
Controlled Term Rewriting⋆

Florent Jacquemard1, Yoshiharu Kojima2,3, and Masahiko Sakai2

1 INRIA & LSV, ENS Cachan, 61 av. Pdt Wilson 94230 Cachan, France
florent.jacquemard@inria.fr

2 Graduate School of Information Science, Nagoya University
Furo-cho, Chikusa-ku, Nagoya, 464-8603 Japan
{kojima@trs.cm.,sakai@}is.nagoya-u.ac.jp

3 Research Fellow of the Japan Society for the Promotion of Science

Abstract. Motivated by the problem of verification of imperative tree
transformation programs, we study the combination, called controlled
term rewriting systems (CntTRS), of term rewriting rules with con-
straints selecting the possible rewrite positions. These constraints are
specified, for each rewrite rule, by a selection automaton which defines
a set of positions in a term based on tree automata computations.
We show that reachability is PSPACE-complete for so-called monotonic
CntTRS, such that the size of every left-hand-side of every rewrite rule
is larger or equal to the size of the corresponding right-hand-side, and
also for the class of context-free non-collapsing CntTRS, which transform
Context-Free (CF) tree language into CF tree languages.
When allowing size-reducing rules, reachability becomes undecidable,
even for flat CntTRS (both sides of rewrite rules are of depth at most
one) when restricting to words (i.e. function symbols have arity at most
one), and for ground CntTRS (rewrite rules have no variables).
We also consider a restricted version of the control such that a position
is selected if the sequence of symbols on the path from that position to
the root of the tree belongs to a given regular language. This restriction
enables decision results in the above cases.

Introduction

Term rewriting is a rule-based formalism for describing computations in ranked
terms. In the context of formal verification, term rewriting systems (TRS) can
be used to provide a finite abstraction of the dynamics of a system whose con-
figurations are represented by ranked terms. In this case, the rewrite relation
represents the transitions between configurations. For instance, functional pro-
grams manipulating (tree) structured data values with pattern matching can be
described by rewrite rules [18] such that the rewriting relation represents the
program evaluation. This approach can also be applied to systems [1] or imper-
ative programs [4,17] modifying some parts of tree shaped data structures in

⋆ This work has been partly supported by the ERC research project FoX under grant
agreement FP7-ICT-233599 and by the INRIA ARC project ACCESS.

place, while leaving the rest unchanged. These update operations can be mod-
eled by rewrite rules or similarly, tree transducers. A crucial problem for the
automatic reachability and flow analysis of programs is to find finite and de-
cidable representations of the closure the above TRS representations of sets of
terms representing configurations. This approach is related to static type check-
ing of XML transformations (see e.g. [22]), which is the problem to verify that a
program always converts valid source trees (documents) into valid output trees
(where types are defined by TA). It has also been shown useful for the analysis
of consistency of XML read and write access control policies [17].

A rewrite rule is an oriented equation, whose left-hand-side (lhs) describe a
pattern to be replaced in a term, and whose right-hand-side (rhs) is the new
term for replacement. It can be applied at any position in a term, providing
that the lhs matches the subterm at this position. For instance, a rule with lhs
a(x1, x2) can be applied at any position labelled by a. This simple approach is
in general relevant in domains like theorem proving or algebraic computation.
For some applications however, like the analysis of programs for XML document
transformations or of access-control policies, it is important to be able to ex-
press explicitly some context conditions to be checked before applying a rewrite
rule. For instance, one may want to rename the label at some position with a
rewrite rule a(x) → b(x) providing that there is no occurrence of b above the
position to be rewritten (position labeled with a). Some standard XML trans-
formation languages like XSLT or XQuery update [6], use the path specification
language XPath or a XQuery expressions in order to define the position where
the transformation can be applied.

In this paper, we study the so called controlled term rewriting systems (Cnt-
TRS) in the context of regular tree model checking. They are defined by the
combination of term rewriting rules with some constraints (called control) spec-
ifying the possible rewrite positions. In order to define the constraints, we have
chosen a model similar to the selection tree automata (SA) of [13], which, intu-
itively, select positions in a term based on the computations of a tree automaton.
This gives a powerful selection mechanism, with the same expressiveness as the
monadic second order logic of the tree, or monadic Datalog [14]. We consider
also a restriction of the SA where a position p in a term t is selected if the se-
quence of symbols on the path from p to the root of t belongs to a given regular
language. The corresponding restricted rewriting model is called prefix CntTRS,
or pCntTRS. It turns out quickly (Examples at the end of Section 1) that even
the restricted pCntTRS are actually too powerful for preserving regularity, even
for very simple rewrite rules.

