
Rewrite-Based Verification of XML Updates ∗

Florent Jacquemard

INRIA Saclay - IdF & LSV UMR
61 av. du pdt Wilson 94230 Cachan, France

florent.jacquemard@inria.fr

Michael Rusinowitch

INRIA Nancy - Grand Est & LORIA UMR
615 rue du Jardin Botanique

54602 Villers-les-Nancy, France

rusi@loria.fr

Abstract

We propose a model for XML update primitives of the W3C
XQuery Update Facility as parameterized rewriting rules
of the form: ”insert an unranked tree from a regular tree
language L as the first child of a node labeled by a”. For
these rules, we give type inference algorithms, considering
types defined by several classes of unranked tree automata.
These type inference algorithms are directly applicable to
XML static typechecking, which is the problem of verifying
whether, a given document transformation always converts
source documents of a given input type into documents of
a given output type. We show that typechecking for arbi-
trary sequences of XML update primitives can be done in
polynomial time when the unranked tree automaton defin-
ing the output type is deterministic and complete, and that
it is EXPTIME-complete otherwise.

We then apply the results to the verification of access con-
trol policies for XML updates. We propose in particular a
polynomial time algorithm for the problem of local consis-
tency of a policy, that is, for deciding the non-existence of
a sequence of authorized update operations starting from a
given document that simulates a forbidden update opera-
tion.

Categories and Subject Descriptors D.2.4 [SOFT-
WARE ENGINEERING]: Software/Program Verification-
Formal methods, model checking]

General Terms Verification, Languages, Theory, Secu-
rity

Keywords XML Updates, Static Typechecking, XML Ac-
cess Control Policies, Term Rewriting, Hedge Automata

1. Introduction

XQuery language has been extended to XQuery Update Fa-
cility [Xquery UF 2009] in order to provide convenient means
of modifying XML documents or data. The language is a

∗This work has been supported by the INRIA ARC 2010 project
ACCESS, the FP7-ICT-2007-1 Project no. 216471, AVANTSSAR
and the FET-Open grant agreement FOX no. FP7-ICT-23359.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

PPDP’10 July 26–28, 2010, Hagenberg, Austria.
Copyright c© 2010 ACM 978-1-4503-0132-9/10/07. . . $10.00

candidate recommendation from W3C and adds imperative
operations that permit one e.g. to update some parts of a
document while leaving the rest unchanged. This includes
rename, insert, replace and delete operations at the node
level. Compared to other transformation languages (such a
XSLT), XQuery Update Facility is considered to offer con-
cise, readable solutions.

A central problem in XML document processing is static
typechecking. This problem amounts to verifying at com-
pile time that every output XML document which is the
result of a specified query or transformation applied to an
input document with a valid input type has a valid out-
put type. However for transformation languages such as the
one provided by XQuery Update Facility, the output type of
(iterated) applications of update primitives are not easy to
predict. Another important issue for XML data processing is
the specification and enforcement of access policies. A large
amount of work has been devoted to secure XML querying.
But most of the work focus on read-only rights, and very few
have considered update rights for a model based on XQuery
Update Facility operations e.g. [Bravo et al. 2008; Fundulaki
and Maneth 2007].

In the domain of infinite state systems and program veri-
fication, several approaches such as regular model checking
rely on algorithms computing the rewrite closure of tree au-
tomata languages, see e.g. [Bouajjani and Touili 2005; Feuil-
lade et al. 2004; Genet and Rusu 2010]. It seems natural to
consider such tree automata techniques for verification prob-
lems related to the typing of XML documents and XML
transformations, in particular XML updates [Xquery UF
2009]. Indeed, XML documents are commonly represented
as finite labeled unranked trees, and most of the typing for-
malisms currently used for XML are based on finite tree
automata [Murata 2000; Schwentick 2007].

A standard approach to XML typechecking is forward (resp.
backward) type inference, that is, the computation of an out-
put (resp. input) XML type given an input (resp. output)
type and a tree transformation. Then the typechecking itself
can be reduced to the verification of inclusion of the com-
puted type in the given output or input type, see [Milo et al.
2003] for an example of backward type inference procedure.

In this paper, we consider the problem of typechecking arbi-
trary sequences of operations taken in a given set of atomic
update primitives. We propose a modeling of (possibly infi-
nite) sets of primitive update operations of theW3C XQuery
Update Facility proposal [Xquery UF 2009] in terms of
rewrite rules with parameters and XPath expressions for
the selection of the rewrite positions. The update opera-
tions include renaming, insertion, deletion and replacement

in XML documents, and some extensions, like the deletion
of one single node (preserving its descendant) instead of
the deletion of a whole subtree. For several subclasses of
these operations, we derive algorithms of synthesis of un-
ranked tree automata, yielding both forward and backward
type inference results. Since update operations, beside rela-
beling document nodes, can create and delete entire XML
fragments, modifying a document’s structure, it is not ob-
vious how to infer the type of updated documents. Former
tree automata completion constructions like [Feuillade et al.
2004] work for automata computing on ranked trees. Here,
we consider unranked ordered trees, and our constructions
are non trivial adaptations of former tree automata comple-
tion procedures, where, starting from an initial automaton,
new transitions rules are added and existing transition rules
are recursively modified. Moreover, we show that some up-
date operations do not preserve regular tree languages (i.e.
languages of hedge automata) and that for the type infer-
ence for these operations, we need to consider a larger and
less mainstream class of decidable unranked tree recognizers
called context-free hedge automata.

One of our motivations for this study is the static analy-
sis of access control policies (ACP) for XML updates. We
consider two approaches for this problem. The first approach
addresses rule-based specifications of ACPs, where the oper-
ations allowed, resp. forbidden, to a user are specified as two
sets of atomic update primitives [Bravo et al. 2008; Fundu-
laki and Maneth 2007]. We show in particular how to apply
our type inference results to the verification of local consis-
tency of ACPs, i.e. whether no sequence of allowed updates
starting from a given document can achieve an explicitly for-
bidden update. Such situations may lead to serious security
breaches which are challenging to detect according to [Fun-
dulaki and Maneth 2007]. In the second approach (DTD-
based XML ACPs) the ACP is defined by adding security
annotations to a DTD D, as in [Fan et al. 2004; Fundulaki
and Maneth 2007]. In this case, it is required to check the va-
lidity of the document wrt D before applying every update
operation. We show that under this restriction typechecking
becomes undecidable.

Related work: Many works have employed tree automata
to compute sets of descendants for standard (ranked) term
rewriting (see e.g. [Feuillade et al. 2004]). Regular model
checking [Bouajjani et al. 2000] is extended to hedge rewrit-
ing and hedge automata in [Touili 2007], which gives a pro-
cedure to compute reachability sets approximations. Here
we compute exact reachability sets for some classes of hedge
rewrite systems. For some results we need context-free hedge
automata, a more general class than the regular hedge au-
tomata of [Touili 2007].

When considering real programming languages like XDuce
or CDuce [Benzaken et al. 2003] for writing transforma-
tions, typechecking is generally undecidable and approxi-
mations must be applied. In order to obtain exact algo-
rithms, several approaches define conveniently abstract for-
malisms for representing transformations. Let us cite for
instance TL (the transformation language) [Maneth et al.
2005] and macro tree transducers (MTT) [Maneth et al.
2007; Perst and Seidl 2004], and k-pebble tree transducers
(k-PTT) [Milo et al. 2003], a powerful model defined so as to
cover relevant fragments of XSLT [Kay 2003] and other XML
transformation languages. Some restrictions on schema lan-
guages and on top down tree transducers (on which trans-

formations are based) have also been studied [Engelfriet
et al. 2009; Martens and Neven 2004] in order to obtain
PTIME typechecking procedures. [Tozawa 2001] propose
a backward type inference algorithm (based on tree au-
tomata techniques) for an XSLT fragment without XPath
but with recursive calls. In a comparable approach, [Frisch
and Hosoya 2007] propose a backward type inference algo-
rithm for MTTs based on alternating tree automata, opti-
mized towards practicability.

In this paper, we consider unrestricted applications of up-
dates, unlike e.g. top-down transductions in [Martens and
Neven 2004]. It is shown in [Milo et al. 2003] that the set of
output trees of a k-PTT for a fixed input tree is a regular tree
language. In contrast, we shall see (Example 4 below) that
it is not the case for the iteration of some update operations,
and therefore that such transformation are not expressible
as k-PTT. In Theorem 2, we show that the output language
of the iteration of these updates for a regular input language
is recognizable by a context-free hedge automata. This can
be related to the result of [Engelfriet and Vogler 1985], used
in [Maneth et al. 2007] in the context of typechecking XML
transformations, and stating that the output language of a
linear stay MTT can be characterized by a context-free tree
grammar (in the case of ranked trees). Theorem 2 implies
that the output languages of the iteration of updates can be
described by MTTs, as MTT can generate all context-free
tree languages. On the other hand, each of the primitive
update operations can be solely modeled by a MTT. It is
however not clear whether the finite (but unbounded) iter-
ations of updates operations can be easily expressed as a
MTT relation.

In [Benedikt and Cheney 2009] the authors investigate the
problem of synthesizing an output schema describing the
result of an update applied to a given input schema. They
show how to infer safe over-approximations for the results of
both queries and updates. Recent works have also applied
local Hoare reasoning to simple tree update and even to
a significant subset of the XML update library in W3C
Document Object Model [Gardner et al. 2008]. As far as
we know this approach is not automated.

The first access control model for XML was proposed
by [Damiani et al. 2000] and was extended to secure up-
dates in [C. Lim and Son 2003]. Static analysis has been
applied to XML Access Control in [Murata et al. 2006] to
determine if a query expression is guaranteed not to access
to elements that are forbidden by the policy. In [Fundulaki
and Maneth 2007] the authors propose the XACU language.
They study policy consistency and show that it is undecid-
able in their setting. On the positive side [Bravo et al. 2008]
considers policies defined in term of annotated non recursive
XML DTDs and gives a polynomial algorithm for checking
consistency.

Organization of the paper: we introduce the needed for-
mal background about terms, hedge automata and rewrit-
ing systems in Section 2. Then we present XML update as
parameterized rewriting rules and the type synthesis algo-
rithms in Section 3. In Section 4 we study an extension of our
rewriting rules by XPath expressions specifying the nodes
where the rules can be applied. Finally we give applications
to Access Control Policies verification in Section 5.

2. Definitions

2.1 Unranked Ordered Trees

Terms and Hedges. We consider a finite alphabet Σ
and an infinite set of variables X . The symbols of Σ are
generally denoted a, b, c . . . and the variables x, y. . .We
define recursively a hedge over Σ and X as a finite (possibly
empty) sequence of terms and a term as either a single node
n labeled by a variable of x ∈ X or the application of a
node n labeled by a symbol a ∈ Σ to a hedge h. The term is
denoted x in the first case and a(h) in the second case, and
n is called the root of the term in both cases. The empty
sequence is denoted () and when h is empty, the term a(h)
will be simply denoted by a. The root node of a(h) is called
the parent of every root of h and every root of h is called
a child of the root of a(h). A root of a hedge (t1 . . . tn) is a
root node of one of t1, ..., tn. A leaf of a hedge (t1 . . . tn) is
a leaf (node without child) of one of the terms t1, ..., tn. A
path is a sequence of nodes n0, . . . , np such that for all i < p,
ni+1 is a child of ni. In this case, np is called a descendant of
n0. As usual, we can see a hedge h ∈ H(Σ,X) as a function
from its set of nodes dom(h) into labels in Σ∪X . The label
of the node n ∈ dom(h) is denoted by h(n).

The set of hedges and terms over Σ and X are respectively
denoted H(Σ,X) and T (Σ,X). We will sometimes consider
a term as a hedge of length one, i.e. consider that T (Σ,X) ⊂
H(Σ,X). The sets of ground terms (terms without variables)
and ground hedges are respectively denoted T (Σ) andH(Σ).
The set of variables occurring in a hedge h ∈ H(Σ,X) is
denoted var(h). A hedge h ∈ H(Σ,X) is called linear if
every variable of X occurs at most once in h.

Substitutions. A substitution σ is a mapping of finite do-
main from X intoH(Σ,X). The application of a substitution
σ to terms and hedges (written with postfix notation) is de-
fined recursively by xσ := σ(x) when x ∈ dom(σ), yσ := y
when y ∈ X \ dom(σ), (t1 . . . tn)σ := (t1σ . . . tnσ) for n ≥ 0,
and a(h)σ := a(hσ).

Contexts. A context is a hedge u ∈ H(Σ,X) with a distin-
guished variable xu linear (with exactly one occurrence) in
u. The application of a context u to a hedge h ∈ H(Σ,X) is
defined by u[h] := u{xu 7→ h}. It consists in inserting h into
a hedge in u in place of the node labelled by xu. Sometimes,
we write t[s] in order to emphasize that s is a subterm (or
subhedge) of t.

2.2 Hedge Automata and Context-Free Hedge
Automata

We consider two kind of types for XML documents, defined
as two classes of automata for unranked trees. The first one
is the class of hedge automata [Murata 2000], denoted HA.
It captures the expressive strength of almost all popular
type formalisms for XML [Murata et al. 2000]. The second
and perhaps lesser known class is the context-free hedge
automata, denoted CF-HA and introduced in [Ohsaki et al.
2003]. CF-HA are strictly more expressive than HA and we
shall see that they are of interest for typing certain update
operations.

Definition 1. A hedge automaton (resp. context-free hedge
automaton) is a tuple A = (Σ, Q,Qf ,∆) where Σ is an finite
unranked alphabet, Q is a finite set of states disjoint from Σ,
Qf ⊆ Q is a set of final states, and ∆ is a set of transitions

of the form a(L) → q where a ∈ Σ, q ∈ Q and L ⊆ Q∗ is a
regular word language (resp. a context-free word language).

When Σ is clear from the context it is omitted in the tuple
specifying A. We define the move relation between ground
hedges h, h′ ∈ H(Σ∪Q) as follows: h −−→

A
h′ iff there exists a

context u ∈ H(Σ, {xC}) and a transition a(L)→ q ∈ ∆ such
that h = u[a(q1 . . . qn)], with q1 . . . qn ∈ L and h′ = u[q]. The
relation −−→

∗

A
is the transitive closure of −−→

A
.

Collapsing Transitions. We consider the extension of HA
and CF-HA with so called collapsing transitions which are
special transitions of the form L → q where L ⊆ Q∗ is a
context-free language and q is a state. The move relation
for the extended set of transitions generalizes the above
definition with the case u[q1 . . . qn] −−→

A
u[q] if L → q is

a collapsing transition of A and q1 . . . qn ∈ L. Note that we
do not exclude the case n = 0 in this definition, i.e. L may
contain the empty word in L → q. Collapsing transitions
with a singleton language L containing a length one word
(i.e. transitions of the form q → q′, where q and q′ are states)
correspond to ε-transitions for tree automata.

Languages. The language of a HA or CF-HA A in one of
its states q, denoted by L(A, q) and also called set of hedges
of type q, is the set of ground hedges h ∈ H(Σ) such that
h −−→∗

A
q. We say sometimes that a hedge of L(A, q) has type

q (when A is clear from context). A hedge is accepted by A
if there exists q ∈ Qf such that h ∈ L(A, q). The language
of A, denoted by L(A) is the set of hedge accepted by A.

Note that without collapsing transitions, all the hedges of
L(A, q) are terms. Indeed, by applying standard transitions
of the form a(L)→ a, one can only reduce length-one hedges
into states. But collapsing transitions permit to reduce a
ground hedge of length more than one into a single state.

The ε-transitions of the form q → q′ do not increase the
expressiveness HA or CF-HA (see [Comon et al. 2007] for HA
and the proof for CF-HA is similar). But it is not the case
in general for collapsing transitions: collapsing transitions
strictly extend HA in expressiveness, and even collapsing
transitions of the form L → q where L is finite (hence
regular).

Example 1. [Jacquemard and Rusinowitch 2008]. The ex-
tended HA A =

(

{q, qa, qb, qf}, {g, a, b}, {qf}, {a → qa, b →
qb, g(q) → qf , qa q qb → q}

)

recognizes {g(anbn) | n ≥ 1}
which is not a HA language.

However, collapsing transitions can be eliminated from CF-
HA, when restricting to the recognition of terms.

Lemma 1 ([Jacquemard and Rusinowitch 2008]). For every
extended CF-HA over Σ with collapsing transitions A, there
exists a CF-HA A′ without collapsing transitions such that
L(A′) = L(A) ∩ T (Σ).

Properties. It is known that for both classes of HA and CF-
HA, the membership and emptiness problems are decidable
in PTIME [Comon et al. 2007; Murata 2000; Ohsaki et al.
2003]. Moreover HA languages are closed under Boolean
operations, but CF-HA are not closed under intersection and
complementation. The intersection of a CF-HA language
and a HA language is a CF-HA language. All these results
are effective, with PTIME (resp. EXPTIME) constructions
of automata of polynomial (resp. exponential) sizes for the
closures under union and intersection (resp. complement).

We call a HA or CF-HA A = (Σ, Q,Qf ,∆) normalized if
for every a ∈ Σ and every q ∈ Q, there is at most one
transition rule a(La,q) → q in ∆. Every HA (resp. CF-HA)
can be transformed into a normalized HA (resp. CF-HA) in
polynomial time by replacing every two rules a(L1)→ q and
a(L2)→ q by a(L1 ∪ L2)→ q.

A CF-HA A = (Q,Qf ,∆) is called deterministic iff for all
two transitions rules a(L1) → q1 and a(L2) → q2 in ∆,
either L1 ∩ L2 = ∅ or q1 = q2. It is called complete if for
all a ∈ Σ and and w ∈ Q∗, there exists at least one rule
a(L) → q ∈ ∆ such that w ∈ L. When A is deterministic
(resp. complete), for all t ∈ T (Σ), there exists at most (resp.
at least) one state q ∈ Q such that t ∈ L(A, q). Every
HA can transformed into a deterministic and complete HA
recognizing the same language (see e.g. [Comon et al. 2007]).
CF-HA can be completed but not determinized.

2.3 Term Rewriting Systems

We use below term rewriting rules for modeling XML update
operations. For this purpose, we propose a non-standard def-
inition of term rewriting, extending the classical one [Der-
showitz and Jouannaud 1990] in two ways: the application
of rewrite rules is extended from ranked terms to unranked
terms and second, the rules are parameterized by HA lan-
guages (i.e. each parameterized rule can represent an infinite
number of unparameterized rules).

Unranked Term Rewriting Systems. A term rewriting
system R over a finite unranked alphabet Σ (TRS) is a set
of rewrite rules of the form ℓ → r where ℓ ∈ H(Σ,X) \ X
and r ∈ H(Σ,X); ℓ and r are respectively called left- and
right-hand-side (lhs and rhs) of the rule. Note that we do
not assume the cardinality of R to be finite.

