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ABSTRACT. “Unidirectional channel systems” (Chambart & Schnoebelen, CONCUR 2008) are
finite-state systems where one-way communication from a Sender to a Receiver goes via one reli-
able and one unreliable unbounded fifo channel. While reachability is decidable for these systems,
equipping them with the possibility of testing regular properties on the contents of channels makes it
undecidable. Decidability is preserved when only emptiness and nonemptiness tests are considered:
the proof relies on an elaborate reduction to a generalized version of Post’s Embedding Problem.

1. INTRODUCTION

Channel systemsare a family of computational models where concurrent agents communicate via
(usually unbounded) fifo communication channels [13]. Theyare sometimes calledqueue automata
when there is only one finite-state agent using the channels as fifo memory buffers. These models
are well-suited to the formal specification and algorithmicanalysis of communication protocols and
concurrent programs [9, 10, 35].

A particularly interesting class of channel systems are thelossy channel systems, “LCSes”
for short, popularized by Abdulla, Bouajjani, Jonsson, Finkel, et al. [14, 4, 2]. Lossy chan-
nels are unreliable and can lose messages nondeterministically and without any notification. This
weaker model is easier to analyse: safety, inevitability and several more properties are decidable for
LCSes [14, 4, 1, 6] while they are undecidable when channels are reliable.

Let us stress that LCSes also are an important and fundamental computation modelper se.
During the last decade, they have been used as an automaton model to prove the decidability (or the
hardness) of problems on Timed Automata, Metric Temporal Logic, modal logics, etc. [3, 36, 31,
30, 33, 11, 34, 7]. They also are a very natural low-level computational model that captures some
important complexity classes in the ordinal-recursive hierarchy [18, 39, 28, 40, 38].

Unidirectional channel systems,“UCSes” for short, are channel systems where a Sender process
communicates to a Receiver process viaone reliableandone lossychannel, see Fig. 1. They were
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2 P. JANČAR ET AL.

introduced by Chambart and Schnoebelen who identified them as a minimal setting to which one can
reduce reachability problems for more complex combinations of lossy and reliable channels [16].
UCSes are limited to one-way communication: there are no channels going from Receiver to Sender.
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Figure 1: UCS = buffered one-way communication via one reliable and one lossy channels

One-way communication appears, e.g., in half-duplex protocols [26] or in the acyclic networks
of [32, 5].

The reachability problem for UCSes is quite challenging: itwas proved decidable by refor-
mulating it more abstractly as the(Regular) Post Embedding Problem(PEP), which is easier to
analyze [15, 17, 19]. We want to stress that, whilePEP is a natural variant of Post’s Correspon-
dence Problem, it was first identified through questions on UCSes. Recently,PEP has proved useful
in other areas: graph logics for databases [7] and fast-growing complexity [28].

Testing channel contents.In basic channel systems, the agents are not allowed to inspect the con-
tents of the channels. However, it is sometimes useful to enrich the basic setup with tests. For
example, a multiplexer process will check each of its input channels in turn and will rely on empti-
ness and/or non-emptiness tests to ensure that this round robin policy does not block when one
input channel is empty [37]. In other settings, channel systems with insertion errors becomes more
expressive when emptiness tests are allowed [11].

In this article we consider such emptiness and non-emptiness tests, as well as more general
tests given by arbitrary regular predicates on channel contents. A simple example is given below
in Fig. 2 (see page 5) where some of Sender’s actions depend onthe parity of the number of mes-
sages currently inr. When verifying plain UCSes, one can reorder steps and assume a two-phase
behaviour where all Sender steps occur before all Receiver steps. When one has tests, one can no
longer assume this.

Our contribution. We extend UCSes with the possibility of testing channel contents with regular
predicates (Section 2). This makes reachability undecidable even with restricted sets of simple tests
(Section 3). Our main result (Theorem 4.1) is that reachability is decidable for UCSes extended with
emptiness and non-emptiness tests. The proof goes through aseries of reductions, some of them
nontrivial, that leave us with UCSes extended by only emptiness tests on a single side of a single
channel, called “Zl

1 tests” (sections 5 and 6). This minimal extension is then reduced (Section 7)
to PEP

partial
codir , or “PEP with partial codirectness”, a nontrivial extension ofPEP that was recently

proved decidable [29]. This last reduction extends the reduction from UCS toPEP in [17]. Finally,
Section 8 proves that emptiness and/or non-emptiness testsstrictly enrich the basic UCS model.
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Related work.Emptiness and non-emptiness tests have been considered already in [37], while
Promela (SPIN’s input language) offers head tests (that test the first available message without
consuming it) [25]. Beyond suchspecifictests, we are not aware of results that consider models
with a general notion of tests on channel contents (except inthe case of LCSes where very general
tests can be allowed without compromising the main decidability results, see [8, sect. 6]).

Regarding unidirectional channels, the decidability results in [5, 32, 24, 23, 20] apply to sys-
tems where communication between two agents is limited to asingleone-way channel (sometimes
complemented with a finite shared memory, real-time clock, integer-valued counter, or local push-
down stack). Finally let us mention the recent work by Clemente et al. where fifo and “bag” chan-
nels can be mixed: one can see bag channels as unreliable channels where the temporal ordering of
messages is not preserved [21].

2. UNIDIRECTIONAL CHANNEL SYSTEMS

2.1. Unidirectional Channel System with Tests.A UCST is a tupleS= (Ch,M,Q1,∆1,Q2,∆2),
whereM is the finite alphabet ofmessages, Q1, Q2 are the disjoint finite sets ofstatesof Sender and
Receiver, respectively, and∆1, ∆2 are the finite sets ofrules of Sender and Receiver, respectively.
Ch= {r,l} is a fixed set of channel names, justchannelsfor short, wherer is reliableandl is lossy
(since messages inl can spontaneously disappear).

A rule δ ∈ ∆i is a tuple(q,c,α,q′) ∈ Qi × Ch×Act×Qi where the set of actionsAct contains
tests, checking whether the contents ofc ∈ Ch belongs to some regular languageR∈ Reg(M), and
communications(sending a messagea ∈ M to c in the case of Sender’s actions, reading it for Re-
ceiver’s). Allowed actions also include theempty action(no test, no communication) that will be

treated as “sending/reading the empty wordε”; formally we putAct
def
= Reg(M)∪M∪{ε}.

We also write a rule(q,c,α,q′) asq
c,α
−→ q′, or specificallyq

c:R
−→ q′ for a rule where the action is

a test onc, andq
c!a
−→ q′ or q

c?a
−→ q′ when the action is a communication by Sender or by Receiver,

respectively. We also write justq−→ q′ or q
⊤
−→ q′ when the action is empty.

In graphical representations like Fig. 1, Sender and Receiver are depicted as two disjoint di-
rected graphs, where states appear as nodes and where rulesq

c,α
−→ q′ appear as edges fromq to q′

with the corresponding labellings.

2.2. Operational Semantics. The behaviour of a UCST is defined via an operational semantics

along standard lines. Aconfigurationof S=(Ch,M,Q1,∆1,Q2,∆2) is a tupleC∈ConfS
def
= Q1×Q2×

M
∗× M

∗. In C = (q1,q2,u,v), q1 andq2 are the current states of Sender and Receiver, respectively,
while u andv are the current contents ofr andl, respectively.

The rules in∆1∪∆2 give rise to transitions in the expected way. We use two notions of tran-
sitions, or “steps”, between configurations. We start with so-called “reliable” steps: given two
configurationsC= (q1,q2,u,v), C′ = (q′1,q

′
2,u

′,v′) and a ruleδ = (q,c,α,q′), there is a reliable step

denotedC
δ
−→C′ if, and only if, the following four conditions are satisfied:

states: q= q1 andq′ = q′1 andq2 = q′2 (for Sender rules), orq= q2 andq′ = q′2 andq1 = q′1
(for Receiver rules);

tests: if δ is a test ruleq
c:R
−→ q′, thenc = r andu ∈ R, or c = l andv ∈ R, and furthermore

u′ = u andv′ = v;



4 P. JANČAR ET AL.

writes: if δ is a writing ruleq
c!x
−→ q′ with x∈ M∪{ε}, thenc = r andu′ = ux andv′ = v, or

c= l andu′ = u andv′ = vx;
reads: if δ is a reading ruleq

c?x
−→ q′, thenc = r andu= xu′ andv′ = v, or c = l andu′ = u

andv= xv′.

This reliable behaviour is completed with message losses. For v,v′ ∈ M
∗, we write v′ ⊑1 v

whenv′ is obtained by deleting a single (occurrence of a) symbol from v, and we let⊑ denote the
reflexive-transitive closure of⊑1. Thusv′ ⊑ v whenv′ is a scattered subword, i.e., a subsequence,
of v. (E.g.,aba⊑1 abbaandaa⊑ abba.) This is extended to configurations and we writeC′ ⊑1 C
or C′ ⊑C whenC′ = (q1,q2,u,v′) andC = (q1,q2,u,v) with v′ ⊑1 v or v′ ⊑ v, respectively. Now,
wheneverC′ ⊑1 C, the operational semantics ofS includes a step fromC toC′, called amessage loss

step, and denotedC
los
−→C′, considering that “los” is an extra, implicit rule that is always allowed.

Thus a stepC
δ
−→C′ of S is either a reliable step, whenδ ∈ ∆1∪∆2, or a (single) message loss,

whenδ = los.

Remark 2.1(On reliable steps). As is usual with unreliable channel systems, the reliable semantics
plays a key role even though the object of our study is reachability via not necessarily reliable steps.
First it is a normative yardstick from which one defines the unreliable semantics by extension. Then
many hardness results on lossy systems are proved via reductions where a lossy system simulates in
some way the reliable (and Turing-powerful) behaviour: proving the correctness of such reductions
requires having the concept of reliable steps.

Remark 2.2 (UCSTs and well-structured systems). It is well-known that(M∗,⊑) is a well-quasi-
order (a wqo): any infinite sequencev0,v1,v2, . . . of words overM contains an infinite increasing
subsequencevi0 ⊑ vi1 ⊑ vi2 ⊑ ·· · This classic result, called Higman’s Lemma, plays a fundamental
role in the algorithmic verification of lossy channel systems and other well-structured systems [14,
22]. Here we note that(Conf,⊑) is not a wqo sinceC ⊑ D requires equality on channelr, so that
UCSTs are not well-structured systems despite the presenceof a lossy channel.

2.3. Reachability. A run from C0 to Cn is a sequence of chained stepsC0
δ1−→ C1

δ2−→ C2 · · ·
δn−→ Cn,

abbreviated asC0
∗
−→Cn (or C0

+
−→Cn when we rule out zero-length runs).

The(Generalized) Reachability Problem, or just “G-G-Reach” for short, is the question, given
a UCSTS= (Ch,M,Q1,∆1,Q2,∆2), some statespin, pfi ∈ Q1, qin,qfi ∈ Q2, some regular languages
U,V,U ′,V ′ ∈ Reg(M), whether there are someu∈U , v∈V, u′ ∈U ′ andv′ ∈V ′ such thatShas a run
Cin = (pin,qin,u,v)

∗
−→Cfi = (pfi ,qfi ,u′,v′).