Therefore, we consider in Section 2 the classes of context-free (CF) and
context-sensitive (CS) tree languages, which are both strictly larger than the
class of TA languages (also called regular tree languages). We also define the so
called CF and monotonic classes of rewrite systems (without control). A rewrite
rule is CF if its lhs is of the form f(x1, . . . , xn) where x1, . . . , xn are distinct
variables, and monotonic if the size of its lhs is larger or equal to the size of

its rhs. We show that CF and monotonic TRS respectively preserve CF tree
languages and CS tree languages.

The monotonic uncontrolled rewrite rules already have the full power of CS
tree grammars. Adding control with SA does not improve their expressiveness,
and it follows that reachability is PSPACE-complete and model checking unde-
cidable for monotonic CntTRS (Section 3.1). Similar results also hold for CF Cnt-
TRS without collapsing rules (projection rules of the form f(x1, . . . , xn)→ xi),
even when restricting to prefix control (Section 3.2).

When allowing depth-reducing rules (Section 3.3), reachability becomes un-
decidable, even for flat CntTRS (lhs and rhs of rewrite rules are of depth at
most one) and in the case of words (i.e. function symbols of arity at most one).
Similarly, reachability is undecidable for ground CntTRS (rewrite rules have
no variables). When restricting to words, prefix control and flat rewrite rules,
reachability is decidable in PSPACE.

Finally, we consider in Section 4 a relaxed form of the prefix control of rewrite
rules, where the selection is done by considering the term in input modulo the
rewrite relation. We obtain a regularity preservation result for this recursive form
of prefix controlled rewriting, using alternating tree automata with ε-transitions.

Related Work. Controlled rewrite systems have been introduced in the case
of word rewriting, see [28] for a survey, and also [9] for the case of conditional
context-free (word) grammars, which are mentioned in Section 3.

Regarding term rewriting, there have been many studies for finding syntac-
tical restriction on term rewrite rules ensuring the preservation of regularity,
see e.g. [12]. This is the case for instance of linear and flat as well as ground
TRS without control, in contrast to the results of Section 3.3 for their controlled
counterpart.

Many strategies have been proposed for term rewriting, most often for effi-
ciency purposes (our goal here is rather to study the expressiveness and decid-
ability results for controlled rewriting). We cannot mention all of them, and will
just give some elements of comparison with controlled rewriting. The innermost
strategy, which is the analogous of call-by-value for functional languages (a sub-
term can be rewritten only when all its proper subterms are no more rewritable)
can be expressed in controlled rewriting for left-linear TRS, because the set of
non-rewritable terms (the normal forms) for such TRS are recognizable by tree
automata (see e.g. [8]). Some results of preservation of regularity for the inner-
most and the outermost and leftmost rewrite strategies can be found in [26] In
the context sensitive strategy [21] (which is not related to the context-sensitive
term languages presented in this paper), the rewriting positions are selected ac-
cording to a mapping µ associating to every symbol of the signature the subset of
the indexes of its argument that can be rewritten. More precisely, the positions
selected for rewriting in a term f(t1, . . . , tn) are the root position and all the po-
sitions selected in every ti such that i ∈ µ(f). This set of positions can be defined
by SA, i.e. context-sensitive rewriting is a particular case of controlled rewrit-
ing. It is a strict subcase because with the context-sensitive strategy, the root
position is always rewritable whereas this is not the case for controlled rewriting.

A result of preservation of regularity for this rewrite strategy was established
in [19]. Another related topic is the optimal call-by-need rewrite strategies for
TRS. In [7] and [10], it is shown how to select the needed redexes (positions at
which rewriting must be performed in order to transform a term to its normal
form) using monadic second order logic formulae, which is equivalent as using
SA.

Top-down tree transducers with regular look-ahead [11] are an extension of
top-down tree transducers, where a transition can be fired provided that the
current subtree belongs to some given regular tree language. This is similar to
our notion of control for rewrite systems. A notable difference however is that
the transducers transform terms in one (top-down) pass, whereas we consider
here the terms computed by an arbitrary iteration of controlled rewrite rules.

