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Abstract—
To keep up with the growing complexity of digital systems, high

level models are used in the design process. In today’s processor
design, a comprehensive tool chain can be built automatically
from architectural or transaction level models, but disregarding
formal verification. We present an approach to automatically
generate a complete property suite from an architecture de-
scription, that can be used to formally verify a register transfer
level (RTL) implementation of a processor. The property suite
is complete by construction, i.e. an exhaustive verification of all
the functionality of the processor is ensured by the method. It
allows for the efficient verification of single pipeline processors,
including several advanced processor features like multicycle
instructions. At the same time, the structured approach reduces
the effort for verification significantly compared to a manual
complete formal verification. The presented techniques have been
implemented in the tool FISACO, which is demonstrated on an
industrial processor.

I. INTRODUCTION

The complexity of digital hardware systems has shown an
exponential growth over the last decades and it is growing
still. To keep track of large systems during the design process,
high level models are used increasingly. Especially for the
design of processors, architecture or transaction level models
form the core of an elaborate tool chain that enables the
automatic generation of simulators, assemblers or compilers,
like Facile [27] or LISA [9]. However, formal verification of
the functionality of the design is still not part of this tool chain.

There exist several techniques for the verification of hard-
ware designs. In simulation based verification, the outputs of
the implementation are compared to a golden reference model,
that is usually based on a transaction level description. But,
simulation is not well suited to cover the whole functionality
of a pipelined processor because achieving a sufficient design
quality for such a processor requires a huge simulation-based
verification effort and there is no guarantee that all possible
bugs have been considered. In contrast, formal techniques offer
the highest quality of verification [15].

One successful technique is Interval Property Checking
(IPC) [23], a technique similar to Bounded Model Checking
[3]. IPC is used to check if a system satisfies a set of properties
about the operations of a design like the processing of a
request in a bus bridge, the execution of an instruction in a
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processor pipeline, or an arbitration cycle in an arbiter. IPC
has been extended with further proofs which ensure that a set
of properties verifies all input/output behavior of a circuit [5].
This methodology has already been used in industrial context
for the verification of a wide variety of designs [12] including
small or medium size processors [6].

However, these projects also illustrate that the integration
of a thorough formal examination into industrial verification
practice requires larger changes to the education and opin-
ions of verification engineers. Compared to simulation based
approaches, formal verification requires a deep knowledge
of the internals of the design under verification (DUV) in
order to write assertions. An important motivation of the work
summarized here and presented in [20] is therefore, that the
automation of the formal verification of some well defined
class of circuits eases the migration from simulation to formal
verification and hence helps to introduce this technology. We
chose smaller single pipeline processors as this class.

For processors, a structured manual verification flow is
available today [2]. But, automation of the verification is
quite low, the more comprehensive the verification is. On the
other hand, existing approaches for the automatic verification
of processors (see related work in Sect. II) often require a
background of deep and general insight into verification goals
and correctness criteria.

In this paper we present a technique for the automatic
generation of a complete property suite for processors. The
starting point of the approach is an architecture description
of the processor. By defining a number of mapping functions
the user captures how the abstract concepts are mapped to the
register transfer level (RTL) implementation. These mapping
functions refer to pipeline stages, stall and cancel signals,
and similar objects that design and verification engineers are
familiar with. Following this approach, the specification is
captured in a concise and readable form, while the underlying
general processor model enables the verification of several
advanced processor features like multicycle instructions, out-
of-order termination as well as exceptions. The generated
property suite is complete by construction in the sense of [5].
As a driving verification engine, the OneSpin 360 MV tool
[24] is used, offering the performance and capacity to formally
verify whole processor designs.

The main contribution of this work is a well structured yet
pragmatic approach to tackle the formal verification of pro-
cessors. It offers an exhaustive verification for a certain class



of designs, while the automatic generation of the properties
increases the verification productivity significantly compared
to manual coding of properties. As the input for the approach
is an abstract architecture description, the method can easily be
integrated with existing tool chains for processor design. The
automatic generation of the properties is implemented in the
tool FISACO. The approach is demonstrated with an industrial
control processor used in embedded automotive systems, a
domain with particularly high quality requirements.

