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Abstract: It has been shown that annotating Petri net unfoldings with time stamps allows for
building distributed testers for distributed systems. However, the construction of the annotated
unfolding of a distributed system currently remains a centralized task. In this paper we extend
a distributed unfolding technique in order to annotate the resulting unfolding with time stamps.
This allows for distributed construction of distributed testers for distributed systems.
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1. INTRODUCTION

The co-ioco framework proposed in Ponce de León et al.
(2013) introduced partial-order semantics to the well-
known ioco theory of Tretmans (1999). In both cases, in-
puts and outputs (or their absence) of the implementation
are compared to those of the specification. However, in the
co-ioco setting, traces, inputs, and outputs are considered
as partial orders, where actions specified as concurrent
need to be implemented as such. This is of essential impor-
tance for distributed systems where concurrency captures
the physical distribution of the components of the system.

Test architectures for distributed systems can be classified
into two types: global testers that have control over the
entire system under test, and distributed testers where
several single and concurrent testers are controlling the
components of the system under test. In Ponce de León
et al. (2013); Athanasiou et al. (2015) it is shown how,
starting from a system specified as a Petri net or a network
of automata, a global tester can be constructed using
Petri net unfoldings and SAT. Additionally, Ponce de
León et al. (2014) show that if the unfolding procedure
is extended with time stamps, the resulting global tester
can be transformed into a distributed one. However, the
computation of the global tester is still centralized and
constructs (a prefix of) the unfolding of the entire system.

In this work we provide a novel framework for constructing
single testers (together constituting a distributed tester)
containing the time-stamp information necessary to test
global conformance. These testers are computed in a
distributed way. This work is grounded on the results
of Madalinski and Fabre (2009) and Esparza et al. (2013),
extending them with timed information. Our timed infor-
mation is logical : it counts occurences of actions. This is
similar to vector clocks in distributed systems, cf. Lamport
(1978); Fidge (1988); Mattern (1988).

This paper is organized as follows. In Section 2 we pro-
vide a running example. In Section 3, we give the basic
notations for our formal model. The notion of Petri-net
unfolding and its link to testers are defined in Section 4.
We recall distributed Petri-net unfolding in Section 5, and
we extend these to incorporate time stamps in Section 6.
Finally, we show how to build interface summaries with
time stamps, which are central for distributed unfoldings,
in Section 7. Proofs can be found in Jezequel et al. (2018).

2. RUNNING EXAMPLE

The Petri net depicted in Figure 1 shows the interaction of
a consumer (middle) with two producers (left and right).
We will consider two decompositions of it:

(1) as the five subnets A,C (producers), B (consumer),
and X,Y (producers/consumer interfaces);

(2) as three (overlapping) components A (A with X), B
(B with X and Y ), and C (C with Y ).

Notice that each place and transition belongs to exactly
one subnet. The places and transitions of the interfaces
belong to exactly two components, whereas the others
belong to exactly one.

Intuitively, producer A offers some product that it can
create from certain base materials. Each of these materials
may be available (places p′, q′, r′) or not (p, q, r). Interface
X acts as an agent handling the interaction between A and
B. This agent, upon receiving an order from the consumer
B, registers a demand for the product with A. Depending
on the availability of the base materials, the product can
be either delivered to the consumer, or one of the sides
decides to cancel the transaction. Producer C works in a
similar fashion, using different base materials (places s, t
and s′, t′) and communicating through interface Y . Finally,
B can be thought of as a customer wishing to perform
certain actions x, y, or z. For x and z only one of the
producers is needed, whereas for y both are required.



A X B Y C

p q r

p′ q′ r′

iA

dA

sA
A1

A2

a1a2

orderA

stopA

deliverA

b1

b2

b3

b4

b5

b6

b7

b8

b9

x′

y′

z′

retryA retryC

x

y

z

b10 b11 b12

b13

ts

t′s′

iC

dC

sC
C1

C2

c1

c2

c3

c4

c5

orderC demandC

stopC

supplyC

declineC

deliverC

Fig. 1. An example with one consumer B and two producers A,C connected by interfaces X,Y .

3. DISTRIBUTED SYSTEMS MODELING

We now formalize the framework exemplified above: com-
pound systems represented as labelled Petri nets. We fix
an alphabet Σ of labels and a set of components C.