1 Preliminaries

Terms. We use the standard notations for terms and positions, see [2]. A sig-
nature Σ is a finite set of function symbols with arity. We denote the subset of
function symbols of Σ of arity n as Σn. Given an infinite set X of variables, the
set of terms built over Σ and X is denoted T (Σ,X), and the subset of ground
terms (terms without variables) is denoted T (Σ). The set of variables occur-
ring in a term t ∈ T (Σ,X) is denoted vars(t). A signature is called unary if
it contains only symbols of arity 1 and one symbol ⊥ of arity 0. We make no
distinction below between ground terms over a unary signature Σ and words of
Σ∗1 . More precisely, a term a1(a2(. . . an(⊥))) will be represented by the string
a1 a2 . . . an (the constant symbol ⊥ is forgotten in this representation).

A term t ∈ T (Σ,X) can be seen as a function from its set of positions Pos(t)
into Σ ∪ X . Positions in terms are denoted by sequences of natural numbers,
ε is the empty sequence (root position), and p.p′ denotes the concatenation of
positions p and p′. The set Pos(t) of positions of the term t is defined recursively
as Pos

(
f(t1, . . . , tm)

)
= {ε} ∪ {i.p | i ∈ {1, . . . ,m} ∧ p ∈ Pos(ti)}. The height of

a term t, denoted h(t), is the maximal length of a position of Pos(t). The size
‖t‖ of a term t is the cardinality of Pos(t).

The subterm of t at position p is denoted t|p defined by t|ε = t and f(t1, . . . ,
tm)|i.p = ti|p. The term obtained from t by replacing subterm of t at position p
by s, is denoted t[s]p. The notation t = t[s]p may also be used to emphasize that
t|p is s.

A substitution is a mapping X → T (Σ,X). Substitutions can also be applied
to arbitrary terms by homomorphically extending its application to variables.
The application of a substitution σ to a term t, denoted as tσ, is defined as follows
for non-variable terms: f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ). A variable renaming is
a substitution from variables to variables.

A term is linear if no variable occurs more than once in it. A term is shallow
if each occurrence of variables is at most depth one, and flat if its height is at
most one.

A context of dimension n is a linear term C ∈ T (Σ, {x1, . . . , xn}). When
C = x1, it is called the empty context. Given a context C of dimension n and n
terms t1, . . . , tn ∈ T (Σ,X), we write C[t1, . . . , tn] to denote Cσ where σ is the
substitution {x1 7→ t1, . . . , xn 7→ tn}.

Tree Automata. A tree automaton (TA) A over a signature Σ is a tuple
〈Q,F,∆〉 where Q is a finite set of nullary state symbols, disjoint from Σ, F is
a set of states of Q called final states, ∆ is a set of transition rules of the form:
f(q1, . . . , qn) → q, where f ∈ Σn, and q1, . . . , qn, q ∈ Q. Sometimes, we shall
refer to A as a subscript of its components, like in QA to indicate that Q is the
state set of A. The size of A is ‖A‖ =

∑

f(q1,...,qn)→q∈∆(n+ 2). Transition from
s to t in one step by a TA A is denoted by s −→

A
t, and its reflexive and transitive

closure is denoted by s ∗−→
A

t.
A run of A on a term t ∈ T (Σ) is a mapping ρ from Pos(t) into QA such

that for all p ∈ Pos(t), t(p)
(
ρ(p.1), . . . , ρ(p.n)

)
→ ρ(p) is in ∆A, where n is the

arity of the symbol t(p) in Σ. The run ρ is called successful (or accepting) if
ρ(ε) is in FA. The set of successful runs of A on t is denoted sruns(A, t). For
the sake of conciseness, we shall sometimes apply term-like notations (subterm,
replacement...) to runs. The language L(A) of A is the set of terms t for which
sruns(A, t) is not empty.

Selection Automata. Besides being able to recognize terms, tree automata can
also be used to select positions in a term [13,24]. We propose here a definition
of position selection by TA very close to [13].

A selection automaton (SA) A over a signature Σ is a tuple 〈Q,F, S,∆〉
where 〈Q,F,∆〉 is a tree automaton denoted ta(A) and S is a set of states of Q
called selection states. Given a SA A and a term t ∈ T (Σ), the set of positions
of t selected by A is defined as

sel(A, t) = {p ∈ Pos(t) | ∃ρ ∈ sruns(ta(A), t), ρ(p) ∈ S}.