The paper is structured as follows. Related work is discussed
in Sect. II. In Sect. III, our formal verification techniques are
reviewed. The automatic property generation is described in
Sect. IV. Sect. V shows the application of the approach to an
industrial processor design. Sect. VI concludes the work.

II. RELATED WORK

An approach for the automatic equivalence verification of
general transaction level models (TLM) with timed imple-
mentations is presented in [4], where the different levels of
abstraction are related by events. However, the lowest level of
abstraction in [4] is behavioral RTL and it is not clear how
the concept of events relates to optimized pipeline designs.
In other words, an automated equivalence check between a
sequential processor architecture and a pipelined RTL imple-
mentation is not feasible for optimized industrial designs.

There has been work on the formalization of pipelined
designs. Part of the approaches in the literature use formal
models for the automatic design of correct pipelines [19], or
to accompany the design process [10], [16]. In [10], starting
from a simple model, the design is incrementally refined until
a pipelined implementation is obtained. A CTL specification is
transformed along with the design to prove the correctness of
the refinement steps. A similar approach is presented in [22].
It decomposes the correctness proof for a complex pipelined
machine with branch prediction into several steps, the first
of which proves the compliance of a simple version of the
processor with its ISA. The drawback of these approaches is
that they cannot handle industrial designs containing legacy
code and manual optimizations that are needed to match hard
power and timing constraints.

There are various techniques for the verification of existing
processors [1], [13], [14], [30]. In [1], a formal pipeline model
is introduced that is based on parcels (instructions) process-
ing through the pipeline. By instantiating several predicates
describing the pipeline, the correctness of the design can
be proved formally. However, the model is rather abstract
and the predicates seem difficult to derive. In contrast, we
provide a clear distinction between the architecture layer and
the mapping to the implementation. Furthermore, our mapping
functions have a more intuitive counterpart in the designer’s
intent of implementing a pipeline.

Further approaches for processor verification rely on inter-
active theorem proving [18], [26], [29]. This generally offers
a high level view on the design. Theorem proving however
requires a significant level of expertise that is usually not
available to designers or verification engineers in practice.

Approaches for the automatic generation of properties are
given in [17], [25]; they are based on learning dependencies

or properties from simulation traces. However, they are only
suited for an initial design understanding rather than for a veri-
fication against a specification. In contrast, our approach starts
with a specification that is then related to the implementation
in a well structured way.

III. FORMAL VERIFICATION SETTING

Within the last two decades, there has been a lot of research
in formal verification techniques. Methods based on Boolean
satisfiability (SAT) have proven to be a robust solution. One
prominent technique is SAT based Bounded Model Checking
(BMC), that has first been described in [3]. Successive im-
provements in performance have made BMC a suitable method
for the formal verification of larger scale designs. For the work
at hand, we use the techniques described in [23], referred
to as interval property checking (IPC). In the following, this
verification methodology will be briefly outlined.

In contrast to BMC, only safety properties are verified using
IPC. As digital circuits always have a finite response time,
this is not a serious restriction in practice. It is rather natural
to capture the specification of a design in terms of safety
properties. Furthermore, using IPC, these properties can be
verified with bounded proofs, which can be checked efficiently
using a SAT solver.

The main idea of IPC is to use an arbitrary starting state
instead of the initial state used in BMC. Any property that
holds starting from an arbitrary state then also holds from any
reachable state and thus, it is exhaustively verified. Conversely,
false negatives can occur in IPC, i.e. counterexamples for
properties starting in unreachable states may be produced.
These false negatives need to be removed by adding invariants
in order to restrict the starting state. For more details on the
idea of IPC and the following formalization, refer to [23].

