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ABSTRACT. “Unidirectional channel systems” (Chambart & SchnoebelEONCUR 2008) are
finite-state systems where one-way communication from al&eio a Receiver goes via one reli-
able and one unreliable unbounded fifo channel. While rdalityais decidable for these systems,
equipping them with the possibility of testing regular pedges on the contents of channels makes it
undecidable. Decidability is preserved when only emptrasd nonemptiness tests are considered:
the proof relies on an elaborate reduction to a generalizeslon of Post's Embedding Problem.

1. INTRODUCTION

Channel systemare a family of computational models where concurrent ageammunicate via
(usually unbounded) fifo communication channels [13]. Theysometimes callegleue automata
when there is only one finite-state agent using the chansdifoamemory buffers. These models
are well-suited to the formal specification and algorithamalysis of communication protocols and
concurrent programs [9, 10, 35].

A particularly interesting class of channel systems areltssy channel system4_CSes”
for short, popularized by Abdulla, Bouajjani, Jonsson,keElnet al. [14, 4, 2]. Lossy chan-
nels are unreliable and can lose messages nondeternatysand without any notification. This
weaker model is easier to analyse: safety, inevitability several more properties are decidable for
LCSes [14, 4, 1, 6] while they are undecidable when chanmelsediable.

Let us stress that LCSes also are an important and fundahoemtgoutation modeper se
During the last decade, they have been used as an automatiah tmprove the decidability (or the
hardness) of problems on Timed Automata, Metric Temporaji¢d,onodal logics, etc. [3, 36, 31,
30, 33, 11, 34, 7]. They also are a very natural low-level cataiional model that captures some
important complexity classes in the ordinal-recursivedriehy [18, 39, 28, 40, 38].

Unidirectional channel systemdJCSes” for short, are channel systems where a Sender [goces
communicates to a Receiver processoig reliableandone lossychannel, see Fig. 1. They were
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introduced by Chambart and Schnoebelen who identified tiseama@nimal setting to which one can
reduce reachability problems for more complex combinatiohlossy and reliable channels [16].
UCSes are limited to one-way communication: there are norala going from Receiver to Sender.

(Receiver) r (reliable channel) (Sender)
1% r?b - \a\b\a\b\a\ - 1'b
1 (lossy channel) 1lc [Ps[ )rla
— [c[b[b] -~

Figure 1: UCS = buffered one-way communication via one lpé#iand one lossy channels

One-way communication appears, e.g., in half-duplex pa#[26] or in the acyclic networks
of [32, 5].

The reachability problem for UCSes is quite challengingwdis proved decidable by refor-
mulating it more abstractly as tH&egular) Post Embedding Proble(REP), which is easier to
analyze [15, 17, 19]. We want to stress that, wiiEP is a natural variant of Post's Correspon-
dence Problem, it was first identified through questions o0&z RecentPEP has proved useful
in other areas: graph logics for databases [7] and fastiggpeomplexity [28].

Testing channel contentdn basic channel systems, the agents are not allowed toanh#pe con-
tents of the channels. However, it is sometimes useful t@lerihe basic setup with tests. For
example, a multiplexer process will check each of its ingnarmels in turn and will rely on empti-
ness and/or non-emptiness tests to ensure that this rotmd policy does not block when one
input channel is empty [37]. In other settings, channelesystwith insertion errors becomes more
expressive when emptiness tests are allowed [11].

In this article we consider such emptiness and non-empatitests, as well as more general
tests given by arbitrary regular predicates on channeletsit A simple example is given below
in Fig. 2 (see page 5) where some of Sender’s actions depetite grarity of the number of mes-
sages currently ir. When verifying plain UCSes, one can reorder steps and assumvo-phase
behaviour where all Sender steps occur before all Receigps sWhen one has tests, one can no
longer assume this.

Our contribution. We extend UCSes with the possibility of testing channel eotst with regular
predicates (Section 2). This makes reachability undetgdaken with restricted sets of simple tests
(Section 3). Our main result (Theorem 4.1) is that reachwglisl decidable for UCSes extended with
emptiness and non-emptiness tests. The proof goes throsgties of reductions, some of them
nontrivial, that leave us with UCSes extended by only engstintests on a single side of a single
channel, called Z} tests” (sections 5 and 6). This minimal extension is themced (Section 7)

to PEPP2 or “PEP with partial codirectness”, a nontrivial extensionREP that was recently

proved decidable [29]. This last reduction extends theggoi from UCS toPEP in [17]. Finally,
Section 8 proves that emptiness and/or non-emptinesssteistyy enrich the basic UCS model.
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Related work.Emptiness and non-emptiness tests have been consideezdhalin [37], while
Promela (SPIN's input language) offers head tests (thatthesfirst available message without
consuming it) [25]. Beyond suc$pecifictests, we are not aware of results that consider models
with a general notion of tests on channel contents (excejpteitase of LCSes where very general
tests can be allowed without compromising the main dediitdabésults, see [8, sect. 6]).

Regarding unidirectional channels, the decidability itssa [5, 32, 24, 23, 20] apply to sys-
tems where communication between two agents is limitedsiogle one-way channel (sometimes
complemented with a finite shared memory, real-time clatleger-valued counter, or local push-
down stack). Finally let us mention the recent work by Cletaetnal where fifo and “bag” chan-
nels can be mixed: one can see bag channels as unreliableetharhere the temporal ordering of
messages is not preserved [21].

2. UNIDIRECTIONAL CHANNEL SYSTEMS

2.1. Unidirectional Channel System with Tests.A UCSTis a tupleS= (Ch,M, Q1,A1,Q2,42),
whereM is the finite alphabet ahessages1, Q, are the disjoint finite sets attatesof Sender and
Receiver, respectively, arsh, A, are the finite sets afules of Sender and Receiver, respectively.
Ch = {r,1} is afixed set of channel names, jekainneldor short, wherer is reliable and1 is lossy
(since messages incan spontaneously disappear).

Arule 6 € A; is atuple(qg,c,a,q) € Qi x Ch x Actx Q; where the set of action&ct contains
tests checking whether the contents ©f Ch belongs to some regular languages Reg(M), and
communicationgsending a messagec M to c in the case of Sender’s actions, reading it for Re-
ceiver’s). Allowed actions also include tleenpty action(no test, no communication) that will be

treated as “sending/reading the empty wetdormally we putActd:ef Reg(M)UMU {e}.
. , ca e cR - -
We also write a ruléq,c,a,q') asq — ¢, or specificallyg — d for a rule where the action is
cla / c?a / . . . . .
a test onc, andg — ¢ or g — ¢ when the action is a communication by Sender or by Receiver,

respectively. We also write just— ¢ orq iR g when the action is empty.

In graphical representations like Fig. 1, Sender and Receire depicted as two disjoint di-
rected graphs, where states appear as nodes and wherg ﬁiﬂe@ appear as edges fromto
with the corresponding labellings.

2.2. Operational Semantics. The behaviour of a UCST is defined via an operational sermsantic

along standard lines. gonfigurationof S= (Ch,M, Q1,A1,Q2,4,) is atupleC € Confsd:ele x Q2 X
M* x M*. InC = (q1,02,u,V), g1 andgy are the current states of Sender and Receiver, respectively
while u andv are the current contents sefand1, respectively.

The rules inA; U A give rise to transitions in the expected way. We use two netiaf tran-
sitions, or “steps”, between configurations. We start withcalled “reliable” steps: given two
configurations< = (t1,02,u,v), C' = (d;,05,U,V) and arul&d = (q,c,a,q ), there is a reliable step
denotedC % C’ if, and only if, the following four conditions are satisfied:

states: q = q; andq’ = ¢y andgp = g5 (for Sender rules), og = ¢p andd’ = ¢, andg; = q;
(for Receiver rules);

tests: if dis a test ruleg <K g, thenc =r andu€ R, orc =1 andv € R, and furthermore
U =uandv =vy;
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writes: if & is a writing ruleq X g with x e MU {e}, thenc = r andu = uxandVv =, or
c=1landV =uandV =vx

reads: if dis a reading rule LS g, thenc =r andu=xu andv =v,orc =1 andu =u
andv=xV.

This reliable behaviour is completed with message losses.v,F c M*, we write V Cq v
whenV is obtained by deleting a single (occurrence of a) symbahfepand we let= denote the
reflexive-transitive closure daf,. ThusV C v whenV is a scattered subword, i.e., a subsequence,
of v. (E.g.,abaC; abbaandaaC abba) This is extended to configurations and we wte_; C
orC' C C whenC' = (qp,02,u,V) andC = (qz,02,u,v) with V' C; v or V C v, respectively. Now,

wheneveC' C; C, the operational semantics 8fncludes a step fror@ toC’, called amessage loss

step, and denoted log C/, considering that “los” is an extra, implicit rule that isvalys allowed.

Thus a ste|© % ¢ of Sis either a reliable step, whene A3 UA, or a (single) message loss,
whend = los.