The rewrite relation −−→
R

of a TRS R is the smallest binary
relation on H(Σ,X) containing R and closed by application
of substitutions and contexts. In other words, h −−→

R
h′, iff

there exists a context u, a rule ℓ→ r inR and a substitution
σ such that h = u[ℓσ] and h′ = u[rσ]. The reflexive and
transitive closure of −−→

R
is denoted −−→

∗

R
.

Parameterized Term Rewriting Systems. Let A =
(Σ, Q,Qf ,∆) be a HA. A term rewriting system over Σ
parameterized by A (PTRS) is given by a finite set, denoted
R/A, of rewrite rules ℓ → r where ℓ ∈ H(Σ,X) and
r ∈ H(Σ⊎Q,X) and symbols of Q can only label leaves of r
(⊎ stands disjoint union, hence we implicitly assume that Σ
and Q are disjoint sets). In this notation, A may be omitted
when it is clear from context or not necessary. The rewrite
relation −−−−→

R/A
associated to a PTRS R/A is defined as the

rewrite relation −−−−→
R[A]

where the TRS R[A] is the (possibly

infinite) set of all rewrite rules obtained from rules ℓ→ r in
R/A by replacing in r every state q ∈ Q by a ground term of
L(A, q). Several examples of parameterized rewrite rules can
be found in Figure 1 below. We will consider in Sections 4
and 5.2 two extensions of PTRS, called controlled PTRS
and PTRS with global constraints.

Problems. Given a set L ⊆ H(Σ,X) and a PTRS R/A, we
define post∗R/A(L) := {h′ ∈ H(Σ,X) | ∃h ∈ L, h −−−−→

∗

R/A
h′}

and pre∗
R/A(L) := {h ∈ H(Σ,X) | ∃h′ ∈ L, h −−−−→∗

R/A
h′}.

Reachability is the problem to decide, given two hedges
h, h′ ∈ H(Σ) and a PTRS R/A whether h −−−−→

∗

R/A
h′. Reach-

ability problems for ground ranked term rewriting have been
investigated in e.g. [Gilleron 1991]. C. Löding [Löding 2002]
has obtained results in a more general setting where rules of
type L→ R specify the replacement of any element of a reg-
ular language L by any element of a regular tree language
R. Then [Löding and Spelten 2007] has extended some of
these works to unranked tree rewriting for the case of sub-
tree and flat prefix rewriting which is a combination of stan-
dard ground tree rewriting and prefix word rewriting on the
ordered leaves of subtrees of height 1.

Typechecking (see e.g. [Milo et al. 2003]) is the problem
to decide, given two sets of terms τin and τout called in-
put and output types (generally presented as HA) and a
PTRS R/A whether post∗R/A(τin) ⊆ τout or equivalently
τin ∩ pre∗

R/A(τout) = ∅ (where τout is the complement of
τout). One related problem, called forward (resp. backward)
type inference, is, given a PTRS R/A and a HA or CF-
HA language L, to construct a HA or CF-HA recognizing
post∗R/A(L) (resp. pre∗

R/A(L)).

3. Forward and Backward Type Inference

for Update Operations

In this section, we study the problem of type inference for ar-
bitrary finite sequences of primitive update operations taken
in a given set. More precisely, we propose a definition in term
of PTRS rules (Section 3.1) of infinite sets of update prim-
itive operations of the XQuery update facility [Xquery UF
2009] and some extensions. Then, we present constructions
of HA and CF-HA for forward and backward type inference
in these settings (Sections 3.2–3.4).

3.1 Primitive Update Facility Operations

We assume given an unranked alphabet Σ and a HA A =
(Σ, Q,Qf ,∆). Figure 1 displays PTRS rules, parameterized
by states p, p1,..,pn of A, representing infinite sets of atomic
operations of the XQuery update facility [Xquery UF 2009],
and some restrictions or extensions. We call UFO+ the class
of PTRS rules in Figure 1.

The following rules correspond to the update primitives
of [Xquery UF 2009] except for the possibility in [Xquery UF
2009] to select by XQuery the nodes to be inserted (called
content nodes in [Xquery UF 2009]) from the document one
is working on.

REN renames a node: it changes its label from a into b. Such
a rule leaves the structure of the term unchanged. INSfirst

inserts a term of type p at the first position below a node
labeled by a. INSlast inserts at the last position and INSinto

at an arbitrary position below a node labeled by a. INSbefore

(resp. INSafter) inserts a term of type p at the left (resp.
right) sibling position to a node labeled by a. DEL deletes
a whole subterm whose root node is labeled by a and RPL
replaces a subterm by a sequence of terms of respective types
p1, . . . , pn.

Example 2. The patient data in a hospital are stored in an
XML document whose DTD can be characterized by an HA
A with transition rules:

hospital({ppa, pepa}
∗) → ph,

patient(pn pt) → ppa,
patient(pn) → pepa,

treatment(pdr pdia pda) → pt,

name(p∗c) → pn,
drug(p∗c) → pdr,

diagnosis(p∗c) → pdia,
date(p∗c) → pda,

a → pc, b → pc, c → pc . . .

UFO+
UFOreg

a(x) → b(x) REN
a(x) → a(p x) INSfirst a(x) → b(p x) RNSfirst

a(x) → a(x p) INSlast a(x) → b(x p) RNSlast

a(xy) → a(x p y) INSinto

a(x) → p a(x) INSbefore

a(x) → a(x)p INSafter

a(x) → p RPL1 a(x) → p1 . . . pn RPL
a(x) → () DEL a(x) → x DELs

Figure 1. PTRS Rules for the Primitive XQuery Update Facility Operations and Extensions

The state ph is the entry point of the DTD i.e. it represents
the type of the root element.

A DEL rule patient(x)→ () will delete a patient in the base,
and a INSlast rule hospital(x) → hospital(x ppa) will insert a
new patient, at the last position below the root node hospital.
We can ensure that the patient newly added has an empty
treatments list (to be completed later) using hospital(x) →
hospital(x pepa). A INSafter rule name(x)→ name(x) pt can be
used to insert later a treatment next to the patient’s name.

We propose also in Figure 1 some other operations not
in [Xquery UF 2009]. The rules RNS∗ combine the appli-
cation of the corresponding insert operations INS∗ and of a
node renaming REN. The rule RPL1 is a restriction of RPL
to n = 1 (note that DEL is also a special cases of RPL, with
n = 0). Finally, DELs deletes a single node n whose argu-
ments inherit the position. In other words, it replaces a term
with the hedge containing its children. This operation is em-
ployed to build user views of XML documents e.g. in [Fan
et al. 2004], and can also be useful for updates as well.

Example 3. Assume that some patients of the hospital of
Example 2 are grouped in one department like in

hospital(. . . surgery(p∗pa) . . .),

and that we want to suppress the department surgery while
keeping its patients. This can be done with the DELs rule
surgery(x)→ x.

We will see in Section 3.3 that allowing the operations
RNS∗, DELs or RPL has important consequences w.r.t. type
inference. Indeed, the subclass of operations in the first
column of Figure 1, called UFOreg preserves languages of HA
whereas the operations in the second column may transform
a HA language into a CF-HA language.

3.2 Forward Type Inference for UFOreg Rules

We want to characterize the sets of terms which can be ob-
tained, from terms of a given type, by arbitrary application
of updates operations defined as PTRS rules. For this pur-
pose, we shall study the recognizability (by HA and CF-HA)
of the forward closure (post∗) of automata languages under
the above rewrite rules.

Theorem 1. For all HA A on Σ, PTRS R/A ∈ UFOreg,
and HA language L, post∗R/A(L) is the language of an HA
of size polynomial and which can be constructed in PTIME
in the size of R/A and of an HA recognizing L.

In the following proofs, we describe finite automata for
the horizontal languages of HA transitions as tuples B =
(Q,S, i, F,Γ), where Q is the finite input alphabet, S is a

finite set of states, i is the initial state, F ⊆ S is the set of
final states and Q ⊆ S×(Σ∪{ε})×S is the set of transitions
and ε-transitions. Every transition (s, q, s′) will be denoted
s −→

q
s′. For s, s′ ∈ S, we write s −−→

ε

B
s′ to express that

s′ can be reached from s by a (possibly empty) sequence of
ε-transitions of B, and s −−−−−→a1...an s′, for a1, . . . , an ∈ Q, if

there exists 2(n+1) states s0, s
′
0, . . . , sn, s

′
n ∈ S with s0 = s,

sn −−→
ε

B
s′ and 0 ≤ i < n, si −−→

ε

B
s′i and (s′i, ai+1, si+1) ∈ Γ.

Proof. Let A = (Σ, P, P f ,Θ) and let AL = (Σ, QL, Q
f
L,∆L)

recognizing L. We assume that both A and AL are nor-
malized and that their state sets P and QL are disjoint.
We construct a HA A′ = (Σ, P ⊎ QL, Q

f
L,∆

′) recognizing
post∗R/A(L). For each a ∈ Σ, q ∈ QL, let La,q be the regular
language in the transition (assumed unique) a(La,q) → q ∈
∆L, and let Ba,q =

(

QL, Sa,q, ia,q, {fa,q},Γa,q

)

be a finite
automaton recognizing La,q. The sets of states Sa,q are as-
sumed pairwise disjoint. Let S be the disjoint union of all
Sa,q for all a ∈ Σ and q ∈ QL.

For the construction of ∆′, we develop a set of transition
rules Γ′ ⊆ S × (P ∪ QL) × S. Initially, we let Γ′ be the
union Γ0 of all Γa,q for a ∈ Σ, q ∈ QL, and we complete Γ′

iteratively by analyzing the different cases of update rules of
R/A. At each step, for each a ∈ Σ and q ∈ QL, we let B′

a,q

be the automaton (P ∪QL, S, ia,q, {fa,q},Γ
′). For the sake of

conciseness we make no distinction between an automaton
B′

a,q and its language L(B′
a,q).

REN for every a(x)→ b(x) ∈ R/A and q ∈ QL, we add two
ε-transitions (ib,q, ε, ia,q) and (fa,q, ε, fb,q) to Γ′.

INSfirst for every a(x) → a(p x) ∈ R/A and q ∈ QL, we add
one looping transition (ia,q, p, ia,q) to Γ′.

INSlast for every a(x) → a(x p) ∈ R/A and q ∈ QL, we add
one looping transition rule (fa,q, p, fa,q) to Γ′.

INSinto for every a(xy)→ a(xp y) ∈ R/A, q ∈ QL and s ∈ S
reachable from ia,q using the transitions of Γ′, we add
one looping transition rule (s, p, s) to Γ′.

INSbefore for every a(x) → p a(x) ∈ R/A, q ∈ QL and state
s ∈ S such that L(B′

a,q) 6= ∅ and there exists a transition
(s, q, s′) ∈ Γ′, we add one looping transition (s, p, s) to
Γ′.

INSafter for every a(x) → a(x) p ∈ R/A, q ∈ QL and s′ ∈ S
such that L(B′

a,q) 6= ∅ and there exists a transition
(s, q, s′) ∈ Γ′, we add one looping transition (s′, p, s′)
to Γ′.

RPL1 for every a(x) → p ∈ R/A, q ∈ QL, and s, s′ ∈ S
such that L(B′

a,q) 6= ∅, and there exists a transition
(s, q, s′) ∈ Γ′, we add one transition (s, p, s′) to Γ′.

DEL for every a(x) → () ∈ R/A, q ∈ QL, and s, s′ ∈ S
such that L(B′

a,q) 6= ∅, and there exists a transition
(s, q, s′) ∈ Γ′, we add one ε-transition (s, ε, s′) to Γ′.

Note that some of the above new transitions summarize
several insertions. Such a construction are comparable to
acceleration techniques used in model checking.

We iterate the above operations until a fixpoint is reached
(only a finite number of transitions can be added to Γ′ this
way). Finally, we let

∆′ := Θ ∪
{

a
(

B′
a,q

)

→ q
∣

∣ a ∈ Σ, q ∈ Q,L(B′
a,q) 6= ∅

}

.

We show in the long version that L(A′) = post∗R/A(L). 2

Corollary 1. Typechecking is EXPTIME-complete for
UFOreg and PTIME-complete when the output type is given
by a deterministic and complete HA.

Proof. Let τin and τout be two HA languages (resp. input
and output types), and let R/A by a PTRS. We want to
know whether post∗R/A(τin) ⊆ τout . Following Theorem 1,
post∗R/A(τin) is a HA language. Hence post∗R/A(τin) ∩ τout
is a HA language. The size of the HA for the complement
τout can be exponential in the size of the HA for τout if
this latter HA is non-deterministic, and it is polynomial
otherwise. Testing the emptiness of the above intersection
language solves the problem.

Regarding the lower bounds, the EXPTIME-hardness fol-
lows the fact that the inclusion problem is already EXPTIME-
complete for ranked tree automata [Seidl 1990], and the
PTIME-hardness from the fact that the inclusion problem
is PTIME-hard for deterministic HA. 2

Regarding the problem of type synthesis, if we are given
R/A and an input type τin as a HA, Theorem 1 provides
in PTIME an output type presented as a HA of polynomial
size.

3.3 Forward Type Inference for UFO+ Rules

Theorem 1 is not true for all the rules of UFO+: the rules
of UFO+ \UFOreg do not preserve HA languages in general.
It is evident for RPL, and the examples below show that it
is also the case for RNS∗ and DELs. However, we prove in
Theorem 2 that the rules of UFO+ preserve the larger class
of CF-HA language.

Example 4. Let Σ = {a, b, c, c′} and let R be the fi-
nite TRS containing the two RNSfirst and RNSlast rules
c(x)→ c′(ax), c′(x)→ c(xb). We have post∗R

(

{c}
)

∩H(Σ) =
{c(anbn) | n ≥ 0}, and this set is not a HA language. It fol-
lows that post∗R

(

{c}
)

is not a HA language.

Let Σ = {a, b, c}, let R be the finite TRS with one DELs rule
c(x)→ x and let L be the HA language containing exactly
the terms c(ac(a . . . c . . . b)b); it is recognized by the HA with
the set of transition rules

{

a→ qa, b→ qb, c
(

{(), qa q qb}
)

→
q
}

. We have post∗R(L) ∩ c
(

{a, b}∗
)

= {c(anbn) | n ≥ 0},
hence post∗R(L) is not a HA language.

Theorem 2. For all HA A on Σ, PTRS R/A ∈ UFO+, and
CF-HA language L, post∗R/A(L) is the language of a CF-HA
of size polynomial and which can be constructed in PTIME
in the size of R/A and of an CF-HA recognizing L.

Proof. Let A = (Σ, P, P f ,Θ) and let us assume that it is nor-
malized. Let AL = (Σ, QL, Q

f
L,∆L) be a CF-HA recognizing

L, normalized and without collapsing transitions. The state
sets P and QL are assumed disjoint.

We shall construct a CF-HA extended with collapsing tran-
sitions A′ = (Σ, P ⊎ QL, Q

f
L,∆

′) recognizing post∗R/A(L).
It follows that post∗R/A(L) is a CF-HA language thanks to
Lemma 1.

Very roughly, we define new CFG G′a,q for the horizontal
languages of the transitions ofA′, like in Theorem 1, starting
from the CFG for the transitions of AL and adding a new
initial non-terminal I ′a,q and new production rules, according
to cases of rewrite rules in R/A.

More formally, The set of transitions ∆′ is constructed
starting from ∆L ∪ Θ and analysing the different cases of
update rules.

For each a ∈ Σ, q ∈ QL, let La,q be the context-free language
in the transition (assumed unique) a(La,q) → q ∈ ∆L,
and let Ga,q = (QL,Na,q, Ia,q,Γa,q) be a CF grammar in
Chomski normal form generating La,q. It has alphabet (set
of terminal symbols) QL, set of non terminal symbols Na,q,
initial non-terminal Ia,q ∈ Na,q, and set of production rules
Γa,q. The sets of non-terminals Na,q are assumed pairwise
disjoint.

Let us consider one new non-terminal I ′a,q for each a ∈ Σ
and q ∈ QL. Each of these non terminals aims at becoming
the initial non terminal of the CF grammar in the transition
associated to a and q in ∆′. For technical convenience, we
also add one new non terminal Xp for each p ∈ P .

For the construction of ∆′, we construct first below

• a set C′ of collapsing transitions, and

• a set Γ′ of production rules of CF grammar over the set of
terminal symbols in P ∪QL and the set of non terminals

N =
⋃

a∈Σ,q∈Q

(

Na,q ∪ {I
′
a,q}

)

∪ {Xp | p ∈ P}.

Initially, we let C′ = ∅ and

Γ′ = Γ′
0 :=

⋃

a∈Σ,q∈Q

(

Pa,q ∪ {I
′
a,q := Ia,q}

)

∪ {Xp := p | p ∈ P}.

We now proceed by analysis of the rewrite rules of R/A for
the completion of Γ′ and C′. At each step, for each a ∈ Σ and
q ∈ QL, we let G

′
a,q be the CF grammar (P ∪QL,N , I ′a,q,Γ

′),
and let L′

a,q = L(G′a,q). The production rules of Γ′ remain
in Chomski normal form after each completion step.

REN for every a(x) → b(x) ∈ R/A, q ∈ QL, we add one
production rule I ′b,q := I ′a,q to Γ′.

RNSfirst for every a(x)→ b(p x) ∈ R/A, q ∈ QL, we add one
production rule I ′b,q := XpI

′
a,q to Γ′.

RNSlast for every a(x)→ b(x p) ∈ R/A, q ∈ QL, we add one
production rule I ′b,q := I ′a,qXp to Γ′.

INSinto for every a(xy)→ a(x p y) ∈ R/A, q ∈ QL and every
N ∈ N reachable from I ′a,q using the rules of Γ′, we add
two production rules N := NXp and N := XpN .

INSbefore for every a(x) → p a(x) ∈ R/A, and q ∈ QL such
that L′

a,q 6= ∅, we add one collapsing transition p q → q
to C′.

INSafter for every a(x) → a(x) p ∈ R/A, and q ∈ QL such
that L′

a,q 6= ∅, we add one collapsing transition q p → q
to C′.

RPL for every a(x) → p1 . . . pn ∈ R/A, with n ≥ 0, and
q ∈ QL such that L′

a,q 6= ∅, we add one collapsing
transition p1 . . . pn → q to C′.

DEL for every a(x) → () ∈ R/A and q ∈ QL such that
L′

a,q 6= ∅, we add one collapsing transition ()→ q to C′.

Note that INSfirst, INSlast, RPL1 are special cases of respec-
tively RNSfirst, RNSlast, RPL.