A synchronous circuit is modeled as a finite state machine
(FSM) M = (I, S, S0,Δ,Λ, O) with input alphabet I ⊆ Bn,
output alphabet O ⊆ Bw, a finite set of states S ⊆ Bm, output
function Λ and next state function Δ. The set S0 ⊆ S denotes
the initial states. With next state function Δ : Bn×Bm → Bm,
the transition relation of the circuit is given by

T (s, s′) = ∃x ∈ Bn : s′ ≡ Δ(x, s). (1)

A safety property f = AG(') is translated to a Boolean
function [[f ]]t, checking the validity of formula ' at time-
point t. Here, the translation is done such that a satisfying
assignment of [[f ]]t corresponds to a counterexample of '.
The resulting function depends on the inputs, outputs and
states within a bounded time interval [0, c]. IPC searches for
counterexamples by solving the SAT instance

c⋀
i=0

T (st+i, st+i+1) ∧ [[f ]]t. (2)

The transition relation is unrolled within the time interval
[0, c] and it is connected to the single instantiation of [[f ]]t.
In order to avoid unreachable counterexamples, invariants are
added. In many cases, such invariants can even be generated
automatically [31]. In the context of the described method-
ology, the needed invariants are usually less complex than
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the main properties; they can thus be verified using inductive
proof techniques like k-induction [28]. For more details on the
method, refer to [23].

IPC is a powerful verification technique, enabling the for-
malization of a specification in terms of safety properties
and its verification against the implementation. However, to
be sure that no bugs have been missed, the verification
engineer needs to reason about the completeness of the written
property suite. A technique to formally check whether a set
of properties forms a complete specification is described in
[5], [8]. These techniques have been successfully applied to
industrial processor designs [6].

Completeness analysis determines whether every possible
input scenario—corresponding to a transaction sequence of
the design—can be covered by a chain of properties that
predicts the value of states and outputs at every point in time.
In other words, any two designs fulfilling all the properties
of a complete property suite are formally equivalent. The
completeness analysis basically boils down to check in the end
state of each property whether (1) there is always a successor
property with matching assumptions, (2) the successor prop-
erty is uniquely determined and (3) each property describes
the outputs and states of the design uniquely. For more details
on the methodology please refer to [5], [8].

For the formal verification of the generated property suite
against the RTL, we use OneSpin 360MV [24]. This com-
mercial solution covers the required spectrum of formal
verification—from the verification of SystemVerilog assertions
all the way to the automatic completeness analysis described
above. Among various other proof engines, 360MV also offers
IPC and k-induction with sufficient capacity and performance
to handle the complete verification of processors [6].

IV. VERIFICATION USING GENERATED PROPERTIES

Technically, the basis of the approach presented here is
to provide a general formal processor model that can be
customized by the user to match his specific implementation.
The general processor model can be thought of as a tool box
with several design features to be picked out. The customiza-
tion is done by setting the architecture design parameters,
like the number of pipeline stages and the possible interface
transactions. Furthermore the mapping from the architecture
description to the RTL has to be established by defining a
number of mapping functions. The basic flow is shown in
Fig. 1. The general processor model consists of three parts:

1) The pipeline model describes the movement of the
instructions through the stages

2) The datapath model describes register access and data
forwarding

3) The interface model describes memory and bus ac-
cesses
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Fig. 2. Interaction of generated properties

After identifying the visible registers and interfaces, the
instruction set and the exception behavior of the processor are
described on the architecture level. The generated property
suite consists of instruction properties and a set of consis-
tency assertions. While each instruction property describes the
processing of a single instruction until it leaves the pipeline,
the consistency assertions ensure the correct interaction of
multiple instructions and the consistent pipeline behavior, if no
instruction is present in a dedicated stage. The latter includes
e.g. checking that empty stages will not update any state
elements. These assertions also help the user in finding an
appropriate mapping by giving him a feedback for debugging.

Basically, the equivalence of the property suite and the DUV
is established by chaining the generated properties, as shown
in Figure 2. Each property is depicted as a rectangular box,
consisting of an assume part (assumption A) and prove part
(consequent C, shaded gray in the figure). The properties are
hooked up at the time point when the processor is ready to
execute the next instruction, represented by the big black dots
in the picture. Thus, starting from reset, the first property
proves that the new instruction state (NIS) will be reached.
Then, the following properties assume the NIS and prove that
after fetching the dedicated instruction, NIS will be reached
again, enabling the connection to the next instruction property.

The basic approach has been described in detail in [20]; it
is based on a patent application [7].