Remark 2.1(On reliable steps)As is usual with unreliable channel systems, the relialbhessgics
plays a key role even though the object of our study is realityalia not necessarily reliable steps.
First it is a normative yardstick from which one defines theeliable semantics by extension. Then
many hardness results on lossy systems are proved via i@thiethere a lossy system simulates in
some way the reliable (and Turing-powerful) behaviour:vprg the correctness of such reductions
requires having the concept of reliable steps. L]

Remark 2.2 (UCSTs and well-structured systems is well-known that(M*,C) is a well-quasi-
order (a wqo): any infinite sequeneg,vi,V»,... of words overM contains an infinite increasing
subsequence, C v, C v;, C --- This classic result, called Higman’s Lemma, plays a fund#aie
role in the algorithmic verification of lossy channel sysseamd other well-structured systems [14,
22]. Here we note thatConf,C) is not a wgo sinceC C D requires equality on channe) so that
UCSTs are not well-structured systems despite the presdrcssy channel. ]

2.3. Reachability. A run from Cy to C, is a sequence of chained ste{p;séé Ci 64 Cy--- 64 Cn,

abbreviated a€y = C, (or Co 5 Cn when we rule out zero-length runs).

The (Generalized) Reachability Probleror just “G-G-Reach” for short, is the question, given
a UCSTS= (Ch,M,Q1,A1,Q2,4,), some statepin, pri € Q1, Uin, Gi € Q2, SOme regular languages
U,V,U’ V' € Reg(M), whether there are sonue= U, ve V, U e U’ andV €V’ such thaShas a run
Cin = (Pin, Gin, U, V) = Ci = (P, i, U, V).

SinceU, V, U’, V' can be taken as singleton sets, the G-G-Reach problem is geoexal
than asking whetheg has a runCj, % G for some given initial and final configurations. We
shall need the added generality in Section 6 in particulawéver, sometimes we will also need
to put restrictions otJ, V, U’, V. We use E-G-Reach to denote the reachability problem where
U =V = {¢}, i.e., whereCi, has empty channels (E is for “Empty”), whil#,V’ € Reg(M) are not
constrained. We will also consider the E-E-Reach restrictvhered =V =U’' =V’ = {g}. ltis
known —see [16, Theo 3.1]— that E-E-Reach is decidable fosex; i.e., UCSTs that do not use
tests.
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3. TESTING CHANNELS AND THE UNDECIDABILITY OF REACHABILITY

Despite their similarities, UCSes and LCSes (lossy chasystems) behave differently. The algo-
rithms deciding reachability for LCSes can easily accomat@degular (or even more expressive)
tests [8, Sect. 6]. By contrast, UCSes become Turing-paverien equipped with regular tests.
The main result of this section is the undecidability of tesality for UCSTs. To state the respec-
tive theorem in a stronger version, we first introduce a immitdbr restricting the (regular) tests.

3.1. Restricted sets of testsWhenZ C Reg(M), we write UCST(Z] to denote the class of UCSTs
where only tests, i.e. languages, belongingltare allowed. Thus UCSTs and UCSes coincide
with UCST[Reg(M)] and UCSTP], respectively. We single out some simple tests (i.e., laggs)
defined via regular expressions:

Even®® (M.M)*, Odd d:efM.Even z d:efa, N d:efM+, Hy & a .
Thus? = {EvenOdd} is the set ofparity tests,Z is theemptinesgor “zero”) test,N is thenon-
emptinesdest andH = {H, | a € M} is the set oheadtests (that allows checking what is the first
message in a channgithout consuming jt Note that the non-emptiness test can be simulated with
head tests.

Before proving (in later sections) the decidability of GR&@ach for UCST{Z,N}], we start by
showing that E-E-Reach is undecidable for both UCHTdnd UCSTJH]: this demonstrates that
we get undecidability not only with simple “global” testsafty tests) whose outcome depends on
the entire contents of a channel, but also with simple “lotdts (head tests).

In fact, we even show the stronger statement that E-E-Resaahdecidable for UCSTH]
and UCSTJH], where the use of subscripts and/or superscripts meahséhaonsider restricted
systems where only Sender (for subscript 1, only Receivesubscript 2) may use the tests, and
that the tests may only apply on chanmedr 1 (depending on the superscript). E.g., in UCSI]
the only allowed tests are parity tests performed by Serlehannetlr.

Theorem 3.1. Reachability (E-E-Reach) is undecidable for both UCET[and UCSTH].
We now proceed to prove Theorem 3.1 by simulating queue attoomith UCSTS.

3.2. Simulating queue automata. Like queue automata, UCSes have a reliable channel bukgunli
them, Sender (or Receiver) cannot both raad write from/to it. If Sender could somehow read
from the head ot, it would be as powerful as a queue automaton, i.e., Turowgepful. Now we
show that parity tests used by Senderraallow us to construct a simple protocol making Receiver
act as a proxy for Sender and implement read actions on ilfoe®ee Fig. 2 for an illustrating

example of how Sender simulates a rpheria> p2.

— __|alblclafe] -

O
r:Even

r:Odd

Figure 2: Sender simulatep;' LY p2” with parity tests and proxy Receiver

Described informally, the protocol is the following:
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(1) Channel is initially empty.

(2) In order to “read” fromr, Sender checks and records whether the length of the current
contents ofr is odd or even, using a parity test en

(3) It then writes orl the message that it wants to readr( the example).

(4) During this time Receiver waits in its initi@oxy State and tries to read from When it
reads a messagefrom 1, it understands it as a request telling it to regdom r on behalf
of Sender. Once it has performed this read-dqwhenareally was there), it returns g oxy
and waits for the next instruction.

(5) Meanwhile, Sender checks that (equivalently, waitdl)uihie parity of the contents aof has
changed, and on detecting this change, concludes thatatewvas successful.

(6) Channell is now empty and the simulation of a read by Sender is condlude

If no messages are lost anthe protocol allows Sender to read onif a message is lost on, the
protocol deadlocks. Also, Sender deadlocks if it attempti®éad a message that is not at the head
of r, in particular wherr is empty; i.e., Sender has to guess correctly.

Our simulation of a queue automaton thus introduces mangilpesdeadlocks, but it still
suffices for proving undecidability of reachability, nayef E-E-Reach for UCSTp].

To prove undecidability for UCST;'] we just modify the previous protocol. We use two
copies of the message alphabet, e.g., using two “coloursheMvriting onr, Sender strictly
alternates between the two colours. If now Sender wantsa aegiven letter, sag, from r, it
checks that am (of the right colour) is present at the headroby using 4 tests. It then asks
Receiver to read by sending a message Via Since colours alternate 7 Sender can check (i.e.,
wait until), again using head tests, that the reading efcurred.

4. MAIN THEOREM AND A ROADMAP FOR ITS PROOF

We will omit set-brackets in the expressions like UC&N}], UCST[{Z1,N;}], UCST[{Z; }];
we thus write UCSTZ,N], UCST[Z1,Nq], UCST[Z;], etc. We now state our main theorem:

Theorem 4.1. Reachability (G-G-Reach) is decidable for UCSTNG.

Hence adding emptiness and nonemptiness tests to UCSesatassnpromise the decidabil-
ity of reachability (unlike what happens with parity or hdadts).

Our proof of Theorem 4.1 is quite long, being composed of isdv@nsecutive reductions,
some of which are nontrivial. A scheme of the proof is depidte Fig. 3, and we give a brief
outline in the rest of this section.

We first recall that the reachability problem for UCSes (ifer UCST[@]) was shown decid-
able via a reduction t&EP (Post's Embedding Problem) in [17]. Relying on this earhesult
(by reducing UCSTZ,N] to UCSTI[@]) or extending its proof (by reducing UCSZ|N] to PEP
directly) does not seem at all trivial. At some poREPPYT 4 non-trivial generalization of the

codir
basicPEP problem, was introduced as a certain intermediate steplawirsdecidable in [29].

Once it is known thaPEPP21@ is decidable, our proof for Theorem 4.1 is composed of two
main parts:

(1) One part, given in Section 7, is a reduction of E-E-ReaghUCST[Z}] to PEPPTAl |t

codir
is relatively compact, since we have found a suitable inggliate notion between runs of
UCST[Z}] and solutions oPEPP!

(2) The other part of the proof, given in sections 5 and 6, cediG-G-Reach for UCSZ[N]
to E-E-Reach for UCSH;]. It has turned out necessary to decompose this reductian in
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G-G-ReachZ, N]

D

Sec. 5.2
A

G-G-Reachfy, Ni] PEPE?{'}{?’
A
Sec. 5.9
Y

E-G-Reachfy, N;]

Sec.

E-E-Reachf}]

A

Sec. 5.4
\

E-G-Reachf]
B » reuse

Sec. 5.5
A

E-E-Reachf;]

L

Sec. 6 » G-G-Reachfi]

(a Turing reduction)

partial
codir

Figure 3: Roadmap of the reductions from G-G-Re&¢h{] to PEP
series of smaller steps (as depicted in Fig. 3) where femgureh as certain kinds of tests, or
general initial and final conditions, are eliminated stest®p. The particular way in which
these features are eliminated is important. For exampleglinénateZ, and N, tests by
one simulation reducing G-G-ReaZhN] to G-G-Reachk1, N1] (Sec. 5.2); the simulation
would not work if we wanted to eliminat&, andN, separately, one after the other.

One of the crucial steps in our series is the reduction frol+Eeachf;] to G-G-Reachf;].
This is a Turing reduction, while we otherwise use many-@uictions. Even though we start with
a problem instance where the initial and final configuratioenge empty channel contents, we need
oracle calls to a problem where the initial and final condsiare more general. This alone naturally
leads to considering the G-G-Reach instances.