SinceU , V, U ′, V ′ can be taken as singleton sets, the G-G-Reach problem is moregeneral
than asking whetherS has a runCin

∗
−→ Cfi for some given initial and final configurations. We

shall need the added generality in Section 6 in particular. However, sometimes we will also need
to put restrictions onU , V, U ′, V ′. We use E-G-Reach to denote the reachability problem where
U =V = {ε}, i.e., whereCin has empty channels (E is for “Empty”), whileU ′,V ′ ∈ Reg(M) are not
constrained. We will also consider the E-E-Reach restriction whereU =V =U ′ =V ′ = {ε}. It is
known —see [16, Theo 3.1]— that E-E-Reach is decidable for UCSes, i.e., UCSTs that do not use
tests.
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3. TESTING CHANNELS AND THE UNDECIDABILITY OF REACHABILITY

Despite their similarities, UCSes and LCSes (lossy channelsystems) behave differently. The algo-
rithms deciding reachability for LCSes can easily accommodate regular (or even more expressive)
tests [8, Sect. 6]. By contrast, UCSes become Turing-powerful when equipped with regular tests.
The main result of this section is the undecidability of reachability for UCSTs. To state the respec-
tive theorem in a stronger version, we first introduce a notation for restricting the (regular) tests.

3.1. Restricted sets of tests.WhenT ⊆ Reg(M), we write UCST[T ] to denote the class of UCSTs
where only tests, i.e. languages, belonging toT are allowed. Thus UCSTs and UCSes coincide
with UCST[Reg(M)] and UCST[∅], respectively. We single out some simple tests (i.e., languages)
defined via regular expressions:

Even
def
= (M.M)∗, Odd

def
= M.Even, Z

def
= ε, N

def
= M

+, Ha
def
= a.M∗.

ThusP = {Even,Odd} is the set ofparity tests,Z is theemptiness(or “zero”) test,N is thenon-
emptinesstest andH = {Ha | a∈ M} is the set ofheadtests (that allows checking what is the first
message in a channelwithout consuming it). Note that the non-emptiness test can be simulated with
head tests.

Before proving (in later sections) the decidability of G-G-Reach for UCST[{Z,N}], we start by
showing that E-E-Reach is undecidable for both UCST[P ] and UCST[H ]: this demonstrates that
we get undecidability not only with simple “global” tests (parity tests) whose outcome depends on
the entire contents of a channel, but also with simple “local” tests (head tests).

In fact, we even show the stronger statement that E-E-Reach is undecidable for UCST[P r

1 ]
and UCST[H r

1 ], where the use of subscripts and/or superscripts means that we consider restricted
systems where only Sender (for subscript 1, only Receiver for subscript 2) may use the tests, and
that the tests may only apply on channelr or l (depending on the superscript). E.g., in UCST[P r

1 ]
the only allowed tests are parity tests performed by Sender on channelr.

Theorem 3.1. Reachability (E-E-Reach) is undecidable for both UCST[P r

1 ] and UCST[H r

1 ].

We now proceed to prove Theorem 3.1 by simulating queue automata with UCSTs.

3.2. Simulating queue automata. Like queue automata, UCSes have a reliable channel but, unlike
them, Sender (or Receiver) cannot both readand write from/to it. If Sender could somehow read
from the head ofr, it would be as powerful as a queue automaton, i.e., Turing-powerful. Now we
show that parity tests used by Sender onr allow us to construct a simple protocol making Receiver
act as a proxy for Sender and implement read actions on its behalf. See Fig. 2 for an illustrating

example of how Sender simulates a rulep1
r?a
−→ p2.

qproxy

l?a

r?a

l?c r?c

l?b

r?b p1

p2

r:Odd

l!a

r:Even

r:Even

l!a

r:Odd

r

l

a b c a c

a

Figure 2: Sender simulates “p1
r?a
−→ p2” with parity tests and proxy Receiver

Described informally, the protocol is the following:
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(1) Channell is initially empty.
(2) In order to “read” fromr, Sender checks and records whether the length of the current

contents ofr is odd or even, using a parity test onr.
(3) It then writes onl the message that it wants to read (a in the example).
(4) During this time Receiver waits in its initialqproxy state and tries to read froml. When it

reads a messagea from l, it understands it as a request telling it to reada from r on behalf
of Sender. Once it has performed this read onr (whena really was there), it returns toqproxy

and waits for the next instruction.
(5) Meanwhile, Sender checks that (equivalently, waits until) the parity of the contents ofr has

changed, and on detecting this change, concludes that the read was successful.
(6) Channell is now empty and the simulation of a read by Sender is concluded.

If no messages are lost onl, the protocol allows Sender to read onr; if a message is lost onl, the
protocol deadlocks. Also, Sender deadlocks if it attempts to read a message that is not at the head
of r, in particular whenr is empty; i.e., Sender has to guess correctly.

Our simulation of a queue automaton thus introduces many possible deadlocks, but it still
suffices for proving undecidability of reachability, namely of E-E-Reach for UCST[P r

1 ].
To prove undecidability for UCST[H r

1 ] we just modify the previous protocol. We use two
copies of the message alphabet, e.g., using two “colours”. When writing onr, Sender strictly
alternates between the two colours. If now Sender wants to read a given letter, saya, from r, it
checks that ana (of the right colour) is present at the head ofr by usingH r

1 tests. It then asks
Receiver to reada by sending a message vial. Since colours alternate inr, Sender can check (i.e.,
wait until), again using head tests, that the reading ofa occurred.

4. MAIN THEOREM AND A ROADMAP FOR ITS PROOF

We will omit set-brackets in the expressions like UCST[{Z,N}], UCST[{Z1,N1}], UCST[{Zl

1}];
we thus write UCST[Z,N], UCST[Z1,N1], UCST[Zl

1], etc. We now state our main theorem:

Theorem 4.1. Reachability (G-G-Reach) is decidable for UCST[Z,N].

Hence adding emptiness and nonemptiness tests to UCSes doesnot compromise the decidabil-
ity of reachability (unlike what happens with parity or headtests).

Our proof of Theorem 4.1 is quite long, being composed of several consecutive reductions,
some of which are nontrivial. A scheme of the proof is depicted in Fig. 3, and we give a brief
outline in the rest of this section.

We first recall that the reachability problem for UCSes (i.e., for UCST[∅]) was shown decid-
able via a reduction toPEP (Post’s Embedding Problem) in [17]. Relying on this earlierresult
(by reducing UCST[Z,N] to UCST[∅]) or extending its proof (by reducing UCST[Z,N] to PEP

directly) does not seem at all trivial. At some pointPEP
partial
codir , a non-trivial generalization of the

basicPEP problem, was introduced as a certain intermediate step and shown decidable in [29].
Once it is known thatPEPpartial

codir is decidable, our proof for Theorem 4.1 is composed of two
main parts:

(1) One part, given in Section 7, is a reduction of E-E-Reach for UCST[Zl

1] to PEP
partial
codir . It

is relatively compact, since we have found a suitable intermediate notion between runs of
UCST[Zl

1] and solutions ofPEPpartial
codir .

(2) The other part of the proof, given in sections 5 and 6, reduces G-G-Reach for UCST[Z,N]
to E-E-Reach for UCST[Zl

1]. It has turned out necessary to decompose this reduction ina
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G-G-Reach[Z, N]

G-G-Reach[Z1, N1]
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1]
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1]

PEP
partial
codir








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


























































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

reuse

Sec. 5.2

Sec. 5.3

Sec. 5.4

Sec. 5.5

Sec. 6
(a Turing reduction)

Sec. 7

Figure 3: Roadmap of the reductions from G-G-Reach[Z, N] to PEP
partial
codir

series of smaller steps (as depicted in Fig. 3) where features such as certain kinds of tests, or
general initial and final conditions, are eliminated step bystep. The particular way in which
these features are eliminated is important. For example, weeliminateZ2 andN2 tests by
one simulation reducing G-G-Reach[Z, N] to G-G-Reach[Z1, N1] (Sec. 5.2); the simulation
would not work if we wanted to eliminateZ2 andN2 separately, one after the other.

One of the crucial steps in our series is the reduction from E-E-Reach[Z1] to G-G-Reach[Zl

1 ].
This is a Turing reduction, while we otherwise use many-one reductions. Even though we start with
a problem instance where the initial and final configurationshave empty channel contents, we need
oracle calls to a problem where the initial and final conditions are more general. This alone naturally
leads to considering the G-G-Reach instances.

We note that, when UCSes are equipped with tests, reducing from G-G-Reach to E-E-Reach
is a problem in itself, for which the simple “solution” that we sketched in our earlier extended
abstract [27] does not work.

It seems also worth noting that all reductions in Section 5 treat the two channels in the same
way; no special arrangements are needed to handle the lossiness ofl. The proofs of correctness, of
course, do need to take the lossiness into account.

5. REDUCING G-G-REACH FOR UCST[Z,N] TO E-E-REACH FOR UCST[Z1]

This section describes four simulations that, put together, entail Point 1 in Theorem 5.1 below.
Moreover, the last three simulations also yield Point 2. We note that the simulations are tailored to
the reachability problem: they may not preserve other behavioural aspects like, e.g., termination or
deadlock-freedom.

Theorem 5.1.
(1) G-G-Reach[Z,N] many-one reduces to E-E-Reach[Z1].
(2) G-G-Reach[Zl1] many-one reduces to E-E-Reach[Zl

1].



8 P. JANČAR ET AL.

Before proceeding with the four reductions, we present a simple Commutation Lemma that lets
us reorder runs and assume that they follow a specific pattern.

5.1. Commuting steps in UCST[ZZZ,,,NNN] systems. We say that two consecutive stepsC
δ1−→C′ δ2−→C′′

(of someS) commuteif C
δ2−→ D

δ1−→ C′′ for some configurationD of S. The next lemma lists some
conditions that are sufficient for commuting steps in an arbitrary UCST[Z,N] systemS:

Lemma 5.2(Commutation). Two consecutive steps C
δ1−→C′ δ2−→C′′ commute in any of the following

cases:

(1) No contact: δ1 is a read/write/test by Sender or Receiver acting on one channel c (or a
message loss onc= l), whileδ2 is a rule of theother agentacting on theother channel(or
is a loss).

(2) Postponable loss:δ1 is a message loss that does not occur at the head of (the current content
of) l.

(3) Advanceable Sender:δ1 is a Receiver’s rule or a loss, andδ2 is a Sender’s rule but not a
Z1-test.

(4) Advanceable loss:δ2 is a loss andδ1 is not an “l:N” test or a Sender’s write onl.

Proof. By a simple case analysis. For example, for (2) we observe that if δ1 loses a symbol behind
the head ofl, then there is another message at the head ofl, and thus commuting is possible even
if δ2 is an “l?a” read or an “l:Z” test.