A Petri net is a tuple pn = 〈P, T, F,M0, `, γ〉 where P
and T are two disjoint sets of nodes called places and
transitions, respectively, F ⊆ P × T ∪ T × P is a flow
relation, M0 ⊆ P is an initial marking, ` : (P ∪ T ) → Σ
associates labels to nodes, and γ : (P ∪T )→ 2C associates
each node with a subset of the components. The elements
of F are called the arcs. For consistency, we require that
for all p ∈ P , t ∈ T , 〈p, t〉 ∈ F or 〈t, p〉 ∈ F implies
γ(p) ⊆ γ(t), i.e. a transition can only interact with places
of its own components. Moreover, every component c ∈ C
has at least one initially marked place, i.e. there exists
p ∈M0 with c ∈ γ(p).

Example. Figure 1 shows an example of a Petri net.
Places are represented as circles (with black tokens for
the initial marking), transitions as rectangles, and the flow
relation as arrows. Labels are shown next to the nodes, and
C = {A,B,C}, corresponding to A,B, C from Section 2.

A marking is a set of places. A transition t is said to be
firable from marking M ⊆ P iff •t = { p | (p, t) ∈ F } ⊆M .
In this case the firing of t leads to the new marking
(M \ •t) ∪ t•, where t• = { p | (t, p) ∈ F }. A marking
M is reachable in pn if and only if there exists a sequence
of transition firings leading from M0 to M .

Projections and interfaces. Let C′ ⊆ C. The projection
of pn to C′ is the net πC′ (pn) = 〈P ′, T ′, F ′,M ′0, `′, γ′〉 that
preserves only nodes from C′, i.e. P ′ ⊆ P , T ′ ⊆ T , and
x ∈ P ′∪T ′ iff γ(x)∩C′ 6= ∅; moreover, F ′,M ′0, `

′, γ′ are the
respective restrictions of F,M0, `, γ to P ′∪T ′. Note that γ′

is still a mapping to C, not just to C′. Abusing notation, we
shall write πc for π{c} when c ∈ C. For instance, when pn
is the net in Figure 1, we obtain A = πA (pn), B = πB (pn),
and C = πC (pn). With this in mind, we also call A,B, C
“components” when there is no confusion.

For two components c, c′ ∈ C, the interface of pn between
c and c′ is πc (πc′ (pn)) = πc′ (πc (pn)). For instance, the
interface of A,B in Figure 1 is the subnet X, and Y is
the interface of B,C. A net is said to contain a gateway to
component c if it contains nodes that belong to c but none

that belong to c alone. For instance, A = πA (pn) contains
a gateway to B (which is exactly the interface X).

The interaction graph of pn is the undirected graph whose
nodes are the elements of C, and where {c, c′} is an edge
iff c and c′ have a non-empty interface. A net is tree-like
if its interaction graph is a tree.

An automaton is a Petri net such that for any transition
t one has |•t| = |t•| = 1, and where M0 is a singleton. For
instance, the net in Figure 3 obeys this condition.

Timed nets. In certain cases we will include (logical)
timing information in Petri nets. A vector clock is a
mapping from C to N; it shall count how many events have
fired per component. A timed net is a pair pn = 〈pn, θ〉,
equipping a Petri net pn with a clock mapping θ that
associates a vector clock to each transition of pn. The
projection of pn to C′ ⊆ C is πC′ (pn) := 〈πC′ (pn) , θ′〉,
where θ′ is the restriction of θ to the nodes of πC′ (pn).
Note that this operation retains vector clock information
for all components in C, including components outside C′.

4. PETRI NETS UNFOLDING AND TEST

The unfolding of a Petri net pn is another, acyclic Petri
net un(pn) that describes the complete behaviour of pn:
all reachable markings and all partial orders of transition
firings are preserved. The unfolding of a Petri net in fact
enumerates the partial orders of transition firings of pn,
merged on common prefixes. In general, the unfolding is an
infinite structure, but our algorithms only consider finite
prefixes of it. As shown in Ponce de León et al. (2014),
adding well-chosen time stamps to the unfolding of a Petri
net allows to build a distributed tester for the compound
system modeled by the original net – simply by projecting
a finite prefix of the unfolding onto each component.