Note that it is required that t is recognized by A in order to select positions.
We shall consider below a restricted kind of selection by TA, where a position

p in a term t is selected only according to its strict prefix (i.e. the sequence of
symbols labeling the path from the root of t down to the immediate ancestor of
p), which is tested for membership to a regular (word) language. More precisely,
a selection automaton A = 〈Q,F, S,∆〉 is called prefix if Q contains two special
states: q0 (universal state) and qs (selection state), F ⊆ Q\{q0}, S = {qs}, and∆
contains f(q0, . . . , q0)→ q0 and f(q0, . . . , q0)→ qs for all f ∈ Σ, and ∆ contains
some other transition rules of the form f(q1, . . . , qn)→ q where q ∈ Q \ {q0, qs}
and there exists exactly one i ≤ n such that qi 6= q0. Intuitively, assume that we
are given a finite automaton B defining the strict prefixes of selected positions.
Then qs is the initial state of B, F is the set of final states of B, and for all
a ∈ Σn, ∆ contains n rules a(q0, . . . , q0, q

′, q0, . . . , q0) → q for each transition
q′ −→

a
q of B. Note that with this definition, the root position is always selected

by a by a prefix selection automaton.

Controlled Term Rewriting Systems. We propose a formalism that strictly
extends standard term rewriting systems [2] by the restricting the possible
rewrite positions to positions selected by a given SA. Formally, a controlled term
rewriting system (CntTRS) R over Σ is a finite set of controlled rewrite rules
of the form A : ℓ → r, made of a SA A over Σ and a rewrite rule ℓ → r such
that ℓ ∈ T (Σ,X)\X (the left-hand side of the rule), and r ∈ T (Σ, vars(ℓ)) (the
right-hand side). Ths size of R is the number of the rewrite rules inn R.

A term s rewrites to t in one step by an CntTRS R, denoted by s −−→
R

t, if
there exists a controlled rewrite rule A : ℓ → r ∈ R, a position p ∈ sel(A, s),
and a substitution σ such that s|p = ℓσ and t = s[rσ]p. In this case, s is said
to be R-reducible, and otherwise s is called an R-normal form. The reflexive
and transitive closure, and reflexive, symmetric and transitive closure of −−→

R
are

denoted as ∗−→
R

and ←−−→
∗

R
, and =−→

R
denotes the union of −→

R
and =.

Example 1. Let us consider the CntTRS R = {(1) A1 : a → c, (2) A2 : b →
c, (3)A3 : f(x, y)→ g(x, y)} where each SA is as follows (Q = {q1, q2, qf}):

A1 = 〈Q, {qf}, {q1}, {a→ q1, b→ q2, f(q1, q2)→ qf}〉
A2 = 〈Q, {qf}, {q2}, {c→ q1, b→ q2, g(q1, q2)→ qf}〉
A3 = 〈Q, {qf}, {qf}, {c→ q1, b→ q2, f(q1, q2)→ qf}〉

Then, the following rewriting is possible withR f(a, b) −−→
(1)

f(c, b) since sel(A1, f(a, b)) =

{1} and the subterm of f(a, b) at the position 1 is a. Similarly, we have f(c, b) −−→
(3)

g(c, b) −−→
(2)

g(c, c) where sel(A3, f(c, b)) = {ε}, and sel(A2, g(c, b)) = {2}.

We call prefix controlled term rewriting system (pCntTRS), resp. term rewrit-
ing systems (TRS), the special cases of CntTRS such that every SA in a con-
trolled rewrite rule is a prefix SA, resp. is the universal SAA0 = 〈{q0}, {q0}, {q0},
{f(q0, . . . , q0)→ q0 | f ∈ Σ}〉. In the latter case, A0 may be dropped when defin-
ing the rewrite rules, i.e. we present a TRS as a finite set of uncontrolled rewrite
rules, as usual.

A controlled rewrite rule A : ℓ → r is ground, flat, linear, shallow if ℓ and r
are so. It is collapsing if r is a variable. A CntTRS is flat, linear, etc if all its
rules are so.

Decision Problems. The closure of a ground term set L by a CntTRS R is
{t | ∃s ∈ L, s −−→

∗

R
t} (it is sometimes denoted R∗(L)).

Ground reachability is the problem to decide, given two ground terms s, t ∈
T (Σ) and a CntTRS R whether s −−→

∗

R
t. Regular Model checking (RMC) is the

problem to decide, given two TA languages Lin and Lerr and a CntTRSR whether
R∗(Lin) ∩ Lerr = ∅. The name of the problem is coined after state exploration
techniques for checking safety properties. In this setting, Lin and Lerr represent
(possibly infinite) sets of initial, respectively error, states.