We note that, when UCSes are equipped with tests, reduaimg @-G-Reach to E-E-Reach
is a problem in itself, for which the simple “solution” thatewsketched in our earlier extended
abstract [27] does not work.

It seems also worth noting that all reductions in Sectioneattthe two channels in the same
way; no special arrangements are needed to handle thedessifiL. The proofs of correctness, of
course, do need to take the lossiness into account.

5. REDUCING G-G-ReEACH FORUCST[Z,N] TO E-E-REACH FORUCST[Z1]

This section describes four simulations that, put togetaetail Point 1 in Theorem 5.1 below.
Moreover, the last three simulations also yield Point 2. \6e that the simulations are tailored to
the reachability problem: they may not preserve other biebeal aspects like, e.g., termination or
deadlock-freedom.

Theorem 5.1.
(1) G-G-Reach[ZN] many-one reduces to E-E-Reach]Z
(2) G-G-Reach[2] many-one reduces to E-E-Reach]Z
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Before proceeding with the four reductions, we present plei@ommutation Lemma that lets
us reorder runs and assume that they follow a specific pattern

5.1. Commuting steps in UCSTE, N] systems. We say that two consecutive ste(bs% c&cr

(of someS) commuteif C % b % ¢ for some configuratio® of S. The next lemma lists some
conditions that are sufficient for commuting steps in anteabyj UCSTE, N] systemS:

Lemma 5.2(Commutation) Two consecutive steps% c’ & ¢ commute in any of the following
cases:

(1) No contact: &; is a read/write/test by Sender or Receiver acting on one mblan (or a
message loss an= 1), while d, is a rule of theother agenacting on theother channefor
is a loss).

(2) Postponable lossd; is a message loss that does not occur at the head of (the ¢wwatent
of) 1.

(3) Advanceable Sendeb; is a Receiver’s rule or a loss, an® is a Sender’s rule but not a
Z1-test.

(4) Advanceable losd; is a loss andd; is hot an “1:N” test or a Sender’s write on.

Proof. By a simple case analysis. For example, for (2) we obsentéftbaloses a symbol behind
the head ofi, then there is another message at the head and thus commuting is possible even
if O, is an“1?a” read or an 1:Z” test. [l

We will use Lemma 5.2 several times and in different ways. tRertime being, we consider

in particular the convenient restriction to “head-lossyhs. Formally, a message 10883 ' is

head-lossyf it is of the form (p,q,u,av) log (p,qg,u,v) wherea € M (i.e., the lost message was the

head ofl). A run G, = Cj is head-lossyf all its message loss steps are head-lossy, or occur after
all the reliable steps in the run (it is convenient to alloveamstrained losses at the end of the run).
Repeated use of Point (2) in Lemma 5.2 easily yields the raxilary:

Corollary 5.3. If there is a run from G, to G; then there is a head-lossy run frorm, @ G;.

5.2. Reducing G-G-Reachg, N] to G-G-Reach[Z,,N4]. Our first reduction eliminateg andN
tests by Receiver. These tests are replaced by reading tetabpew messagesz™and “n”, that
Sender previously put in the channels.

Formally, we consider an instance of G-G-Re@ch]], made of a given UCSTS =
({r,1},M,Q1,41,Q2,42), given stategi, pri € Q1, tin, G € Q2, and given languagés,V,U’,V’ €
Reg(M). We construct a new UCSS from Sas follows (see Fig. 4):

(1) We add two special new messages to M, thus creating the alphabmd:efM&J {z,n}.

(2) For each channel € {r,1} and each Sender’s stapec Q; we add new stateg!, p? and
an “(emptiness) testing lodp °2 pt ¢z p ¢4 p (i.e., three new rules).

(3) For every Sender’s writing rukeof the formp o p’ we add a new statgy and the following
three rules:p L Ps, Po cln Ps (a “padding loop), and pg o p.

(4) For every Receiver's rulqg g (testing emptiness af) we add the ruley Lt q.

(5) For every Receiver’s rulqﬂ q” (testing non-emptiness af we add the ruley o q’.
(6) Atthis stage, the resulting system is calf®g.
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(7) Finally we remove all Receiver's tests, i.e., the rujes+ q andg < eN g’. We now havég.

DD T @ D@
S S T
Figure 4. Reducing G-G-Reach|N] to G-G-Reachf;,N;]: eliminating Receiver’s tests

The intuition behindS is that Sender runs a small protocol signaling to Receivetie status of
the channels is. When a channel is empty, Sender may wzite & that Receiver can read in place
of testing for emptiness. For correctness, it is importhat Sender does not proceed any further
until this z has disappeared from the channel. For non-emptiness 8stsler can always write
several extraneousmessages before writing an original message. Receivehearr¢éad these's

in place of testing for nonemptiness.

Forw=aja,...a, € M*, we letpadw) d:efn*aln*az ...n*ay denote the set (a regular language)
of all paddingsof w, i.e., words obtained by inserting any numbeméf in front of the original
messages. Note thpad(e) = {€}. This is extended to arbitrary languages in the usual wayL fo
M*, pad(L) = Uwe pad(w) and we note that, whenis regular,pad(L) is regular too. Furthermore,
one easily derives an FSA (a finite-state automaton) or daegupression fopad(L) from an FSA
or a regular expression far,

By replacingS U, V with S, padU ), padV) (and keepingin, psi, Gin, G, U’, V' unchanged),
the initial G-G-React, N] instance is transformed into a G-G-Rea¢hN;] instance. The cor-
rectness of this reduction is captured by the next lemmawkammediately proceed to prove in
the rest of section 5.2:

Lemma5.4. Foranyuvu V €M%, S has a rur(pin, Gin, U, V) — (pri, o, U, V) if, and only if, Shas
a run (pPin, Gin, G,9) = (pr, i, U, V) for some padded wordse pad(u) and¥ € pad(v).

Though we are ultimately interested $and S, it is convenient to consider special runs of
Saux SinceSyx “contains” bothSandS. We rely on Corollary 5.3 and tacitly assume that all runs

are head-lossy. We say that a (head-lossy) Cy 54 Ci 54 54 C, of Syux is faithful if Co =

(o, Go, U, Vo) With Uo, Vo € padM*), Cn = (Pn, bn, Un, Vn) With Un,Vn € M*, Po, Pn € Q1, Go, 0 € Q2,
and the following two properties are satisfied (foria 1,2,...,n):

—if &; is somep @4 pl thendi 1, &2, and6.+3 arep’ oz P2, q L d, p? “Z p (for some (P1)
a,q € Q). In this case, the subr®_; — Ci 3 is called aP1-segmentf the run.

cln

—if g is somep 1N pe then there is some> i such thad,1,0i,2,...,0; arepg cn pPe —

cln

- = Po Y p for someac Mandp € Q;. The subrurCi_; — Cj is called aP2-segment
Informally, a run is faithful if it uses the new rules (intnackd inS,,y) in the “intended” way: e.g.,

P1 enforces that eaehwritten by Sender (necessarily via a rqﬂ%‘:l—ﬁ p5) is immediately read after
being written in the empty channel. We note that any russ isf trivially faithful since it does not
use the new rules.

We now exhibit two reversible transformations of runsSgfy, one forZ tests in §5.2.1, the
other forN tests in 85.2.2, that preserve faithfulness. This willallos to translate runs d3,

(P2)
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witnessing the original instance, to faithful runs $f witnessing the created instance, and vice
versa. Finally we show in 85.2.3 that if there is a runSfvitnessing the created instance, then
there is a faithful one as well.

When describing the two transformations we shall assumerdar to fix notations, that we
transform a test on channgj the case for the channelis completely analogous. For both trans-
formations we assume a faithful (head-lossy) Tunf S,,x in the following form:

(Pin, Gin, Uo, Vo) = Co 3 C1 2 Cp- - 2% Coy = (Pii, G, Un, Vi) ()

whered,,...,0, can be rules of, or the “los” symbol for steps where a message is lost. For
i=0,1,...,n, we letC = (pi,d, Ui, Vi).

5.2.1. Trading % tests for P1-segment®Assume that the ste@m M Cmy1 in TUiS aZ,-test (an

emptiness test by Receiver), hence has the fgorg, w, a) (p,q w,€) if we assume: = 1. We
may replace this step with the foIIowmg steps

(p,q,WS) (pl,q,WS) (pl,q,WZ) (p1>q WS) (p7q W‘c‘) (51)

using the rules introduced B,,x. This transforms (the faithful runyinto another faithful runt,
decreasing the number of Receiver’s tests (by one occurreinaZ,-test). In the other direction, if

Tt contains a P1-segmeBi, 1 — Cmy3, it must be of the form (5.1), when the involved channel is
¢ =1, and we can replace it with one st€g_1 ¢4 Cm.3, preserving faithfulness.
5.2.2. Trading N tests for occurrences af Now assume that the st€, m—“> Cmy1 is anNj-test,

hence has the forrmp, g, u, xv) (p,q u,xv) for some messagec M. Now x # z since there
was noz’s in vg and, as noted above, aaywritten by Sender in a faithful run is immediately read.

Hencex € MU{n}. We want to replace th@ﬂ q test (by Receiver) with g 17 g but this requires

inserting onen in 1, i.e., using a new rul@g 2 pe at the right moment.