We iterate the above operations until a fixpoint is reached.
Indeed, only a finite number of production and collapsing
rules can be added. Finally, we let

∆′ := Θ ∪
{

a(L′
a,q)→ q

∣

∣ a ∈ Σ, q ∈ Q,L′
a,q 6= ∅

}

∪ C′

∪{L′
a,q → q | a(x)→ x ∈ R/A, L′

a,q 6= ∅}.

We show in the long version that L(A′) = post∗R/A(L).

It follows that post∗R/A(L) is a CF-HA language by Lemma 1.
2

Corollary 2. Typechecking is EXPTIME-complete for
UFO+ and PTIME-complete when the output type is given
by a deterministic and complete HA.

Proof. The proof for the upper bound works as in Corol-
lary 1, because the intersection of a CF-HA and a HA lan-
guage is a CF-HA language (there is an effective PTIME
construction of an CF-HA of polynomial size), and empti-
ness of CF-HA is decidable in PTIME. The arguments of
Corollary 1 for lower bounds are still valid here because HA
are special cases of CF-HA. 2

Regarding the problem of type synthesis for a R/A in
UFO+, if an input type τin is given as a HA or CF-HA, then
Theorem 2 provides in PTIME an output type, presented
as a CF-HA of polynomial size. Unlike HA, CF-HA are not
popular type schemes, but HA solely do not permit to extend
the results of Theorem 1, in particular for the operation RPL
of [Xquery UF 2009], as we have seen above.

Note that post∗R/A(L) can already be a CF-HA language
when the given L is a HA language (see Example 4). One
may wonder to what extent the CF-HA produced by The-
orem 1, given a HA for L and a R/A, is actually an HA.
This problem is actually undecidable, since the problem of
knowing whether a given CF language is regular is undecid-
able.

3.4 Backward Type Inference for UFO+ Rules

Since UFO+ Rules do not preserve HA languages, as for k-
pebble tree transducer [Milo et al. 2003] we may attempt to
perform typechecking using pre∗ computations (backward
type inference). The next theorem shows that this is indeed
possible, though EXPTIME, since the class of HA languages
is preserved by pre∗ when using UFO+ rules.

Theorem 3. Given a HA A on Σ and a PTRS R/A ∈
UFO+, for all HA language L, pre∗

R/A(L) is the language
of a HA of size exponential and which can be constructed in
EXPTIME in the size of R/A and of an HA recognizing L.

Proof. We consider a normalized and complete HA AL =
(Σ, QL, Q

f
L,∆L) recognizing L. Like in the proof of Theo-

rem 1, we assume given, for each a ∈ Σ, q ∈ QL, a finite au-

tomaton Ba,q = (QL, Sa,q, ia,q, {fa,q},Γa,q) recognizing the
regular language La,q in the transition a(La,q)→ q ∈ ∆L.

Unlike the proofs of Theorems 1 and 2, we will incrementally
add transitions to AL, according to the rules of R/A, until a
fixpoint automaton is reached which recognizes pre∗

R/A(L).
Every transition added has the form a0(B) → q0 where B
belongs to the smallest set C defined below.

More precisely, we construct a finite sequence sequence
of HA A0,A1, . . . ,Ak whose final element’s language is
pre∗

R/A(L), where for all i ≤ k, Ai = (Σ, QL, Q
f
L,∆i). For

the construction of the transition sets ∆i, we consider the
set C of finite automata over QL defined as the smallest set
such that:

• C contains every Ba,q for a ∈ Σ, q ∈ QL,

• for all B ∈ C, B = (QL, S, i, F,Γ) and all states s, s′ ∈ S,
the automaton Bs,s′ := (QL, S, s, {s

′},Γ) is in C,

• for all B ∈ C, B = (QL, S, i, F,Γ) ∈ C, q ∈ QL and all
states s, s′ ∈ S, the automata (QL, S, i, F,Γ∪{〈s, q, s

′〉})
and (QL, S, i, F,Γ ∪ {〈s, ε, s

′〉}), respectively denoted by
B + 〈s, q, s′〉 and B + 〈s, ε, s′〉 also belong to C.

Note that C is finite with this definition, though exponential.

For the sake of conciseness, we make no distinction below
between an automaton B ∈ C and the language L(B)
recognized by B. Moreover, we assume that every B ∈ C
has a unique final state denoted fB and its initial state is
denoted iB.

First, we let ∆0 = ∆L. The other ∆i are constructed
recursively by iteration of the following case analysis until
a fixpoint is reached (only a finite number of transition
can be added in the construction). In the construction we
use an extension of the move relation of HA, from states
to set of states (single states are considered as singleton
sets): a(L1, . . . , Ln) →֒∆i

q (where L1, . . . , Ln ⊆ QL and
q ∈ QL) iff there exists a transition a(L) → q ∈ ∆i such
that L1 . . . Ln ⊆ L.

REN if a(x) → b(x) ∈ R/A, B ∈ C and q ∈ QL, such that
b(B) →֒∆i

q, then let ∆i+1 := ∆i ∪ {a(B)→ q}.

RNSfirst if a(x)→ b(p x) ∈ R/A, B ∈ C and q, qp ∈ QL, such
that L(Ai, qp) ∩ L(A, p) 6= ∅ and b(qpB) →֒∆i

q, then
∆i+1 := ∆i ∪ {a(B)→ q}.

RNSlast if a(x)→ b(x p) ∈ R/A, B ∈ C and q, qp ∈ QL, such
that L(Ai, qp) ∩ L(A, p) 6= ∅ and b(B qp) →֒∆i

q, then
∆i+1 := ∆i ∪ {a(B)→ q}.

INSinto if a(xy) → a(x p y) ∈ R/A, B ∈ C, s, s′ are states
of B, and q, qp ∈ QL, such that L(Ai, qp) ∩ L(A, p) 6= ∅,
s −−→

B

qp s′, and a(B) →֒∆i
q then ∆i+1 := ∆i ∪

{

a(B +

〈s, ε, s′〉)→ q
}

.

INSbefore if a(x)→ p a(x) ∈ R/A, b ∈ Σ, B,B′ ∈ C, s, s′ are
states of B, and q, qp, q

′ ∈ QL such that b(B)→ q ∈ ∆i,

a(B′) →֒∆i
q′, L(Ai, qp) ∩ L(A, p) 6= ∅, s −−−→

B

qpq
′

s′, then

∆i+1 := ∆i ∪
{

b(B + 〈s, q′, s′〉)→ q
}

.

INSafter if a(x) → a(x)p ∈ R/A, b ∈ Σ, B,B′ ∈ C, s, s′ are
states of B, and q, qp, q

′ ∈ QL such that b(B)→ q ∈ ∆i,

a(B′) →֒∆i
q′, L(Ai, qp) ∩ L(A, p) 6= ∅, s −−−→

B

q′qp s′, then

∆i+1 := ∆i ∪
{

b(B + 〈s, q′, s′〉)→ q
}

.

RPL if a(x) → p1 . . . pn ∈ R/A, b ∈ Σ, B,B′ ∈ C, s, s′

are states of B, and q, q′, q1, . . . , qn ∈ QL such that

h, (n, n′) ‖= . iff n = n′

h, (n, n′) ‖= a iff n′ is a child of n and h(n′) = a
h, (n, n′) ‖= .. iff n is a child of n′

h, (n, n′) ‖= p/p′ iff ∃m ∈ dom(h) such that
h, (n,m) ‖= p and h, (m,n′) ‖= p′

h, (n, n′) ‖= p ∪ p′ iff h, (n, n′) ‖= p or h, (n, n′) ‖= p′

h, (n, n′) ‖= p∗ iff ∃n0, . . . , nk, n0 = n, nk = n′,
and h, (ni, ni+1) ‖= p for all i < k

h, (n, n′) ‖= p[q] iff h, (n, n′) ‖= p and h, n′ |= q

h, n |= p iff ∃n′, h, (n, n′) ‖= p
h, n |= lab(a) iff h(n) = a
h, n |= q ∨ q′ iff h, n |= q or h, n |= q′

h, n |= ¬q iff h, n 6|= q

Figure 2. Semantics of Path and Node Expressions

b(B) → q ∈ ∆i, a(B
′) →֒∆i

q′, L(Ai, qj) ∩ L(A, pj) 6= ∅
for all 1 ≤ j ≤ n, s −−−−−→

B

q1...qn s′ then ∆i+1 := ∆i ∪
{

b(B+

〈s, q′, s′〉))→ q
}

.

DEL if a(x) → () ∈ R/A, b ∈ Σ, B,B′ ∈ C, s is a state of
B, q, q′ ∈ QL such that b(B) → q ∈ ∆i, a(B

′) →֒∆i
q′,

then ∆i+1 := ∆i ∪
{

b(B + 〈s, q′, s〉)→ q
}

.

DELs if a(x) → x ∈ R/A, b ∈ Σ, B ∈ C, s, s′ are states of
B, q, q′ ∈ QL such that b(B)→ q ∈ ∆i, a(Bs,s′) →֒∆i

q′,
then ∆i+1 := ∆i ∪

{

b(B + 〈s, q′, s′〉)→ q
}

.

Note that INSfirst, INSlast, RPL1 are special cases of respec-
tively RNSfirst, RNSlast, RPL. Since no state is added to the
original automaton AL and all the transitions added in-
volve horizontal languages of the set C, which is finite, the
iteration of the above operations terminates with an au-
tomaton A′. We show in the long version of this paper that
L(A′) = pre∗

R/A(L). 2

4. Selection of Target Nodes

In general, an XML update operation is applied to nodes
(called target nodes in [Xquery UF 2009]) selected in a doc-
ument using specified XPath 2.0 or XQuery expressions. In
this section, we study an extension of PTRS which permits
to model such a feature.

4.1 Controlled Rewriting

We consider a fragment XP of Regular XPath [ten Cate 2006]
with the following path expressions (where a ∈ Σ):

p := .
∣

∣ a
∣

∣ ..
∣

∣ p/p
∣

∣ p ∪ p
∣

∣ p∗
∣

∣ p[q]

and the node expressions:

q := p
∣

∣ lab(a)
∣

∣ q ∧ q
∣

∣ q ∨ q
∣

∣ ¬q

The satisfaction of a path expression p by a hedge h and a
pair of nodes n, n′ ∈ dom(h), denoted by h, (n, n′) ‖= p,
and of a node expression q by a hedge h and one node
n ∈ dom(h), denoted h, n |= q, are defined in Figure 2.
Given a path expression p, we use below the abbreviation
// p for the path expression (a1 ∪ . . . ∪ ak)

∗/p (assuming
Σ = {a1, . . . , ak}) and we shall omit a . at the beginning of
an expression.

A controlled term rewriting system over Σ is a set R of
controlled rewrite rules of the form ℓ → r at φ where
ℓ, r ∈ H(Σ,X) and φ is a path expression of XP. The rewrite
relation ofR is defined as the rewrite relation of uncontrolled

systems (see Section 2.3) by furthermore restricting the
rewrite nodes to nodes defined by φ. More precisely, h −−→

R

h′, iff there exists a controlled rule ℓ → r at φ in R, a
substitution σ, and a context u such that the node n labelled
by the variable xu in the context u is selected by φ, i.e. there
exists a root n0 of h such that h, (n0, n) ‖= φ, and h = u[ℓσ],
h′ = u[rσ]. Note that for applying a rule ℓ → r at φ it is
expected for the path expression φ and the lhs ℓ to match
the same labels.

A controlled term rewriting system parameterized by a HA
(CPTRS) over Σ is a finite set of controlled and parame-
terized rewrite rules ℓ → r at φ, where ℓ and r are like in
the definition of PTRS in Section 2.3 and φ is as above. The
rewrite relation of a CPTRS parameterized by A is defined
as the rewrite relation of the associated CTRS R[A] like in
Section 2.3.

4.2 Selection by Label

The PTRS rewrite rules of Section 3 permit to define a
minimal criteria for the selection of rewrite nodes (node
where the updates operations are applied), by specifying the
label of the selected node. Indeed, all the left-hand-sides of
rules have the form a(x) (or a(xy) for INSinto). For instance,
in the case of a rule of INSfirst: a(x)→ a(p x), a term of type
p (w.r.t. to the given HA A) can only be inserted below a
node labeled with a. For a rule INSafter: a(x)→ a(x) p, a term
of type p (w.r.t. to the given HA A) can only be inserted at
the sibling position next to a node labeled with a, and for
DEL: a(x) → (), the term to be deleted must have a label
a at its root node. It means that a PTRS rule a(x) → r is
semantically equivalent to the CPTRS rule a(x)→ r at//a.

4.3 Selection by Label and Parent’s Label

For the rules with a hedge at right-hand-side (like INSbefore,
INSafter, RPL1, DEL, DELs...), we can refine the selection by
furthermore constraining the label at the parent of the node
where the update is performed, obtaining the generalized
rules of Figure 3. Indeed, every PTRS rule of the form
b(y a(x) z) → b(y r z) in Figure 3 is semantically equivalent
to the CPTRS rule a(x)→ r at //b/a.

Example 5. The DEL′ rule

hospital(y patient(x) z)→ hospital(y z)

can be used to delete a patient only if it is located under a
hospital node selected by the path expression //hospital[./patient].
It corresponds to the CPTRS rule patient(x) → () at

//hospital/patient.

Let us call UFO′+ the class of all PTRS with rules in
UFO+ or of a kind described in Figure 3. The result of
Theorem 3 for backward type inference can be straightfor-
wardly extended from UFO+ to UFO′+. For instance, dur-
ing the iteration, if the PTRS R/A contains a rule INS′

before

b(y a(x) z) → b(y p a(x) z), and if B,B′ ∈ C, s, s′ are states

of B, and q, qp, q
′ ∈ QL such that s −−−→

B

qpq
′

s′, b(B)→ q is one

of the current transitions and a(B′) can reach q′ and some
term of L(A, p) can reach qp using the current transitions,
then we add the transition b

(

B ∪ {〈s, q′, s′〉}
)

→ q.

Theorem 4. Given a HA A on Σ and a PTRS R/A ∈
UFO

′+, for all HA language L, pre∗
R/A(L) is the language

of a HA of size exponential and which can be constructed in
EXPTIME in the size of R/A and of an HA recognizing L.

b(y a(x) z) → b(y p a(x) z) INS′
before

b(y a(x) z) → b(y a(x) p z) INS′
after

b(y a(x) z) → b(y p z) RPL′
1 b(y a(x) z) → b(y p1 . . . pn z) RPL′

b(y a(x) z) → b(y z) DEL′ b(y a(x) z) → b(y x z) DEL′
s

Figure 3. PTRS rules for Update Facility Operations with Control of Parent’s Label

Proof. The proof is very close to the proof of Theorem 3.
Indeed, in the above construction for Theorem 3, we con-
sider the applications of rules INSbefore, INSafter, RPL, DEL
and DELs under any symbol b ∈ Σ. Here instead, we can re-
strict the construction to the application under the symbol
specified in the lhs of the rewrite rules. More precisely, let
us just detail below the cases of the construction which are
modified.

INS′
before if b(y a(x) z)→ b(y p a(x) z) ∈ R/A, B,B′ ∈ C, s, s′

are states of B, and q, qp, q
′ ∈ QL such that b(B)→ q ∈

∆i, a(B
′) →֒∆i

q′, L(Ai, qp) ∩ L(A, p) 6= ∅, s −−−→
B

qpq
′

s′,

then ∆i+1 := ∆i ∪
{

b(B + 〈s, q′, s′〉)→ q
}

.

INS′
after if b(y a(x) z) → b(y a(x) p z) ∈ R/A, B,B′ ∈ C, s, s′

are states of B, and q, qp, q
′ ∈ QL such that b(B)→ q ∈

∆i, a(B
′) →֒∆i

q′, L(Ai, qp) ∩ L(A, p) 6= ∅, s −−−→
B

q′qp s′,

then ∆i+1 := ∆i ∪
{

b(B + 〈s, q′, s′〉)→ q
}

.

RPL′ if b(y a(x) z) → b(y p1 . . . pn z) ∈ R/A, B,B′ ∈ C,
s, s′ are states of B, and q, q′, q1, . . . , qn ∈ QL such that
b(B) → q ∈ ∆i, a(B

′) →֒∆i
q′, L(Ai, qj) ∩ L(A, pj) 6= ∅

for all 1 ≤ j ≤ n, s −−−−−→
B

q1...qn s′ then ∆i+1 := ∆i ∪
{

b(B+

〈s, q′, s′〉))→ q
}

.

DEL′ if b(y a(x) z) → b(yz) ∈ R/A, B,B′ ∈ C, s is a state
of B, q, q′ ∈ QL such that b(B)→ q ∈ ∆i, a(B

′) →֒∆i
q′,

then ∆i+1 := ∆i ∪
{

b(B + 〈s, q′, s〉)→ q
}

.

DEL′
s if b(y a(x) z) → b(yxz) ∈ R/A, B ∈ C, s, s′ are states
of B, q, q′ ∈ QL such that b(B)→ q ∈ ∆i, a(Bs,s′) →֒∆i

q′, then ∆i+1 := ∆i ∪
{

b(B + 〈s, q′, s′〉)→ q
}

.

The rest of the proof is the same as for Theorem 3. 2

4.4 Selection by XPath Expressions

Allowing more navigation axis, like the parent axis, in the
control expressions φ of the CPTRS rules leads to the
undecidability of reachability, hence of typechecking.

More precisely, let XP1 be the following fragment of path
expressions of XP (where a ∈ Σ):

p1 := .
∣

∣ a
∣

∣ ..
∣

∣ p1/p1
∣

∣ p1 ∪ p1
∣

∣ p1[lab(a)]

Theorem 5. Reachability is undecidable for CPTRS with
rules of the form ℓ → r at φ with ℓ → r ∈ UFOreg of type
REN or RPL1, and φ ∈ XP1.

Proof. The proof is very close to the proof of undecidability
of inconsistency of update ACPs in [Fundulaki and Maneth
2007]. We reduce the halting problem of a deterministic Tur-
ing Machine (TM)M that work on half a tape (unbounded
on the right). Let Γ = {0, 1, ♭} be the tape alphabet (♭ is
the blank symbol) and S = {s1, s2, . . . , sn} be the state set
ofM.

We consider the alphabet Σ := {g} ∪ Γ∪ (S ×Σ)∪ (S ×Σ)′

for representing the configurations of M as binary terms.
A symbol of the form 〈s, a〉 with s ∈ S and a ∈ Γ will be
used to indicate the position of the head ofM. For instance,

the TM configuration with tape abcde ♭ ♭ . . ., symbol d under
head, and state s will be represented by the following binary
term of T (Σ): g(a g(b g(c g(〈s, d〉 g(eg(♭ ♭))))).