We will use Lemma 5.2 several times and in different ways. Forthe time being, we consider

in particular the convenient restriction to “head-lossy” runs. Formally, a message lossC
los
−→ C′ is

head-lossyif it is of the form (p,q,u,av)
los
−→ (p,q,u,v) wherea∈ M (i.e., the lost message was the

head ofl). A run Cin
∗
−→Cfi is head-lossyif all its message loss steps are head-lossy, or occur after

all the reliable steps in the run (it is convenient to allow unconstrained losses at the end of the run).
Repeated use of Point (2) in Lemma 5.2 easily yields the next corollary:

Corollary 5.3. If there is a run from Cin to Cfi then there is a head-lossy run from Cin to Cfi .

5.2. Reducing G-G-Reach[ZZZ,,,NNN] to G-G-Reach[ZZZ111,,,NNN111]. Our first reduction eliminatesZ andN
tests by Receiver. These tests are replaced by reading two special new messages, “z” and “n”, that
Sender previously put in the channels.

Formally, we consider an instance of G-G-Reach[Z,N], made of a given UCSTS =
({r,l},M,Q1,∆1,Q2,∆2), given statespin, pfi ∈ Q1, qin,qfi ∈ Q2, and given languagesU,V,U ′,V ′ ∈
Reg(M). We construct a new UCSTS′ from Sas follows (see Fig. 4):

(1) We add two special new messagesz,n to M, thus creating the alphabetM′
def
= M⊎{z,n}.

(2) For each channelc ∈ {r,l} and each Sender’s statep∈ Q1 we add new statesp1
c
, p2

c
and

an “(emptiness) testing loop” p
c:Z
−→ p1

c

c!z
−→ p2

c

c:Z
−→ p (i.e., three new rules).

(3) For every Sender’s writing ruleθ of the formp
c!x
−→ p′ we add a new statepθ and the following

three rules:p
⊤
−→ pθ, pθ

c!n
−→ pθ (a “padding loop”), and pθ

c!x
−→ p′.

(4) For every Receiver’s ruleq
c:Z
−→ q′ (testing emptiness ofc) we add the ruleq

c?z
−→ q′.

(5) For every Receiver’s ruleq
c:N
−→ q′′ (testing non-emptiness ofc) we add the ruleq

c?n
−→ q′′.

(6) At this stage, the resulting system is calledSaux.
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(7) Finally we remove all Receiver’s tests, i.e., the rulesq
c:Z
−→ q′ andq

c:N
−→ q′′. We now haveS′.

q

q′ q′′

c:Z c
′:N

p

p′

c!a

S

r

l

a
⇒

q

q′ q′′

c?z c
′?n

p

p′

pθ

p1
c

p2
c

p1
c′

p2
c′

c:Z
c!z

c:Z

c!a
⊤

c!a

c!n

S′

r

l

n a

z

Figure 4: Reducing G-G-Reach[Z,N] to G-G-Reach[Z1,N1]: eliminating Receiver’s tests

The intuition behindS′ is that Sender runs a small protocol signaling to Receiver what the status of
the channels is. When a channel is empty, Sender may write az to it that Receiver can read in place
of testing for emptiness. For correctness, it is important that Sender does not proceed any further
until this z has disappeared from the channel. For non-emptiness tests,Sender can always write
several extraneousn messages before writing an original message. Receiver can then read thesen’s
in place of testing for nonemptiness.

For w= a1a2 . . .aℓ ∈ M
∗, we letpad(w)

def
= n

∗a1n
∗a2 . . .n

∗aℓ denote the set (a regular language)
of all paddingsof w, i.e., words obtained by inserting any number ofn’s in front of the original
messages. Note thatpad(ε) = {ε}. This is extended to arbitrary languages in the usual way: for L⊆
M
∗, pad(L) =

⋃
w∈L pad(w) and we note that, whenL is regular,pad(L) is regular too. Furthermore,

one easily derives an FSA (a finite-state automaton) or a regular expression forpad(L) from an FSA
or a regular expression forL.

By replacingS, U , V with S′, pad(U), pad(V) (and keepingpin, pfi , qin, qfi , U ′, V ′ unchanged),
the initial G-G-Reach[Z,N] instance is transformed into a G-G-Reach[Z1,N1] instance. The cor-
rectness of this reduction is captured by the next lemma, that we immediately proceed to prove in
the rest of section 5.2:

Lemma 5.4. For any u,v,u′,v′ ∈ M
∗, S has a run(pin,qin,u,v)

∗
−→ (pfi ,qfi ,u′,v′) if, and only if, S′ has

a run (pin,qin, û, v̂)
∗
−→ (pfi ,qfi ,u′,v′) for some padded wordŝu∈ pad(u) andv̂∈ pad(v).

Though we are ultimately interested inS andS′, it is convenient to consider special runs of
Saux sinceSaux “contains” bothSandS′. We rely on Corollary 5.3 and tacitly assume that all runs

are head-lossy. We say that a (head-lossy)run C0
δ1−→ C1

δ2−→ ·· ·
δn−→ Cn of Saux is faithful if C0 =

(p0,q0,u0,v0) with u0,v0 ∈ pad(M∗), Cn = (pn,qn,un,vn) with un,vn ∈ M
∗, p0, pn ∈ Q1, q0,qn ∈ Q2,

and the following two properties are satisfied (for alli = 1,2, . . . ,n):

– if δi is somep
c:Z
−→ p1

c
thenδi+1, δi+2, andδi+3 arep1

c

c!z
−→ p2

c
, q

c?z
−→ q′, p2

c

c:Z
−→ p (for some

q,q′ ∈ Q2). In this case, the subrunCi−1
∗
−→Ci+3 is called aP1-segmentof the run.

(P1)

– if δi is somep
⊤
−→ pθ then there is somej > i such thatδi+1,δi+2, . . . ,δ j arepθ

c!n
−→ pθ

c!n
−→

·· ·
c!n
−→ pθ

c!a
−→ p′ for somea∈ M andp′ ∈ Q1. The subrunCi−1

∗
−→Cj is called aP2-segment.

(P2)

Informally, a run is faithful if it uses the new rules (introduced inSaux) in the “intended” way: e.g.,

P1 enforces that eachz written by Sender (necessarily via a rulepc1
c!z
−→ pc2) is immediately read after

being written in the empty channel. We note that any run ofS is trivially faithful since it does not
use the new rules.

We now exhibit two reversible transformations of runs ofSaux, one forZ tests in §5.2.1, the
other for N tests in §5.2.2, that preserve faithfulness. This will allow us to translate runs ofS,
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witnessing the original instance, to faithful runs ofS′, witnessing the created instance, and vice
versa. Finally we show in §5.2.3 that if there is a run ofS′ witnessing the created instance, then
there is a faithful one as well.

When describing the two transformations we shall assume, inorder to fix notations, that we
transform a test on channell; the case for the channelr is completely analogous. For both trans-
formations we assume a faithful (head-lossy) runπ of Saux in the following form:

(pin,qin,u0,v0) =C0
δ1−→C1

δ2−→C2 · · ·
δn−→Cn = (pfi ,qfi ,un,vn) (π)

whereδ1, . . . ,δn can be rules ofSaux or the “los” symbol for steps where a message is lost. For
i = 0,1, . . . ,n, we letCi = (pi ,qi ,ui ,vi).

5.2.1. Trading Z2 tests for P1-segments.Assume that the stepCm
δm+1
−−→ Cm+1 in π is a Z2-test (an

emptiness test by Receiver), hence has the form(p,q,w,ε) l:Z
−→ (p,q′,w,ε) if we assumec = l. We

may replace this step with the following steps

(p,q,w,ε) l:Z
−→ (p1

l
,q,w,ε) l!z

−→ (p2
l
,q,w,z)

l?z
−→ (p2

l
,q′,w,ε) l:Z

−→ (p,q′,w,ε) (5.1)

using the rules introduced inSaux. This transforms (the faithful run)π into another faithful runπ′,
decreasing the number of Receiver’s tests (by one occurrence of aZ2-test). In the other direction, if
π contains a P1-segmentCm−1

∗
−→Cm+3, it must be of the form (5.1), when the involved channel is

c= l, and we can replace it with one stepCm−1
c:Z
−→Cm+3, preserving faithfulness.

5.2.2. Trading N2 tests for occurrences ofn. Now assume that the stepCm
δm+1
−−→Cm+1 is anNl

2 -test,

hence has the form(p,q,u,xv)
l:N
−→ (p,q′,u,xv) for some messagex ∈ M

′. Now x 6= z since there
was noz’s in v0 and, as noted above, anyz written by Sender in a faithful run is immediately read.

Hencex∈ M∪{n}. We want to replace theq
l:N
−→ q′ test (by Receiver) with aq

l?n
−→ q′ but this requires

inserting onen in l, i.e., using a new rulepθ
l!n
−→ pθ at the right moment.

We now follow the (occurrence of)x singled out inCm and find the first configuration, say
Ck, where thisx appears already; we can thus writevi = wi xw′

i , i.e., Ci = (pi ,qi ,ui ,wi xw′
i), for

i = k,k+1, . . . ,m. Herex always depicts the same occurrence, and e.g.,wmxw′
m= xventailswm= ε

andw′
m= v. By addingn in front of x in eachCi for i = k,k+1, . . . ,m, we obtain new configurations

C′
k,C

′
k+1, . . . ,C

′
m given byC′

i = (pi ,qi ,ui ,wi nxw′
i). NowC′

k
δk+1
−−→C′

k+1
δk+2
−−→ ·· ·

δm−→C′
m is a valid run of

Saux sincex is not read duringCk
∗
−→Cm and since, thanks to the presence ofx, adding onen does not

change the (non)emptiness status ofl in this subrun. Moreover, sinceq
l:N
−→ q′ is a rule ofS, there is

a ruleq
l?n
−→ q′ in Saux, whereC′

m = (p,q,u,nxv)
l?n
−→ (p,q′,u,xv) =Cm+1 is a valid step.

If k= 0 (i.e., if x is present at the beginning ofπ), we have exhibited a faithful runC′
0

∗
−→C′

m
l?n
−→

Cm+1
∗
−→Cn, starting fromC′

0 = (pin,qin,u0,w0nxw′
0), wherew0nxw′

0 ∈ pad(v0) sincev0 = w0 xw′
0.

If k> 0, the highlighted occurrence ofx necessarily appears inCk via δk = pk−1
l!x
−→ pk and we have

vk = vk−1x. If δk is a rule ofS, we may exhibit a sequenceCk−1
∗
−→C′

k using the new rules

Ck−1
⊤
−→ (pδk

,qk−1,uk−1,vk−1)
l!n
−→ (pδk

,qk−1,uk−1,vk−1n)
l!x
−→ (pk,qk−1,uk−1,vk−1nx) =C′

k ,



ON REACHABILITY FOR UNIDIRECTIONAL CHANNEL SYSTEMS EXTENDED WITH REGULAR TESTS 11

while if δk is a new rulepθ
l!x
−→ pk, we can useCk−1

l!n
−→

l!x
−→C′

k. In both cases we can useCk−1
∗
−→C′

k

to construct a new faithful runC0
∗
−→Ck−1

∗
−→C′

k
∗
−→C′

m−→Cm+1
∗
−→Cn. We have again decreased the

number of Receiver’s tests, now by one occurrence of anN2-test.
For the backward transformation we assume thatn occurs in a configuration ofπ. We select one

such occurrence and letCk,Ck+1, . . . ,Cm (0≤ k≤ m< n) be the part ofπ where this occurrence of
n appears. Fori = k,k+1, . . . ,m, we highlight this occurrence ofn by writing vi in the formwi nw′

i
(assuming w.l.o.g. that then occurs inl), i.e., we writeCi = (pi ,qi ,ui ,wi nw′

i). Removing then
yields new configurationsC′

k,C
′
k+1, . . . ,C

′
m given byC′

i = (pi ,qi ,ui ,wi w′
i).