Unfoldings are usually formalized from the notion of
branching process. A branching process of a Petri net pn =
〈P, T, F,M0, `, γ〉 is a Petri net pn′ = 〈Q,E, F ′,M ′0, `′, γ′〉
(where places are usually called conditions, and transitions
are usually called events) associated with a function λ : Q∪
E → P ∪ T . (Abusing notation, we naturally extend λ to
sets.) Assuming M0 = {p0, . . . , pk}, the finite branching
processes of pn are defined inductively as follows:

• The net with conditions q0, . . . , qk so that λ(q0) =
p0, . . . , λ(qk) = pk, no events, and initial marking
{q0, . . . , qk} is a branching process of pn.



• Let pn′ be a branching process of pn where for
some reachable marking M of pn′, λ(M) makes some
transition t of pn firable. Let M ′ be the subset of
M such that λ(M ′) = •t. If pn′ has no event e with
λ(e) = t such that •e = M ′, then the net obtained
by adding to pn′ a new event e with λ(e) = t, a new
condition for every place p of t• labelled by p, new
arcs from each condition of M ′ to e and from e to
each new condition, is also a branching process of pn.
In this case, we call e an extension of pn′.
• For all nodes x, `′(x) = `(λ(x)) and γ′(x) = γ(λ(x)).

The set of all branching processes of a Petri net pn, finite
and infinite, is defined by closing the finite branching pro-
cesses under countable unions (see Esparza and Heljanko
(2008)). In particular, the union of all finite branching
processes is called the unfolding of pn, denoted un(pn).

Given two nodes x, y of a branching process, we say that:
x is a causal predecessor of y, denoted x < y, if there exists
a non-empty path of arcs from x to y. By x ≤ y we mean
x < y or x = y, and if x ≤ y or y ≤ x we say that x and
y are causally related. The nodes x and y are in conflict if
there exists a condition c (different from x and y) so that
one can reach both x and y from c via two paths that start
with different arcs. The nodes x and y are concurrent if
they are neither causally related nor in conflict.

Given an event e of a branching process, we define its
configuration, noted [e], as the set of its causal predecessors
events: [e] = {e′ | e′ ≤ e}.
A timed branching process of pn is the pair 〈pn′, θ〉, where
pn′ is a branching process of pn, and θ(e)(c) is the number
of events e′ satisfying e′ ≤ e and c ∈ γ′(e′). In this case, θ
is also called a collection of time stamps. We denote un(pn)
as the timed unfolding of pn.

Example. Consider Figure 2. It depicts a finite branching
process of the net from Figure 1 restricted to component
A, i.e. producer A and its interface X. The labelling λ is
given next to the conditions and events. #A provides the
value θ(e)(A) for every event e (ditto for B).
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e9 〈4, 2〉

Fig. 2. A branching process of πA (pn), where pn is the net
from Figure 1, and associated time stamps.

In the following, we consider projections of timed or un-
timed unfoldings to components C′ ⊆ C. In this context,
notice that πC′ (un(pn)) is not the same as un(πC′ (pn));
the latter contains vector clock information from transi-
tions in πC′ (pn) alone, while the former has it for all of pn.

Example. Figure 3 shows the projection of the timed
branching process from Figure 2 to B. Only the conditions
of X and the events in which it participates are preserved.
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Fig. 3. Projection of Figure 2 to component B.

5. DISTRIBUTED UNFOLDING

There exists a straightforward, centralized algorithm for
computing (a finite prefix of) the unfolding of a net.
It applies the inductive characterization of a branching
processes, adding one event at a time (see Esparza and
Heljanko (2008)). The result can be equipped with time
stamps and used to produce distributed testers (Ponce de
León et al. (2014)). However, the intermediate unfolding
prefix can be much larger than those testers.

Here, we look at the approach of Madalinski and Fabre
(2009). It computes unfolding prefixes component by com-
ponent. We briefly describe a general version of this algo-
rithm. This uses smaller prefixes, but adding time stamps
is not straightforward (Section 6).

Let pn = 〈P, T, F,M0, `, γ〉 be a compound system rep-
resented as a Petri net. In order to perform distributed
unfolding, we impose the following restrictions: (1) pn is
tree-like (required by the distributed unfolding approach
of Madalinski and Fabre (2009)), (2) every (non-empty)
interface in pn is an automaton (this is due to timing
information, and based on Esparza et al. (2013)).

Let c, c′ ∈ C be two components. A {c, c′}-automaton is
an automaton in which γ(x) = {c, c′} for all nodes x.
According to our restriction, every non-empty interface X
in pn is a {c, c′}-automaton (for some c, c′). If moreover X
is a gateway to c′, we call it a (c, c′)-gateway.