We also use a trivial HA automaton A = (Σ, Q′, Q′, δ) to
recognize some particular terms: every term of the form
g(〈r, ♭〉′, ♭) (with r ∈ S) will be recognized in a state
pg(〈r,♭〉′,♭) ∈ Q′, and it is the only term recognized in this
state.

We define a CPTRS R/A such that every transition ofM
can be simulated by a sequence of (at most three) rewrite
steps with R/A.

For each TM instruction of type: ”In state s reading a go
to state r and write b”, we define the following uncontrolled
PTRS rule (of type REN): 〈s, a〉(x)→ 〈r, b〉(x).

For each TM instruction of type: ”In state s reading a go
to state r and move left”, we define the following CPTRS
rules:

1. b(x) → 〈r, b〉′(x) at //〈s, a〉/../../b (for all b ∈ {0, 1}),
(the symbol b at the left of the head - marked by 〈s, a〉 -
is renamed into the temporary symbol 〈r, b〉′)

2. 〈s, a〉(x)→ a(x) at //〈r, b〉′/g/〈s, a〉
(〈s, a〉 is renamed into a if it has 〈r, b〉′ at its left),

3. 〈r, b〉′(x)→ 〈r, b〉(x) at //a/../../〈r, b〉′

(〈r, b〉′ is renamed into 〈r, b〉, which marks the new posi-
tion of the head).

Note the use of the XPath expressions (selecting rewrite
nodes) for checking the neighbor symbol and ensuring a
correct chaining of the rewrite steps. Note also that for
the first rule, if a is the first symbol of the tape, then the
rule cannot be applied because of the path expression, this
corresponds to the fact that the Turing machine cannot
move to the left of the beginning of the tape.

For a transition of M moving to the right, we also add a
RPL rule for moving the ♭ marker. More precisely, for each
instruction of type: ”In state s reading a go to state r and
move right”, we define the following CPTRS rules of type
REN and RPL1 (we recall that pg(〈r,♭〉′,♭) is a state of A):

b(x) → 〈r, b〉′(x) at //〈s, a〉/../g/g/b
for all b ∈ {0, 1}

♭(x) → pg(〈r,♭〉′ ,♭) at //〈s, a〉/../g/♭
〈s, a〉(x) → a(x) at //〈r, b〉′/../../〈s, a〉
〈r, b〉′(x) → 〈r, b〉(x) at //a/../g/g/〈r, b〉′

The TM instruction will be executed in three rewrite steps:
first the symbol at position at the right of the head (marked
by 〈s, a〉) is renamed from b into the temporary symbol
〈r, b〉′. Next 〈s, a〉 is renamed into a and finally 〈r, b〉′ is
renamed into 〈r, b〉, which marks the new position of the
head. The tests in the path expressions for the selection of
rewrite nodes will ensure a correct chaining of the rewrite
steps: at each step, we check the neighbor position in order
to test that the previous step has been applied.

For all couple of TM configurations T1, T2 and their respec-
tive term encodings t1, t2, there is a sequence of transitions
from T1 to T2 withM iff t1 −−−−→

∗

R/A
t2.

Assuming (wlog) that M has unique initial and final con-
figurations, we can conclude. 2

5. ACP for XML Updates

In this last section we study some models of Access Control
Policies (ACP) for the update operations defined in Sec-
tion 3, and verification problems for these ACP. We con-
sider two kind of formalisms from the literature for the
specification of XML ACPs. The first formalism is the most
widespread. It consists in defining an ACP as a set of up-
dates rules, partitioned into authorized and forbidden oper-
ations. The second one is a most recent proposal of [Fundu-
laki and Maneth 2007] where the ACP is defined by adding
security annotations to a DTD.

5.1 Local Consistency of Rule-based ACPs

An ACP for XML updates can be defined by a pair
(Ra/A,Rf/A) of PTRS, where Ra contains allowed opera-
tions and Rf contains forbidden operations (see e.g. [Bravo
et al. 2008]). Such an ACP is called inconsistent [Bravo et al.
2008; Fundulaki and Maneth 2007] if some forbidden oper-
ation can be simulated through a sequence of allowed oper-
ations, i.e. if there exists t, u ∈ T (Σ) such that t −−−−→

Rf/A
u

and t −−−−→∗

Ra/A
u.

Example 6. Assume that in the hospital document of ex-
ample 2, it is forbidden to rename a patient, that is the fol-
lowing update of RPL′

1 is forbidden: patient(y name(x) z) →
patient(y pn z). If the following updates are allowed: patient(x)→
() for deleting a patient, and hospital(x)→ hospital(x ppa) to
insert a patient, then we have an inconsistency in the sense
of [Bravo et al. 2008] since the effect of the forbidden update
can be obtained by a combination of allowed updates.

Using the results of Section 3, we can decide the above
problems individually for terms of T (Σ). More precisely, we
solve the following problem called local inconsistency : given
a HA A over Σ and a term t ∈ T (Σ), an ACP (Ra/A,Rf/A)
is locally inconsistent if there exists u ∈ T (Σ) such that
t −−−−→

Rf/A
u and t −−−−→∗

Ra/A
u?

Theorem 6. Local inconsistency is decidable in PTIME for
UFO+ ACPs.

Proof. It can be easily shown that the set {u ∈ T (Σ) |
t −−−−→

Rf/A
u} is the language of a HA of size polynomial

and constructed in PTIME on the sizes of A, Rf and t. By
Theorem 2, post∗Ra/A

({t}) is the language of a CF-HA of
polynomial size and constructed in polynomial time on the
sizes of A, Ra and t. The ACP is locally inconsistent w.r.t.
t iff the intersection of the two above language is not empty,
and this property can be tested in PTIME. 2

Inconsistency is undecidable [Fundulaki and Maneth 2007]
for an ACP defined by a pair (Ra/A,Rf/A) of CPTRS of
Section 4. Moreover, in this setting, the problem of reach-
ability (whether a given term t can be obtained from a
given term s using instances of rules of Ra/A which are
not in Rf/A) is also undecidable [Moore 2009], therefore lo-
cal consistency is undecidable as well. It is an open question
whether inconsistency is decidable or not for PTRS of type
UFOreg or UFO+.

5.2 Local Consistency of DTD-based ACPs

Following the principle of DTD-based ACPs [Fan et al.
2004], [Fundulaki and Maneth 2007] have proposed the lan-
guage XACUannot for the definition of ACP for XML updates
in presence of a DTD D. The idea is to add to D some
security annotations specifying the authorizations for the
update operations for XML documents valid for D. In [Fan
et al. 2004], the annotations are mapping from pairs of DTD
elements types (b, a) to authorization, specifying the right
to access a nodes which are children of b nodes. Such an-
notations can be compared to the rewrite node selection
presented in Section 4.3.

The formalism of [Fan et al. 2004; Fundulaki and Maneth
2007] imposes the condition that every document t to which
we want to apply an update operation (under the given
ACP) must be valid for the DTD D.

In our rewrite-based formalism, the above condition may be
expressed by adding global constraints to the parameterized
rewrite rules of Section 2.3. These global constraints restrict
the rewrite relation to terms in a given HA language. The-
orem 7 below shows that, unfortunately, adding such con-
straints to parameterized rewrite rules of type REN or RPL
makes the reachability undecidable.

Given a HA A = (Σ, Q,Qf ,∆), a term rewriting system
over Σ, parameterized by A and with global constraints
(PGTRS) is given by a PTRS, denoted R/A, (see Sec-
tion 2.3) and L ⊆ T (Σ) an HA language. We say that L is
the constraint of R. The rewrite relation generated by the
PGTRS is defined as the restriction of the relation defined
in Section 2.3 to ground terms such that for the application
of a rule ℓ→ r ∈ R/A to a term t, we require that t ∈ L.

Theorem 7. Reachability is undecidable for PGTRS’s with
rules in UFOreg and constraint given by a non recursive
DTD.

Proof. The proof is a variant of the one given by A. Spel-
ten [Spelten 2006] for subterm and flat prefix rewriting. Like
in the proof of Theorem 5, we will reduce the halting prob-
lem of a Deterministic Turing Machine (TM)M that work
on half a tape (unbounded on the right). However, configu-
rations are now encoded as flat terms.

We consider the same tape alphabet Γ = {0, 1, ♭}, (♭ is the
blank symbol) and state set S = {s1, s2, . . . , sn} ofM as in
the proof of Theorem 5, and the following alphabet Σ for
the representation of the configurations ofM.

Σ := {g} ∪ {0, 1, ♭} ∪ (S × Σ) ∪ (S ×Σ)′}.

For instance, the TM configuration with tape abcde ♭ ♭ . . .,
symbol d under head, state s, will be represented by the
following flat term of T (Σ): g(abc〈s, d〉e ♭ ♭).

We shall also use a trivial HA automata A = (Σ, Q′, Q′, δ})
(as in the proof of Theorem 5) which recognizes only con-
stant symbols by taking Q′ = {pσ|σ ∈ Σ} and δ = {σ →
pσ | σ ∈ Σ}.

We define a PGTRS R/A such that every transition of
M can be simulated by a sequence of (at most three)
rewrite steps withR/A. Let us first introduce some standard
auxiliary PTRS rules and some word regular languages for
controlling rule applications.

For each instruction ofM of type: ”In state s reading a go
to state r and write b”, we define the following TRS rule:

〈s, a〉(x)→ 〈r, b〉(x)

We also define the regular word language

L〈s,a〉 = Γ∗〈s, a〉Γ∗.

For each instruction ofM of type: ”In state s reading a go
to state r and move right”, we define the following PTRS
rules of types REN and INSafter (note that p♭ is a state of A):

b(x) → 〈r, b〉′(x) for all b ∈ {0, 1, ♭}
♭(x) → ♭(x) p♭
〈s, a〉(x) → a(x)
〈r, b〉′(x) → 〈r, b〉(x) for all b ∈ Γ.

We also define the regular word languages:

L〈s,a〉 = Γ∗〈s, a〉Γ∗

L〈s,a〉′ = Γ∗〈s, a〉′ Γ∗

L〈s,a〉〈r,b〉′ = Γ∗〈s, a〉〈r, b〉′ Γ∗ for all b ∈ Γ.

For each instruction ofM of type: ”In state s reading a go
to state r and move left”, we define the following TRS rules:

b(x) → 〈r, b〉′(x) for all b ∈ {0, 1}
〈s, a〉(x) → a(x)
〈r, b〉′(x) → 〈r, b〉(x) for all b ∈ {0, 1}

We also define the regular word languages:

L〈s,a〉 = Γ∗〈s, a〉Γ∗

L〈s,a〉′ = Γ∗〈s, a〉′ Γ∗

L〈r,b〉′〈s,a〉 = Γ∗〈r, b〉′〈s, a〉Γ∗ for all b ∈ {0, 1}.

The constraint of the PGTRS will be defined by the non
recursive DTD D : g → L where L is the finite union of
the regular languages associated to the instructions ofM as
above. Since the machine to be simulated is deterministic,
the union is disjoint.

Our final PGTRS is given byR/A and L so that the rewrite
rules in R/A can only be applied to terms satisfying the
DTD D. With the above constraint, the PGTRS rules of
R/A can only be applied to terms valid for the DTD D,
ensuring a correct chaining for the application of these rules.

By case inspection we can show that for any couple of TM
configurations T1, T2 and their respective term encodings
t1, t2, there is a sequence of transitions from T1 to T2 iff
t1 −−−−→

∗

R/A
t2. The theorem follows. 2

The result can be contrasted with the decidability of reach-
ability for ground rewriting [Gilleron 1991].

In [Abiteboul et al. 2009] the author study the more general
problem of satisfiability for active XML documents in the
context and unranked unordered terms. This property is
shown decidable for insertions constrained by an unordered
DTD, but undecidable when they are constrained by an
unordered HA.

Corollary 3. Local inconsistency is undecidable for PGTRS
with rules in UFO+ and with constraint given by a non re-
cursive DTD.

6. Conclusion

We have proposed a model for the primitive XML updates
operations of [Xquery UF 2009] based on term rewriting sys-
tems parameterized by hedge automata (PTRS), and stud-

ied the problems of type inference and typechecking for arbi-
trary long sequences of such operations. We have also stud-
ied some extensions of the model for selecting the rewrite
positions with XPath expressions (CPTRS) and restricting
of the application of update operations to documents con-
forming to a fixed non recursive DTD (PGTRS). Finally, we
have shown how to apply our results to show the decidabil-
ity of the property of local inconsistency of access control
policies for XML updates.

One of our main results of forward type inference (Theo-
rem 2) requires to use CF-HA (a strict extension of hedge
automata) for output types. One may wonder whether
this result could be adapted to compute regular over-
approximations of output types, leading to an approximat-
ing forward type inference algorithm, in an approach similar
to e.g. [Touili 2007].

Reachability is undecidable for CPTRS rules controlled with
XPath expressions with child and parent axis. The cases
of CPTRS rules controlled with a downward XPath frag-
ment, or a regular downward XPath fragment, deserve to
be considered. Indeed, a decidability result for typecheck-
ing in these settings should give a novel approach (using
CPTRS) to known problems on other tree transformations
formalisms (like MTTs or XSLT).

The W3C recommendation [Xquery UF 2009] defines some
priorities for the application of update operations (for in-
stance REN has higher priority than DEL). The influence of
such restriction on type inference should be investigated. Fi-
nally, it could also be interesting to apply a similar approach
for studying updates of unranked unordered trees.

Acknowledgments

The authors wish to thank Serge Abiteboul, Pierre Bourhis,
Sebastian Maneth and Luc Segoufin for discussions discus-
sions about XML updates and access control, and the anony-
mous referees for their numerous comments and suggestions.

References

S. Abiteboul, P. Bourhis, and B. Marinoiu. Satisfiability and
relevance for queries over active documents. In Proceedings
of the 28th ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems (PODS), pages 87–96. ACM,
2009.

M. Benedikt and J. Cheney. Semantics, Types and Effects for
XML Updates. In Proceedings of the 12th International
Symposium, Database Programming Languages (DBPL),
volume 5708 of LNCS, pages 1–17, Springer, 2009.

V. Benzaken , G. Castagna and A. Frisch. CDuce: an XML-
centric general-purpose language. In Proceedings of the
8th ACM SIGPLAN International conference on Functional
programming, pages 51-63, ACM, 2003.

A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular
Model Checking. In Proceedings of the 12th Int. Conference on
Computer Aided Verification (CAV), volume 1855 of LNCS,
pages 403–418. Springer, 2000.

A. Bouajjani and T. Touili. On computing reachability sets of
process rewrite systems. In Proceedings 16th International
Conference Term Rewriting and Applications (RTA), volume
3467 of LNCS, pages 484–499. Springer, 2005.

L. Bravo, J. Cheney, and I. Fundulaki. ACCOn: Checking Con-
sistency of XML Write-Access Control Policies. In Proceedings
11th International Conference on Extending Database Tech-
nology (EDBT), volume 261 of ACM International Conference
Proceeding Series, pages 715–719. ACM, 2008.

S. C. Lim and S. H. Son. Access Control of XML Documents
Considering Update Operations. In Proceedings of ACM
Workshop on XML Security, ACM, 2003.

D. Chamberlin and J. Robie. XQuery Update Facility 1.0.
W3C Candidate Recommendation. http://www.w3.org/TR/
xquery-update-10/, 2009.

H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree automata
techniques and applications. Available on: http://tata.
gforge.inria.fr/, 2007.

E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and P. Sama-
rati. Securing XML Documents. In Proceedings of the 7th
International Conference on Extending Database Technology
(EDBT), volume 1777 of LNCS, pages 121–135. Springer,
2000.

N. Dershowitz and J. P. Jouannaud. Rewrite systems. In
Handbook of Theoretical Computer Science (Vol. B: Formal
Models and Semantics), pages 243–320, Amsterdam, North-
Holland, 1990.

J. Engelfriet, S. Maneth, and H. Seidl. Deciding Equivalence
of Top-Down XML Transformations in Polynomial Time. J.
Comput. Syst. Sci., 75(5):271–286, 2009.

J. Engelfriet and H. Vogler. Macro Tree Transducers. J. Comp.
Syst. Sci., 31:71–146, 1985.

W. Fan, C.-Y. Chan, and M. Garofalakis. Secure XML Querying
with Security Views. In Proceedings of the 2004 ACM
SIGMOD international conference on Management of data
(SIGMOD), pages 587–598, ACM, 2004.

G. Feuillade, T. Genet, and V. Viet Triem Tong. Reachability
Analysis over Term Rewriting Systems. Journal of Automated
Reasoning, 33 (3-4):341–383, 2004.

A. Frisch and H. Hosoya. Towards Practical Typechecking for
Macro Tree Transducers. In Proceedings of the 11th Inter-
national Symposium on Database Programming Languages
(DBPL), volume 4797 of LNCS, pages 246–260. Springer,
2007.

I. Fundulaki and S. Maneth. Formalizing XML Access Control for
Update Operations. In Proceedings of the 12th ACM sympo-
sium on Access control models and technologies (SACMAT),
pages 169–174, ACM, 2007.

P. A. Gardner, G. D. Smith, M. J. Wheelhouse, and U. D. Zarfaty.
Local Hoare Reasoning about DOM. In Proceedings of the 27th
ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems (PODS), pages 261–270, ACM, 2008.

T. Genet and V. Rusu. Equational approximations for tree
automata completion. Journal of Symbolic Computation, 45
(5):574–597, 2010.

R. Gilleron. Decision problems for term rewrite systems and
recognizable tree languages. In 8th Annual Symposium on
Theoretical Aspects of Computer Science (STACS), volume
480 of LNCS, pages 148–159, Springer, 1991.

F. Jacquemard and M. Rusinowitch. Closure of Hedge-Automata
Languages by Hedge Rewriting. In Proceedings of the
19th International Conference on Rewriting Techniques and
Applications (RTA), volume 5117 of LNCS, pages 157–171,
Springer, 2008.

M. Kay. XSL Transformations (XSLT) 2.0. W3C working
draft, World Wide Web Consortium, 2003. Available at
http://www.w3.org/TR/xslt20.

C. Löding. Ground Tree Rewriting Graphs of Bounded Tree
Width. In Proceedings of the 19th Annual Symposium on
Theoretical Aspects of Computer Science (STACS), volume
2285 of LNCS, pages 559–570. Springer, 2002.

C. Löding and A. Spelten. Transition Graphs of Rewriting Sys-
tems over Unranked Trees. In Proceedings 32nd International
Symposium on Mathematical Foundations of Computer Sci-

ence (MFCS) volume 4708 of LNCS, pages 67–77, Springer,
2007.