We claim thatC′
k

δk+1
−−→C′

k+1 · · ·
δm−→C′

m is a valid run ofSaux. For this, we only need to check that
removingn does not make channell empty in someC′

i whereδi+1 is anNl-test. Ifk= 0 thenn in
v0 = w0nw′

0 is followed by a letterx∈ M∪{n} sincev0 ∈ pad(M∗). Thisx remains inl until at least
Cm+1 since it cannot be read whilen remains, nor can it be lost before theCi −→Ci+1 step since the

run is head-lossy. Ifk> 0, then ourn appeared in a step of the formCk−1 = (pθ,qk−1,uk−1,vk−1)
l!n
−→

Ck = (pθ,qk−1,uk−1,vk−1n) (for some write ruleθ of S, inducingpθ
l!n
−→ pθ in Saux). Sincep0 = pin is

not pθ, a rulepℓ
⊤
−→ pθ was used before stepk, andπ has a P2-segmentCℓ

⊤
−→ ·· ·Ck−1

l!n
−→Ck

l!x
−→ ·· ·Cℓ′

whereℓ′ ≤ m and x ∈ M∪ {n} is present in allCk+1, . . . ,Cm. As before, thisx guarantees that

Ck−1 =C′
k

δk+1
−−→C′

k+1 · · ·
δm−→C′

m is a valid run ofSaux.

We now recall thatm< n and thatδm+1 is eitherqm
l?n
−→ qm+1 or the loss ofn. In the first case,

Saux has a stepC′
m

l:N
−→Cm+1, while in the second caseC′

m =Cm+1.
The corresponding runC′

0
∗
−→ C′

m
∗
−→ Cm+1

∗
−→ Cn in the casek = 0, or C0

∗
−→ Ck−1 −→ C′

k+1
∗
−→

C′
m

∗
−→ Cm+1

∗
−→ Cn in the casek > 0, is a faithful run; we have thus removed an occurrence ofn,

possibly at a cost of introducing oneN2 test.

5.2.3. Handling S′ runs and faithfulness.Since a witness run ofS is (trivially) faithful, the above
transformations allow us to remove one by one all occurrences of Receiver’sZ andN tests, creating
a (faithful) witness run forS′ (with a possibly paddedC0). We have thus proved the “only-if”
part of Lemma 5.4. The “if” part is shown analogously, now using the two transformations in the
other direction and removing occurrences of the newz andn messages,with one proviso: we only
transform faithful runs. We thus need to show that ifS′ has a (head-lossy) run(pin,qin, û, v̂)

∗
−→

(pfi ,qfi ,u′,v′) then it also has a faithful one.
Let us assume thatπ above, of the formC0

∗
−→Cn, is a witness run ofS′, not necessarily faithful,

having minimal length. We show how to modify it locally so that the resulting run is faithful.

Assume that some ruleδi = p
⊤
−→ pθ is used inπ, and that P2 fails on this occurrence ofδi. Since

π does not end in statepθ, Sender necessarily continues with some (possibly zero)pθ
c!n
−→ pθ steps,

followed by someδ j = pθ
c!x
−→ p′. Now all Receiver or message loss steps betweenδi andδ j can

be swapped and postponed afterδ j since Receiver has no tests and Sender does not test betweenδi

andδ j (recall Lemma 5.2(3)). After the transformation,δi and the rules after it form a P2-segment.
Also, since message losses have been postponed, the run remains head-lossy.

Consider now a ruleδi of the form p
c:Z
−→ p1

c
in π and assume that P1 fails on this occurrence.

Sender necessarily continues with someδ j = p1
c

c!z
−→ p2

c
and δk = p2

c

c:Z
−→ p, interleaved with Re-

ceiver’s steps and/or losses. It is clear that thez written onc by δ j must be lost, or read by a Re-

ceiver’sδℓ = q
c?z
−→ q′ beforeδk can be used. The read or loss occurs at some stepℓ with j < ℓ < k.
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Note that Receiver does not read fromc between stepsi and k, except perhaps at stepℓ. Since
Sender only tests for emptiness ofc between stepsi andk, all Receiver’s steps and losses between
stepsi andℓ can be swapped and put beforeδi. The run remains head-lossy since the swapped losses
do not occur onc, which is empty at stepi. Similarly, all non-Sender steps between stepsℓ andk
can be swapped afterδk, preserving head-lossiness. The obtained run has a segmentof the form

C
c:Z
−→

c!z
−→

c?z
−→

c:Z
−→ C′ that is now a P1-segment, or of the formC

c:Z
−→

c!z
−→

los
−→

c:Z
−→ C′ = C, i.e., a dummy

loopC
+
−→C that contradicts minimality ofπ.

5.3. Reducing G-G-Reach[ZZZ111,,,NNN111] to E-G-Reach[ZZZ111,,,NNN111]. A G-G-Reach[Z1,N1] instance where
the initial contents ofr andl are restricted to (regular languages)U andV respectively can be trans-
formed into an equivalent instance whereU andV are both replaced with{ε}. For this, one adds
a new (fresh) initial statepnew to Sender, from which Sender first nondeterministically generates
some wordu∈U , writing it on r, then generates some wordv∈V, writing it on l, and then enters
pin, the original initial state. The resultingS′ is justSwith extra states and rules betweenpnew and
pin that mimic FSAs forU andV.

Stating the correctness of this reduction has the form

Shas a run(pin,qin,u,v)
∗
−→C for someu∈U andv∈V iff S′ has a run(pnew,qin,ε,ε)

∗
−→C . (⋆)

Now, sinceS′ can do(pnew,qin,ε,ε)
∗
−→ (pin,qin,u,v) for any u ∈ U and v ∈ V, the left-to-right

implication in (⋆) is clear. Note that, in the right-to-left direction,it is essential that Receiver has
no testsand this is what we missed in [27]. Indeed, it is the absence ofReceiver tests that allows us
to reorder anyS′ run from (pnew,q,ε,ε) so that all steps that use the new “generating” rules (from
pnew to pin) happen before any Receiver steps.

5.4. Reducing E-G-Reach[ZZZ111,,,NNN111] to E-G-Reach[ZZZ111]. When there are no Receiver tests and a
run starts with the empty channels, thenN1 tests can be easily eliminated by a buffering technique
on Sender’s side. Each channelc ∈ {r,l} gets its one-letter buffer Bc, which can be emptied at
any time by moving its content toc. Sender can only write to an empty buffer; it passes aZc

1 test
if both channelc and Bc are empty, while anyNc

1 test is replaced with the (weaker) “test” if Bc is
nonempty.

Formally, we start with an instance(S, pin, pfi ,qin,qfi ,{ε},{ε},U ′,V ′) of E-G-Reach[Z1,N1],
whereS= ({r,l},M,Q1,∆1,Q2,∆2), and we createS′ = ({r,l},M,Q′

1,∆′
1,Q2,∆2) arising fromSas

follows (see Fig. 5). We putQ′
1 = Q1× (M∪{ε})× (M∪{ε}); the componentsx,y in a state〈q,x,y〉

p

q r

S (Sender only)

l!a
l:N r!a

r:Z

⇒

p,a,a

p,a,ε p,ε,a

p,ε,ε

q,a,a

q,a,ε q,ε,a

q,ε,ε

r,a,a

r,a,ε r,ε,a

r,ε,εS′

r!a l!a
r!al!a

r!a l!a
r!al!a

r!a l!a
r!al!a

⊤!

⊤!

⊤!

⊤!

⊤N

⊤N

r:Z

r:Z

Figure 5: Reducing E-G-Reach[Z1,N1] to E-G-Reach[Z1]

denote the contents of the buffers forr andl, respectively. We now replace each ruleq
r!x
−→ q′ with
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〈q,ε,y〉 ⊤
−→ 〈q′,x,y〉 for all y∈ M∪{ε} (Fig. 5 uses “⊤!” to highlight these transformed rules). Each

q
r:N
−→ q′ is replaced with〈q,x,y〉

⊤
−→ 〈q′,x,y〉 for all x,y wherex 6= ε (Fig. 5 uses “⊤N”). Eachq

r:Z
−→ q′

is replaced with〈q,ε,y〉 r:Z
−→ 〈q′,ε,y〉 (for all y). Analogously we replace allq

l!x
−→ q′, q

l:N
−→ q′, and

q
l:Z
−→ q′. Moreover, we add the rules〈q,x,y〉

r!x
−→ 〈q,ε,y〉 (for x 6= ε) and 〈q,x,y〉

l!y
−→ 〈q,x,ε〉 (for

y 6= ε). Our desired reduction is completed, by the next lemma:

Lemma 5.5. S has a run Cin = (pin,qin,ε,ε)
∗
−→ (pfi ,qfi ,u′,v′) = Cfi if, and only if, S′ has a run

C′
in = (〈pin,ε,ε〉,〈qin,ε,ε〉,ε,ε)

∗
−→ (〈pfi ,ε,ε〉,〈qfi ,ε,ε〉,u′,v′) =C′

fi .

Proof. ⇐ : A run C′
in =C′

0
δ′1−→C′

1
δ′2−→ C′

2 · · ·
δ′n−→C′

n =C′
fi of S′ can be simply translated to a run ofS

by the following transformation: eachC′
i = (〈pi ,x,y〉,qi ,ui ,vi) is translated toCi = (pi ,qi ,uix,viy),

each stepC′
i−1

δ′i−→C′
i whereδ′i is 〈q,ε,y〉 ⊤

−→ 〈q′,x,y〉 is replaced withCi−1
δ
−→Ci whereδ is q

r!x
−→ q′,

etc. It can be easily checked that the arising runC0
∗
−→ Cn is indeed a valid run ofS (that can be

shorter because it “erases” the steps by the rules〈q,x,y〉
r!x
−→ 〈q,ε,y〉 and〈q,x,y〉

l!y
−→ 〈q,x,ε〉).