A. General Processor Model

The approach presented here is limited to a class of pro-
cessors that is common in industrial designs. The class is
characterized by the following features:
∙ Single pipeline
∙ In-order-execution, out-of-order termination
∙ Register files with multiple prioritized write channels
∙ Exceptions and interrupts
∙ Delayed branch instructions
∙ Branch prediction
∙ Multicycle instructions
∙ Multiple interfaces, including pipelined protocols
Note that a typical CPU also contains complex data memory

and prefetch logic. With our approach, the core of such a
CPU can be verified with generated properties, providing
exact interface descriptions to the data memory and prefetch.



These modules can in turn be verified manually, thus ensuring
correctness of the overall CPU. In such manual extensions, the
already established mappings and models can easily be reused.

The components that are included in the architecture view
are described in the following. A processor receives its instruc-
tions via an instruction memory interface, that is addressed by
a program counter PC. The currently processed instruction
word is denoted IW . There can be an arbitrary number of
architecture registers and flags. There can be interfaces to data
memories or buses, each associated with a set of transactions,
at least containing the idle transaction.

The instructions are described on the architecture level.
In order to verify them against the RTL implementation, a
mapping has to be established by the user. For the components
PC and IW , the corresponding mapping function is usually
pointing to a dedicated signal in the RTL showing the value of
the program counter and an instruction register, respectively.
However, the mapping of an architecture register file requires
a model of the pipelining due to forwarding mechanisms that
are part of every pipelined processor design. We first introduce
the architecture description, followed by a discussion of the
models for the pipeline, the data path, and the interfaces.
Finally, the generation of the property suite is described, and
the completeness of the model is discussed.

B. Architecture Description

In our approach, there is a clear distinction between the
architecture description and the mapping functions. In this
way, a readable and proven correct description of the ISA is
obtained. The mapping functions relate the ISA to the RTL.

In the first section of the architecture description, the com-
ponents of the processor are listed, comprising all architecture
registers and flags. Furthermore the interfaces to memories and
buses are given, as well as the respective transaction types on
these interfaces. The main section of the architecture descrip-
tion consists of the ISA description, where all instructions of
the processor are defined. In the ISA description, the registers
are referred to by their specification name.

For each instruction, first the execution condition is given
(TRIGGER). Then, the updates of the program counter and the
architecture registers and flags need to be defined, followed
by the definition of one transaction per interface. The updates
are defined by the read registers (VREGISTER), the target
register (UREGISTER) and the value that will be written by
the instruction (UPDATE).

As an example, consider Fig. 3(b) with a simple processor
description including an ADD instruction. The triggers for the
instruction are divided into two statements, one of which
only depends on the architecture state (TRIGGER_STATE),
while the second one depends on the instruction word
(TRIGGER_IW). Besides the update of the program counter
in line 8, there is one update of the register R, where two
registers are read addressed by parts of the instruction word
(lines 9 and 10). The target register is given in line 11 and the
sum of the two source registers is defined in line 12. Finally,
there is no transaction on the data memory interface, indicated
by the statement DMEM_IDLE in line 13.

opcode = 11000
R[rt] := R[ra] + R[rb];
No memory access.rb rtra

15 11 10 8 7 5 4 2
opcode

Arithmetic Instruction ADD

(a) Specification

1 registers := R;
2 interfaces := DMEM;
3 transactions_DMEM := IDLE, READ, WRITE;
4
5 simple_instruction ADD {
6 TRIGGER_STATE := true;
7 TRIGGER_IW := IW[15:11] == ADD_op;
8 UPDATE_PC := (PC + 2)[7:0];
9 VREGISTER_1 := R(IW[10:8]);

10 VREGISTER_2 := R(IW[7:5]);
11 UREGISTER_1 := R(IW[4:2]);
12 UPDATE_1 := (VREGISTER_1 + VREGISTER_2)[15:0];
13 DMEM_IDLE; }

(b) Architecture description

Fig. 3. Informal specification and architecture description example

C. Pipeline Model

In a pipeline, the processing of instructions is overlapped
in order to speed up computations. Thus, a new instruction
starts before the preceding one has terminated. For example,
a typical simple pipeline would partition an instruction into
fetching the instruction word from the memory, decoding it,
executing logical and arithmetic operations and writing the
result back into the register file. Note that this section only
introduces basic pipeline modeling for the control path in order
to keep track of the different instructions in the pipeline. The
handling of forwarding is part of the data path of a pipeline
and discussed in the following Sect. IV-D.