Example 2. Let us consider the following CntTRS R over the unary signature
Σ with Σ1 = {a, b, c, d} and Σ0 = {⊥}. Let R be the CntTRS containing the
following controlled rewrite rules. The SA of these rules select one position per

term, and they are represented by a regular expression where the selected letter
is underlined.

(1) c∗a∗d∗d b∗ : d(x)→ b′(x)
(3) c∗a′a∗d∗b′ b∗ : b′(x)→ b(x)

(2) c∗c a∗d∗b′b∗ : c(x)→ a′(x)
(4) c∗a′ a∗d∗b∗ : a′(x)→ a(x)

More precisely, the SA for the above rules are respectively (Q is the state set
{qa, qb, qc, qd, q})

A1 =
〈
Q, {qc, qa, qd, q}, {q}, {⊥ → qb, b(qb)→ qb, d(qb)→ q, d(q|qd)→ qd,
a(q|qd|qa)→ qa, c(qa|qc|q)→ qc}

〉

A2 =
〈
Q, {qc, q}, {q}, {⊥ → qb, b(qb)→ qb, b

′(qb)→ qd, d(qd)→ qd,
a(qd|qa)→ qa, c(qa)→ q, c(q|qc)→ qc}

〉

A3 =
〈
Q, {qc}, {q}, {⊥ → qb, b(qb)→ qb, b

′(qb)→ q, d(q|qd)→ qd, a(q|qd)→ qa,
a′(q|qd|qa)→ qc, c(qc)→ qc}

〉

A4 =
〈
Q, {qc, q}, {q}, {⊥ → qb, b(qb)→ qb, d(qb|qd)→ qd, a(qb|qd|qa)→ qa,
a′(qb|qd|qa)→ q, c(q|qc)→ qc}

〉

Note that these SA are all deterministic. The SA A1 selects the last d (starting
from the top), A2 selects the last c when there is a b′, A3 selects the b′ when
there is a a′, and A4 selects the a′ when there is no b′. The closure of the regular
tree language L = c+(d+(⊥)) by the CntTRS is such that R∗(L) ∩ a∗(b∗(⊥)) =
{anbn ≤ n ≥ 0}. Therefore, R∗(L) is a non regular tree language (it is a context-
free tree language).

Example 3. Using the same signature as in Example 2, we can obtain a context-
free set of descendants with a flat pCntTRS. Indeed, intersection of a∗b∗ and the
closure of c∗d∗ by the following set of rewrite rules is {anbm | n ≥ m} which is
CF and not regular. In the rewrite rules, we use an informal description of the
languages of the prefix allowed, instead of giving explicitly the prefix SA.

no a′, no a : c(x)→ a′(x), exactly one a′ : d(x)→ b′(x),
no a′, no a : a′(x)→ a(x), no a′, no b′, no b : b′(x)→ b(x).

It is not difficult to generalize the construction of Example 3 in order to
obtain a context sensitive rewrite closure of the form {anbmcp | n ≥ m ≥ p},
starting from a regular set of the form c∗d∗e∗ and using a flat pCntTRS.

2 CF and CS Tree Languages and TRS

In this section, we define the context-free and context-sensitive sets of terms,
and give properties of their closure under term rewriting.
A rewrite rule over Σ is called

context-free (CF) if it is of the form f(x1, . . . , xn)→ r where r ∈ T
(
Σ, {x1, . . . ,

xn}
)
, x1, . . . , xn are distinct variables and f ∈ Σn. Recall that when r = xi

for some i ≤ n, then the rule is called collapsing.

monotonic if it is of the form C[x1, . . . , xn] → D[x1, . . . , xn] where C and D
are two contexts over Σ and such that ‖C‖ ≤ ‖D‖ and x1, . . . xn are distinct
variables (note that it implies that the rule is linear).