⇒ : A runCin =C0
δ1−→C1

δ2−→C2 · · ·
δn−→Cn =Cfi of Scan be translated into a run ofS′ by a suitable

transformation, starting withC′
0 = (〈pin,ε,ε〉,〈qin,ε,ε〉,ε,ε). Suppose thatC0

∗
−→Ci = (p,q,ux,vy)

has been translated toC′
0

∗
−→ C′

i = (〈p,x,y〉,q,u,v) (for somex,y ∈ M∪ {ε}). If δi+1 is p
r!a
−→ p′,

then we translateCi
δi−→ Ci+1 in the casex = ε to C′

i −→ C′
i+1 = (〈p′,a,y〉,q,u,v) (using the rule

〈p,ε,y〉 ⊤
−→ 〈p′,a,y〉), and in the casex 6= ε to C′

i −→ (〈p,ε,y〉,q,ux,v) −→ (〈p′,a,y〉,q,ux,v) = C′
i+1

(using the rules〈p,x,y〉
r!x
−→ 〈p,ε,y〉 and〈p,ε,y〉 ⊤

−→ 〈p′,a,y〉). We handle the other forms ofδi+1 in
the obvious way; e.g., ifδi+1 is a loss at (the head of)l while C′

i = (〈p,x,y〉,q,u,ε), then we also

use two steps:C′
i −→ (〈p,x,ε〉,q,u,y) los

−→ (〈p,x,ε〉,q,u,ε) =C′
i+1. This process obviously results in

a valid run ofS′.

5.5. Reducing E-G-Reach[ZZZ111] to E-E-Reach[ZZZ111]. The idea of the reduction is similar to what
was done in section 5.3. The regular final conditions “u′ ∈U ′” and “v′ ∈V ′” are checked by Receiver
consuming the final channel contents. When Sender (guesses that it) is about to write the first
message that will be part of the finalu′ in r (respectively, the finalv′ in l), it signals this by inserting
a special symbol # just before. After it has written # to a channel, Sender is not allowed to test that
channel anymore.

Formally we start with an instance(S, pin, pfi ,qin,qfi ,{ε},{ε},U ′,V ′) of E-G-Reach[Z1], where
S= ({r,l},M,Q1,∆1,Q2,∆2). With S we associateS′ whereM′ = M⊎{#}, as sketched in Fig. 6.
This yields the instance(S′, p′in, p

′
fi ,qin,qf ,{ε},{ε},{ε},{ε}) of E-E-Reach[Z1], for the new final

Receiver stateqf .
We defineS′ = ({r,l},M′,Q′

1,∆′
1,Q

′
2,∆′

2) with the Receiver partQ′
2,∆′

2 obtained fromQ2,∆2

by addingqf and other necessary states and so calledcleaning rulesso thatqf is reachable from
qfi precisely by sequences of read-stepsr?#, l?#, r?a1, r?a2, . . . , r?am1, l?b1, l?b2, . . . , l?bm2,
whereu′ = a1a2 . . .am1 ∈U ′ andv′ = b1b2 . . .bm2 ∈V ′. (The new states and cleaning rules mimic
finite-state automata accepting{#} ·U ′ and{#} ·V ′.)

The Sender partQ′
1, ∆′

1 of S′ is obtained fromQ1,∆1 as follows. We putQ′
1

def
= Q1×{⊤,#}×

{⊤,#}, and p′in = 〈pin,⊤,⊤〉, p′fi = 〈pfi ,#,#〉. A state〈p,x,y〉 “remembers” if # has been already
written tor (x= #) or not (x=⊤); similarly for l (by y= # ory=⊤). For changing the status (just
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qfi

p

p′

l:Z

S

r

l

a

⇒

qfi

qc,1

qc,2

· · ·

qf

r?#

l?#

r?u∈U ′

l?v′ ∈V ′

p⊤,⊤

p#,⊤

p⊤,#

p#,#

p′⊤,⊤

p′#,⊤
p′⊤,#

p′#,#

r!#

r!#

r!#

r!#

l!#

l!#

l!#

l!#

l:Zl:Z

S′

r

l

# a

#

Figure 6: Reducing E-G-Reach[Z1] to E-E-Reach[Z1]

once for each channel),∆′
1 contains the rules〈p,⊤,y〉

r!#
−→ 〈p,#,y〉 and〈p,x,⊤〉

l!#
−→ 〈p,x,#〉 for each

p∈ Q1 andx,y∈ {⊤,#}. Moreover, any rulep
c,α
−→ p′ in ∆1 induces the rules〈p,x,y〉

c,α
−→ 〈p′,x,y〉,

except for the rules〈p,#,y〉
r:Z
−→ . . . and〈p,x,#〉

l:Z
−→ . . . (i.e.,Zc

1 tests are forbidden after # has been
written toc). The next lemma shows that the above reduction is correct.

Lemma 5.6. S has a run(pin,qin,ε,ε)
∗
−→ (pfi ,qfi ,u′,v′) for some u′ ∈U ′ and v′ ∈V ′ if, and only if,

S′ has a run(〈pin,⊤,⊤〉,qin,ε,ε)
∗
−→ (〈pfi ,#,#〉,qf ,ε,ε).

Proof. “⇒”: SupposeC0 = (pin,qin,ε,ε)
δ1−→ C1 · · ·

δn−→ Cn = (pfi ,qfi ,u′,v′), whereu′ ∈ U ′, v′ ∈ V ′,
is a run of S. We first transform it into a mimicking runC′

0 = (〈pin,⊤,⊤〉,qin,ε,ε)
∗
−→ C′

n =
(〈pfi ,#,#〉,qfi ,#u′,#v′). This amounts to find some right points for inserting two steps of the forms

(〈p,⊤,y〉,q,u,v)
r!#
−→ (〈p,#,y〉,q,u#,v) and(〈p,x,⊤〉,q,u,v)

l!#
−→ (〈p,x,#〉,q,u,v#) (in some order).

For the first one, ifu′ 6= ε then we find the least indexi1 such thatδi1+1 is somer!a and the written

occurrence ofa is permanent, i.e.,Ci1
r!a
−→Ci1+1 is the step that actually writes the symbol occurring

at the head ofu′ in Cn = (pfi ,qfi ,u′,v′); if u′ = ε then we find the leasti1 such that nor!a and nor:Z

are performed inCj
δ j+1
−−→Cj+1 with j ≥ i1. Forl (andv′) we find i2 analogously. In either case, after

i1 (respectively,i2) the channelr (respectively,l) is not tested forr:Z.
HavingC′

0
∗
−→C′

n = (〈pfi ,#,#〉,qfi ,#u′,#v′), the “cleaning rules” are used to continue withC′
n

∗
−→

(〈pfi ,#,#〉,qf ,ε,ε).
“⇐”: Consider a runC0 = (〈pin,⊤,⊤〉,qin,ε,ε)

∗
−→ (〈pfi ,#,#〉,qf ,ε,ε) = Cn of S′. Since Re-

ceiver is in stateqin at the beginning and inqf at the end, the Receiver step sequence must be
composed of two parts: the first fromqin to qfi , and the second fromqfi to qf ; the latter corresponds
to a sequence of cleaning (reading) rules. The cleaning steps can be commuted after message losses
(recall Lemma 5.2(4)), and after Sender’s rules (Lemma 5.2(3)) since the first cleaning steps arer?#
andl?# and Sender does not test the channels after having written# on them.

Hence we can assume that the runC0
∗
−→Cn of S′ has the form

C0 = (〈pin,⊤,⊤〉,qin,ε,ε)
∗
−→ Cm = (〈pfi ,#,#〉,qfi ,#u′,#v′)

∗
−→ Cn = ((〈pfi ,#,#〉,qfi ,ε,ε)

with only Receiver steps inCm
∗
−→Cn, which entailsu′ ∈U ′ andv′ ∈V ′. If we now just ignore the

two mode-changing steps in the subrunC0
∗
−→ Cm (relying on the fact thatS′ has noN tests) we

obtain a new runC0
∗
−→C′

m with C′
m= (〈pfi ,⊤,⊤〉,qfi ,u′,v′). This new run can be directly translated

into a run(pin,qin,ε,ε)
∗
−→ (pfi ,qfi ,u′,v′) in S.
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6. REDUCING E-E-REACH[Z1] TO G-G-REACH[Zl

1 ]

We now describe an algorithm deciding E-E-Reach[Z1] instances, assuming a procedure deciding
instances of G-G-Reach[Zl

1 ]. This is a Turing reduction. The main idea is to partition a run of
a UCST[Z1] system into subruns that do not use theZr

1 tests (i.e., that only use theZl

1 tests) and
connect them at configurations wherer is known to be empty.

For a UCSTS= ({r,l},M,Q1,∆1,Q2,∆2), we let Conf
r=ε be the subset of configurations

in which r is empty; they are thus of the form(p,q,ε,v). We have putC = (p,q,u,v) ⊑ C′ =
(p′,q′,u′,v′) iff p = p′, q = q′, u = u′, andv ⊑ v′. HenceConf

r=ε is a well-quasi-ordered by⊑,
unlike Conf.

Slightly abusing terminology, we say that a subsetW ⊆ Conf
r=ε is regular if there are some

state-indexed regular languages(Vp,q)p∈Q1,q∈Q2 in Reg(M) such thatW = {(p,q,ε,v) | v ∈ Vp,q}.
Such regular subsets ofConf

r=ε can be finitely represented using, e.g., regular expressions or finite-
state automata.

W ⊆ Conf
r=ε is upward-closed(in Conf

r=ε) if C∈W, C⊑C′ andC′ ∈ Conf
r=ε imply C′ ∈W.

It is downward-closedif Conf
r=εrW is upward-closed. The upward-closure↑W of W ⊆ Conf

r=ε
is the smallest upward-closed set that containsW. A well-known consequence of Higman’s Lemma
(see Remark 2.2) is that upward-closed and downward-closedsubsets ofConf

r=ε are regular, and
that upward-closed subsets can be canonically representedby their finitely many minimal elements.

ForW ⊆ Conf
r=ε, we let Pre∗(W)

def
= {C ∈ Conf

r=ε | ∃D ∈W : C
∗
−→ D}: note that Pre∗(W)⊆

Conf
r=ε by our definition.

Lemma 6.1. If S is a UCST[Zl1] system and W is a regular subset of Conf
r=ε, thenPre∗(W) is

upward-closed; moreover, given an oracle for G-G-Reach[Zl

1], Pre∗(W) is computable from S and
W.

Proof. We note that Pre∗(W) is upward-closed sinceC ⊑ D is equivalent toD(
los
−→)∗C, henceD ∈

Pre∗(C).
We now assume that an oracle for G-G-Reach[Zl

1 ] is available, and we construct a finite set
F ⊆ Pre∗(W) whose upward-closure↑F is Pre∗(W). We build upF in steps, starting withF0 = ∅;
clearly↑F0 =∅⊆ Pre∗(W). The(i+1)th iteration, starting withFi, proceeds as follows.

We putW′ def
= Conf

r=εr↑Fi; note thatW′ is regular. We check whether there exist someC∈W′

andD ∈W such thatC
∗
−→ D; this can be decided using the oracle (it is a finite disjunction of G-G-

Reach[Zl

1 ] instances, obtained by considering all possibilities forSender and Receiver states). If the
answer is “no”, then↑Fi = Pre∗(W); we then putF = Fi and we are done.

Otherwise, the answer is “yes” and we look for some concreteC ∈ W′ s.t.C
∗
−→ D for some

D ∈W. This can be done by enumerating allC ∈ W′ and by using the oracle for G-G-Reach[Zl

1 ]
again. We are bound to eventually find such aC sinceW′∩Pre∗(W) is not empty.