The major challenge in designing a correct pipeline are
hazards, i.e. conflicts between instructions that are processed
at the same time in different stages. If an instruction needs data
that is currently being computed by a preceding instruction, a
read-after-write conflict occurs and the succeeding instruction
needs to wait for the data. Thus, a mechanism to stall a stage
is needed. Another hazard is related to branching instructions.
When a jump is taken, this is typically detected at a time
when subsequent instructions from the sequential program
flow already have been fetched. Therefore, the pipeline must
possibly be cleaned from wrongly fetched instructions, requir-
ing a cancel mechanism. As this may lead to stages that are
not processing any instructions, it is desirable to distinguish
between empty and full stages to prevent spurious register
updates or similar faults. Based on these requirements, we
now define our pipeline model.

Given the number of pipeline stages n, we define the set
S = {1, 2, . . . n} of pipeline stages. The pipeline architecture
is further classified by defining some constants that refer to
certain stages like the decode stage dec ∈ S and the stages
ia, iv ∈ S that denote the stage when the instruction memory
is accessed and when the instruction word is valid, respec-
tively. The processing of instructions by the pipeline is defined
by the mapping functions1 full, stall, cancel : S → B.

The value of full(s) reflects if the pipeline stage s currently

1The state of the design is an implicit parameter of all mapping functions.
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Fig. 5. Pipeline for a taken jump instruction

holds an instruction. If stall(s) is true, the instruction in stage
s will not proceed to the succeeding stage s + 1. cancel(s)
indicates that the instruction currently in stage s will be
removed from the pipeline and will have no more effects
in later stages. The normal processing of two consecutive
instructions is shown in Fig. 4, where time progresses from left
to right. The time-points when the first instruction is allowed
to proceed to the next stage are denoted by t1 to t3, i.e.,
stall(s) evaluates to false at ts. The boxes indicate the time-
points when the respective stage is processing an instruction,
i.e. full(s) = 1. The pipeline for a taken jump or mispredicted
branch instruction is shown in Fig. 5. At timepoint tjmp, the
canceling of two succeeding instructions is indicated by the
dark boxes. After the taken jump, the target instruction is
fetched from the instruction memory.

The mapping functions have to be defined by the user. This
means for example, that the user needs to identify how the
implementation encodes the fact that a stage is full. Since the
functions are used in the properties, the verification fails as
long as the model is not completed properly.

In addition to the basic model, further pipeline operations
can be supported. It is common for instructions to leave the
pipeline before the last stage, if no more actions will be
taken in later stages, in order to prevent conflicts. Thus, a
last stage can be defined for each instruction. Exceptions are
a crucial feature for practical applications. By nature, they
interrupt the normal instruction processing. The most general
exception model, that is still suited to conform with our
approach, is an injection of a new instruction into the pipeline
after an exception has been acknowledged. Finally, for more
complex arithmetic operations or interactions with protocol
driven interfaces, multicycle instructions are frequently used
in processor designs. Typically, an FSM in an early stage is
responsible for dispatching partial instructions in the pipeline.

For these refinements of the simple model, additional map-

stage1

stage3

stage2

t3,3t2,3t3,2t2,2t3,1t2,1t1,1
stall(1)

stall(2)

dispatch(2)

stall(3)

Fig. 6. Pipeline for a multicycle instruction

ping functions for of out-of-order termination, exceptions, and
multicycle instructions need to be defined.

last stage, inject, dispatcℎ : S → B, (3)

Here, last stage(s) indicates that the instruction in stage s
will leave the pipeline, inject(s) states that an instruction will
be injected into stage s in the next cycle due to an exception,
and dispatcℎ(s) describes that a multicycle instruction is
started in stage s. The pipeline of a multicycle instruction
according to our model is shown in Fig. 6. There, the partial
instructions are dispatched in stage 2.

D. Data Path Model
Based on the above control path model of the pipeline, we

can now define the data path model, describing the way how
data is read, forwarded and stored in the registers.