S. Maneth, A. Berlea, T. Perst, and H. Seidl. XML Type Checking
with Macro Tree Transducers. In 24th ACM SIGACT-
SIGMOD-SIGART Symp. on Principles of Database Systems
(PODS), pages 283–294, ACM, 2005.

S. Maneth, T. Perst, and H. Seidl. Exact XML Type Checking
in Polynomial Time. In Proceedings of the 11th International
Conference on Database Theory (ICDT), volume 4353 of
LNCS, pages 254–268, Springer, 2007.

W. Martens and F. Neven. Frontiers of Tractability for
Typechecking Simple XML Transformations. In Proceedings
of the Twenty-third ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS), pages
23–34, ACM, 2004.

T. Milo, D. Suciu, and V. Vianu. Typechecking for XML
Transformers. J. of Comp. Syst. Sci., 66(1):66–97, 2003.

N. Moore. The Halting Problem and Undecidability of Document
Generation under Access Control for Tree Updates, In
Proceedings of the 3d International Conference on Language
and Automata Theory and Applications (LATA), volume 5457
of LNCS, pages 601-613, Springer, 2009.

M. Murata. “Hedge Automata: a Formal Model for XML
Schemata”. Web page, 2000.

M. Murata, D. Lee, and M. Mani. Taxonomy of XML Schema
Languages using Formal Language Theory. In Extreme Markup
Languages, 2000.

M. Murata, A. Tozawa, M. Kudo, and S. Hada. XML Access
Control using Static Analysis. ACM Trans. Inf. Syst. Secur.,
9(3):292–324, 2006.

H. Ohsaki, H. Seki, and T. Takai. Recognizing Boolean Closed
A-tree languages with Membership Conditional Rewriting
Mechanism. In Proc. of the 14th Int. Conference on Rewriting
Techniques and Applications (RTA), volume 2706 of LNCS,
pages 483–498. Springer, 2003.

T. Perst and H. Seidl. Macro Forest Transducers. Information
Processing Letters, 89:141–149, 2004.

T. Schwentick. Automata for XML - A Survey. J. Comput. Syst.
Sci., 73(3):289–315, 2007.

H. Seidl. Deciding Equivalence of Finite Tree Automata. SIAM
Journal of Computing, 19(3):424–437, 1990.

A. Spelten. Rewriting Systems over Unranked Trees. Master’s
thesis, Diplomarbeit, RWTH Aachen, 2006.

B. ten Cate. The Expressivity of XPath with Transitive Closure.
In Proceedings of the 26th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS), pages
328–337, ACM, 2006. ISBN 1-59593-318-2.

T. Touili. Computing Transitive Closures of Hedge Transforma-
tions. In In Proceedings of the 1st International Workshop on
Verification and Evaluation of Computer and Communication
Systems (VECOS), eWIC Series, British Computer Society,
2007.

A. Tozawa. Towards Static Type Checking for XSLT. In
Proceedings of the 2001 ACM Symposium on Document
engineering (DocEng), pages 18–27, ACM, 2001.

A. Proof of Lemma 1

In this proof and the following ones, we describe the CF
grammars used for defining the horizontal languages of CF-
HA transitions as tuples G = (Σ,N , I,Γ), where Σ is a
finite alphabet (set of terminal symbols), N is a set of non
terminal symbols, I ∈ N is the initial non-terminal, and
Γ ∈ N × (N ∪ Σ)∗ is a set of production rules.

Lemma 1 [Jacquemard and Rusinowitch 2008]. For every
extended CF-HA over Σ with collapsing transitions A, there
exists a CF-HA A′ without collapsing transitions such that
L(A′) ∩ T (Σ) = L(A) ∩ T (Σ). Proof. Let G = (Q,N , I,Γ)
and G1 = (Q,N1, I1,Γ1) be two CF grammars over the same
finite alphabet Q. Below, G and G1 are respectively meant
to generate the languages L and L1 of CF HA transitions
L → q and a(L1) → p. We assume wlog that the sets
of non terminals N and N1 are disjoint. Let q ∈ Q be a
terminal symbol and let Xq be a fresh non terminal symbol.
We consider below the CF grammar

G1↓
G
q :=

(

Q,N1 ⊎N ⊎ {Xq}, I1,Γ1[q ← Xq] ∪ Γ[q ← Xq]
∪{Xq := q, Xq := I}

)

where Γ[q ← Xq] denotes the set of production rules of Γ
where every occurrence of the terminal symbol q is replaced
by the non-terminal Xq . Using this construction, we can get
rid of collapsing transitions in CF HA.

We assume that A is normalized with state set Q and for
each a ∈ Σ and p ∈ Q, we let Ga,p by the CF grammar
generating the language La,p in the transition (assumed
unique) a(La,p) → p of A. In order to construct A′ out of
A, we perform the following operation for every collapsing
transition L→ q of A: (i.) delete L→ q (ii.) for each a ∈ Σ
and p ∈ Q, replace Ga,p by Ga,p↓

G
q where G is a CF grammar

generating L. 2

B. Proof of Theorem 1

We show in this section the correctness of the automata
construction presented in Section 3.2. Let us first recall the
statement of Theorem 1 and the construction.

Theorem 1. Given a HA A on Σ and a PTRS R/A ∈
UFOreg, for all HA language L, post∗R/A(L) is the language
of an HA of size polynomial and which can be constructed
in PTIME in the size of R/A and of an HA recognizing L.

Proof. Let A = (Σ, P, P f ,Θ) and let AL = (Σ, QL, Q
f
L,∆L)

recognizing L. We assume that both A and AL are nor-
malized and that their state sets P and QL are disjoint.
We construct the HA A′ = (Σ, P ⊎QL, Q

f
L,∆

′) recognizing
post∗R/A(L). For each a ∈ Σ, q ∈ QL, let La,q be the regular
language in the transition (assumed unique) a(La,q) → q ∈
∆L, and let Ba,q =

(

QL, Sa,q, ia,q, {fa,q},Γa,q

)

be a finite
automaton recognizing La,q. The sets of states Sa,q are as-
sumed pairwise disjoint. Let S be the disjoint union of all
Sa,q for all a ∈ Σ and q ∈ QL.

For the construction of ∆′, we develop a set of transition
rules Γ′ ⊆ S × (P ∪ QL) × S. Initially, we let Γ′ be the
union Γ0 of all Γa,q for a ∈ Σ, q ∈ QL, and we complete Γ′

iteratively by analyzing the different cases of update rules of
R/A. At each step, for each a ∈ Σ and q ∈ QL, we let B′

a,q

be the automaton (P ∪QL, S, ia,q, {fa,q},Γ
′). For the sake of

conciseness we make no distinction between an automaton
B′

a,q and its language L(B′
a,q).

REN for every a(x)→ b(x) ∈ R/A and q ∈ QL, we add two
ε-transitions (ib,q, ε, ia,q) and (fa,q, ε, fb,q) to Γ′.

INSfirst for every a(x) → a(p x) ∈ R/A and q ∈ QL, we add
one looping transition (ia,q, p, ia,q) to Γ′.

INSlast for every a(x) → a(x p) ∈ R/A and q ∈ QL, we add
one looping transition rule (fa,q, p, fa,q) to Γ′.

INSinto for every a(xy)→ a(xp y) ∈ R/A, q ∈ QL and s ∈ S
reachable from ia,q using the transitions of Γ′, we add
one looping transition rule (s, p, s) to Γ′.

INSbefore for every a(x) → p a(x) ∈ R/A, q ∈ QL and state
s ∈ S such that L(B′

a,q) 6= ∅ and there exists a transition
(s, q, s′) ∈ Γ′, we add one looping transition (s, p, s) to
Γ′.

INSafter for every a(x) → a(x) p ∈ R/A, q ∈ QL and s′ ∈ S
such that L(B′

a,q) 6= ∅ and there exists a transition
(s, q, s′) ∈ Γ′, we add one looping transition (s′, p, s′)
to Γ′.

RPL1 for every a(x) → p ∈ R/A, q ∈ QL, and s, s′ ∈ S
such that L(B′

a,q) 6= ∅, and there exists a transition
(s, q, s′) ∈ Γ′, we add one transition (s, p, s′) to Γ′.

DEL for every a(x) → () ∈ R/A, q ∈ QL, and s, s′ ∈ S
such that L(B′

a,q) 6= ∅, and there exists a transition
(s, q, s′) ∈ Γ′, we add one ε-transition (s, ε, s′) to Γ′.

We iterate the above operations until a fixpoint is reached
(only a finite number of transitions can be added to Γ′ this
way). Finally, we let ∆′ := Θ ∪

{

a
(

B′
a,q

)

→ q
∣

∣ a ∈ Σ, q ∈
Q,L(B′

a,q) 6= ∅
}

.

Let us show now that L(A′) = post∗R/A(L).

Lemma 2. L(A′) ⊆ post∗R/A(L).

Proof. We show more generally that for all t ∈ L(A′, q),
q ∈ QL, there exists u ∈ L(AL, q) such that u −−→

∗

R
t. The

proof is by induction on the multisetM of the applications
of horizontal transitions of Γ′ not in Γ0 in a run of A′ on t
leading to state q.

Base case. If all the horizontal transitions are in Γ0, then by
construction t ∈ L(AL, q) and we are done.

Induction step. We analyse the cases causing the addition of
a transition of Γ′ \ Γ0.

REN: let t ∈ L(A′, q) (q ∈ QL), and assume that an ε-
transition (ib,q, ε, ia,q) is used in a run of A′ on t, and that
this ε-transition was added to Γ′ because a(x) → b(x) ∈
R/A. Let

t = t[b(h)] −−→
∗

A′
t[b(q1 . . . qn)] −−→

A′
t[q0] −−→

∗

A′
q

be a reduction of A′ such that the above ε-transition is
involved in the step t[b(q1 . . . qn)] −−→

A′
t[q0], where the

the transition b(B′
b,q0

) → q0 is applied. Hence q1 . . . qn ∈
L(B′

b,q0
), with ib,q −−−−−→B′

b,q0

q1...qn fb,q, and the first step in

this computation is (ib,q, ε, ia,q). The last step must be
(fa,q, ε, fb,q), using an ε-transition added to Γ′ in the same
step as (ib,q, ε, ia,q). By deleting these first and last steps, we
get ia,q −−−−−→

B′

a,q0

q1...qn fa,q, hence q1 . . . qn ∈ L(B′
a,q0). Therefore,

we have a reduction t′ = t[a(h)] −−→
∗

A′
t[a(q1 . . . qn)] −−→

A′

t[q0] −−→
∗

A′
q (hence t′ ∈ L(A′, q)) with a measure M

strictly smaller than the above reduction for the recognition
of t. By induction hypothesis, it follows that there exists
u ∈ L(AL, q) such that u −−−−→∗

R/A
t′. Since t′ = t[a(h)] −−−−→

R/A

t[b(h)] = t, with a(x)→ b(x), we conclude that u −−−−→
∗

R/A
t.

INSfirst: let t ∈ L(A′, q) (q ∈ QL), and assume that an
transition (ia,q, p, ia,q) is used in a run of A′ on t, and that
this transition was added to Γ′ because a(x) → a(p x) ∈
R/A. Let

t = t[a(tph)] −−→
∗

A′
t[a(p q1 . . . qn)] −−→

A′
t[q0] −−→

∗

A′
q

be a reduction of A′, with tp ∈ L(A, p), such that the above
transition is involved in the step t[a(p q1 . . . qn)] −−→

A′
t[q0],

where the the transition b(B′
a,q0) → q0 is applied. Hence

p q1 . . . qn ∈ L(B′
a,q0), with ia,q −−−−−−→B′

a,q0

p q1...qn fa,q, and the

first step in this computation is (ia,q, p, ia,q). By deleting
this first step, we get ia,q −−−−−→B′

a,q0

q1...qn fa,q, hence q1 . . . qn ∈

L(B′
a,q0). Therefore, we have a reduction t′ = t[a(h)] −−→∗

A′

t[a(q1 . . . qn)] −−→
A′

t[q0] −−→
∗

A′
q (hence t′ ∈ L(A′, q)) with a

measure M strictly smaller than the above reduction for
the recognition of t. By induction hypothesis, it follows
that there exists u ∈ L(AL, q) such that u −−→

∗

R
t′. Since

t′ = t[a(h)] −−−−→
R/A

t[a(tph)] = t, with a(x) → b(x), we

conclude u −−→
∗

R
t.

INSlast: this case is similar to the previous one.

INSinto: let t ∈ L(A′, q) (q ∈ QL), and assume that an
transition (s, p, s) is used in a run of A′ on t, and that this
transition was added to Γ′ because a(xy)→ a(xpy) ∈ R/A.
Let

t = t[a(h tp ℓ)] −−→
∗

A′
t[a(q1 . . . qn p q′1 . . . q

′
m)] −−→

A′
t[q0] −−→

∗

A′
q

be a reduction of A′, with tp ∈ L(A, p), such that the above
transition (s, p, s) is involved in the step t[a(q1 . . . qn p q′1 . . . q

′
m)] −−→

A′

t[q0], where the transition b(B′
a,q0) → q0 is applied. More

precisely, assume that q1 . . . qn p q′1 . . . q
′
m ∈ L(B′

a,q0), be-

cause ia,q −−−−−→
B′

a,q0

q1...qn s −−−−→
p

B′

a,q0

s −−−−−→
B′

a,q0

q′
1
...q′m fa,q. By deleting the

middle step (s, p, s), we get ia,q −−−−−−−−−−→B′

a,q0

q1...qn q′
1
...q′m fa,q, hence

q1 . . . qn q′1 . . . q
′
m ∈ L(B′

a,q0). Therefore, we have a reduction
t′ = t[a(hℓ)] −−→

∗

A′
t[a(q1 . . . qn q′1 . . . q

′
m)] −−→

A′
t[q0] −−→

∗

A′
q

(hence t′ ∈ L(A′, q)) with a measureM strictly smaller than
the above reduction for the recognition of t. By induction
hypothesis, it follows that there exists u ∈ L(AL, q) such
that u −−−−→

∗

R/A
t′. Since t′ = t[a(hℓ)] −−−−→

R/A
t[a(h tp ℓ)] = t,

with a(xy)→ b(xpy), we conclude that u −−−−→
∗

R/A
t.

INSbefore: let t ∈ L(A′, q) (q ∈ QL), and assume that an
transition (s, p, s) is used in a run of A′ on t, and that this
transition was added to Γ′ because a(x) → p a(x) ∈ R/A
and because there exists (s, q0, s

′) ∈ Γ′ for some q0 ∈ QL

with L(B′
a,q0) 6= ∅. Let

t = t[tp a(h)] −−→
∗

A′
t[pq0] −−→

∗

A′
q

be a reduction of A′, with tp ∈ L(A, p), involving the
transition (s, p, s) in s −−−−→

pq0
B′

b,q′
s′, for some b. Removing the

transition (s, p, s), we have s −−−−→
q0

B′

b,q′
s′ and a reduction

t′ = t[a(h)] −−→
∗

A′
t[q0] −−→

∗

A′
q (meaning t′ ∈ L(A′, q))

with a measureM strictly smaller than the above reduction
for the recognition of t. By induction hypothesis, it follows
that there exists u ∈ L(AL, q) such that u −−−−→∗

R/A
t′. Since

t′ = t[a(h)] −−−−→
R/A

t[tp a(h)] = t, with a(x) → p, a(x), we

conclude that u −−−−→∗

R/A
t.

INSafter: this case is similar to the previous one.

RPL1: let t ∈ L(A′, q) (q ∈ QL), and assume that a horizon-
tal transition (s, p, s′) is used in a run of A′ on t, and that
this transition was added to Γ′ because a(x) → p ∈ R/A
and because there exists (s, q0, s

′) ∈ Γ′ for some q0 ∈ QL

such that L(B′
a,q0) 6= ∅. Let

t = t[tp] −−→
∗

A′
t[p] −−→

∗

A′
q

be a reduction of A′, with tp ∈ L(A, p), involving the added
transition (s, p, s′) in s −−−−→p

B′

b,q′
s′, for some b and some

q′ ∈ QL. Replacing the transition (s, p, s′) with (s, q0, s
′),

we obtain s −−−−→q0
B′

b,q′
s′ and a reduction t′ = t[a(h)] −−→∗

A′

t[q0] −−→
∗

A′
q (meaning t′ ∈ L(A′, q)). The measure M

of this later reduction is strictly smaller than the above
reduction for the recognition of t, because the transition
(s, q0, s

′) belongs to Γ0 (no such transition can be added by
the above procedure). By induction hypothesis, it follows
that there exists u ∈ L(AL, q) such that u −−−−→

∗

R/A
t′. Since

t′ = t[a(h)] −−−−→
R/A

t[tp] = t, with a(x) → p, we conclude

that u −−−−→
∗

R/A
t.

DEL: let t ∈ L(A′, q) (q ∈ QL), and assume that a horizontal
transition (s, ε, s′) is used in a run of A′ on t, and that this
transition was added to Γ′ because a(x) → () ∈ R/A and
because there exists (s, q0, s

′) ∈ Γ′ for some q0 ∈ QL such
that L(B′

a,q0) 6= ∅. Let us replace this ε-transition (s, ε, s′)
with (s, q0, s

′) in a reduction t −−→
∗

A′
q, we obtain a reduction

t′ = t[a(h)] −−→
∗

A′
t[q0] −−→

∗

A′
q.

It means that t′ ∈ L(A′, q). The measureM of this later re-
duction is strictly smaller than the above reduction for the
recognition of t, because the transition (s, q0, s

′) belongs to
Γ0 (no such transition can be added by the above proce-
dure). By induction hypothesis, it follows that there exists
u ∈ L(AL, q) such that u −−−−→

∗

R/A
t′. Since t′ = t[a(h)] −−−−→

R/A

t, with a(x)→ (), we conclude that u −−−−→∗

R/A
t.

(end Lemma direction ⊆) 2

Lemma 3. L(A′) ⊇ post∗R/A(L).

Proof. We show that for all t ∈ L, if t −−−−→
∗

R/A
u, then u ∈

L(A′), by induction on the length of the rewrite sequence.

Base case (0 rewrite steps). In this case, u = t ∈ L and we
are done since L = L(AL) ⊆ L(A′) by construction.

Induction step. Assume that t −−−−→
+

R/A
u with t ∈ L. We

analyse the type of rewrite rule used in the last rewrite step.

REN. The last rewrite step of the sequence involves a rewrite
rule of the form a(x)→ b(x) ∈ R/A:

u −−−−→∗

R/A
t[a(h)] −−−−→

R/A
t[b(h)] = t.