We now follow the (occurrence ofy singled out inCy, and find the first configuration, say
Cx, Where thisx appears already; we can thus wnte= w; xWw, i.e., C; = (pi, g, Ui, w; Xw), for
i =k k+1,...,m. Herex always depicts the same occurrence, and @,gxw, = xventailswy =€
andw;, = v. By addingn in front of xin eachC; for i =k, k+1,...,m, we obtain new configurations

C.Ci 1, ----Crygiven byCl = (pi, Gi, Ui, Winxw). NowC Sy Ciit %z .. Oy Chis avalid run of
Swx sincexis not read durin€y — Cm and since, thanks to the presence,aidding onexr does not
change the (non)emptiness status af this subrun Moreover, sincqaﬂ d is arule ofS, there is
aruleq 17 g in Syux, whereCr, = (p,q, u, nxv) (p,q u,xv) = Cny,1 is a valid step.

If k=0 (i.e., ifxis present at the beginning Tf, we have exhibited a faithful ru@, 5
Cm:1 — C,, Starting fromC{ = (Pin, Gin, Uo, WonX W), Wherewgnxwj, € pad(Vp) Sincevp = Wo X W.

170
CL,—

If k > 0, the highlighted occurrence nhecessarily appears @ via & = px_1 i px and we have
Vk = W—1X. If & is a rule ofS, we may exhibit a sequen€k_1 N C, using the new rules

1 /
Ci— 1—>(I05k,Qk 1,Uk—1, Vi— 1) 3 (Poys Ok—1 Uk—1, Vk—11) —> (Pk, Ok—1, Uk—1, Vk—10.X) = Cy,



ON REACHABILITY FOR UNIDIRECTIONAL CHANNEL SYSTEMS EXTENLED WITH REGULAR TESTS 11

o . 1! 1ln 1!
while if dy is a new rulepg = Pk, we can usé€y_; =3 Ci. In both cases we can u€g_1 5 C.

to construct a new faithful ru — C_1 — C| — Cl, — Cmy1 — Cn. We have again decreased the
number of Receiver’s tests, now by one occurrence dfiatest.

For the backward transformation we assume tit@tcurs in a configuration af. We select one
such occurrence and I€k,Cy.1,...,Cn (0 < k < m< n) be the part oft where this occurrence of
n appears. For=k k+1,...,m, we highlight this occurrence af by writing v; in the formw; nw/
(assuming w.l.0.g. that the occurs inl), i.e., we writeC; = (p;, ¢, U, winw,). Removing then
yields new configuration§;,C;_ 4, ...,Cy, given byC/ = (i, qi, Ui, Wi W)).

We claim thaiC; Sy Ciir oy Chyis a valid run ofSyx. For this, we only need to check that
removingn does not make channglempty in someC whered; ; is anN*-test. Ifk =0 thenn in
Vo = WonW, is followed by a lettex € MU {n} sincevp € padM*). Thisx remains inl until at least
Cm:1 Since it cannot be read whiteremains, nor can it be lost before tBe— Ci; step since the

1ln

run is head-lossy. K> 0, then outh appeared in a step of the fo@_1 = (Pg, Ok—1, Uk—1, Vk—1) —

Ck = (Pe, Ok—1, Uk—1, Vk—11) (for some write ruleé of S inducingpeg Ln Pe IN Syux). Sincepo = pin is

not pg, arulep, iR pe Was used before stdpandmhas a P2-segmeg 5. -Cy_1 tn Ck = -Cp

where/ < mandx € MU {n} is present in allCy.1,...,Cyn. As before, thisx guarantees that
Ce1=C, 2% ¢, 3 Chis avalid run ofSy

We now recall thatm < n and thatdn,, 1 is eithergn L Om.1 Or the loss oh. In the first case,
Saux has a stegg/, =t Cmy+1, While in the second cas#, = Cr. 1.

The corresponding rugj = Cf, = Cm.1 — Cy in the casek = 0, orCo = Ci_1 — Cj, ; —
Cl, 5 Cmy1 — Cy in the casek > 0, is a faithful run; we have thus removed an occurrence, of
possibly at a cost of introducing o test.

5.2.3. Handling 3 runs and faithfulnessSince a witness run @ is (trivially) faithful, the above
transformations allow us to remove one by one all occurrent®eceiver'sZ andN tests, creating
a (faithful) witness run forS (with a possibly padde,). We have thus proved the “only-if”
part of Lemma 5.4. The “if” part is shown analogously, nowngsihe two transformations in the
other direction and removing occurrences of the aeandn messagesyith one proviso we only
transform faithful runs. We thus need to show thaSithas a (head-lossy) rufpin,din,d,V) =
(pri, g, U, V') then it also has a faithful one.

Let us assume thatabove, of the fornCy = C, is a witness run o8, not necessarily faithful,
having minimal length. We show how to modify it locally so thiae resulting run is faithful.

Assume that some rug = p iR pe is used irm, and that P2 fails on this occurrencedf Since
Ttdoes not end in statgey, Sender necessarily continues with some (possibly zpyé% pe Steps,

followed by somed; = pg o p’. Now all Receiver or message loss steps betwigemd d; can

be swapped and postponed afigisince Receiver has no tests and Sender does not test beween
andd; (recall Lemma 5.2(3)). After the transformatiai,and the rules after it form a P2-segment.
Also, since message losses have been postponed, the rungdraad-lossy.

Consider now a rulé; of the form p 2 pl in tand assume that P1 fails on this occurrence.

Sender necessarily continues with sodje= pt % 2 and & = p2 <5 p, interleaved with Re-
ceiver's steps and/or losses. It is clear thatzheritten onc by d; must be lost, or read by a Re-

ceiversd, =q L g beforedy can be used. The read or loss occurs at some/stéfh j < ¢ < k.
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Note that Receiver does not read franbetween steps andk, except perhaps at stép Since
Sender only tests for emptinessobetween stepsandk, all Receiver’s steps and losses between
steps and/ can be swapped and put befé&eThe run remains head-lossy since the swapped losses
do not occur orz, which is empty at step Similarly, all non-Sender steps between stépsdk

can be swapped afté, preserving head-lossiness. The obtained run has a segiira form

C S592°% 4 o that is now a P1-segment, or of the forc5 389 o C, i.e., a dummy

loopC % C that contradicts minimality oft

5.3. Reducing G-G-ReachZ,,N1] to E-G-Reach[Z1,N;]. A G-G-Reachf;,N;] instance where
the initial contents of and1l are restricted to (regular languagesandV respectively can be trans-
formed into an equivalent instance whéteandV are both replaced witfie}. For this, one adds
a new (fresh) initial statgney to Sender, from which Sender first nondeterministically eyates
some wordu € U, writing it on r, then generates some waord V, writing it on 1, and then enters
pin, the original initial state. The resulting is just Swith extra states and rules betwepg,, and
pin that mimic FSAs fotJ andV.

Stating the correctness of this reduction has the form

Shas a run(pin, Gin, U, v) % Cforsomeuc U andveV iff S has a run Pnew, Gin, €, €) 5C. (%)

Now, sinceS can do(pnew, Gin, €, €) 5 (Pin,Gin,u,V) for anyu € U andv € V, the left-to-right
implication in ) is clear. Note that, in the right-to-left directioit,is essential that Receiver has
no testsand this is what we missed in [27]. Indeed, it is the absendReckiver tests that allows us
to reorder any8 run from (prew, 0, €, €) SO that all steps that use the new “generating” rules (from
Prew 10 Pin) happen before any Receiver steps.

5.4. Reducing E-G-ReachZ,,N1] to E-G-Reach[Z;]. When there are no Receiver tests and a
run starts with the empty channels, tHentests can be easily eliminated by a buffering technique
on Sender’s side. Each chanrek {r,1} gets its one-letter buffer B which can be emptied at
any time by moving its content te. Sender can only write to an empty buffer; it pass& #est
if both channek and B; are empty, while ani\f test is replaced with the (weaker) “test” if.Bs
nonempty.

Formally, we start with an instande, pin, pri, in, G, {€}, {€},U’,V’) of E-G-Reachf;, N;],
whereS= ({r,1},M,Qq,A1,Q2,47), and we creat8 = ({r,1},M,Q},A7,Q2,Ay) arising fromSas
follows (see Fig. 5). We pud; = Q1 x (MU {e}) x (MU {€}); the components,y in a state(q, X, y)

g.a,€

la
la

aa
" Ar llad "~
bhat)

S (Sender only)
Figure 5: Reducing E-G-Read|,N¢] to E-G-Reach#;]

denote the contents of the buffers foand1, respectively. We now replace each rqlé!i g with
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(9,¢,Y) iR (d,x,y) for ally e MU {e} (Fig. 5 uses T,” to highlight these transformed rules). Each
q =N q is replaced withg, x,y) AN (d,x,y) for all x,y wherex # € (Fig. 5 uses Ty"). Eachq LA q

. . tiZ ;g Ux LN

is replaced withg,€,y) — (d',€,y) (for all y). Analogously we replace atf — ¢, g — ¢/, and

q 12 q. Moreover, we add the rule&, x,y) L (g,€,y) (for x # €) and (g, X, y) 1 (g,x,€) (for
y # €). Our desired reduction is completed, by the next lemma:

Lemma 5.5. S has a run & = (pin,Gin,&,€) — (ps, 0, U,V) = Cy if, and only if, $ has a run
Ci/n = (<pin>€7‘c‘>7 <Qin,€,8>,8,€) i> (<pﬁ7€78>7 <in,8,€>,ul,\/) :Cf/|