For a register file R, a mapping function currentR : ℐR →
DR is defined that returns the current implementation state of
the register, where ℐR is the index set and DR is the data
domain of register R. For the data path of the register the
following mapping functions have to be defined:

writeR, validR : S → B (4a)
destR : S → ℐR (4b)
dataR : S → DR, (4c)

where writeR(s) indicates if the instruction in stage s is going
to update register R, while destR(s) and dataR(s) specify
the target register and the data to be written, respectively. By
validR(s), it is stated if stage s already produces a valid result.
With these building blocks, the forwarding in the pipeline to
some forwarding target stage s ∈ S can easily be captured: the
value of a register R with index i ∈ ℐR in the forwarding target
stage s is recursively given by checking whether succeeding
stages write to register i; this corresponds to the forwarding
logic in the pipeline.

DataR(s, i) =

⎧⎨⎩
currentR(i), if s ≥ writebackR;

dataR(s + 1),
if writeR(s + 1)∧
destR(s + 1) = i;

DataR(s + 1, i), otherwise.

Note that this automatically generated function DataR
actually captures the complex mapping of the visible register
R to the implementation, i.e., the architecture value of R for
an instruction in the pipeline is the value of DataR in the



forwarding target stage of that instruction. Since the value of
DataR may be invalid because the result of some instruction is
not available yet, we introduce an additional mapping function
capturing whether the forwarding data is indeed valid:

V alidR(s, i) =

⎧⎨⎩

false, if s < dec;

true, if s ≥ writebackR;

validR(s + 1),
if writeR(s + 1)∧
destR(s + 1) = i;

V alidR(s + 1, i), otherwise.

E. Interface Transactions

In order to verify the interfaces of the processor, the
following model is used. For each interface IF the constants
daIF , dvIF ∈ S denote the stage when a data access is issued
and when valid data is returned, respectively. For each inter-
face, a set of transactions TAIF is defined by the user with at
least IDLE ∈ TAIF . For each transaction ta ∈ TAIF a func-
tion taIF : ℕ× ℕ→ B is defined, where taIF (addr, wdata)
captures that the specified transaction takes place in the
design, optionally involving the address addr and (for writing
transactions) the write data wdata. As for the example in
Fig. 3(b), the three functions IDLEDMEM , READDMEM

and WRITEDMEM need to be defined, capturing for given
address and data, if the respective transaction is issued on the
data memory interface.

Besides the transactions, for each interface a mapping
function rdataIF points to the implementation port, where
data is read in to the processor. Finally, there is a static
interface to the instruction memory, given by the predicate
ibus read : ℕ→ B, which checks if the instruction memory
is currently being accessed for a given value of the program
counter.

F. Consistency Assertions

While the above models describe the processing of instruc-
tions by the successive pipeline stages, additional assertions
are needed for the overall correctness of the processor. This
includes the behavior of empty pipeline stages as well as the
interaction of succeeding instructions. For this purpose, a set
of consistency assertions are automatically generated.

Note that the overall verification is fail safe, i.e. it cannot
succeed if the design is not correct. But, even for a correct
design, finding the appropriate mapping functions can be
difficult. The consistency assertions provide useful information
on the status of the modeling. Failing assertions can point
the user to certain mapping functions that need to be revised
to complete the verification, thereby guiding the debugging
process.

We show the following assertion as an example. For a more
detailed description of the consistency assertions, see [20].

∀s, 2 ≤ s ≤ n :
( (¬fullt(s− 1) ∨ stallt(s− 1))∧
(¬fullt(s) ∨ ¬stallt(s)) )⇒ ¬fullt+1(s)

(5)

This assertion states that it is illegal to create full stages in
the middle of the pipeline: when the stage before s is empty

TABLE I
USER INPUT FOR PROPERTY GENERATION

(a) Constants
Name Domain Description
n ℕ number of stages
dec S = {1, . . . , n} decode stage
ia S instruction memory access stage
iv S stage in which instr. word is valid
int S highest stage for interrupt injection
daIF S access stage for interface IF
dvIF S data valid stage for interface IF
writebackR S writeback stage for register R