Let A be a tree-like net with a (c, c′)-gateway X. Then we
denote C[A, X] ⊆ C the set of all components having at
least one node in A, except c′. Let B be another tree-like
net with a (c′, c)-gateway Y such that {c, c′} is the only
edge appearing in the interaction graphs of both A and B.
Then we say that A,B meet at {c, c′}. Notice that in this
case, C[A, X] and C[B, Y ] are disjoint.

Distributed unfolding relies on two basic operations: the
projection πC′ and a composition operation ‖. Let A,B be
tree-like nets meeting at {c, c′}, with X a (c, c′)-gateway
of A and Y a (c′, c)-gateway of B. We present their
composition in three steps: (1) building the synchronous
product Z of X and Y , (2) replacing X and Y by Z,
and (3) merging A and B on Z. For notational simplicity,
we shall assume that the sets of places, transitions etc of
A,B, X, Y, Z are indexed with the name of the net, and
denote with NA, NB etc the sets of nodes (i.e. places and
transitions) of A,B etc.

The synchronous product (step 1) of {c, c′}-automata X
and Y is the {c, c′}-automaton X ‖ Y = 〈P, T, F,M0, `, γ〉



with P = PX×PY and M0 = M0,X×M0,Y , T = { 〈t1, t2〉 ∈
TX × TY | `X(t1) = `Y (t2) }, F = { 〈〈x1, x2〉, 〈x′1, x′2〉〉 ∈
P × T ∪ T × P | (x1, x

′
1) ∈ FX ∧ (x2, x

′
2) ∈ FY },

`(〈t1, t2〉) = `X(t1) = `Y (t2), and γ(〈t1, t2〉) = {c, c′}.
Let A have a (c, c′)-gateway X and Z = X ‖ Y for some
Y . The replacement (step 2) of X by Z is A[X/Z] :=
〈P ′, T ′, F ′,M ′0, `′, γ′〉, where, with N ′′A := NA \NX : P ′ =
(PA\PX)∪PZ and T ′A = (TA\TX)∪TZ ; F ′ = (FA∩N ′′A×
N ′′A) ∪ FZ ∪ { 〈n, 〈nA, nB〉〉 ∈ N ′′A × NZ | 〈n, nA〉 ∈ FA }
∪ { 〈〈nA, nB〉, n〉 ∈ NZ × N ′′A | 〈nA, n〉 ∈ FA } M ′0 =

(M0,A \ M0,X) ∪ M0,Z ; for all n ∈ N ′′A, `′(n) = `A(n)
and γ′(n) = γA(n); for all n ∈ NZ , `′(n) = `Z(n) and
γ′(n) = {c, c′}. The definition for the case where Z = Y ‖X
is analogous.

Consider two tree-like nets A,B meeting at {c, c′} such
that Z is equally a (c, c′)-gateway in A and a (c′, c)-
gateway in B. The merging (step 3) of A and B on Z is the
net 〈P, T, F,M0, `, γ〉 with: P = PA ∪ PB; T = TA ∪ TB;
F = FA ∪ FB; M0 = M0,A ∪ M0,B; `(n) = `A(n) for
n ∈ NA \ NZ , `(n) = `B(n) for n ∈ NB \ NZ , and
`(n) = `Z(n) for n ∈ NZ ; γ(n) = γA(n) for n ∈ NA \NZ ,
γ(n) = γB(n) for n ∈ NB \ NZ , and γ(n) = {c, c′} for
n ∈ NZ . Notice that this definition of step 3 relies on the
fact that Z is exactly the same in A and B, so in particular
the places and transitions have the same names. Moreover,
it is easy to see that the resulting net is also tree-like.

Finally, from the above three steps, we can define the com-
position operation for compound systems: For A,B, X, Y
and Z = X ‖ Y as above, we denote the composition of A
and B as the merging of A[X/Z] and B[Y/Z] on Z.

From now on, for simplicity of presentation, we shall
consider a compound system pn with three components
A,B,C, giving rise to projections A, B, C. We assume
that A and B interact through interface X, while B and
C interact through interface Y . Hence pn = A ‖ B ‖ C. All
the results given below for three components extend to
tree-like nets (Madalinski and Fabre (2009)).