Once someC is found, we setFi+1
def
= Fi ∪ {C}. Clearly Fi+1, and so↑Fi+1, is a subset of

Pre∗(W). By construction,↑F0 ↑F1 ↑F2 · · · is a strictly increasing sequence of upward-closed
sets. By the well-quasi-ordering property, this sequence cannot be extended indefinitely: eventually
we will have↑Fi = Pre∗(W), signalled by the answer “no”.

Lemma 6.2. E-E-Reach[Z1] is Turing reducible to G-G-Reach[Zl1 ].

Proof. AssumeS= ({r,l},M,Q1,∆1,Q2,∆2) is a UCST[Z1], and we ask if there is a runCin =

(pin,qin,ε,ε)
∗
−→ (pfi ,qfi ,ε,ε) =Cfi . By S′ we denote the UCST[Zl

1] system arising fromSby remov-
ing all Zr

1 rules. Hence Lemma 6.1 applies toS′. The set of configurations ofSandS′ is the same,
so there is no ambiguity in using the notationConf andConf

r=ε.
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We aim at computing Pre∗({Cfi}) for S. Fork≥ 0, let Tk ⊆ Conf
r=ε be the set ofC ∈ Conf

r=ε
for which there is a runC

∗
−→Cfi of Swith at mostk steps that areZr

1 tests; hence↑{Cfi} ⊆ T0 (by
message losses). For eachk, Tk is upward-closed andTk ⊆ Tk+1. DefiningT =

⋃
k∈NTk, we note

thatCin
∗
−→ Cfi iff Cin ∈ T. SinceConf

r=ε is well quasi-ordered, the sequenceT0 ⊆ T1 ⊆ T2 ⊆ ·· ·
eventually stabilizes; hence there isn such thatTn = Tn+1, which implies thatTn = T.

By Lemma 6.1, and using an oracle for G-G-Reach[Zl

1 ], we can compute Pre∗S′({Cfi}), where
the “S′” subscript indicates that we consider runs inS′, not usingZr

1 tests. HenceT0 = Pre∗S′({Cfi})
is computable. GivenTk, we computeTk+1 as follows. We put

T ′
k = {C ∈ Conf

r=ε | ∃D ∈ Tk : C
r:Z
−→ D}

= {(p,q,ε,w) | ∃p′ ∈ Q1 : p
r:Z
−→ p′ ∈ ∆1 and(p′,q,ε,w) ∈ Tk} .

Thus T ′
k ⊆ Conf

r=ε is the set of configurations from which one can reachTk with one Zr

1 step.
Clearly T ′

k is upward-closed (sinceTk is) and can be computed from a finite representation ofTk,
e.g., its minimal elements. ThenTk+1 = Tk∪Pre∗S′(T

′
k), and we use Lemma 6.1 again to compute it.

Iterating the above process, we compute the sequenceT0,T1, . . ., until the firstn such thatTn =
Tn+1 (recall thatTn = T then). Finally we check ifCin ∈ Tn.

7. REDUCING E-E-REACH[Zl

1 ] TO A POST EMBEDDING PROBLEM

As stated in Theorem 5.1 (see also Fig. 3), our series of reductions from G-G-Reach[Z1,N1] to E-E-
Reach[Z1] also reduces G-G-Reach[Zl

1 ] to E-E-Reach[Zl

1 ]; this can be easily checked by recalling
that the respective reductions do not introduce new tests. In Subsection 7.1 we show a (polynomial)
many-one reduction from E-E-Reach[Zl

1 ] to PEP
partial
codir , a generalization of Post’s Embedding Prob-

lem. SincePEPpartial
codir was shown decidable in [29], our proof of Theorem 4.1 will be thus completed.

We also add Subsection 7.2 that shows a simple reduction in the opposite direction, fromPEPpartial
codir

to E-E-Reach[Zl

1 ].

7.1. E-E-Reach[ZZZl

111] reduces toPEPpartial
codir .

Definition 7.1 (Post embedding with partial codirectness [29]). PEP
partial
codir is the question, given

two finite alphabetsΣ,Γ, two morphismsu,v : Σ∗ → Γ∗, and two regular languagesR,R′ ∈ Reg(Σ),
whether there isσ ∈ R (called asolution) such thatu(σ)⊑ v(σ), and such that furthermoreu(σ′)⊑
v(σ′) for all suffixesσ′ of σ that belong toR′.

The above definition uses the same subword relation, denoted⊑, that captures message losses.
PEP

partial
codir andPEP (which is the special case whereR′ =∅) are a variant of Post’s Correspondence

Problem, where the question is whether there existsσ ∈ Σ+ such thatu(σ) = v(σ); see also [7] for
applications in graph logics.

Lemma 7.2. E-E-Reach[Zl1] reduces toPEPpartial
codir (via a polynomial reduction).

We now prove the lemma. The reduction from E-E-Reach[Zl

1] to PEP
partial
codir extends an earlier

reduction from UCS toPEP [17]. In our case the presence ofZl

1 tests creates new difficulties.
We fix an instanceS= ({r,l},M,Q1,∆1,Q2,∆2), Cin = (pin,qin,ε,ε), Cfi = (pfi ,qfi ,ε,ε) of E-

E-Reach[Zl

1 ], and we construct aPEPpartial
codir instanceP = (Σ,Γ,u,v,R,R′) intended to express the

existence of a run fromCin toCfi .
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We first putΣ def
= ∆1 ∪∆2 and Γ def

= M so that wordsσ ∈ Σ∗ are sequences of rules ofS, and
their imagesu(σ),v(σ) ∈ Γ∗ are sequences of messages. With anyδ ∈ Σ, we associatewrite_r(δ)
defined bywrite_r(δ) = x if δ is a Sender rule of the formp

r!x
−→ p′, andwrite_r(δ) = ε in all other

cases. This is extended to sequences withwrite_r(δ1 · · ·δn) = write_r(δ1) · · ·write_r(δn). In a
similar way we definewrite_l(σ) ∈ M

∗, the message sequence written tol by the rule sequence
σ, andread_r(σ) andread_l(σ), the sequences read byσ from r andl, respectively. We define

Er ∈ Reg(Σ) asEr

def
= E1∪E2 where

E1
def
={δ ∈ Σ | write_r(δ) = read_r(δ) = ε} ,

E2
def
={δ1δ2 ∈ Σ2 | write_r(δ1) = read_r(δ2) 6= ε} .

In other words,E1 gathers the rules that do not write to or read fromr, andE2 contains all pairs of
Sender/Receiver rules that write/read the same letter to/fromr.

Let now P1 ⊆ ∆∗
1 be the set of all sequences of Sender rules of the formpin = p0

..
−→ p1

..
−→

p2 · · ·
..
−→ pn = pfi , i.e., the sequences corresponding to paths frompin to pfi in the graph defined by

Q1 and∆1. Similarly, let P2 ⊆ ∆∗
2 be the set of all sequences of Receiver rules that correspondto

paths fromqin to qfi . SinceP1 andP2 are defined by finite-state systems, they are regular languages.
We write P1‖P2 to denote the set of all interleavings (shuffles) of a word inP1 with a word inP2.
This operation is regularity-preserving, soP1‖P2 ∈ Reg(Σ). Let Tl ⊆ ∆1 be the set of all Sender
rules that test the emptiness ofl (which are the only test rules inS). We defineR andR′ as the
following regular languages:

R= E∗
r
∩ (P1‖P2), R′ = Tl ·

(

∆1∪∆2
)∗
.

Finally, the morphismsu,v : Σ∗ → Γ∗ are given byu
def
= read_l andv

def
= write_l. This finishes the

construction of thePEPpartial
codir instanceP = (Σ,Γ,u,v,R,R′).

We will now prove the correctness of this reduction, i.e., show thatShas a runCin
∗
−→Cfi if, and

only if, P has a solution. Before starting with the proof itself, let usillustrate some aspects of the
reduction by considering a schematic example (see Fig. 7).

qin q1 qfi
δ′1 δ′2
l?b r?c pin p1 p2 p3 pfi

δ1 δ2 δ3 δ4

l!a r!c l!b l:Z

r

l

Figure 7: A schematic UCST[Zl

1] instance

Let us considerσsol = δ1δ′1δ2δ′2δ3δ4 and check whether it is a solution of theP instance ob-
tained by our reduction. For this, one first checks thatσsol∈R, computesu(σsol) = read_l(σsol) = b
and check thatb ⊑ v(σsol) = write_l(σsol) = ab. There remains to check the suffixes ofσsol that
belong toR′, i.e., that start with al:Z rule. Here, onlyσ′ = δ4 is in R′, and indeedu(σ′) = ε ⊑ v(σ′).
Thusσsol is a solution.

However, a solution likeσsol does not directly correspond to a run ofS. For instance, any run
Cin

∗
−→Cfi in the system from Fig. 7 must useδ3 (write b onl) beforeδ′1 (read it).
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Reciprocally, a runCin
∗
−→ Cfi does not directly lead to a solution. For example, on the same

system the following run

Cin
δ1−→C1

δ2−→C2
δ3−→C3 = (p3,qin,c,ab)

los
−→C4 = (p3,qin,c,b)

δ′1−→C5
δ4−→C6

δ′2−→Cfi (π)

has an action in “C3
los
−→C4” that is not accounted for inΣ and cannot appear in solutions ofP . Also,

theΣ-word σπ = δ1δ2δ3δ′1δ4δ′2 obtained fromπ is not a solution. It belongs toP1‖P2 but not toE∗
r

(which requires that each occurrence ofδ2 is immediately followed by some.
r?c
−→ . rule). Note that

σsol hadδ2 followed byδ′2, but it is impossible in a runCin
∗
−→Cfi to haveδ2 immediately followed

by δ′2.
With these issues in mind, we introduce a notion bridging thedifference between runs ofSand

solutions ofP . We callσ ∈ (∆1∪∆2)
∗ apre-solutionif the following five conditions hold:

(c1) σ ∈ P1‖P2;
(c2) read_r(σ) = write_r(σ);
(c3) read_r(σ1) is a prefix ofwrite_r(σ1) for each prefixσ1 of σ;
(c4) read_l(σ)⊑ write_l(σ);
(c5) read_l(σ2) ⊑ write_l(σ2) for each factorizationσ = σ1δσ2 whereδ ∈ Tl (i.e., δ is al:Z

rule).

A pre-solutionσ has aReceiver-advancing switchif σ=σ1δδ′σ2 whereδ is a Sender rule,δ′ is a Re-
ceiver rule, andσ′ = σ1δ′δσ2 is again a pre-solution. AReceiver-postponing switchis defined anal-
ogously, forδ being a Receiver rule andδ′ being a Sender rule. For example, the sequenceσπ above
is a pre-solution. It has a Receiver-advancing switch onδ3 andδ′1, and one onδ4 andδ′2. Note that
whenσ is a pre-solution, checking whether a potential Receiver-advancing or Receiver-postponing
switch leads again to a pre-solution only requires checking(c3) or, respectively, (c5). Considering
another example,σsol, being a solution is a pre-solution. It has two Receiver-postponing switches
but only one Receiver-advancing switch since switchingδ2 andδ′2 does not maintain (c3).