By induction hypothesis, t[a(h)] ∈ L(A′). Hence there ex-
ists a reduction sequence: t[a(h)] −−→

∗

A′
t[a(q1 . . . qn)] −−→

A′

t[q0] −−→
∗

A′
qf ∈ Qf

L with q1 . . . qn ∈ L(B′
a,q0), i.e. ia,q0 −−−−−→B′

a,q0

q1...qn

fa,q0 . By construction, the ε-transitions (ib,q0 , ε, ia,q0) and
(fa,q0 , ε, fb,q0) have been added to Γ′. Hence ib,q0 −−−−−→B′

b,q0

q1...qn

fb,q0 and q1 . . . qn ∈ L(B′
b,q0

). Therefore there exists a reduc-
tion sequence: t = t[b(h)] −−→

∗

A′
t[b(q1 . . . qn)] −−→

A′
t[q0] −−→

∗

A′

qf ∈ Qf
L and t ∈ L(A′).

INSfirst. The last rewrite step of the sequence involves a
rewrite rule of the form a(x)→ a(p x) ∈ R/A, with p ∈ P :

u −−−−→∗

R/A
t[a(h)] −−−−→

R/A
t[a(tph)] = t

with tp ∈ L(A, p). By induction hypothesis, t[a(h)] ∈
L(A′). Hence there exists a reduction sequence: t[a(h)] −−→∗

A′

t[a(q1 . . . qn)] −−→
A′

t[q0] −−→
∗

A′
qf ∈ Qf

L with q1 . . . qn ∈

L(B′
a,q0), i.e. ia,q0 −−−−−→B′

a,q0

q1...qn fa,q0 . By construction, the transi-

tion (ia,q0 , p, ia,q0) has been added to Γ′. Hence ia,q0 −−−−→
p

B′

a,q0

ia,q0 −−−−−→B′

a,q0

q1...qn fb,q0 , i.e. p q1 . . . qn ∈ L(B′
a,q0) and there exists

a reduction sequence

t = t[a(tp h)] −−→
∗

A′
t[a(p q1 . . . qn)] −−→

A′
t[q0] −−→

∗

A′
qf ∈ Qf

L.

It follows that t ∈ L(A′).

INSlast. The case where the last rewrite step of the sequence
involves a rewrite rule of the form a(x) → a(x p) ∈ R/A,
with p ∈ P is similar to the previous one.

INSinto. The last rewrite step of the sequence involves a
rewrite rule of the form a(xy) → a(x p y) ∈ R/A, with
p ∈ P :

u −−−−→
∗

R/A
t[a(hℓ)] −−−−→

R/A
t[a(h tp ℓ)] = t

with tp ∈ L(A, p). By induction hypothesis, t[a(hℓ)] ∈
L(A′). Hence there exists a reduction sequence: t[a(hℓ)] −−→

∗

A′

t[a(q1 . . . qn q′1 . . . q
′
m)] −−→

A′
t[q0] −−→

∗

A′
qf ∈ Qf

L with q1 . . . qn q′1 . . . q
′
m ∈

L(B′
a,q0), i.e. ia,q0 −−−−−→B′

a,q0

q1...qn s −−−−−→
B′

a,q0

q′
1
...q′m fa,q0 for some state

s ∈ S. By construction, the looping transition (s, p, s) has

been added to Γ′. Hence ia,q0 −−−−−→B′

a,q0

q1...qn s −−−−→
p

B′

a,q0

s −−−−−→
B′

a,q0

q′
1
...q′m

fa,q0 , i.e. q1 . . . qn p q′1 . . . q
′
m ∈ L(B′

a,q0) and there exists a
reduction sequence

t = t[a(h tp ℓ)] −−→
∗

A′
t[a(q1 . . . qn p q′1 . . . q

′
m)]

−−→
A′

t[q0] −−→
∗

A′
qf ∈ Qf

L.

It follows that t ∈ L(A′).

INSbefore. The last rewrite step of the sequence involves a
rewrite rule of the form a(x)→ p a(x) ∈ R/A, with p ∈ P :

u −−−−→∗

R/A
t[a(h)] −−−−→

R/A
t[tp a(h)] = t

with tp ∈ L(A, p). By induction hypothesis, t[a(h)] ∈
L(A′). Hence there exists a reduction sequence: t[a(h)] −−→

∗

A′

t[a(q1 . . . qn)] −−→
A′

t[q0] −−→
∗

A′
qf ∈ Qf

L. Hence L(B′
a,q0) 6= ∅

and at some point of the reduction, a transition (s, q0, s
′) ∈

Γ′ is involved. By construction, the transition (s, p, s) has
been added to Γ′. Hence there exists a reduction sequence
t = t[tp a(h)] −−→

∗

A′
t[p q0] −−→

∗

A′
qf ∈ Qf

L. It follows that

t ∈ L(A′).

INSafter. The case where the last rewrite step of the sequence
involves a rewrite rule of the form a(x) → a(x) p ∈ R/A,
with p ∈ P is similar to the previous one.

RPL1. The last rewrite step of the sequence involves a rewrite
rule of the form a(x)→ p ∈ R/A, with p ∈ P :

u −−−−→
∗

R/A
t[a(h)] −−−−→

R/A
t[tp] = t

with tp ∈ L(A, p). By induction hypothesis, t[a(h)] ∈
L(A′). Hence there exists a reduction sequence: t[a(h)] −−→∗

A′

t[a(q1 . . . qn)] −−→A′ t[q0] −−→
∗

A′ qf ∈ Qf
L. Hence L(B′

a,q0) 6= ∅

and at some point of the reduction, a transition (s, q0, s
′) ∈

Γ′ is applied. By construction, the transition (s, p, s′) has
been added to Γ′, and there exists a reduction sequence
t = t[tp] −−→

∗

A′
t[p] −−→

∗

A′
qf ∈ Qf

L. It follows that t ∈ L(A′).

DEL. The last rewrite step of the sequence involves a rewrite
rule of the form a(x)→ () ∈ R/A:

u −−−−→∗

R/A
t[a(h)] −−−−→

R/A
t[()] = t.

By induction hypothesis, t[a(h)] ∈ L(A′). Hence there ex-
ists a reduction sequence: t[a(h)] −−→

∗

A′
t[a(q1 . . . qn)] −−→

A′

t[q0] −−→
∗

A′
qf ∈ Qf

L. Hence L(B′
a,q0) 6= ∅ and at some point

of the reduction, a transition (s, q0, s
′) ∈ Γ′ is applied. By

construction, the ε-transition (s, ε, s′) has been added to Γ′,
and there exists a reduction sequence t −−→

∗

A′
qf ∈ Qf

L, hence

t ∈ L(A′).

(end Lemma direction ⊇) 2 (end Theorem) 2

C. Proof of Theorem 2

We show in this section the correctness of the automata
construction presented in Section 3.3, after recalling the
statement of Theorem 2 and the construction.

Theorem 2. Given a HA A on Σ and a PTRS R/A ∈
UFO+, for all CF-HA term language L, post∗R/A(L) is the
language of an CF-HA of size polynomial and which can be
constructed in PTIME in the size of R/A and of an CF-HA
recognizing L. Proof. Let A = (Σ, P, P f ,Θ) and let us as-
sume that it is normalized. Let AL = (Σ, QL, Q

f
L,∆L) be

a CF-HA recognizing L, normalized and without collapsing
transitions. The state sets P and QL are assumed disjoint.
We shall construct a CF-HA extended with collapsing tran-
sitions A′ = (Σ, P ⊎ QL, Q

f
L,∆

′) recognizing post∗R/A(L).
It follows that post∗R/A(L) is a CF-HA language thanks to

Lemma 1). The set of transitions ∆′ is constructed starting
from ∆L ∪ Θ and analysing the different cases of update
rules.

For each a ∈ Σ, q ∈ QL, let La,q be the context-free language
in the transition (assumed unique) a(La,q) → q ∈ ∆L,
and let Ga,q = (QL,Na,q, Ia,q,Γa,q) be a CF grammar in
Chomski normal form generating La,q. It has alphabet (set
of terminal symbols) QL, set of non terminal symbols Na,q,
initial non-terminal Ia,q ∈ Na,q, and set of production rules
Γa,q. The sets of non-terminals Na,q are assumed pairwise
disjoint.

Let us consider one new non-terminal I ′a,q for each a ∈ Σ
and q ∈ QL. Each of these non terminals aims at becoming
the initial non terminal of the CF grammar in the transition
associated to a and q in ∆′. For technical convenience, we
also add one new non terminal Xp for each p ∈ P . For

the construction of ∆′, we shall construct below a set C′

of collapsing transitions, initially empty, and a set Γ′ of
production rules of CF grammar over the set of terminal
symbols in P ∪QL and the set of non terminals

N =
⋃

a∈Σ,q∈Q

(

Na,q ∪ {I
′
a,q}

)

∪ {Xp | p ∈ P}.

Initially, we let

Γ′ = Γ′
0 :=

⋃

a∈Σ,q∈Q

(

Pa,q∪{I
′
a,q := Ia,q}

)

∪{Xp := p | p ∈ P}.

We now proceed by analysis of the rewrite rules of R/A for
the completion of Γ′ and C′. At each step, for each a ∈ Σ and
q ∈ QL, we let G

′
a,q be the CF grammar (P ∪QL,N , I ′a,q,Γ

′),
and let L′

a,q = L(G′a,q). The production rules of Γ′ remain
in Chomski normal form after each completion step.

REN for every a(x) → b(x) ∈ R/A, q ∈ QL, we add one
production rule I ′b,q := I ′a,q to Γ′.

RNSfirst for every a(x)→ b(p x) ∈ R/A, q ∈ QL, we add one
production rule I ′b,q := XpI

′
a,q to Γ′.

RNSlast for every a(x)→ b(x p) ∈ R/A, q ∈ QL, we add one
production rule I ′b,q := I ′a,qXp to Γ′.

INSinto for every a(xy)→ a(x p y) ∈ R/A, q ∈ QL and every
N ∈ N reachable from I ′a,q using the rules of Γ′, we add
two production rules N := NXp and N := XpN .

INSbefore for every a(x) → p a(x) ∈ R/A, and q ∈ QL such
that L′

a,q 6= ∅, we add one collapsing transition p q → q
to C′.

INSafter for every a(x) → a(x) p ∈ R/A, and q ∈ QL such
that L′

a,q 6= ∅, we add one collapsing transition q p → q
to C′.

RPL for every a(x) → p1 . . . pn ∈ R/A, with n ≥ 0, and
q ∈ QL such that L′

a,q 6= ∅, we add one collapsing
transition p1 . . . pn → q to C′.

DEL for every a(x) → () ∈ R/A and q ∈ QL such that
L′

a,q 6= ∅, we add one collapsing transition ()→ q to C′.

Note that INSfirst, INSlast, RPL1 are special cases of respec-
tively RNSfirst, RNSlast, RPL.

We iterate the above operations until a fixpoint is reached.
Indeed, only a finite number of production and collapsing
rules can be added. Finally, we let

∆′ := Θ ∪
{

a(L′
a,q)→ q

∣

∣ a ∈ Σ, q ∈ Q,L′
a,q 6= ∅

}

∪ C′

∪{L′
a,q → q | a(x)→ x ∈ R/A, L′

a,q 6= ∅}.

We show now that L(A′) = post∗R/A(L). It follows that
post∗R/A(L) is a CF-HA language by Lemma 1.

Lemma 4. L(A′) ⊆ post∗R/A(L).

Proof. We show more generally that for all t ∈ L(A′, q),
q ∈ QL, there exists u ∈ L(AL, q) such that u −−−−→∗

R/A
t.

The proof is by induction on the number of applications of
collapsing transitions in the reduction t −−→

∗

A′
q.

Base case. For the base case (no collapsing transition ap-
plied), we make a second induction on the number of ap-
plication of production rules of Γ′ \ Γ0 in the derivations,
by the grammars G′a,q0 , for the generations of the sequences
of states q1 . . . qn ∈ Q∗ used in moves of A′ of the form

u[a(q1 . . . qn)]→ u[q0] in the reduction t −−→∗
A′

q. Let us note

⊢ the relation of derivation using the production rules of Γ′,
and ⊢∗ its transitive closure.

Intuitively every application of a production rule of Γ′ \
Γ0 corresponds to a rewrite step with a rule of R/A in
the rewrite sequence u −−−−→∗

R/A
t, according to the above

construction cases.

Base case (second induction). For the base case, no produc-
tion rule of Γ′ \Γ0 is applied. It means that t −−−→

∗

AL
q (every

CF grammar derivation in the reduction t −−→
∗

A′
q starts with

I ′a,q ⊢ Ia,q) and we let u = t.

Induction step (second induction). Assume that the reduc-
tion t −−→∗

A′
q has the form

t = t[a(t1 . . . tn)] −−→
∗

A′
t[a(q1 . . . qn)] −−→

A′
t[q0] −−→

∗

A′
q

where t[a(q1 . . . qn)] −−→
A′

t[q0] is one transition such that

the derivation of I ′a,q0 ⊢
∗ q1 . . . qn by G′a,q0 involves one

production rule of Γ′ \ Γ0. We shall analyse below the
different cases of rewrite rules of R/A (rules of type UFOreg)
which permitted the addition of this production rule of
Γ′ \ Γ0. Let us first note before that we can assume that
for every i ≤ n, ti −−→

∗

A′
qi because no collapsing transition

are used, by hypothesis. Hence, together with the above
hypothesis, it follows that ti ∈ L(A, qi) for all i ≤ n.

Case REN. We have I ′a,q0 ⊢ I ′b,q0 ⊢
∗ q1 . . . qn, and the first

production rule used in this derivation, I ′a,q0 := I ′b,q0 , was
added because there exists a rule b(x) → a(x) ∈ R/A. It
follows that I ′b,q0 ⊢

∗ q1 . . . qn and then that

s = t[b(t1 . . . tn)] −−→
∗

A′
t
[

b(q1 . . . qn)
]

−−→
A′

t[q0] −−→
∗

A′
q.

Hence, by induction hypothesis, there exists u ∈ L(A, q)
such that u −−−−→∗

R/A
s. Moreover, s = t[b(t1 . . . tn)] −−−−→

R/A
t =

t[a(t1 . . . tn)] using b(x)→ a(x) ∈ R/A. Hence u −−−−→
∗

R/A
t.

Case RNSfirst. We have I ′b,q0 ⊢ XpI
′
a,q0 ⊢

∗ q1 . . . qn, and the
first production rule used in this derivation, I ′b,q0 := XpI

′
a,q0

was added because there exists a rule a(x)→ b(px) ∈ R/A.
By construction, it follows that q1 = p and I ′a,q0 ⊢

∗ q2 . . . qn,
and

s = t[a(t2 . . . tn)] −−→
∗

A′
t
[

a(q2 . . . qn)
]

−−→
A′

t[q0] −−→
∗

A′
q.

By induction hypothesis, applied to the above reduction,
there exists u ∈ L(A, q) such that u −−−−→∗

R/A
s. Moreover,

s = t[a(t2 . . . tn)] −−−−→
R/A

t = t[b(t1 . . . tn)] using a(x) →

a(px) ∈ R/A, because t1 ∈ L(A, p). Hence u −−−−→
∗

R/A
t.

Case RNSlast. This case is similar to the previous one.

Case INSinto. We have I ′a,q0 ⊢
∗ αNβ ⊢ αNXp β ⊢ αN pβ ⊢∗

q1 . . . qn, and the production N := NXp was added because
there exists a rule a(xy) → a(xpy) ∈ R/A, and N is
reachable from I ′a,q using Γ′. It follows that there exists
two integers k < ℓ ≤ n such that α ⊢∗ q1 . . . qk and
NXp ⊢

∗ qk+1 . . . qℓ (hence qℓ = p) and β ⊢∗ qℓ+1 . . . qn (if
ℓ = n then this latter sequence is empty), and

s = t[a(t1 . . . tℓ−1 tℓ+1 . . . tn)]
−−→∗
A′

t
[

a(q1 . . . qℓ−1 qℓ+1 . . . qn)
]

−−→
A′

t[q0] −−→
∗

A′
q.

By induction hypothesis, applied to the above reduction,
there exists u ∈ L(A, q) such that u −−−−→∗

R/A
s. Moreover,

s = t[a(t1 . . . tℓ−1 tℓ+1 . . . tn)] −−−−→R/A
t = t[a(t1 . . . tn)] using

the rewrite rule a(xy) → a(xpy), because tn ∈ L(A, p).
Hence u −−−−→

∗

R/A
t.

Induction step (first induction). Assume that the reduction
t −−→

∗

A′
q has the form

t = t[t1 . . . tn] −−→
∗

A′
t[q1 . . . qn] −−→

A′
t[q0] −−→

∗

A′
q (1)

such that there exists a collapsing transition L′ → q ∈ ∆′

with q1 . . . qn ∈ L′ and the first part of the reduction,
t −−→

∗

A′
t[q1 . . . qn], involves no collapsing transition. It implies

in particular that ti ∈ L(A′, qi) for all i ≤ n.

The collapsing transition L′ → q belongs to C′ (by hypoth-
esis AL and A do not contain collapsing transitions) and
was added because of a rewrite rule of R/A in UFO+. We
consider below the different possible cases for this addition.

Case INSbefore. We have n = 2, q1 = p ∈ P , q2 = q0 and
the collapsing transition pq0 → q0 has been added because
there exists a rule a(x) → pa(x) ∈ R/A. In this case, the
reduction (1) is

t = t[t1t2] −−→
∗

A′
t[pq0] −−→

A′
t[q0] −−→

∗

A′
q

and we have s = t[t2] −−→
∗

A′
t[q0] −−→

∗

A′
q because the first part

of the reduction uses no collapsing transition. By induction
hypothesis, there exists u ∈ L(A, q) such that u −−−−→

∗

R/A
s.

Moreover, s −−−−→
R/A

t using the rewrite rule a(x) → pa(x),

because t1 ∈ L(A, p). Hence u −−−−→
∗

R/A
t.

Case INSafter. This case is similar to the previous one.

Case RPL. In this case, for all i ≤ n, qi = pi ∈ P and the
collapsing transition p1 . . . pn → q0 was added because there
exists a rewrite rule a(x)→ p1 . . . pn ∈ R/A and L′

a,q0 6= ∅.
Hence there exists a term a(h) ∈ L(A′, q0), and

s = t[a(h)] −−→
∗

A′
t[q0] −−→

∗

A′
q

By induction hypothesis, there exists u ∈ L(A, q) such that
u −−−−→∗

R/A
s. Moreover, using the rewrite rule a(x)→ p1 . . . pn,

s −−−−→
R/A

t because ti ∈ L(A, pi) for all i ≤ n. Hence

u −−−−→
∗

R/A
t.