The distributed unfolding of Madalinski and Fabre (2009)
is based on the following factorability properties:

un(pn) = un(A) ‖ un(B) ‖ un(C), (1)

= πA (un(pn)) ‖ πB (un(pn)) ‖ πC (un(pn)) . (2)

Their approach consists in computing, without comput-
ing un(pn), the factors πA (un(pn)), πB (un(pn)), and
πC (un(pn)). The idea for this distributed computing of
the unfolding factors comes from the recursive application
of equation (1) in (2):

πA (un(pn)) = πA (un(A) ‖ un(B) ‖ un(C))
= un(A) ‖ πA (un(B) ‖ un(C))
= un(A ‖ πA (un(B ‖ πB (un(C)))))

This lets one compute πA (un(pn)) by propagating infor-
mation from C to A: C first computes πB (un(C)) and sends
it to B, which can compute πA (un(B) ‖ πB (un(C))) and
send it to A. Then A is able to compute πA (un(pn)). A
similar reasoning can be applied to the two other compo-
nents: πC (un(pn)) = un(πC (un(πB (un(A)) ‖ B)) ‖ C), and
πB (un(pn)) = un(πB (un(A)) ‖ B ‖ un(C)).

This approach is not yet constructive: computing one
unfolding factor requires the (in general infinite) unfolding
of other components. One has to replace them by a finite
object representing the behaviour of the interface of this
system: an interface summary.

Consider a net A having a gateway X to some component
c. An interface summary of A with respect to X is any
automaton sumX(A) = 〈P, T, F,M0, `, γ〉 satisying the fol-
lowing: there exists a sequence of transition firings t1 . . . tk
starting from M0 with label sequence w = `(t1) . . . `(tk)
if and only if there exists a sequence of transition firings
t′1 . . . t

′
k in πc (un(A)) starting from its initial state and

having the same label sequence w. Notice that this implies,
in particular, that all nodes of sumX(A) belong to c.

Example. An interface summary of A w.r.t. X (left) and
an interface summary of B w.r.t. Y (right) are shown in
Figure 4. Notice that the first summary is identical to
X (viewed as an automaton), whereas the second has a
terminating behaviour; this is because, while Y is cyclic,
B terminates after deliverC .

α1

α2

orderA
deliverA
stopA

χ1 χ2

χ3χ4 χ5

χ′1
orderC

stopC supplyC

declineC
demandC

deliverC

Fig. 4. Summary ofA w.r.t. its interface X (left); summary
of B w.r.t. Y (right).

Interface summaries can then replace unfoldings and pro-
jections in the above equations, leading to a new informa-
tion propagation process:

πA (un(pn)) = un(A ‖ πA (un(B ‖ πB (un(C)))))
= un(A ‖ sumX(B ‖ sumY (C)))

πB (un(pn)) = un(sumX(A) ‖ B ‖ sumY (C))
πC (un(pn)) = un(sumY (sumX(A) ‖ B) ‖ C)

Example. We illustrate the computation of πC (un(pn))
on the net of Figure 1. As previously mentioned, sumX(A)
is identical to X, therefore, sumX(A) ‖ B is the same as
B. In turn, sumY (B) is shown in Figure 4 (right). The
result of unfolding the composition of it with C is shown
in Figure 5 (places representing the summary are in grey).

6. DISTRIBUTED TIME STAMPS COMPUTATION

We now study how to incorporate timing information into
distributed unfoldings. The distributed approach from Sec-
tion 5 relies on unfolding one single component, composed
with a summary of other components. However, firing one
action from a summary may imply to fire multiple actions
in several components. To represent that, one can use
vector clocks. In this sens, vector clocks represent time
increments.

Let pn = 〈pn, θ〉 be a timed net. A timed branching process
of pn is a pair 〈pn′, θ′〉, where pn′ is a branching process
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Fig. 5. Unfolding of the composition of C with the sum-
mary of B w.r.t. Y .

of pn, and for all events e, θ′(e)(c) =
∑

e′∈[e] θ(λ(e′))(c).

We denote un(pn) as the timed unfolding of pn. Notice
that the timed unfolding of the untimed net pn, un(pn),
corresponds to the timed unfolding of 〈pn, θ1〉, where
θ1(t)(c) = 1 if c ∈ λ(t) and 0 otherwise. We therefore
denote pn1 := 〈pn, θ1〉.
In the rest of this section, we revisit the material from
Section 5 and extend it with timed information. This
results in a distributed method for computing distributed
testers, subject to finding appropriate summaries. This
final problem is then solved in Section 7.