(b) Mapping functions
Arch. Function Signature Description

Basic components
PC pc ℕ program counter
IW iw ℕ instruction word

Pipeline Model
full S → B stage active
stall S → B stage stalled
cancel S → B stage is canceled
inject S → B inject launch instr.
dispatcℎ S → B dispatch micro instr.
last stage S → B instr. leaves pipeline

Datapath Model

R

8>><>>:
currentR DR implementation register
writeR S → B stage will write
destR S → ℐR write destination
dataR S → DR write data
validR S → B data is valid

Interfaces
ibus read ℕ→ B instruction fetch

IF TA taIF ℕ× ℕ→ B transaction
IF RDATA rdataIF ℕ read data

or stalled, and s is empty or it will proceed to the next stage,
then s must be empty in the next cycle. Here, f t denotes the
value of f at timepoint t. Other assertions ensure, for example,
that instructions do not overwrite each other and that empty
pipeline stages do not have an effect on the visible registers
or issue interface transactions.

G. Generating The Property Suite

In order to adapt the general processor model to the actual
DUV, the user needs to specify the mapping functions de-
scribed in Sections IV-C to IV-E. The user input is summarized
in Table I. Besides the basic data on the pipeline, given by
a set of constants, the table shows the mapping functions
corresponding to the architectural components of the general
processor model.

During the generation of the property suite, an architecture
register R(i) is replaced by an instantiation of the function
DataR(sfwd, i), where sfwd is the forwarding target stage,
which is usually the decode stage.

The generated properties prove the correctness of the in-
structions on the implementation level. For this, we define
t0 to be the timepoint when the respective instruction enters
the pipeline and ti > ti−1, 1 ≤ i ≤ n to be the timepoints
when the instruction is allowed to proceed from stage i (see
also Fig. 4–6). The properties have an implication structure



A ⇒ C. Whenever the assumptions A evaluate to true, the
prove part C must hold as well. In the following, we give an
overview of the templates for instruction execution without
exceptions. There are similar templates for exceptions; for
more details, see [7]. Note that there are two templates for
conditional branches depending on whether the branch is taken
or not. In this way, branch prediction can easily be modeled.
The assume part for an instruction m basically consists of the
following assumptions:
∙ The instruction enters the pipeline at t0.
∙ In decode, instruction m is triggered.
∙ The instruction proceeds from stage i at ti, i ≤ 1 ≤ n.
∙ The instruction is not canceled by preceding instructions

and not replaced by an exception call.
For each instruction, mainly the following will be proved:
∙ The instruction is fetched from the instruction memory
∙ The program counter is updated correctly
∙ The full stages are correctly tagged by the full function
∙ No cancel is generated (except for jump instructions)
∙ All read registers are valid
∙ The registers will be updated (or remain stable) corre-

sponding to the ISA; this includes the verification of
correct forwarding

∙ The correct transactions will take place on the interfaces

H. Completeness

The pipeline model is built such that the final property suite
in combination with the consistency assertions is complete
by construction, if some rules are respected for the definition
of the mapping functions. For a proof for the basic pipeline
model, see [7].

However, the completeness of a concrete generated property
suite additionally depends on the proper definition of some of
the functions. If, for example, the user defined the function
for a read transaction by simply returning true, it is obvious
that the interface signals are not checked at all for read
transactions and there is a gap in the verification. In summary,
the generation ensures that all possible scenarios are covered
with properties, but not that all transactions verify all outputs.
However, the automatic gap detection of OneSpin 360 can be
used to close these gaps as well.

V. APPLICATION

The above method has been implemented as a front-end
for OneSpin 360 MV; we call it FISACO (Formal Instruction
Set Architecture Compiler). It takes an architecture description
and automatically generates the instruction properties and the
consistency assertions in a form readable for 360MV. The
mapping information needs to be supplied in a temporal logic
format. The processor model formed by both the architecture
description and the mapping information can then be verified
and debugged using 360MV.

In the following we will describe the application of the
proposed method on an industrial processor design. We suc-
cessfully verified a control processor that is used in automotive
applications, the Peripheral Control Processor (PCP) by In-
fineon Technologies. First, the basic data of the PCP will be

given, followed by a presentation of the verification results.
Besides, during its development, the method has been applied
for the complete verification of smaller processor designs from
the opencores site (www.opencores.org). Details cannot
be given here due to page limitation.