Proof. < : ArunCl, =Cj & C & C--- & C, =C; of S can be simply translated to a run 8f
by the following transformation: ead® = ({pi,x,y),d,u;,V;) is translated t&; = (p;, i, Ui, Viy),

each stel/ i C/ whered is (q,¢,Y) 5 (d,x,y) is replaced withC;_; LN Ci wheredis q LR q,
etc. It can be easily checked that the arising @n~ C, is indeed a valid run o8 (that can be
shorter because it “erases” the steps by the ridesy) L (g,€,y) and(q, X, y) Y (Q,X,€)).
=:ArunC,=Cy 6# Ci % Co--- 64 C, = GC; of Scan be translated into a run 8fby a suitable
transformation, starting wite}, = (({pin,&,€), (Gin, €, £),£,€). Suppose thaty = C; = (p,q, ux,vy)
has been translated @, — C/ = ((p,x,Y),q,u,v) (for somex,y € MU {e}). If &1 is p Y o,
then we translat€; LN Ci;1 in the casex =€ to C/ — C; = ((p',a,y),q,u,v) (using the rule

(p.£.y) = (P,a)), and in the case # € to C/ — ((p,&,y),q,uxv) — (P, a,y),q,uxv) = Cl;
(using the rulegp,x,y) LR (p,e,y) and(p,¢,y) iR (p',a,y)). We handle the other forms éf, ; in
the obvious way; e.g., 1 is a loss at (the head of)while C/ = ((p,x,y),q,u,€), then we also

use two stepsC/ — ((p,X,€),q,u,y) log ({(p,x,€),0,u,e) = C/, ;. This process obviously results in
a valid run ofS. ]

5.5. Reducing E-G-Reachl,] to E-E-Reach[Z,]. The idea of the reduction is similar to what
was done in section 5.3. The regular final conditionls=‘U’” and “v € V" are checked by Receiver
consuming the final channel contents. When Sender (guesae#)tis about to write the first
message that will be part of the findlin r (respectively, the final in 1), it signals this by inserting
a special symbol # just before. After it has written # to a cl@nSender is not allowed to test that
channel anymore.

Formally we start with an instand&, pin, pri, Gin, G, {€}, {€},U’,V’) of E-G-Reachf;], where
S= ({r,1},4,Q1,A1,Q2,4,). With Swe associatS whereM = MW {#}, as sketched in Fig. 6.
This yields the instancéS, pi,, pt,0in,df, {€}, {€}.{€},{€}) of E-E-Reach;], for the new final
Receiver state;.

We defineS = ({r,1},M,Q;,A],Q,,4,) with the Receiver par),, A, obtained fromQ,, A,
by addinggs and other necessary states and so calledning rulesso thatgs is reachable from
Ori precisely by sequences of read-ste#, 17#, r?a, r?ay, ..., r?am, 1?1, 17y, ..., 1%,
whereu = a1ay...am € U’ andv = biby...by, € V. (The new states and cleaning rules mimic
finite-state automata acceptigg} -U’ and{#}-V'.)

, def

The Sender pa®, A} of S is obtained fronQ,A; as follows. We put); = Q1 x {T,#} x
{T.#}, andp, = (pin, T, T), P = (P, ##). A state(p,x,y) “remembers” if # has been already
written tor (x =#) or not k= T); similarly for1 (by y=# ory= T). For changing the status (just
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1
r’hJEU“'A
1V eV,

3

Figure 6: Reducing E-G-Readhy]| to E-E-Reach{;]

once for each channel); contains the rulegp, T,y) L (p,#,y) and(p,x, T) i (p,x,#) for each
p € Qi andx,y € {T,#}. Moreover, any rulg =% o in A induces the rulegp, x,y) % (0, xy),

except for the rulegp,#,y) LU and(p, x,#) rz . (i.e.,Z5 tests are forbidden after # has been
written toc). The next lemma shows that the above reduction is correct.

Lemma 5.6. S has a runpin, tin, €,€) — (psi, i, U, V) for some tic U’ and v € V' if, and only if,
S has a run({pin, T, T),0in.£,€) = ((pfi,##), 01, €,€).

Proof. “=": SupposeCo = (Pin, Gin,€,€) > C1-++ 2 Co = (P10, U,V), whered' € U', v €V,

is a run of S We first transform it into a mimicking ru€y = ((Pin, T, T),0in,&,€) — C, =
({pri, #,#),0n,#U ,#V). This amounts to find some right points for inserting two stepthe forms
(P, T.¥), 6 V) =5 ((p,#,Y),0,u#, V) and((p,x, T),0,u,v) 2 ((p,x#),0,u,v#) (in some order).
For the first one, it/ # € then we find the least index such tha®, ;1 is somer!a and the written
occurrence of is permanenti.e.,Cj; r'a Ci,+1is the step that actually writes the symbol occurring
at the head off in C, = (psi, g, U, V); if U =€ then we find the least such that na'a and nor:Z

are performed iIC; 5‘—“> Cj+1 with j > iy. Forl (andV') we findi, analogously. In either case, after
i1 (respectivelyj,) the channet (respectivelyl) is not tested for:Z.

HavingC) = Cl, = ({ps,##), 0, #u ,#V), the “cleaning rules” are used to continue W=
((pfi7#7#>>qf78>€)'

“«<": Consider a rurCo = ((pin, T, T),0in,&,€) — ((pri,##),0,€,€) =C, of S. Since Re-
ceiver is in stategy, at the beginning and i at the end, the Receiver step sequence must be
composed of two parts: the first frogy, to g5, and the second from; to gs; the latter corresponds
to a sequence of cleaning (reading) rules. The cleaning sepbe commuted after message losses
(recall Lemma 5.2(4)), and after Sender’s rules (Lemma3}) &fnce the first cleaning steps ai®#
and1?# and Sender does not test the channels after having w#ittarthem.

Hence we can assume that the @y C, of S has the form

CO = (<pinaTaT>>Qin>575) i> Cm = ((pfi7#7#>>qfi7#u/7#\/) i> Cn = ((<pfi>#>#>ani>575)
with only Receiver steps i, — C,, which entailsu’ € U’ andV € V'. If we now just ignore the
two mode-changing steps in the sub@n— Cn, (relying on the fact thaS has noN tests) we

obtain a new ru€y — C,, with C4, = ((psi, T, T), ¢, U, V). This new run can be directly translated
into a run(pin, Gin, €,€) = (pr, i, U,V) in S O
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6. REDUCING E-E-REACH[Z;] TO G-G-REACH[Z]]

We now describe an algorithm deciding E-E-Re@ghjnstances, assuming a procedure deciding
instances of G-G-Reach{]. This is a Turing reduction. The main idea is to partitionua 1of

a UCSTE,] system into subruns that do not use #etests (i.e., that only use thg tests) and
connect them at configurations wheres known to be empty.

For a UCSTS= ({r,1},M,Q1,A1,Q2,42), we let Conf._, be the subset of configurations
in which r is empty; they are thus of the foriip,q,&,v). We have puC = (p,q,u,v) C C' =
(p,d,u,V)iff p=p,q=d,u=1U, andvC V. HenceConf_, is a well-quasi-ordered by,
unlike Conf.

Slightly abusing terminology, we say that a sub&et_ Conf._, is regular if there are some
state-indexed regular languag@4 q) pcq;,qeq, iN Reg(M) such thatW = {(p,q,&,v) | v € Vpq}.
Such regular subsets Gbnf._, can be finitely represented using, e.g., regular expressiofinite-
state automata.

W C Conf,._; is upward-closedin Conf._,) if Ce W,CC C' andC’ € Conf._, imply C' e W.

It is downward-closedf Conf._. \ W is upward-closed. The upward-closui/ of W C Conf._,

is the smallest upward-closed set that cont&ihsA well-known consequence of Higman’s Lemma
(see Remark 2.2) is that upward-closed and downward-clesksets ofConf._; are regular, and
that upward-closed subsets can be canonically represkntib@ir finitely many minimal elements.

ForW C Conf._, we let Pré(W) gef {CeConf_, | ID € W:C 5 D}: note that PrW) C

Conf._, by our definition.

Lemma 6.1. If S is a UCST[Z] system and W is a regular subset of Conf thenPre (W) is
upward-closed; moreover, given an oracle for G-G-Reagh[Pre' (W) is computable from S and
W.

los

Proof. We note that PrgW) is upward-closed sinc€ C D is equivalent tadD(—)*C, henceD €
Pre(C).

We now assume that an oracle for G-G-Re@¢hfs available, and we construct a finite set
F C Pre'(W) whose upward-closuréF is Pre (W). We build upF in steps, starting witlry = &;
clearlytFo = @ C Pre’(W). The(i+1)th iteration, starting witl, proceeds as follows.

We putw’ d:efConQ:8 ~ 1F; note thatV’ is regular. We check whether there exist s@reW’
andD € W such thatC = D; this can be decided using the oracle (it is a finite disjumctf G-G-
ReachF{] instances, obtained by considering all possibilitiesSender and Receiver states). If the
answer is “no”, thertF = Pref(W); we then pufF = F and we are done.

Otherwise, the answer is “yes” and we look for some condteteW’ s.t.C % D for some
D € W. This can be done by enumerating @l W’ and by using the oracle for G-G-Reagh]
again. We are bound to eventually find sudd sinceW’ N Pre’ (W) is not empty.