Consider two timed nets 〈A, θA〉 and 〈B, θB〉 meeting at
{c, c′}, where A has a (c, c′)-gateway X, and B has a (c′, c)-
gateway Y . Then 〈A, θA〉 ‖ 〈B, θB〉 = 〈A ‖ B, θ〉, where for
every transition t of A ‖ B, we have the following: if t =
(ta, tb) is a transition of X ‖Y , then θ(t)(c) = θA(ta)(c) for
c ∈ C[A, X] and θ(t)(c) = θB(tb)(c) for other components
c; otherwise, θ(t) = θA(t) (resp. θB(t)) if t is a transition
of A (resp. B).

To make the distributed approach practical, a notion of
timed interface summary is also necessary. Consider a
timed net 〈A, θA〉 with gateway X to some component
c. A timed interface summary of A w.r.t. X is any timed
net sumX(A) = 〈sumX(A) , θX〉 such that sumX(A) is an
interface summary of A w.r.t. X, and for any c′ ∈ C[A, X]
and any path t1 . . . tn with label sequence w in sumX(A),∑n

i=1 θX(ti)(c
′) is the minimal number of transitions from

c′ among all sequences of transitions in A whose labels
contain w as a subsequence. Notice that the sequence
achieving the minimum for some component c′ is not
necessarily the same as for another component c′′.

Example. Consider the component A of the net in
Figure 1 and its interface X. Figure 6 shows a timed
summary of A1 w.r.t. X. Actions are annotated with time
increments over A and B. This summary can be seen as a
transformation of the projection shown in Figure 3, where
conditions mapped to a1 are fused together. Time incre-
ments correspond to the differences in the time stamps
between e6, e8, e9, respectively, and e3 in Figure 3. Since
the two occurrences of deliverA in Figure 3 correspond to
different time increments, a minimum has to be taken to
obtain the time increment of deliverA in Figure 6. Over
A the minimum of 3 (obtained from e8) and 4 (obtained
from e9) gives 3. Similarly, over B the minimum gives 1.

α1 α2

orderA 〈1, 1〉

stopA 〈1, 1〉

deliverA 〈3, 1〉

Fig. 6. Timed interface summary of A w.r.t. interface X.

By making use of this extension of ‖ and of timed sum-
maries, we can extend the distributed unfolding algorithm
of Section 5 to build distributed testers. This is expressed
(in the case of a three components) in the following theo-
rem, which is the first part of our contribution.

Theorem 1. If summaries with time increments exist, then
the propagation equations hold:

πA (un(pn)) = un(A1 ‖ sumX(B1 ‖ sumY (C1)))

πB (un(pn)) = un(sumX(A1) ‖ B1 ‖ sumY (C1))

πC (un(pn)) = un(sumY (sumX(A1) ‖ B1) ‖ C1)

7. INTERFACE SUMMARY CONSTRUCTION

We now provide the missing part of the puzzle by present-
ing a method for computing timed summaries. This al-
lows to effectively construct the distributed unfoldings.Our
method is a modification of the – untimed – summary
construction from Esparza et al. (2013).

Consider a net A having a (c, c′)-gateway X. We recall
how to construct an interface summary of A with respect
to X from a finite prefix of un(A). To this end, we first
introduce some notations.

Let pn′ be a branching process of A. An event (condition)
n of pn′ is is an X-event (X-condition) if γ(n) = {c, c′}.
Let e be any event of pn′. We note M(e) the unique
set of conditions marked after firing all events in [e] and
St(e) = {λ(b) | b ∈M(e) } the places of A associated with
M(e). We note M(e)X the unique X-condition in M(e).
Since by assumption X is an automaton, such a condition
always exists. We note Xp(e) the set of X-predecessors of
e, that is the X-events among the causal predecessors of e:
Xp(e) = { e′ ∈ [e] | γ(e′) = {c, c′} }. Event e′ is a strong
cause of e, denoted e′ � e, if e′ < e and b′ < b for every
b ∈M(e) \M(e′), b′ ∈M(e′) \M(e).

Algorithm 1 describes the construction of the interface
summary in two steps. The first step (lines 1 to 10) com-
putes a prefix of un(A) containing sufficient information to
construct a summary, which is produced by the second step



(lines 11 to 14). The first step relies on two notions: cut-off
events (after which the unfolding contains no additional
information useful for us) and cut-off candidates (where
we provisionally stop unfolding but may resume later on).

