexhaustible Interactive Turing Machines. In:
Proc. 19th IEEE Computer Security Foundations Workshop (CSFW’06), IEEE Comp. Soc.
Press (2006) 309–320

18. Maurer, U., Renner, R.: Abstract cryptography. In: Proc. 2nd Symposium in Innovations in
Computer Science (ICS’11), Tsinghua University Press (2011) 1–21