Once someC is found, we sef d:efF. U{C}. Clearly K1, and sotF1, is a subset of
Pref(W). By constructiontFy & 1F1 & 1F & - - - is a strictly increasing sequence of upward-closed
sets. By the well-quasi-ordering property, this sequeacmot be extended indefinitely: eventually
we will have1h = Pre’ (W), signalled by the answer “no”. O

Lemma 6.2. E-E-Reach([4] is Turing reducible to G-G-ReachfZ.

Proof. AssumeS= ({r,1},M,Q1,A1,Q2,A,) is a UCSTE;], and we ask if there is a ru@i, =
(Pin, Gin, €,€) — (Pri, G- €,€) = Ci. By S we denote the UCSTE] system arising frongby remov-
ing all Z rules. Hence Lemma 6.1 appliesSo The set of configurations &andS is the same,
so there is no ambiguity in using the notatiéonf andConf__.
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We aim at computing Pré{Cs }) for S Fork > 0, let Ty C Conf,_, be the set o€ € Conf,_,
for which there is a rul© = C; of Swith at mostk steps that aréj tests; hence{Cs} C To (by
message losses). For edgchly is upward-closed and C Ty 1. Defining T = ey Tk, We note
thatCi, = Cj iff Cp € T. SinceConf._; is well quasi-ordered, the sequenteC Ty C To C ---
eventually stabilizes; hence therenisuch thafl, = T, 1, which implies thafl, = T.

By Lemma 6.1, and using an oracle for G-G-Re@gh[we can compute Ptg{Cs }), where
the “S” subscript indicates that we consider runsSinnot usingZ; tests. Hencd@o = Pre§ ({Csi })
is computable. Giveny, we computely, 1 as follows. We put

T,={CeConf_,|IDe T :CZ5 D}

={(p.g.ew)|3p €Qi: p=5 p eArand(p.q.ew) € T}
Thus Tk’ C Conf._; is the set of configurations from which one can redglwith one Zi step.
Clearly T, is upward-closed (sinc& is) and can be computed from a finite representatiof of
e.g., its minimal elements. Th@R, 1 = Ty UPre (T,), and we use Lemma 6.1 again to compute it.
Iterating the above process, we compute the sequinae,.. ., until the firstn such thafl, =
Tho1 (recall thatT, =T then). Finally we check i€, € Tp,. O

7. REDUCING E-E-REACH[Z]] TO A POST EMBEDDING PROBLEM

As stated in Theorem 5.1 (see also Fig. 3), our series of tisthscfrom G-G-Reacl;, N1] to E-E-
Reach] also reduces G-G-Read] to E-E-Reach¥;]; this can be easily checked by recalling
that the respective reductions do not introduce new testSubsection 7.1 we show a (polynomial)

many-one reduction from E-E-ReaR] to PEPP21? a generalization of Post's Embedding Prob-

lem. SincePEPP2 was shown decidable in [29], our proof of Theorem 4.1 willlnest completed.

codir ;
We also add Subsection 7.2 that shows a simple reductioreinghosite direction, frorREPP2 1

to E-E-ReacH{1].

7.1. E-E-ReachZ}] reduces toPEPPA.

codir

Definition 7.1 (Post embedding with partial codirectness [29PEPP2? is the question, given

two finite alphabet&, I, two morphismai,v: Z* — ', and two regular languagésR € Reg(Z),
whether there is € R (called asolutior) such thau(o) C v(o), and such that furthermorgo’) C
v(o’) for all suffixeso’ of o that belong tdR..

The above definition uses the same subword relation, defigtdtat captures message losses.
PEPP212 andPEP (which is the special case wheRe= o) are a variant of Post's Correspondence
Problem, where the question is whether there exists> ™ such thau(o) = v(0); see also [7] for
applications in graph logics.

Lemma 7.2. E-E-Reach[2] reduces toPEPP1! (via a polynomial reduction).

We now prove the lemma. The reduction from E-E-ReZthfo PEPP1 extends an earlier

reduction from UCS td®EP [17]. In our case the presence s tests creates new difficulties.

We fix an instance&S = ({I’,l},M, Qla_A17Q27A2)1 Cin = (piinnaF-» S)’ Ci = (pfi>in75> S) of E-
E-Reachl}], and we construct 2EPP2M@ instance? = (2,I,u,v,R R) intended to express the
existence of a run fror@j, to Cj.
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We first putx d:efAlqu andl %'y so that wordws € 3* are sequences of rules §f and

their imageau(o),v(o) € I'* are sequences of messages. With amyZ, we associatevrite_r(d)

defined bywrite_r () = x if & is a Sender rule of the form L P/, andwrite_r(3) = € in all other
cases. This is extended to sequences witite_r(d;---0n) = write_r(0;)---write_r(dn). In a
similar way we definevrite_1(o) € M*, the message sequence writteriltby the rule sequence
o, andread r(o) andread_1(0), the sequences read byfrom r and1, respectively. We define

E, € Reg() asE; &'E; UE, where

E; d:ef{é € 2 | write_r(d) =read r(d) = ¢},

E, ©15,5, € 32 | write_r(8,) = read r(8,) £ ¢} .
In other wordsE; gathers the rules that do not write to or read frepandE, contains all pairs of
Sender/Receiver rules that write/read the same lettepto/f.

Let now Py C A7 be the set of all sequences of Sender rules of the o= po — p1 =
p2--- = pPn = Py, I.€., the sequences corresponding to paths fppnto p; in the graph defined by
Q: andA;. Similarly, letP> C A be the set of all sequences of Receiver rules that corresjpond
paths fromg;, to gr. SinceP; andP; are defined by finite-state systems, they are regular lasguag
We write P;|| P, to denote the set of all interleavings (shuffles) of a woréiirwith a word inP.
This operation is regularity-preserving, Bp|P, € Reg(Z). Let T, C A; be the set of all Sender
rules that test the emptiness bfiwhich are the only test rules i6). We defineR andR as the
following regular languages:

R=E;N(P1[[P2), R/:Tl'(AlUAz)*.

def

Finally, the morphismsi,v: 2* — ' are given by def read 1 andv = write_1. This finishes the

construction of th®EPP¥ instance? = (2,1, u,v,R R).

codir
We will now prove the correctness of this reduction, i.equglthatShas a rurCi, % Gy if, and

only if, ¢ has a solution. Before starting with the proof itself, letilisstrate some aspects of the
reduction by considering a schematic example (see Fig. 7).

r
1% r?c N ~ 1lla o~ rlc o 1lb o 1.7
5/1/2 1_ @51@52@53@54@

-

Figure 7: A schematic UCSZE] instance

Let us considensy = 610,0,0,0304 and check whether it is a solution of tieinstance ob-
tained by our reduction. For this, one first checks thgte R, computesi(0so) = read 1(0sq) =b
and check thab C v(oso) = write_1(0so)) = ab. There remains to check the suffixesaf, that
belong toR, i.e., that start with a:Z rule. Here, onlyo’ =8, is inR, and indeedi(0’) =€ C v(d’).
Thusogg is a solution.

However, a solution likesso does not directly correspond to a run®fFor instance, any run

Cin — Csi in the system from Fig. 7 must usg (write b on1) befored] (read it).
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Reciprocally, a rurCi, — C; does not directly lead to a solution. For example, on the same
system the following run

&, &
Cin 3C1 3 C, 2 Cy = (ps, Gin, €, @0) '3 Cy = (P, Gin, &, ) = Cs 2 Cg 2 G Q)

has an action inCs log C,4" that is not accounted for i and cannot appear in solutions®f Also,
the X-word o5, = 610,038,049, obtained fronTtis not a solution. It belongs B ||P. but not toE;

(which requires that each occurrencedgfs immediately followed by some=% | rule). Note that
Oso had 3, followed by &,, but it is impossible in a ruti, — Cji to haved, immediately followed
by &,.
With these issues in mind, we introduce a notion bridgingdifference between runs &and

solutions of?P. We callo € (A1 UAy)* apre-solutionif the following five conditions hold:

(c1) o € P[Py

(c2) read r(o) = write_r(0);

(c3) read r(o1) is a prefix ofwrite_r(o1) for each prefixo; of o;

(c4) read 1(o) C write_1(0);

(c5) read 1(0o2) C write_1(07) for each factorizatiomw = 01060, whered € T; (i.e.,dis al:Z

rule).

A pre-solutiono has aReceiver-advancing swittho = 0,68 6, whered is a Sender ruley is a Re-
ceiver rule, andy = 0,0'd0> is again a pre-solution. Receiver-postponing switét defined anal-
ogously, ford being a Receiver rule arid being a Sender rule. For example, the sequencbove
is a pre-solution. It has a Receiver-advancing switcldpandd), and one o, andd,. Note that
wheno is a pre-solution, checking whether a potential Receideracing or Receiver-postponing
switch leads again to a pre-solution only requires checki or, respectively, (c5). Considering
another examplegsg, being a solution is a pre-solution. It has two Receivetjpasng switches
but only one Receiver-advancing switch since switclingndd, does not maintain (c3).

It is obvious that if there is a pre-solutiamthen there is amdvance-stable pre-solution,
which means that’ has no Receiver-advancing switch; there is alpostpone-stable pre-solution
o” which has no Receiver-postponing switch.

Claim 7.3. Any advance-stable pre-solutianis in E}, and it is thus a solution a?.