An event e is a cut-off of pn′ if it is an X-event and pn′ al-
ready contains a non-cut-off X-event e′ (called companion
of e) such that St(e) = St(e′).

Let Xcopn′(e) denote the set of non cut-off X-events of
pn′ concurrent with e. Then event e is a cut-off candidate
of pn′ if it is not an X-event and pn′ contains e′ � e such
that St(e) = St(e′), Xp(e′) = Xp(e), and Xcopn′(e) ⊆
Xcopn′(e′). Finally, we say that event e frees ec if ec is a
cut-off candidate of pn′ before the addition of e but not
after its addition.

Algorithm 1. Summary of a net A with interface X
1: let pn′ be the branching process of A with no events
2: let co = ∅ and coc = ∅
3: While Ext(pn′, co, coc) 6= ∅ do
4: choose an event e in Ext(pn′, co, coc)
5: If e is a cut-off event then let co = co ∪ {e}
6: Elseif e is a cut-off candidate of pn′ then
7: let coc = coc ∪ {e}
8: Else for every e′ ∈ coc do
9: If e frees e′ then coc = coc \ {e′}

10: extend pn′ with e
11: let aut := πc′ (pn′)
12: For every e ∈ co with companion e′ do
13: fuse M(e)X with M(e′)X in aut
14: Return aut

In the first step of Algorithm 1, Ext(pn′, co, coc) denotes
possible extensions of pn′ that are not causal successors
of events in co ∪ coc. The choice of e in this set has to be
done carefully, respecting a well chosen order (see Esparza
and Heljanko (2008) for example). The second step first
extracts the interface portion of pn′ by projecting onto
c′ (this suffices because X is a gateway). Moreover, since
by assumption X is an automaton, and because of the
properties of branching processes, πc′ (pn′) is an acyclic
finite automaton. In fact, each terminal node of πc′ (pn) is
an X-condition b such that the unique event e ∈ •b is a
cut-off. The cut-off condition ensures that b′ := M(e′)X ,
where e′ is the companion of e, satisfies λ(b′) = λ(b),
and, since St(e) = St(e′), b and b′ have the same future:
isomorphic structures would be built from M(e) and M(e′)
if the unfolding process was never stopped. This justifies
fusing b and b′ as one single place in lines 12 and 13.

Now, let 〈A, θA〉 be a timed net with A (still having
gateway X). We shall produce a timed interface summary
of A w.r.t. X by applying the following modification to
Algorithm 1:

The unfolding step (lines 1 to 10) and the fusion of con-
ditions (lines 12 and 13) remain unchanged. However, it
does not suffice to simply annotate each event e in aut with
the time increment given by θA(λ(e)): to obtain the correct
time stamp for e, one would have to sum all the time incre-
ments from [e] in pn′. This use of time increments rather
than time stamps allows one to build correct timed inter-
face summaries. Thus, to compute the time increments θX ,
we have to take into account the events in pn′ outside X
that were removed by the projection. Notice that each X-
event e can be associated to a unique minimal set Req(e)

of non X-events that have to fire in order to enable e. This
set is constituted of all predecessors of e that are not X-
predecessors of e, nor predecessors of X-predecessors of e.
In other words, it consists of all the events that have to
occur between the closest X-predecessor of e and e itself.
The time increment associated to e is then: ∀c, θX(e)(c) =
θA(λ(e))(c) +

∑
e′∈Req(e) θA(λ(e′))(c). Moreover, if the fu-

sion of two conditions in line 13 results in two or more
automata transitions having the same (singleton) preset,
label, and postset, these transitions are fused into one
single transition whose time increment is the pointwise
minimum of the time increments of the fused transitions.

Example. For Figure 1, the timed summary of A w.r.t.
X produced by this procedure is the one shown in Figure 6.

Theorem 2. The tuple 〈aut, θX〉, as computed by the
above modification of Algorithm 1, is a timed interface
summary of 〈A, θA〉.

8. CONCLUSION

In this paper we have proposed a procedure for building a
tester for distributed systems. This tester is distributed as
it complies with the definition given in Ponce de León et al.
(2014). The novelty of our approach with respect to this
work on concurrent conformance is that the construction of
the tester is achieved as the result of a distributed process.

This work also heavily relies on previous theoretical works
from the authors. We extend them by bringing a notion of
logical time to Petri nets unfolding, with small additional
computational cost.
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