It is obvious that if there is a pre-solutionσ then there is anadvance-stable pre-solutionσ′,
which means thatσ′ has no Receiver-advancing switch; there is also apostpone-stable pre-solution
σ′′ which has no Receiver-postponing switch.

Claim 7.3. Any advance-stable pre-solutionσ is in E∗
r
, and it is thus a solution ofP .

Proof. Let us write an advance-stable pre-solutionσ asσ1σ2 whereσ1 is the longest prefix such that
σ1 ∈ E∗

r
; henceread_r(σ1) = write_r(σ1) by the definition ofEr = E1∪E2. Now supposeσ2 6= ε.

Thenσ2 = δ1δ2 · · ·δk whereδ1 6∈E1. Sinceread_r(σ1) =write_r(σ1), δ1 must be of the form.
r!x
−→ .

to guarantee (c3). Let us pick the smallestℓ such thatδℓ = .
r?x
−→ . —which must exist by (c2)— and

note thatℓ > 2 sinceδ1δ2 6∈ E2 by maximality ofσ1. If we now pick the leastj in {1, . . . , ℓ−1}
such thatδ j is a Sender rule andδ j+1 is a Receiver rule, then switchingδ j andδ j+1 leads again to a
pre-solution as can be checked by inspecting (c1–c5). This contradicts the assumption thatσ is an
advance-stable pre-solution.

Claim 7.4. If σ = δ1 . . .δn is a postpone-stable pre-solution,S has a run of the formCin
δ1−→

los∗
−→

·· ·
δn−→

los∗
−→Cfi .

Proof. Assume that we try to fireδ1, . . . ,δn in that order, starting fromCin, and sometimes inserting
message losses. Sinceσ belongs toP1‖P2, we can only fail because at some point the current
channel contents does not allow the test or the read action carried by the next rule to be fired, i.e.,
not because we end up in a control state that does not carry thenext rule.
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So let us consider channel contents, starting withr. For i = 0, . . . ,n, let xi = read_r(δ1 . . .δi)
andyi = write_r(δ1 . . .δi). Sinceσ satisfies (c3),yi is somexix′i (andx′0 = ε). One can easily verify
by induction oni that after firingσ1 . . .σi from Cin, r contains exactlyx′i . In fact (c3) implies that if
δi+1 reads onr, it must read the first letter ofx′i (andδi+1 cannot be a read onr whenx′i = ε).

Now, regarding the contents ofl, we can rely on (c4) and conclude that the actions inσ write
on l everything that they (attempt to) read, but we do not know that messages are writtenbefore
they are needed for reading, i.e., we do not have an equivalent of (c3) for l. For this, we rely on
the assumption thatσ is postpone-stable. Writeσ under the formσ0z1σ1z2σ2 . . .zkσk where thezi ’s
are the test rules fromTl, and where theσi ’s factors contain no test rules. Note that, inside aσi , all
Sender rules occur before all Receiver rules thanks to postpone-stability.

We claim thatread_l(σi) ⊑ write_l(σi) for all i = 0, . . . ,k: assume, by way of contradic-
tion, thatread_l(σi) 6⊑ write_l(σi) for somei ∈ {0, . . . ,k} and letδ be the last rule inσi. Nec-
essarily δ is a reading rule. Now (c4) and (c5) entaili < k and read_l(σizi+1σi+1 . . .σk) ⊑
write_l(σizi+1σi+1 . . .σk). Thenread_l(σi) 6⊑ write_l(σi) entails

read_l(δzi+1σi+1 . . .zkσk)⊑ write_l(σi+1 . . .zkσk) . (⋆⋆)

There is now a Receiver-postponing switch since (⋆⋆) ensures that (c5) holds after switchingδ and
zi+1, which contradicts the assumption thatσ is postpone-stable.

Now, with read_l(σi)⊑ write_l(σi), it is easy to build a runCin
δ1−→

los∗
−→ ·· ·

δn−→
los∗
−→Cfi and guar-

antee thatl is empty before firing anyzi rule.

We now see that our reduction is correct. Indeed, ifCin
σ
−→ Cfi is a run ofS then σ with all

occurrences of los removed is a pre-solution; and there is also an advance-stable pre-solution, i.e., a
solution ofP . On the other hand, ifσ is a solution ofP thenσ is a pre-solution, and there is also a
postpone-stable pre-solution, which corresponds to a runCin

∗
−→Cfi of S. This finishes the proof of

Lemma 7.2, and of Theorem 4.1.

7.2. PEPpartial
codir reduces to E-E-Reach[ZZZl

111]. We now prove a converse of Lemma 7.2, thus showing

thatPEPpartial
codir and E-E-Reach[Zl

1 ] are equivalent problems. Actually,PEPpartial
codir can be easily re-

duced to E-E-Reach[Zc

i ] for any i ∈ {1,2} andc ∈ Ch, but we only show a reduction fori = 1 and
c= l explicitly. (The other reductions would be analogous.)

Lemma 7.5. PEPpartial
codir reduces to E-E-Reach[Zl1] (via a polynomial reduction).

Proof. Given aPEPpartial
codir -instance(Σ,Γ,u,v,R,R′), we construct a UCST[Zl

1] system (denotedS)
with distinguished statespin, pfi ,qloop, such that

the instance has a solution iffShas a run(pin,qloop,ε,ε)
∗
−→ (pfi ,qloop,ε,ε) . (⋆⋆⋆)

The idea is simple: Sender nondeterministically guesses a solution σ, writing u(σ) on r andv(σ)
on l, and Receiver validates it, by reading identical sequencesfrom r andl (some messages from
l might be lost). We now make this idea more precise.

Let M andM′ be deterministic FSAs recognizingR and thecomplement of R′, respectively.
Sender stepwise nondeterministically generatesσ = a1a2 . . . ,am, while taking the “commitment”
thatσ belongs toR; concretely, after generatinga1a2 . . .ai Sender also remembers the state reached
by M via a1a2 . . .ai , and Sender cannot enterpfi when the current state ofM is non-accepting.
Moreover, for eachi ∈ {1,2, . . . ,m}, i.e., at every step, Sender might decide to take a further com-
mitment, namely thataiai+1 . . . ,am 6∈ R′; for each such commitment Sender starts a new copy ofM′,
remembering the states visited byM′ via aiai+1 . . .am, and it cannot enterpfi if a copy ofM′ is in a



20 P. JANČAR ET AL.

non-accepting state. Though we do not bound the number of copies ofM′, it suffices to remember
just a bounded information, namely the set of current statesof all these copies.

When generatingai , Sender writesu(ai) on r and v(ai) on l. To check thatr contains a
subword ofl, Receiver behaves as in Fig. 8 (that illustrates another reduction). So far we have
guaranteed that there is a run(pin,qloop,ε,ε)

∗
−→ (pfi ,qloop,ε,ε) iff there isσ = a1a2 . . . ,am ∈ Rsuch

thatu(σ)⊑ v(σ) (using the lossiness ofl wherev(σ) has been written).
We finish by adding a modification guaranteeingu(aiai+1 . . . ,am) ⊑ v(aiai+1 . . . ,am) for each

i ∈ {1,2, . . . ,m} where Sender does not commit toaiai+1 . . . ,am 6∈ R′. For such steps, and before
writing u(ai) andv(ai), Sender must simply wait untill is empty, i.e., Sender initiates stepi by
(nondeterministically) either committing toaiai+1 . . . ,am 6∈ R′ or by taking aZl

1-step.
It is now a routine exercise to verify that (⋆⋆⋆) holds.

Remark 7.6 (On complexity). Based on known results on the complexity ofPEP
partial
codir (see [39,

29, 28]), our reductions prove that reachability for UCST[Z,N] is Fωω-complete, using the ordinal-
recursive complexity classes introduced in [38].

8. TWO UNDECIDABLE PROBLEMS FORUCST[Z,N]

The main result of this article is Theorem 4.1, showing the decidability of the reachability problem
for UCST[Z,N]. In this section we argue that the emptiness and non-emptiness tests (“Z” and “N”)
strictly increase the expressive power of UCSes. We do this by computational arguments, namely
by exhibiting two variants of the reachability problem thatare undecidable for UCST[Z,N]. Since
these variants are known to be decidable for plain UCSes (with no tests), we conclude that there is
no effective procedure to transform a UCST[Z,N] into an equivalent UCS in general. Subsection 8.1
deals with the problem ofrecurrent reachabilityof a control state. In Subsection 8.2 we consider the
usual reachability problem but we assume thatmessages can be lost only during writingto l (i.e.,
we assume that channell is reliable and that the unreliability is limited to the writing operation).

8.1. Recurrent reachability. The Recurrent Reachability Problemasks, when givenS and its

statespin,qin, p,q, whetherShas aninfinite runCin = (pin,qin,ε,ε)
∗
−→ (p,q,u1,v1)

+
−→ (p,q,u2,v2)

+
−→

(p,q, . . .) · · · visiting the pair(p,q) infinitely often (NB: with no constraints on channel contents),
called a “pq∞-run” for short.

The next theorem separates UCSes from UCSTs, even from UCST[Zr

1], i.e., UCSTs where the
only tests are emptiness tests onr by Sender. It implies thatZr

1 tests cannot be simulated by UCSes.

Theorem 8.1. Recurrent reachability is decidable for UCSes, and isΣ0
1-complete (hence undecid-

able) for UCST[Zr1].

We start with the upper bounds. Consider a UCST[Zr

1] systemSand assume it admits apq∞-run
π. There are three cases:

case 1: If π uses infinitely manyZ tests, it can be written under the form

Cin
∗
−→ D1

r:Z
−→

∗
−→ (p,q, . . .)

∗
−→ D2

r:Z
−→

∗
−→ (p,q, . . .) · · ·

∗
−→ Dn

r:Z
−→

∗
−→ (p,q, . . .) · · ·

Observe thatD1,D2, . . . belong toConf
r=ε since they allow ar:Z test. By Higman’s Lemma,

there exists two indexesi < j such thatDi ⊑ D j . ThenD j(
los
−→)∗Di

∗
−→ (p,q, . . .)

∗
−→ D j and

we conclude thatS also has a “looping”pq∞-run, witnessed by a finite run of the form

Cin
∗
−→ (p,q,u,v)

+
−→ (p,q,u,v).
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case 2:Otherwise, ifπ only uses finitely manyZ tests, it can be written under the formCin
∗
−→

C = (p,q,u,v) −→ ·· · such that no test occur afterC. After C, any step by Sender can be
advanced before Receiver steps and message losses, according to Lemma 5.2(3). Assuming
thatπ uses infinitely many Sender steps, we conclude thatShas apq∞ run that eventually
only uses Sender rules (but noZ tests). At this point, we can forget about the contents of
the channels (they are not read or tested anymore). Hence a finite witness for suchpq∞-runs

is obtained by the combination of a finite runCin
∗
−→ (p,q,u,v) and a loopp= p1

δ1−→ p2
δ2−→

·· · pn
δn−→ p1 in Sender’s rules that does not use any testing rule.

case 3:The last possibility is thatπ uses only finitely many Sender rules. In that case, the
contents of the channels is eventually fixed hence there is a looping pq∞-run of the form

Cin
∗
−→C= (p,q,u,v)

+
−→C such that the loop fromC toC only uses Receiver rules. A finite

witness for such cases is a finite runCin
∗
−→ (p,q,u,v) combined with a loopq= q1

δ1−→ q2
δ2−→

·· ·qn
δn−→ q1 in Receiver’s rules that only uses rules readingε.