Case DEL. In this case, n = 0 and the collapsing transition
()→ q0 was added to C′ because there exists a rewrite rule
a(x) → () ∈ R/A and L′

a,q0 6= ∅. Let a(h) ∈ L(A′, q0), we
have s = t[a(h)] −−→

∗

A′
t[q0] −−→

∗

A′
q. By induction hypothesis,

there exists u ∈ L(A, q) such that u −−−−→
∗

R/A
s. Moreover,

s −−−−→
R/A

t using the rewrite rule a(x)→ (), and u −−−−→
∗

R/A
t.

Case DELs. In this last case, the collapsing transition
L′

a,q0 → q0 was added to ∆′ because there exists a rewrite
rule a(x)→ x ∈ R/A and L′

a,q0 6= ∅. We have

s = t[a(t1 . . . tn)] −−→
∗

A′
t[a(q1 . . . qn)] −−→

A′
t[q0] −−→

∗

A′
q

because q1 . . . qn ∈ L′
a,q0 . By induction hypothesis, there

exists u ∈ L(A, q) such that u −−−−→∗

R/A
s. Moreover, s −−−−→

R/A
t

using the rewrite rule a(x)→ x, and u −−−−→
∗

R/A
t.

(end Lemma direction ⊆) 2

Lemma 5. L(A′) ⊇ post∗R/A(L).

Proof. We show that for all u ∈ L, if u −−−−→
∗

R/A
t, then t ∈

L(A′), by induction on the length of the rewrite sequence.

Base case (0 rewrite steps). In this case, u = t ∈ L. We can
note that L ⊆ L(A′) because Γ′ contains the production
rule I ′a,q := Ia,q for all a ∈ Σ, q ∈ QL. Hence, t ∈ L(A′).

Induction step (k+1 rewrite steps). We analyse the type of
rewrite rule used in the last rewrite step of u −−−−→

∗

R/A
t.

REN. The last rewrite step of the sequence involves a rewrite
rule of the form a(x)→ b(x) ∈ R/A:

u −−−−→∗

R/A
u[a(h)] −−−−→

R/A
u[b(h)] = t.

By induction hypothesis, u[a(h)] ∈ L(A′). Hence there
exists a reduction sequence: u[a(h)] −−→

∗

A′
u[a(q1 . . . qn)] −−→

A′

u[q0] −−→
∗

A′
qf ∈ Qf

L with q1 . . . qn ∈ L′
a,q0 , i.e. q1 . . . qn can

be generated by G′a,q0 , starting from I ′a,q0 and using the
production rules of Γ′.

By construction, Γ′ contains the production rule I ′b,q0 :=
I ′a,q0 . Hence q1 . . . qn ∈ L′

b,q0
: it can be generated by G′b,q0 ,

starting from I ′b,q0 and using the production rules of Γ′.

Hence t = u[b(h)] −−→∗
A′

u[b(q1 . . . qn)] −−→
A′

u[q0] −−→
∗

A′
qf ∈

Qf
L, i.e. t ∈ L(A′).

RNSfirst. The last rewrite step of the sequence involves a
rewrite rule of the form a(x)→ b(p x) ∈ R/A, with p ∈ P :

u −−−−→
∗

R/A
u[a(h)] −−−−→

R/A
u[b(tph)] = t

with tp ∈ L(A, p). By induction hypothesis, u[a(h)] ∈
L(A′). Hence there exists a reduction sequence: u[a(h)] −−→

∗

A′

u[a(q1 . . . qn)] −−→
A′

u[q0] −−→
∗

A′
qf ∈ Qf

L with q1 . . . qn ∈ L′
a,q0 ,

i.e. q1 . . . qn can be generated by G′a,q0 , starting from I ′a,q0
and using the production rules of Γ′.

By construction, Γ′ contains the production rule I ′b,q0 :=
XpI

′
a,q0 . Hence pq1 . . . qn is in L′

b,q0
. Hence t = u[b(tph)] −−→

∗

A′

u[b(pq1 . . . qn)] −−→
A′

u[q0] −−→
∗

A′
qf ∈ Qf

L, i.e. t ∈ L(A′).

RNSlast. This case is similar to the above one.

INSinto. The last rewrite step of the sequence involves a
rewrite rule of the form a(xy)→ a(xpy) ∈ R/A, with p ∈ P :

u −−−−→
∗

R/A
u[a(hℓ)] −−−−→

R/A
u[a(h tp ℓ)] = t

with tp ∈ L(A, p). By induction hypothesis, u[a(hℓ)] ∈
L(A′). Hence there exists a reduction sequence: u[a(hℓ)] −−→∗

A′

u[a(q1 . . . qn)] −−→
A′

u[q0] −−→
∗

A′
qf ∈ Qf

L with q1 . . . qn ∈ L′
a,q0 ,

i.e. q1 . . . qn can be generated by G′a,q0 , starting from I ′a,q0
and using the production rules of Γ′.

By construction, Γ′ contains the production rulesN := NXp

and N := XpN for all non terminal N reachable from I ′q,q0
using Γ′. Using one of these production rules, it is possible to
generate q1 . . . qj p qj+1 . . . qn with G′a,q0 , starting from I ′a,q0
and using the production rules of Γ′, where j is the length of
h. Hence t = u[a(h tp ℓ)] −−→

∗

A′
u[b(q1 . . . qj p qj+1 . . . qn)] −−→

A′

u[q0] −−→
∗

A′
qf ∈ Qf

L, and t ∈ L(A′).

INSbefore. The last rewrite step of the sequence involves a
rewrite rule of the form a(x)→ pa(x) ∈ R/A, with p ∈ P :

u −−−−→∗

R/A
u[a(h)] −−−−→

R/A
u[tp a(h)] = t.

with tp ∈ L(A, p). By induction hypothesis, u[a(h)] ∈
L(A′). Hence there exists a reduction sequence: u[a(h)] −−→

∗

A′

u[a(q1 . . . qn)] −−→
A′

u[q0] −−→
∗

A′
qf ∈ Qf

L with q1 . . . qn ∈ L′
a,q0 .

By construction, A′ contains a collapsing transition rule
pq0 → q0. Hence t = u[tpa(h)] −−→

∗

A′
u[pq0] −−→

A′
u[q0] −−→

∗

A′

qf ∈ Qf
L, i.e. t ∈ L(A′).

INSafter. This case is similar to the above one.

RPL. The last rewrite step of the sequence involves a rewrite
rule of the form a(x) → p1 . . . pn ∈ R/A, with p1, . . . , pn ∈
P :

u −−−−→∗

R/A
u[a(h)] −−−−→

R/A
u[t1 . . . tn] = t.

with ti ∈ L(A, pi) for all i ≤ n. By induction hypothesis,
u[a(h)] ∈ L(A′). Hence there exists a reduction sequence:
u[a(h)] −−→

∗

A′
u[a(q1 . . . qn)] −−→

A′
u[q0] −−→

∗

A′
qf ∈ Qf

L with

q1 . . . qn ∈ L′
a,q0 .

Therefore, by construction, A′ contains a collapsing tran-
sition rule p1 . . . pn → q0. Hence t = u[t1 . . . tn] −−→

∗

A′

u[p1 . . . pn] −−→
A′

u[q0] −−→
∗

A′
qf ∈ Qf

L, i.e. t ∈ L(A′).

DEL. The last rewrite step of the sequence involves a rewrite
rule of the form a(x)→ () ∈ R/A:

u −−−−→
∗

R/A
u[a(h)] −−−−→

R/A
u[()] = t.

By induction hypothesis, u[a(h)] ∈ L(A′). Hence there
exists a reduction sequence: u[a(h)] −−→∗

A′
u[a(q1 . . . qn)] −−→

A′

u[q0] −−→
∗

A′
qf ∈ Qf

L with q1 . . . qn ∈ L′
a,q0 .

By construction, A′ contains a collapsing transition rule
() → q0. Hence t = u[()] −−→

A′
u[q0] −−→

∗

A′
qf ∈ Qf

L, i.e.

t ∈ L(A′).

DELs. The last rewrite step of the sequence involves a rewrite
rule of the form a(x)→ x ∈ R/A:

u −−−−→∗

R/A
u[a(h)] −−−−→

R/A
u[h] = t.

By induction hypothesis, u[a(h)] ∈ L(A′). Hence there
exists a reduction sequence: u[a(h)] −−→

∗

A′
u[a(q1 . . . qn)] −−→A′

u[q0] −−→
∗

A′
qf ∈ Qf

L with q1 . . . qn ∈ L′
a,q0 .

By construction, A′ contains a collapsing transition rule
L′

a,q0 → q0. Hence t = u[h] −−→∗
A′

u[q1 . . . qn] −−→
A′

u[q0] −−→
∗

A′

qf ∈ Qf
L, i.e. t ∈ L(A′).

(end Lemma direction ⊇) 2

(end of the proof of Theorem 2) 2

D. Proof of Theorem 3

We show in this section the correctness of the automata
construction presented in Section 3.4, after recalling the
statement of Theorem 3 and the construction.

Theorem 3. Given a HA A on Σ and a PTRS R/A ∈
UFO+, for all HA language L, pre∗

R/A(L) is the language
of a HA of size exponential and which can be constructed in

EXPTIME in the size of R/A and of an HA recognizing L.
Proof. Let A = (Σ, P, P f ,Θ), and let AL = (Σ, QL, Q

f
L,∆L)

be a HA recognizing L; both are assumed normalized. We
also assume wlog that AL is complete (for all term t, there
exists a state q such that t ∈ L(AL, q)). Like in the proof of
Theorem 1, we assume given, for each a ∈ Σ, q ∈ QL, a finite
automaton Ba,q = (QL, Sa,q, ia,q, {fa,q},Γa,q) recognizing
the regular language La,q in the transition a(La,q)→ q ∈ ∆L

(assumed unique).

We construct a finite sequence sequence of HAA0,A1, . . . ,Ak

whose final element’s language is pre∗
R/A(L), where for all

i ≤ k, Ai = (Σ, QL, Q
f
L,∆i). For the construction of the

transition sets ∆i, we consider a set C of finite automata
over QL defined as the smallest set such that:

• C contains every Ba,q for a ∈ Σ, q ∈ QL,

• for all B ∈ C, B = (QL, S, i, F,Γ) and all states s, s′ ∈ S,
the automaton Bs,s′ := (QL, S, s, {s

′},Γ) is in C,

• for all B ∈ C, B = (QL, S, i, F,Γ) ∈ C, q ∈ QL and all
states s, s′ ∈ S, the automata (QL, S, i, F,Γ∪{〈s, q, s

′〉})
and (QL, S, i, F,Γ ∪ {〈s, ε, s

′〉}), respectively denoted by
B + 〈s, q, s′〉 and B + 〈s, ε, s′〉 also belong to C.

Note that C is finite with this definition. For the sake
of conciseness, we make no distinction below between an
automaton B ∈ C and the language L(B) recognized by B.
Moreover, we assume that every B ∈ C has a unique final
state denoted fB and its initial state is denoted iB.

First, we let ∆0 = ∆L. The other ∆i are constructed
recursively by iteration of the following case analysis until
a fixpoint is reached (only a finite number of transition
can be added in the construction). In the construction we
use an extension of the move relation of HA, from states
to set of states (single states are considered as singleton
sets): a(L1, . . . , Ln) →֒∆i

q (where L1, . . . , Ln ⊆ QL and
q ∈ QL) iff there exists a transition a(L) → q ∈ ∆i such
that L1 . . . Ln ⊆ L.

REN if a(x) → b(x) ∈ R/A, B ∈ C and q ∈ QL, such that
b(B) →֒∆i

q, then let ∆i+1 := ∆i ∪ {a(B)→ q}.

RNSfirst if a(x)→ b(p x) ∈ R/A, B ∈ C and q, qp ∈ QL, such
that L(Ai, qp) ∩ L(A, p) 6= ∅ and b(qpB) →֒∆i

q, then
∆i+1 := ∆i ∪ {a(B)→ q}.

RNSlast if a(x)→ b(x p) ∈ R/A, B ∈ C and q, qp ∈ QL, such
that L(Ai, qp) ∩ L(A, p) 6= ∅ and b(B qp) →֒∆i

q, then
∆i+1 := ∆i ∪ {a(B)→ q}.

INSinto if a(xy) → a(x p y) ∈ R/A, B ∈ C, s, s′ are states
of B, and q, qp ∈ QL, such that L(Ai, qp) ∩ L(A, p) 6= ∅,
s −−→

B

qp s′, and a(B) →֒∆i
q then ∆i+1 := ∆i ∪

{

a(B +

〈s, ε, s′〉)→ q
}

.

INSbefore if a(x)→ p a(x) ∈ R/A, b ∈ Σ, B,B′ ∈ C, s, s′ are
states of B, and q, qp, q

′ ∈ QL such that b(B)→ q ∈ ∆i,

a(B′) →֒∆i
q′, L(Ai, qp) ∩ L(A, p) 6= ∅, s −−−→

B

qpq
′

s′, then

∆i+1 := ∆i ∪
{

b(B + 〈s, q′, s′〉)→ q
}

.

INSafter if a(x) → a(x)p ∈ R/A, b ∈ Σ, B,B′ ∈ C, s, s′ are
states of B, and q, qp, q

′ ∈ QL such that b(B)→ q ∈ ∆i,

a(B′) →֒∆i
q′, L(Ai, qp) ∩ L(A, p) 6= ∅, s −−−→

B

q′qp s′, then

∆i+1 := ∆i ∪
{

b(B + 〈s, q′, s′〉)→ q
}

.

RPL if a(x) → p1 . . . pn ∈ R/A, b ∈ Σ, B,B′ ∈ C, s, s′

are states of B, and q, q′, q1, . . . , qn ∈ QL such that
b(B) → q ∈ ∆i, a(B

′) →֒∆i
q′, L(Ai, qj) ∩ L(A, pj) 6= ∅

for all 1 ≤ j ≤ n, s −−−−−→
B

q1...qn s′ then ∆i+1 := ∆i ∪
{

b(B+

〈s, q′, s′〉))→ q
}

.

DEL if a(x) → () ∈ R/A, b ∈ Σ, B,B′ ∈ C, s is a state of
B, q, q′ ∈ QL such that b(B) → q ∈ ∆i, a(B

′) →֒∆i
q′,

then ∆i+1 := ∆i ∪
{

b(B + 〈s, q′, s〉)→ q
}

.

DELs if a(x) → x ∈ R/A, b ∈ Σ, B ∈ C, s, s′ are states of
B, q, q′ ∈ QL such that b(B)→ q ∈ ∆i, a(Bs,s′) →֒∆i

q′,
then ∆i+1 := ∆i ∪

{

b(B + 〈s, q′, s′〉)→ q
}

.

Note that INSfirst, INSlast, RPL1 are special cases of respec-
tively RNSfirst, RNSlast, RPL. Since no state is added to the
original automaton AL and all the transitions added involve
horizontal languages of the set C, which is finite, the itera-
tion of the above operations terminates with an automaton
A′. Let us show that L(A′) = pre∗

R/A(L).

Lemma 6. L(A′) ⊆ pre∗
R/A(L).

Proof. We show more generally that for all t ∈ L(A′, q),
q ∈ QL, there exists u ∈ L(AL, q) such that t −−−−→

∗

R/A
u.

The proof is by induction on the measure M associating
to a reduction t −−→∗

A′
q the multiset containing, for each

transition rule ρ ∈ ∆i with i > 0 used in the reduction, the
index min(j > 0 | ρ ∈ ∆j).

Base case. If M is empty, all the transition are in ∆0. It
means that t ∈ L(AL, q) and we let u = t.

Induction step. Assume that we have a reduction by A′ of
the form

t = t[a(h)] −−→
∗

A′
t[a(q1 . . . qn)] −−→

A′
t[q0] −−→

∗

A′
q (2)

(with q0 ∈ QL)

and that the step t[a(q1 . . . qn)] −−→
A′

t[q0] applies a transition
a(B)→ q0 (q1 . . . qn ∈ L(B)) added to ∆i+1 for some i ≥ 0.
We analyse the cases which permitted the addition of this
transition to ∆i+1.

REN: the transition a(B)→ q0 was added to ∆i+1 because
a(x) → b(x) ∈ R/A and b(B) →֒∆i

q0. Hence, there exists
a reduction

t′ = t[b(h)] −−→
∗

A′
t[b(q1 . . . qn)] −−→

A′
t[q0] −−→

∗

A′
q

with a measure M strictly smaller than for (2), by hy-
pothesis. Therefore, by induction hypothesis, there exists
u ∈ L(AL, q) such that t′ −−−−→

∗

R/A
u. Since t = t[a(h)] −−−−→

R/A

t[b(h)] = t′, we conclude that t −−−−→
∗

R/A
u.

RNSfirst: the transition a(B) → q0 was added to ∆i+1 be-
cause a(x) → b(p x) ∈ R/A, with q0, qp ∈ QL, L(Ai, qp) ∩
L(A, p) 6= ∅ and b(qpB) →֒∆i

q0. Hence, there exists a re-
duction

t′ = t[b(tp h)] −−→
∗

A′
t[b(qpq1 . . . qn)] −−→

A′
t[q0] −−→

∗

A′
q

with a measure M strictly smaller than for (2), by hy-
pothesis. Therefore, by induction hypothesis, there exists
u ∈ L(AL, q) such that t′ −−−−→

∗

R/A
u. Since t = t[a(h)] −−−−→

R/A

t[b(tp h)] = t′, we conclude that t −−−−→∗

R/A
u.

RNSlast: this case is similar to the previous one.

INSinto: the transition is a(B′)→ q0 and was added to ∆i+1

because a(xy) → b(x p y) ∈ R/A, B ∈ C, s, s′ are states of

B, q0, qp ∈ QL, such that L(Ai, qp) ∩ L(A, p) 6= ∅, s −−→
B

qp s′,

b(B) →֒∆i
q0 and B′ = B + 〈s, ε, s′〉. In this case, let

t = a(hℓ), and assume that the reduction (2) has the form

t = t[a(hℓ)] −−→
∗

A′
t[a(q1 . . . qn q′1 . . . q

′
m)] −−→

A′
t[q0] −−→

∗

A′
q

with q1 . . . qn q′1 . . . q
′
m ∈ L(B′) by iB′ −−−−−→

B′

q1...qn s −−→ε
B′

s′ −−−−−→
B′

q′
1
...q′m fB′ (iB′ and fB′ are resp. initial and final states

of B′). Hence, by construction, we have iB −−−−−→
B

q1...qn s −−→
B

qp

s′ −−−−−→
B′

q′
1
...q′m fB (iB′ = iB and fB′ = fB) and there exists a

reduction

t′ = t[b(h tp ℓ)] −−→
∗

A′
t[b(q1 . . . qn qp q

′
1 . . . q

′
m)] −−→

A′
t[q0] −−→

∗

A′
q

with a measure M strictly smaller than for (2), by hy-
pothesis. Therefore, by induction hypothesis, there exists
u ∈ L(AL, q) such that t′ −−−−→

∗

R/A
u. Since t = t[a(h ℓ)] −−−−→

R/A

t[b(h tp ℓ)] = t′, we conclude that t −−−−→∗

R/A
u.