Proof. Let us write an advance-stable pre-solutibasc,0, wherea is the longest prefix such that
01 € E}; henceread r(o1) = write_r(031) by the definition ofg, = E; UE,. Now suppose; # «.

Thenoy =010, - - & whered, ¢ E;. Sinceread r(o1) = write_r(07), 6 must be of the form =

to guarantee (c3). Let us pick the smalléstich thad, = . =% which must exist by (c2)— and
note that! > 2 since® &, ¢ E, by maximality ofo;. If we now pick the leasf in {1,...,/—1}
such thad; is a Sender rule andj_ ; is a Receiver rule, then switchirdg andd;, , leads again to a
pre-solution as can be checked by inspecting (c1-c5). Tdngadicts the assumption thatis an
advance-stable pre-solution. L]

Claim 7.4. If 0 = &;...0y IS a postpone-stable pre-solutioBhas a run of the forn€i, %ﬁ

6 k
... Onlos, Csi.
Proof. Assume that we try to firdy, ..., 0, in that order, starting fror@i,, and sometimes inserting
message losses. Sincebelongs toP;||P,, we can only fail because at some point the current

channel contents does not allow the test or the read activreddy the next rule to be fired, i.e.,
not because we end up in a control state that does not carnegteule.
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So let us consider channel contents, starting witfrori =0,...,n, letx, =read r(d;...9;)
andy; = write_r(3;...8;). Sinceo satisfies (c3)y; is somexx (andx, = €). One can easily verify
by induction oni that after firingo; ... o from Gy, r contains exactly. In fact (c3) implies that if
di+1 reads orx, it must read the first letter of (andd;i.1 cannot be a read anwhenx = ¢).

Now, regarding the contents of we can rely on (c4) and conclude that the actiong rite
on 1 everything that they (attempt to) read, but we do not know thessages are writtdrefore
they are needed for reading, i.e., we do not have an equival€o3) for 1. For this, we rely on
the assumption that is postpone-stable. Write under the fornogz1012,05. .. z.0x Where thez’s
are the test rules frorfy, and where the;’s factors contain no test rules. Note that, insidg aall
Sender rules occur before all Receiver rules thanks to postgtability.

We claim thatread 1(o;) C write_1(o;) for all i = 0,...,k: assume, by way of contradic-
tion, thatread 1(o;) IZ write_1(o;) for somei € {0,...,k} and letd be the last rule iro;. Nec-
essarilyd is a reading rule. Now (c4) and (c5) entaik k and read 1(0iz;10i41...0k) C
write_1(0iz+10i+1...0k). Thenread 1(oj) [Z write_1(0;) entails

read 1(07Z10i+1...2z0k) C write_1(0j;1...ZO0k) - ()

There is now a Receiver-postponing switch sined ensures that (c5) holds after switchidgnd

z.1, which contradicts the assumption tlwils postpone-stable.

Now, with read 1(o;) C write_1(0;), it is easy to build a rui, 6#'0—% 64'0—% Cy and guar-

antee thal is empty before firing any rule. ]

We now see that our reduction is correct. Indeediif> Cs is a run ofS theno with all
occurrences of los removed is a pre-solution; and theresdsaat advance-stable pre-solution, i.e., a
solution of P. On the other hand, i is a solution of? thenao is a pre-solution, and there is also a

postpone-stable pre-solution, which corresponds to &fufAs G of S This finishes the proof of
Lemma 7.2, and of Theorem 4.1.

7.2. PEPP2@ reduces to E-E-ReachZ}]. We now prove a converse of Lemma 7.2, thus showing

that PEPP21® and E-E-Reach}] are equivalent problems. ActuallpEPP21? can be easily re-
duced to E-E-Reachf] for anyi € {1,2} andc € Ch, but we only show a reduction for= 1 and

c = 1 explicitly. (The other reductions would be analogous.)

Lemma 7.5. PEPP21@ reduces to E-E-ReachjZ (via a polynomial reduction).

Proof. Given aPEPPinstance(s,I",u,v,R,R), we construct a UCSE}] system (denote®)

with distinguished stategin, pri, Qioop, SUCh that

the instance has a solution 8has a runpin, Qioop, €, €) 5 (i, Qloops €; €) - (%)

The idea is simple: Sender nondeterministically guess@uéian o, writing u(o) on r andv(o)
on 1, and Receiver validates it, by reading identical sequefioesr and1 (some messages from
1 might be lost). We now make this idea more precise.

Let M and M’ be deterministic FSAs recognizirfg and thecomplement of Rrespectively.
Sender stepwise nondeterministically generates a;a;...,an, while taking the “commitment”
thato belongs tdR; concretely, after generatirgga, . .. a; Sender also remembers the state reached
by M via a1a,...a, and Sender cannot entp; when the current state dfl is non-accepting.
Moreover, for eachi € {1,2,...,m}, i.e., at every step, Sender might decide to take a further co
mitment, namely thaja;.; ...,an € R'; for each such commitment Sender starts a new copy’ pf
remembering the states visited by via aja; 1 ... am, and it cannot entepy; if a copy of M’ is in a
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non-accepting state. Though we do not bound the number iédsopM’, it suffices to remember
just a bounded information, namely the set of current siaftedl these copies.

When generatingy, Sender writesi(g;) on r andv(g) on 1. To check thatr contains a
subword ofl, Receiver behaves as in Fig. 8 (that illustrates anotharctemh). So far we have
guaranteed that there is a r(in, Qioop; €, €) 5 (Pfi, Qloop, €, €) iff there iso = ayay...,am € Rsuch
thatu(o) C v(0) (using the lossiness afwherev(o) has been written).

We finish by adding a modification guaranteein@;a;i...,am) = V(&aji1...,am) for each
i € {1,2,...,m} where Sender does not commitd@.;...,am ¢ R. For such steps, and before
writing u(a;) andv(a), Sender must simply wait until is empty, i.e., Sender initiates stepy
(nondeterministically) either committing ®aj1...,am ¢ R or by taking aZ;-step.

It is now a routine exercise to verify that£«) holds. L]

Remark 7.6 (On complexity) Based on known results on the complexityREPP1e (see [39,
29, 28]), our reductions prove that reachability for UCBN] is F,w-complete, using the ordinal-

recursive complexity classes introduced in [38]. L]

8. TWO UNDECIDABLE PROBLEMS FORUCST[Z,N]

The main result of this article is Theorem 4.1, showing theidiility of the reachability problem
for UCST[Z,N]. In this section we argue that the emptiness and non-eggsitests €” and “N”)
strictly increase the expressive power of UCSes. We do thisomputational arguments, namely
by exhibiting two variants of the reachability problem tlaa¢ undecidable for UCSZ[N]. Since
these variants are known to be decidable for plain UCSe# (vattests), we conclude that there is
no effective procedure to transform a UCZTIN] into an equivalent UCS in general. Subsection 8.1
deals with the problem a&current reachabilityof a control state. In Subsection 8.2 we consider the
usual reachability problem but we assume tinagssages can be lost only during writitayl (i.e.,

we assume that chanriels reliable and that the unreliability is limited to the vimij operation).

8.1. Recurrent reachability. The Recurrent Reachability Problerasks, when givers and its

statespin, in, P, 4, WhetherShas arinfinite runCin = (Pin, Gin, €,€) — (P, 0, U1,V1) — (P, 0, Uz, V2) —
(p,q,...)--- visiting the pair(p,q) infinitely often (NB: with no constraints on channel congnt
called a ‘pg”-run” for short.

The next theorem separates UCSes from UCSTs, even from UgSTe., UCSTs where the
only tests are emptiness testswoby Sender. It implies that] tests cannot be simulated by UCSes.

Theorem 8.1. Recurrent reachability is decidable for UCSes, and‘liscomplete (hence undecid-
able) for UCST[4].

We start with the upper bounds. Consider a UCHT§ystemSand assume it admitsgf®-run
T. There are three cases:
case 1:If rtuses infinitely many tests, it can be written under the form

Observe thabD4, Dy, ... belong toConf,_, since they allow a:Z test. By Higman’'s Lemma,

there exists two indexés< j such thaD; C D;. ThenDj('O—s>)*Di = (p,q,...) > Dj and
we conclude that also has a “looping”pd”-run, withessed by a finite run of the form

Cin i> (paqauav) i> (paqauav)'
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case 2: Otherwise, ifrtonly uses finitely many tests, it can be written under the fo@y —
C=(p,q,u,v) — --- such that no test occur aftér After C, any step by Sender can be
advanced before Receiver steps and message losses, agd¢ordemma 5.2(3). Assuming
thattuses infinitely many Sender steps, we conclude $tas apd” run that eventually
only uses Sender rules (but #atests). At this point, we can forget about the contents of
the channels (they are not read or tested anymore). Hendgeaffitness for suchpg®-runs

is obtained by the combination of a finite rG@qp, — (p,q,u,v) and a loopp = p1 & P2 %

-+ Pn Oy p1 in Sender’s rules that does not use any testing rule.
case 3: The last possibility is thatt uses only finitely many Sender rules. In that case, the
contents of the channels is eventually fixed hence theredsgirig pg”-run of the form

Cn =>C=(p,q,u,v) %, C such that the loop fror@ to C only uses Receiver rules. A finite
witness for such cases is a finite 1@y = (p, g, u,v) combined with a loog = g; & 02 &

5 . S .
---On — 01 in Receiver’s rules that only uses rules reading

Only the last two cases are possible for UCSes: for theseragstdeciding Recurrent reachability
reduces to deciding whether soifgq, ...) is reachable and looking for a loop (necessarily with no
tests) starting fronp in Sender’s graph, or a loop with no reads starting fapim Receiver’s graph.