Only the last two cases are possible for UCSes: for these systems, deciding Recurrent reachability
reduces to deciding whether some(p,q, ...) is reachable and looking for a loop (necessarily with no
tests) starting fromp in Sender’s graph, or a loop with no reads starting fromq in Receiver’s graph.

For UCST[Zr

1], one must also consider the general looping “case 1”, i.e.,∃u,v : Cin
∗
−→

(p,q,u,v)
+
−→ (p,q,u,v). Since reachability is decidable, this case is inΣ0

1, as is Recurrent
reachability for UCST[Zr

1].

Now for the lower bound. We proveΣ0
1-hardness by a reduction from the looping problem for

semi-Thue systems.
A semi-Thue system T= (Γ,R) consists of a finite alphabetΓ and a finite setR⊆ Γ∗×Γ∗ of

rewrite rules; we write α → β instead of(α,β) ∈ R. The system gives rise to aone-step rewrite

relation→R⊆ Γ∗×Γ∗ as expected:x→R y
def
⇔ x andy can be factored asx= zαz′ andy= zβz′ for

some ruleα → β and some stringsz,z′ ∈ Γ∗. As usual, we writex
+
−→R y if x can be rewritten intoy

by a nonempty sequence of steps.
We say thatT = (Γ,R) is length-preservingif |α| = |β| for each rule inR, and that ithas a

loop if there is somex∈ Γ∗ such thatx
+
−→R x. The following is standard (since the one-step relation

between Turing machine configurations can be captured by finitely many length-preserving rewrite
rules).

Fact 8.2. The question whether a given length-preserving semi-Thue system has a loop isΣ0
1-

complete.

We now reduce the existence of a loop for length-preserving semi-Thue systems to the recurrent
reachability problem for UCST[Zr

1].
Let T = (Γ,R) be a given length-preserving semi-Thue system. We construct a UCSTS, with

message alphabetM
def
= Γ⊎{#}. The reduction is illustrated in Fig. 8, assumingΓ = {a,b}. The

resultingSbehaves as follows:
(a) Sender starts in statepin, begins by nondeterministically sending somey0 ∈ Γ∗ onl, then moves
to stateploop. In stateploop, Sender performs the following steps in succession:

(1) check that (equivalently, wait until)r is empty;
(2) send # onl;
(3) nondeterministically send a stringz∈ Γ∗ on bothl andr;
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(4) nondeterministically choose a rewrite ruleα → β (from R) and sendα onr andβ onl;
(5) nondeterministically send a stringz′ ∈ Γ∗ on bothl andr;
(6) send # onr;
(7) go back toploop (and repeat 1–7).

qloop

l?a

r?a

l?# r?#

l?b

r?b pinploop

...
...

l!a

l!b

r:Z

l!#

l!ar!a
l!b

r!b

l!ar!a

l!b

r!b

r!α1 l!β1

r!αk l!βk

r!#

r

l

a b a # a a

a a

Figure 8: Solving the looping problem for semi-Thue systems

The above loop 1–7 can be also summarized as: check thatr is empty, nondeterministically guess
two stringsx andy such thatx→R y, writing x# onr and #y onl.
(b) Receiver starts in stateqloop from where it reads any pair of identical symbols fromr andl,
returns toqloop, and repeats this indefinitely.

Claim 8.3 (Correctness of the reduction). S has an infinite run starting fromCin = (pin,qloop,ε,ε)
and visiting the control pair(ploop,qloop) infinitely often if, and only if,x

+
−→R x for somex∈ Γ∗.

Proof. For the “⇐” direction we assume thatT has a loopx = x0 →R x1 →R . . . →R xn = x with

n> 0. LetCi
def
= (ploop,qloop,ε,xi). Sobviously has a runCin

∗
−→C0, sendingx0 onl. For eachi ≥ 0,

Shas a runCi
+
−→Ci+1: it starts with appending the pairxi →R xi+1 on the channels, hence visiting

(., .,xi #,xi #xi+1), from which Receiver can read thexi # prefix on both channels, thus reaching
Ci+1. Note that no messages are lost in these runs. Chaining them gives an infinite run that visits
(ploop,qloop) infinitely many times.

For the “⇒” direction, we assume thatS has an infinite run starting fromCin that visits
(ploop,qloop) infinitely often. Since Sender checks the emptiness ofr before running through its
loop, we conclude that no # character written tol is lost during the run. Lety0 be written onl
before the first visit ofploop; for i ≥ 1, let (xi ,yi) be the pair of strings guessed by Sender during
the ith iteration of its loop 1–7 (xi written onr andyi on l). Receiver can only empty the reliable
channelr if xi ⊑ yi−1 for all i ≥ 1. This implies|xi | ≤ |yi−1|. We also have|xi | = |yi | sinceT is
length-preserving. Therefore eventually, say for alli ≥ n, all xi andyi have the same length. Then
xi = yi−1 for i > n (sincexi ⊑ yi−1 and|xi | = |yi−1|). HenceT admits an infinite derivation of the
form

xn →R yn = xn+1 →R yn+1 = xn+2 →R · · ·

Since there are only finitely many strings of a given length, there are two positionsm′ > m≥ n such

thatxm = xm′ ; henceT has a loopxm
+
−→R xm.

8.2. Write-lossy semantics.As another illustration of the power of tests, we consider UCSTs with
write-lossy semantics, that is, UCSTs with the assumption that messages are only lost during steps
that write them tol. Once messages are inl, they are never lost. If we start with the empty channel
l and we only allow the emptiness tests onl, then any computation in normal lossy semantics can
be mimicked by a computation in write-lossy semantics: any occurrence of a message that gets
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finally lost will simply not be written. Adding the non-emptiness test makes a difference, since the
reachability problem becomes undecidable.

We now make this reasoning more formal, using the new transition relationC −→wrlo C′ that is
intermediary between the reliable and the lossy semantics.

Eachl-writing rule δ of the form p
l!x
−→ p′ in a UCSTS will give rise to write-lossy steps

of the form (p,q,u,v)
wrlo
−−→ (p′,q,u,v), whereδ is performed but nothing is actually written. We

write C −→wrlo C′ when there is a reliable or a write-lossy step fromC to C′, and useC −→rel C′ and
C −→los C′ to denote the existence of a reliable step, and respectively, of a reliable or a lossy step.
Then−→rel⊆−→wrlo ⊆

∗
−→los.

Now we make precise the equivalence of the two semantics whenwe start with the emptyl and
only use the emptiness tests:

Lemma 8.4. Assume S is a UCST[Z] system. Let Cin = (p,q,u,ε) be a configuration (wherel is
empty). Then, for any Cfi configuration, Cin

∗
−→los Cfi iff Cin

∗
−→wrlo Cfi .

Proof. The “⇐” direction is trivial. For the “⇒” direction we claim that

if C−→wrlo C′ ⊒1 C′′, then alsoC⊒ D −→wrlo C′′ for someD. (†)

Indeed, if (the occurrence of) the message inC′ that is missing inC′′ occurs inC, then it is possible
to first lose this message, leading toD, before mimicking the step that went fromC to C′ (we rely
here on the fact thatSonly usesZ tests). Otherwise,C′′ is obtained by losing the message that has
just been (reliably) written when moving fromC toC′, and takingD =C is possible.

Now, since
∗
−→los is

(

−→wrlo ∪ ⊒1
)∗

and since
(

⊒1
)∗

is ⊒, we can use (†) and conclude that

C
∗
−→los D implies thatC ⊒ C′ ∗

−→wrlo D for someC′. Finally, in the case whereC = Cin andl is
empty, onlyC′ =Cin is possible.

Corollary 8.5. E-G-Reachability is decidable for UCST[Z] with write-lossy semantics.

The write-lossy semantics is meaningful when modeling unreliability of the writing actions as
opposed to unreliability of the channels. In the literature, write-lossy semantics is mostly used as
a way of restricting the nondeterminism of message losses without losing any essential generality,
relying on equivalences like Lemma 8.4 (see, e.g., [18, section 5.1]).

However, for our UCST systems, the write-lossy and the standard lossy semantics do not coin-
cide whenN tests are allowed. In fact, Theorem 4.1 does not extend to write-lossy systems.

Theorem 8.6. E-E-Reach is undecidable for UCST[Zl

1,N
l

1 ] with write-lossy semantics.

Proof Idea. As in Section 3.2, Sender simulates a queue automaton using tests and the help of
Receiver. See Fig. 9. Channell is initially empty. To read, say,a fromr, Sender does the following:
(1) write a on l; (2) check thatl is nonempty (hence the write was not lost); (3) check that, i.e.,
wait until, l is empty. Meanwhile, Receiver reads identical letters fromr andl.

Thus, at least in the write-lossy setting, we can separate UCST[Z] and UCST[Zl

1,N
l

1 ] w.r.t.
decidability of reachability.
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qproxy

l?a

r?a

l?c r?c

l?b

r?b p1

p2

l!a

l:N

l:Z

r

l

a b c a c

Figure 9: Write-lossy Sender simulates “p1
r?a
−→ p2” with N andZ tests and proxy Receiver

9. CONCLUSION

UCSes are communicating systems where a Sender can send messages to a Receiver via one reliable
and one unreliable, lossy, channel, but where no direct communication is possible in the other
direction. We introduced UCSTs, an extension of UCSes wheresteps can be guarded by tests, i.e.,
regular predicates on channel contents. This extension introduces limited but real possibilities for
synchronization between Sender and Receiver. For example,Sender (or Receiver) may use tests to
detect whether the other agent has read (or written) some message. As a consequence, adding tests
leads to undecidable reachability problems in general. Ourmain result is that reachability remains
decidable when only emptiness and non-emptiness tests are allowed. The proof goes through a
series of reductions from UCST[Z,N] to UCST[Zl

1] and finally toPEPpartial
codir , an extension of Post’s

Embedding Problem that was motivated by the present articleand whose decidability was recently
proved by the last two authors [29].

These partial results do not yet provide a clear picture of what tests on channel contents make
reachability undecidable for UCSTs. At the time of this writing, the two most pressing questions
we would like to see answered are:

(1) what about occurrence and non-occurrence tests, definedas {Oa,NOa | a ∈ M} with
Oa = M

∗.a.M∗ andNOa = (Mr {a})∗? Such tests generalizeN andZ tests and have been
considered for channel systems used as a tool for questions on Metric Temporal Logic [12].

(2) what about UCSTs with tests restricted to the lossyl channel? The undecidable reachability
questions in Theorem 3.1 all rely on tests on the reliabler channel.
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