A. PCP Processor

The PCP processor is a control processor that is part
of automotive systems. Its main purpose is the monitoring
of peripheral components in order to release the central
CPU [11]. Therefore, a great share of the instruction set
is dedicated to data transfer and bit operations, which are
frequently used in typical control applications. The PCP is
connected to a data memory and a pipelined FPI bus (Flexible
Peripheral Interface). As the bus operations require complex
protocol transactions, 35% of the instruction set are multicycle
instructions. In total, the PCP has 66 instructions, divided
into arithmetic/logic instructions, jump and control, memory
instructions, bus instructions and complex math instructions.

The processor is implemented as a four stage pipeline. The
register file contains 8 registers of 32 bit, where one register is
a special purpose register containing various status flags and
the program counter. The whole RTL implementation adds up
to about 17.000 lines of VHDL code, accompanied by a de-
tailed informal specification. Regarding the complexity of the
design and the quality of the source code and documentation,
the time for the formal verification was estimated with 8 to 10
person months, needed to manually write a complete property
suite using OneSpin 360 MV.

B. Results

The PCP has been verified using the presented approach.
The informal specification was ported to an architecture de-
scription. Most of the manual effort was spent for the definition
and refinement of the pipeline and datapath model, given by
the mapping functions explained in Sect. IV-C to IV-E. Using
our approach, the instruction set of the PCP could be success-
fully verified except for two highly complex bus instructions
involving nested loops and excluding three complex math
instructions. For these instructions, the control mechanisms
of the PCP did not match our general pipeline model. It does
not seem useful to extend the model for these cases, as they
are very specific to the PCP implementation. Instead, having
found a good representation of most of the functionality based
on our processor model, the defined functions can be reused
for further manual verification. This has also been done for
some additional functionality beyond the ISA, like loading
and storing full register contexts. The overall verification of the
PCP with our methodology took about 5 person months. Thus,
we could achieve an estimated productivity gain of 100%.

The verification has been carried out on 2.2 GHz work-
station with 16 GB memory. Details on the proof times and
the used memory can be found in Table II. As can be seen,
the generated consistency assertions could be proved quickly.
Most of the time was spent for the verification of arithmetic
and bus instructions. The latter ones are mostly multicycle
instructions and thus the design needs to be unrolled for up to



TABLE II
VERIFICATION RESULTS

Category Properties Total time Avg. time Memory
assertions 34 600 s 17.6 s 937 MB
arithmetic 15 18788 s 1252.5 s 2500 MB
logic/bit 18 3368 s 187.1 s 2500 MB
jump 7 220 s 31.4 s 2500 MB
memory 16 2135 s 133.4 s 2500 MB
bus 10 3214 s 321.4 s 2500 MB
other 3 147 s 49.1 s 1763 MB
total 103 7:54 h

26 cycles. Note that the two most difficult instructions make
up 3 hours and 48 minutes or 48% of the total runtime.

VI. CONCLUSIONS

We have presented an approach for the automatic generation
of a complete property suite from an architecture description
of a processor. There is a clear distinction between the
architecture model and the mapping information connecting
architecture to RTL implementation. The architecture model
can be easily derived from an informal specification.

The mapping from the specification to the implementation is
based on a general pipeline model that reflects the designer’s
intent in implementing a correct pipelined processor. A set
of consistency assertions is automatically generated to check
the correctness of the model and helps the user in finding
a suitable mapping. When the mapping and the architecture
description are finished, the generated property suite forms a
model of the design, i.e. the verification is exhaustive.

The practicability of the approach has been demonstrated
on an industrial processor design, a control processor from
the automotive domain. With the presented methodology, the
estimated verification productivity could be doubled.

In the future, we want to integrate this approach with our au-
tomatic generation of efficient instructions set simulators (ISS)
[21]. This allows to generate both a complete property suite
and an efficient ISS from a common architecture description,
ensuring that the generated ISS complies to the verified RTL
code. A complementary extension would be the use of existing
ADL like LISA, facilitating the integration of formal methods
into the tool chain for processor design.
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