From now on we assume that the reduction of t by A′ has
the form

t = t[b(h)] −−→
∗

A′
t[b(q1 . . . qn)] −−→

A′
t[q0] −−→

∗

A′
q (3)

with q1 . . . qn ∈ L(B′′), q0 ∈ QL, and that the step
t[b(q1 . . . qn)] −−→

A′
t[q0] applies a transition b(B′′) → q0

added to ∆i+1 for some i ≥ 0 in one of the five cases.

INSbefore: the transition b(B′′) → q0 was added to ∆i+1

because a(x)→ p a(x) ∈ R/A, B,B′ ∈ C, s, s′ are states of
B, q0, qp, q

′
0 ∈ QL, such that b(B)→ q0 ∈ ∆i, a(B

′) →֒∆i
q′0,

L(Ai, qp)∩L(A, p) 6= ∅, s −−−−→
B

qp q′
0 s′, and B′′ = B+〈s, q′0, s

′〉.
In this case, let t = b(ha(v)ℓ), and assume that the above
reduction (3) has the form

t = t[b(h a(v)ℓ)] −−→∗
A′

t[b(q1 . . . qn q′0 q
′
1 . . . q

′
m)] −−→

A′
t[q0]

−−→
∗

A′ q

with q1 . . . qn q′1 . . . q
′
m ∈ L(B′′) by iB′′ −−−−−→

B′′

q1...qn s −−−→
q′
0

B′′

s′ −−−−−→
B′′

q′
1
...q′m fB′′ (iB′′ and fB′′ are resp. the initial and final

states of B′′). Hence, by construction, we have iB −−−−−→
B

q1...qn

s −−−−→
B

qp q′
0 s′ −−−−−→

B

q′
1
...q′m fB (iB′′ = iB and fB′′ = fB) and there

exists a reduction

t′ = t[b(h tp a(v) ℓ)] −−→
∗

A′
t[b(q1 . . . qn qp q

′
0q

′
1 . . . q

′
m)]

−−→
A′

t[q0] −−→
∗

A′
q

with a measureM strictly smaller than for (3), by hypoth-
esis. Therefore, by induction hypothesis, there exists u ∈
L(AL, q) such that t′ −−−−→

∗

R/A
u. Since t = t[a(h a(v)ℓ)] −−−−→

R/A

t[b(h tp a(v)ℓ)] = t′, we conclude that t −−−−→
∗

R/A
u.

INSafter: this case is similar to the previous one.

RPL: the transition b(B′′) → q0 has been added to ∆i+1

because a(x) → p1 . . . pn ∈ R/A, B,B′ ∈ C, s, s′ are states
of B, q0, q

′
0, qp1 , . . . , qpn ∈ QL, such that b(B) → q0 ∈ ∆i,

a(B′) →֒∆i
q′0, L(Ai, qpj) ∩ L(A, pj) 6= ∅ for all j ≤ n,

s −−−−−−−→
B

qp1 ...qpn s′, and B′′ = B + 〈s, q′0, s
′〉. In this case, let

t = b(ha(v)ℓ), and assume that the above reduction (3) has
the form

t = t[b(h a(v)ℓ)] −−→
∗

A′
t[b(q1 . . . qm q′0 q

′
1 . . . q

′
m′)] −−→

A′
t[q0]

−−→∗
A′

q

with q1 . . . qm q′1 . . . q
′
m′ ∈ L(B′′) by iB′′ −−−−−→

B′′

q1...qm s −−−→
q′
0

B′′

s′ −−−−−−→
B′′

q′
1
...q′

m′ fB′′ (iB′′ and fB′′ are resp. initial and final

states of B′′). Hence, by construction, we have iB −−−−−→
B

q1...qm

s −−−−−−−→
B

qp1 ...qpn s′ −−−−−−→
B

q′
1
...q′

m′ fB (iB′′ = iB and fB′′ = fB)
and there exists a reduction, with for all j ≤ n, tj ∈
L(Ai, qpj) ∩ L(A, pj),

t′ = t[b(h t1 . . . tn ℓ)] −−→∗
A′

t[b(q1 . . . qm qp1 . . . qpn q′1 . . . q
′
m′)] −−→

A′
t[q0] −−→

∗

A′
q

with a measureM strictly smaller than for (3), by hypoth-
esis. Therefore, by induction hypothesis, there exists u ∈
L(AL, q) such that t′ −−−−→

∗

R/A
u. Since t = t[a(h a(v)ℓ)] −−−−→

R/A

t[b(h t1 . . . tn ℓ)] = t′, using the rule a(x)→ p1 . . . pn, and we
conclude that t −−−−→∗

R/A
u.

DEL: the transition b(B′′) → q0 has been added to ∆i+1

because a(x) → () ∈ R/A, B,B′ ∈ C, s is a state of B,
q0, q

′
0 ∈ QL, such that b(B) → q0 ∈ ∆i, a(B′) →֒∆i

q′0,
and B′′ = B + 〈s, q′0, s〉. In this case, let t = b(h a(v)ℓ), and
assume that the above reduction (3) has the form

t = t[b(h a(v)ℓ)] −−→
∗

A′
t[b(q1 . . . qm q′0 q

′
1 . . . q

′
m′)]

−−→
A′

t[q0] −−→
∗

A′
q

with q1 . . . qm q′1 . . . q
′
m′ ∈ L(B′′) by iB′′ −−−−−→

B′′

q1...qm s −−−→
q′
0

B′′

s −−−−−−→
B′′

q′
1
...q′

m′ fB′′ (iB′′ and fB′′ are resp. initial and final

states of B′′). Hence, by construction, we have iB −−−−−→
B

q1...qm

s −−−−−−→
B

q′
1
...q′

m′ fB (iB′′ = iB and fB′′ = fB) and there exists a
reduction

t′ = t[b(h ℓ)] −−→∗
A′

t[b(q1 . . . qm q′1 . . . q
′
m′)] −−→

A′
t[q0] −−→

∗

A′
q

with a measureM strictly smaller than for (3), by hypoth-
esis. Therefore, by induction hypothesis, there exists u ∈
L(AL, q) such that t′ −−−−→

∗

R/A
u. Since t = t[a(h a(v)ℓ)] −−−−→

R/A

t[b(h ℓ)] = t′, and we conclude that t −−−−→
∗

R/A
u.

DELs: the transition b(B′′) → q0 has been added to ∆i+1

because a(x) → x ∈ R/A, B ∈ C, s, s′ are states of B,
q0, q

′
0 ∈ QL, such that b(B) → q0 ∈ ∆i, a(Bs,s′) →֒∆i

q′0,
and B′′ = B + 〈s, q′0, s

′〉. In this case, let t = b(ha(v)ℓ), and
assume that the above reduction (3) has the form

t = t[b(h a(v)ℓ)] −−→∗
A′

t[b(q1 . . . qm a(v1 . . . vk) q
′
1 . . . q

′
m′)]

−−→
∗

A′
t[b(q1 . . . qm q′0 q

′
1 . . . q

′
m′)]

−−→
A′

t[q0] −−→
∗

A′
q

with q1 . . . qm q′0, q
′
1 . . . q

′
m′ ∈ L(B′′) by iB′′ −−−−−→

B′′

q1...qm s −−−→
q′
0

B′′

s′ −−−−−−→
B′′

q′
1
...q′

m′ fB′′ (iB′′ and fB′′ are resp. initial and final

states of B′′) and s −−−−−→
Bs,s′

v1...vk s′.

Hence, by construction, we have iB −−−−−→
B

q1...qm s −−−−−→
B

v1...vk

s′ −−−−−−→
B

q′
1
...q′

m′ fB (iB′′ = iB and fB′′ = fB) and there exists a
reduction

t′ = t[b(hv ℓ)] −−→∗
A′

t[b(q1 . . . qm v1 . . . vk q
′
1 . . . q

′
m′)]

−−→
A′

t[q0] −−→
∗

A′
q

with a measureM strictly smaller than for (3), by hypoth-
esis. Therefore, by induction hypothesis, there exists u ∈
L(AL, q) such that t′ −−−−→

∗

R/A
u. Since t = t[a(h a(v)ℓ)] −−−−→

R/A

t[b(h v ℓ)] = t′, we conclude that t −−−−→
∗

R/A
u.

Note that INSfirst, INSlast, RPL, were not considered above be-
cause they are special cases of respectively RNSfirst, RNSlast,
RPL.

(end Lemma direction ⊆) 2

Lemma 7. L(A′) ⊇ pre∗
R/A(L).

Proof. We show that for all t ∈ L, if u −−−−→∗

R/A
t, then u ∈

L(A′), by induction on the length of the rewrite sequence.

Base case (0 rewrite steps). In this case, u = t ∈ L and we
are done since L = L(AL) ⊆ L(A′) by construction.

Induction step. Assume that u −−−−→
+

R/A
t, we analyse the type

of rewrite rule used in the first rewrite step.

REN. Assume that u = u[a(h)] −−−−→
R/A

u[b(h)] −−−−→
∗

R/A
t. By

induction hypothesis, u1 = u[b(h)] ∈ L(A′), i.e. there exists
a reduction sequence u1 = u[b(h)] −−→∗

A′
u[b(q1 . . . qn)] −−→

A′

u[q] −−→
∗

A′
qf where q, q1, . . . , qn ∈ QL, qf ∈ Qf

L, and a

transition a(B) → q has been added to A′, with q1 . . . qn ∈
B. It follows that u = u[a(h)] −−→

∗

A′
u[a(q1 . . . qn)] −−→

A′

u[q] −−→
∗

A′
qf , hence that u ∈ L(A′).

RNSfirst. Assume that u = u[a(h)] −−−−→
R/A

u[b(tp h)] −−−−→
∗

R/A
t

for some tp ∈ L(A, p). By induction hypothesis, u1 =
u[b(tp h)] ∈ L(A′), i.e. there exists a reduction sequence

u[b(tp h)] −−→
∗

A′
u[b(qpq1 . . . qn)] −−→

A′
u[q] −−→

∗

A′
qf

where q, qp, q1, . . . , qn ∈ QL, qf ∈ Qf
L. Hence L(A′, qp) ∩

L(A, p) is not empty because it contains tp, and a transition
a(B)→ q has been added toA′, with q1 . . . qn ∈ B. It follows
that u = u[a(h)] −−→

∗

A′
u[a(q1 . . . qn)] −−→A′

u[q] −−→
∗

A′
qf , hence

that u ∈ L(A′).

RNSlast. This case is similar to the previous one.

INSinto. Assume that u = u[a(hℓ)] −−−−→
R/A

u[a(h tp ℓ)] −−−−→
∗

R/A
t

for some tp ∈ L(A, p). By induction hypothesis, u1 =
u[a(h tp ℓ)] ∈ L(A′), i.e. there exists a reduction sequence

u1 = u[a(h tp ℓ)] −−→
∗

A′
u[a(q1 . . . qmqpq

′
1 . . . q

′
n)]

−−→ρ
A′

u[q] −−→∗
A′

qf

where q, qp, q1, . . . , qm, q′1, . . . , q
′
n ∈ QL and qf ∈ Qf

L. Hence
L(A′, qp) ∩L(A, p) is not empty because it contains tp, and
the transition rule denoted ρ in the above sequence has
the form b(B) → q, where q1 . . . qmqpq

′
1 . . . q

′
n is recognized

by B, with a sequence iB −−−−−→
B

q1...qm s −−→
B

qp s′ −−−−−→
B

q′
1
...q′n fB

for some states s, s′ of B. Therefore, a transition a(B +
〈s, ε, s′〉)→ q has been added to A′, and q1 . . . qmq′1 . . . q

′
n is

recognized by B+ 〈s, ε, s′〉. It follows that u = u[a(hℓ)] −−→
∗

A′

u[a(q1 . . . qmq′1 . . . q
′
n)] −−→A′

u[q] −−→∗
A′

qf , hence that u ∈

L(A′).

INSbefore. Assume that u = u[b(h a(v)ℓ)] −−−−→
R/A

u[b(h tp a(v)ℓ)] −−−−→
∗

R/A

t for some tp ∈ L(A, p). By induction hypothesis, u1 =
u[b(h tp a(v)ℓ)] ∈ L(A′), i.e. there exists a reduction se-
quence

u[b(h tp a(v)ℓ)] −−→
∗

A′
u[b(q1 . . . qm qp q

′q′1 . . . q
′
n)]

−−→ρ
A′

u[q] −−→∗
A′

qf

where q, q′, qp, q1, . . . , qm, q′1, . . . , q
′
n ∈ QL, qf ∈ Qf

L, and
a(v) −−→∗

A′
q′. Hence L(A′, qp)∩L(A, p) is not empty because

it contains tp, and the transition rule denoted ρ in the above
sequence has the form b(B) → q with q1 . . . qmqpq

′q′1 . . . q
′
n

is recognized by B, with a sequence, iB −−−−−→B

q1...qm s −−−→
qpq

′

s′ −−−−−→
B

q′
1
...q′n fB for some of states s and s′ of B. Hence, a

transition b(B + 〈s, q′, s′〉) → q has been added to A′, and
q1 . . . qmq′q′1 . . . q

′
n is recognized by B + 〈s, q′, s′〉. It follows

that u = u[b(ha(v)ℓ)] −−→∗
A′

u[a(q1 . . . qmq′q′1 . . . q
′
n)] −−→A′

u[q] −−→∗
A′

qf , hence that u ∈ L(A′).

INSafter. This case is similar to the previous one.

RPL.Assume that u = u[b(ha(v)ℓ)] −−−−→
R/A

u[b(ht1 . . . tnℓ)] −−−−→
∗

R/A

t for some t1, . . . , tn respectively in L(A, p1), . . . , L(A, pn).
By induction hypothesis, u1 = u[b(ht1 . . . tnℓ)] ∈ L(A′), i.e.
there exists a reduction sequence

u[b(h t1 . . . tn ℓ)] −−→∗
A′

u[b(q1 . . . qm qp1 . . . qpn q′1 . . . q
′
m′)]

−−→
ρ

A′ u[q] −−→
∗

A′ qf

where q, qp1 , . . . , qpn , q1, . . . , qm, q′1, . . . , q
′
m′ ∈ QL, q

f ∈ Qf
L,

and for all j ≤ n, L(A′, qpj) ∩ L(A, pj) contains tj , and the
transition rule denoted ρ in the above sequence has the form
b(B) → q with q1 . . . qm qp1 . . . qpn q′1 . . . q

′
m′ ∈ L(B), with a

sequence iB −−−−−→B

q1...qm s −−−−−−−→
qp1 ...qpn s′ −−−−−−→

B

q′
1
...q′

m′ fB , for some

states s and s′ of B. Let q′ ∈ QL be such that a(v) −−→∗
A′

q′.

By construction, a transition b(B + 〈s, q′, s′〉) → q has
been added to A′, and q1 . . . qm q′ q′1 . . . q

′
m′ is recognized

by B + 〈s, q′, s′〉. It follows that u = u[b(ha(v)ℓ)] −−→
∗

A′

u[a(q1 . . . qmq′q′1 . . . q
′
m′)] −−→

A′
u[q] −−→∗

A′
qf , hence that u ∈

L(A′).

DEL. Assume that u = u[b(ha(v)ℓ)] −−−−→
R/A

u[b(hℓ)] −−−−→
∗

R/A
t.

By induction hypothesis, u1 = u[b(hℓ)] ∈ L(A′), i.e. there
exists a reduction sequence

u[b(hℓ)] −−→∗
A′

u[b(q1 . . . qm q′1 . . . q
′
m′)] −−→ρ

A′
u[q] −−→∗

A′
qf

where q, q1, . . . , qm, q′1, . . . , q
′
m′ ∈ QL and qf ∈ Qf

L. The
transition rule denoted ρ in the above sequence has the form
b(B) → q and q1 . . . qm q′1 . . . q

′
m′ is recognized by B with a

sequence iB −−−−−→
B

q1...qm s −−−−−−→
B

q′
1
...q′

m′ fB , where s is a state of

B. Let q′ ∈ QL be such that a(v) −−→
∗

A′
q′. By construction,

a transition b(B + 〈s, q′, s〉)→ q has been added to A′, and
q1 . . . qm q′ q′1 . . . q

′
m′ is recognized by B+ 〈s, q′, s〉. It follows

that u = u[b(h a(v)ℓ)] −−→
∗

A′
u[a(q1 . . . qmq′q′1 . . . q

′
m′)] −−→

A′

u[q] −−→
∗

A′
qf , hence that u ∈ L(A′).

DELs. Assume that u = u[b(ha(v)ℓ)] −−−−→
R/A

u[b(hvℓ)] −−−−→
∗

R/A

t. By induction hypothesis, u1 = u[b(hvℓ)] ∈ L(A′), i.e.
there exists a reduction sequence

u[b(hvℓ)] −−→∗
A′

u[b(q1 . . . qm q′′1 . . . q′′n q′1 . . . q
′
m′)]

−−→
ρ

A′
u[q] −−→

∗

A′
qf

where q, q1, . . . , qm, q′′1 , . . . , q
′′
n, q

′
1, . . . , q

′
m′ ∈ QL and qf ∈

Qf
L. The transition rule denoted ρ in the above sequence

has the form b(B) → q and q1 . . . qm q′′1 , . . . , q
′′
n q′1 . . . q

′
m′ is

recognized by B, with a sequence iB −−−−−→
B

q1...qm s −−−−−→
B

q′′
1
...q′′n

s′ −−−−−−→
B

q′
1
...q′

m′ fB , where s, s′ are two states of B. By complete-

ness of AL, given s, s′, there exists q′ such that a(Bs,s′) →֒∆i

q′. It follows in particular that a(v) −−→∗
A′

q′. By construction,

a transition b(B + 〈s, q′, s〉)→ q has been added to A′, and
q1 . . . qm q′ q′1 . . . q

′
m′ is recognized by B+ 〈s, q′, s〉. It follows

that u = u[b(ha(v)ℓ)] −−→∗
A′

u[a(q1 . . . qmq′q′1 . . . q
′
m′)] −−→

A′

u[q] −−→
∗

A′
qf , hence that u ∈ L(A′).

(end Lemma direction ⊆) 2

(end of the proof of Theorem 3) 2