For UCSTF{], one must also consider the general looping “case 1", te,yv : Ci 5

(p,q,u,V) *x (p,g,u,v). Since reachability is decidable, this case isziﬁ as is Recurrent
reachability for UCSTZ]].

Now for the lower bound. We provE‘l)—hardness by a reduction from the looping problem for
semi-Thue systems.

A semi-Thue system ¥ (I',R) consists of a finite alphab&tand a finite seR C '™ x I'* of
rewrite rules we write a — [ instead of(a,3) € R. The system gives rise toane-step rewrite

relation -r C ' x ['* as expectedx —Rr Yy ey andy can be factored as= zaZ andy = z3Z for

some rulen — B and some stringg Z € I'*. As usual, we write i>Ry if x can be rewritten inty
by a nonempty sequence of steps.
We say thafl = (I',R) is length-preservingf |a| = |B| for each rule inR, and that ithas a

loopif there is somex e I'* such thai Srx. The following is standard (since the one-step relation
between Turing machine configurations can be captured lglfimnany length-preserving rewrite
rules).

Fact 8.2. The question whether a given length-preserving semi-Tlysées has a loop ii‘l’—
complete.

We now reduce the existence of a loop for length-preseneng-9 hue systems to the recurrent
reachability problem for UCST].

Let T = (I',R) be a given length-preserving semi-Thue system. We consrU€STS, with

message alphabﬂtd:efrw {#}. The reduction is illustrated in Fig. 8, assumifg= {a,b}. The

resultingSbehaves as follows:
(a) Sender starts in stajg,, begins by nondeterministically sending soyge I'* on 1, then moves
to statepioop. IN Statepioop, Sender performs the following steps in succession:

(1) check that (equivalently, wait untit) is empty;

(2) send # or;

(3) nondeterministically send a striage ' on bothl andr;
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(4) nondeterministically choose a rewrite rale—~ 3 (from R) and sendx onr andf3 on1;
(5) nondeterministically send a strimge '* on bothl andr;

(6) send # orr;

(7) go back topieep (and repeat 1-7).

— ala] —

~— _la[bla[#]ala] ~-

Figure 8: Solving the looping problem for semi-Thue systems

The above loop 1-7 can be also summarized as: check ikampty, nondeterministically guess
two stringsx andy such thatk —r y, writing x# onr and #/ on 1.

(b) Receiver starts in statgop from where it reads any pair of identical symbols franand1,
returns togieop, and repeats this indefinitely.

Claim 8.3 (Correctness of the reduction} has an infinite run starting froi@in = (Pin, dioop €, €)
and visiting the control paifpioop, Gioop) iNfinitely often if, and only if,x i>R x for somex € I'*.

Proof. For the “=” direction we assume that has a loopx = Xg —wr X1 =R ... —R Xn = X With
n> 0. LetC; d:ef(pbop,qbop,s,)q). Sobviously has a rui, % Co, sendingXp on 1. For each > 0,

Shas a rurC; X Ci.q1: it starts with appending the pair —r X1 on the channels, hence visiting
(.., X #,% #x+1), from which Receiver can read the# prefix on both channels, thus reaching
Ci»1. Note that no messages are lost in these runs. Chaining tives an infinite run that visits

( Proop; Gloop) iNfinitely many times.

For the =" direction, we assume the has an infinite run starting frori, that visits
(Pioop, dioop) infinitely often. Since Sender checks the emptiness before running through its
loop, we conclude that no # character writtenit@s lost during the run. Leyy be written onl
before the first visit ofpigep; for i > 1, let(x;,y;) be the pair of strings guessed by Sender during
theith iteration of its loop 1-7X written onr andy; on1). Receiver can only empty the reliable
channelr if x; Cy;_1 for all i > 1. This implies|x| < |yi—1|]. We also haveéx;| = |yi| sinceT is
length-preserving. Therefore eventually, say for &l n, all x; andy; have the same length. Then
X =Yi—1 fori > n (sincex; C yi_1 and|x| = |yi—1|). HenceT admits an infinite derivation of the
form

Xn —7RYn = Xn+1 7R Yn+1 = Xn42 2R """
Since there are only finitely many strings of a given lendikré are two positions' > m> nsuch
thatxy, = Xqv; henceT has a loop¢y, i>R Xm- ]

8.2. Write-lossy semantics. As another illustration of the power of tests, we considelST€ with
write-lossy semanti¢ghat is, UCSTs with the assumption that messages are atlgilming steps
that write them td.. Once messages arelinthey are never lost. If we start with the empty channel
1 and we only allow the emptiness testsigrthen any computation in normal lossy semantics can
be mimicked by a computation in write-lossy semantics: arguaence of a message that gets
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finally lost will simply not be written. Adding the non-empéss test makes a difference, since the
reachability problem becomes undecidable.

We now make this reasoning more formal, using the new tiansielationC — o C' that is
intermediary between the reliable and the lossy semantics.

Each 1-writing rule & of the form p L p’ in a UCSTS will give rise to write-lossy steps

of the form (p,q,u,V) wrig (P',q9,u,v), whered is performed but nothing is actually written. We

write C — 0 C' when there is a reliable or a write-lossy step fréno C’, and useC — ¢ C’' and
C —0s C' to denote the existence of a reliable step, and respectiokly reliable or a lossy step.
Then—el € —wiio C i>Ios-

Now we make precise the equivalence of the two semantics whestart with the empty and
only use the emptiness tests:

Lemma 8.4. Assume S is a UCST[Z] system. Lt € (p,q,u,€) be a configuration (where is
empty). Then, for anygCconfiguration, G, —os Cii iff Cin —>wrio Cii.

Proof. The “<" direction is trivial. For the =" direction we claim that

Indeed, if (the occurrence of) the messag€/ithat is missing irC” occurs inC, then it is possible
to first lose this message, leadingDe before mimicking the step that went fraéhto C’' (we rely
here on the fact tha® only use<Z tests). Otherwise(” is obtained by losing the message that has
just been (reliably) written when moving froéto C’, and takingD = C is possible.

Now, since—os is (—wiio U J1)" and since(J;)" is J, we can use (1) and conclude that

C 5105 D implies thatC 3 C' Sy D for someC’. Finally, in the case wher€ = Cj, and1 is
empty, onlyC’ = Cj, is possible. L]

Corollary 8.5. E-G-Reachability is decidable for UCST[Z] with write-lgssemantics.

The write-lossy semantics is meaningful when modeling liadviity of the writing actions as
opposed to unreliability of the channels. In the literatweite-lossy semantics is mostly used as
a way of restricting the nondeterminism of message losstt®uti losing any essential generality,
relying on equivalences like Lemma 8.4 (see, e.g., [18j@meé&t 1]).

However, for our UCST systems, the write-lossy and the stahtbssy semantics do not coin-
cide whenN tests are allowed. In fact, Theorem 4.1 does not extend te\assy systems.

Theorem 8.6. E-E-Reach is undecidable for UCSE[A] with write-lossy semantics.

Proof Idea. As in Section 3.2, Sender simulates a queue automaton usitg and the help of
Receiver. See Fig. 9. Channeis initially empty. To read, say from r, Sender does the following:
(1) write a on1; (2) check thatl is nonempty (hence the write was not lost); (3) check that, i.
wait until, 1 is empty. Meanwhile, Receiver reads identical letters froamd1. ]

Thus, at least in the write-lossy setting, we can separat8 T and UCSTE], N;] w.r.t.
decidability of reachability.
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— _[albclae]

Figure 9: Write-lossy Sender simulatqsl“i% p2” with N andZ tests and proxy Receiver

9. CONCLUSION

UCSes are communicating systems where a Sender can serajeessa Receiver via one reliable
and one unreliable, lossy, channel, but where no direct aamcation is possible in the other
direction. We introduced UCSTSs, an extension of UCSes wkergs can be guarded by tests, i.e.,
regular predicates on channel contents. This extensioodimtes limited but real possibilities for
synchronization between Sender and Receiver. For exa@efaler (or Receiver) may use tests to
detect whether the other agent has read (or written) somsagesAs a consequence, adding tests
leads to undecidable reachability problems in general. ain result is that reachability remains
decidable when only emptiness and non-emptiness testdlaneed. The proof goes through a

series of reductions from UCSZ[N] to UCST[z}] and finally toPEPP21 an extension of Post's

Embedding Problem that was motivated by the present adialiewhose decidability was recently
proved by the last two authors [29].

These partial results do not yet provide a clear picture aitvidasts on channel contents make
reachability undecidable for UCSTs. At the time of this wagt the two most pressing questions
we would like to see answered are:

(1) what about occurrence and non-occurrence tests, defind®,,NO, | a € M} with
O, =M*.aM* andNO, = (M~ {a})*? Such tests generali2¢ and Z tests and have been
considered for channel systems used as a tool for questioktetric Temporal Logic [12].
(2) what about UCSTs with tests restricted to the lassizannel? The undecidable reachability
questions in Theorem 3.1 all rely on tests on the relialdbannel.
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