A tree grammar (TG, see e.g. [8]) is a tuple G = 〈N , S,Σ, P 〉 where N is a
finite set of non-terminal symbols, each with an arity, S ∈ N has arity 0, it is
called the axiom of G, Σ is a signature disjoint from N , (its elements are also
called terminal symbols) and P is a set of (uncontrolled) rewrite rules, called
production rules, of the form ℓ → r where ℓ, r are terms of T (Σ ∪ N ,X) such
that ℓ contains at least one non-terminal. The tree grammar G is regular if all
non-terminal symbols of N have arity 0 and all production rules of P have the
form A → r, with A ∈ N and r ∈ T (Σ ∪ N). It is context-free (CFTG), resp.
context-sensitive (CSTG) if all production rules are CF, resp. monotonic. In the
two later cases, we assume from now on wlog that every production rule either
has the form A(x1, . . . , xn)→ a(x1, . . . , xn) where A ∈ N and a ∈ Σn, or it does
not contain terminal symbols of Σ, by introducing the non-terminal symbol 〈b〉,
the production rule 〈b〉 → b, and replace all b in the other production rules
by 〈b〉.

The language generated by G, denoted by L(G), is the set of terms of T (Σ)
which can be reached by successive applications of the production rules, starting
from the axiom, i.e. L(G) = {t ∈ T (Σ) | S −−→

∗

P
t}. A tree language is called

regular (resp. CF, CS) if it is the language of a regular (resp. CF, CS) grammar.
Note that the classical cases of word languages are particular cases of the

above, if the symbols of N ∪Σ are unary symbols of a unary signature.
The regular tree grammars are equivalent in expressiveness to TA. There

exists a model of pushdown TA equivalent to the CF tree grammars [15].
Themembership problem is, given a tree grammar G overΣ and a term t ∈ T (Σ),
to decide whether t ∈ L(G).
The emptiness problem is, given a tree grammar G, to decide whether L(G) = ∅.

Proposition 1. Membership and emptiness are decidable in PTIME for CFTG.

The following result (perhaps a folklore knowledge) is almost immediate from
the above definitions.

Proposition 2. Given a CFTG G and a CF TRS R, one can construct in
PTIME a CFTG generating the closure of L(G) by R, and whose size is polyno-
mial in the size of G and R.

Proof. Let G = 〈N , S,Σ, P 〉 be a CFTG and R a CF TRS over Σ. For all
a ∈ Σ, we create a new non-terminal Na with the same arity as a. Let N ′ =
N ∪{Na | a ∈ Σ}, and let P ′ be obtained from P by replacing every production
rule A(x1, . . . , xn)→ a(x1, . . . , xn), with A ∈ N and a ∈ Σ, by A(x1, . . . , xn)→
Na(x1, . . . , xn). Moreover, we add to P ′ the rules obtained from the rules ofR by
replacing every symbol a ∈ Σ by Na. The CFTG G′ = 〈N ′, S,Σ, P ′〉 generates
the closure of L(G) by R. ⊓⊔

Corollary 1. Reachability and RMC are decidable in PTIME for CF TRS.

Proof. For the RMC, we use the fact that the intersection of the languages of a
CF tree grammar G and a TA A is the language of a CF tree grammar whose
size is the product of the respective sizes of G and A. ⊓⊔

Note however that joinability, the problem to decide, given two ground terms
s, t ∈ T (Σ) and a TRS R, whether there exists u ∈ T (Σ) such that s −−→

∗

R

u←−−∗
R

t, is undecidable for CF TRS [5], because the emptiness of intersection is
undecidable for CF tree languages.

We can also observe that the CF TRS are left linear, but in general not
right linear. They are the symmetric the so called right-linear, monadic and
non-collapsing TRS, whose rules have the form f(x1, . . . , xn) → r, where r ∈
T (Σ, {x1, . . . , xn})\X . It has been shown that these TRS preserve regularity [23]:
the closure of a regular tree language by such a TRS is a regular tree language.
The decidability of reachability for CF TRS is already a consequence of this
former result. It has been observed, see e.g. [16], that in several cases, one class
of word rewrite system preserves regularity and its symmetric class preserves CF
languages. We have here an example of such a situation in the case of terms.

To our knowledge, the case of CSTG and monotonic TRS was not studied
before but it is not very surprising.

Proposition 3. Membership is PSPACE-complete for CSTG.

Proof. The hardness is an immediate consequence of the same result for CS
(word) grammars [20], which are a particular case of CSTG. For the decision
algorithm, let G be a CSTG over Σ and let t ∈ T (Σ) be given. We can observe
that if two terms s and s′ over the non-terminal and terminal symbols of the
CSTG G are successive in a derivation starting from the axiom S of G, then the
size ‖s′‖ is larger or equal to ‖s‖. Hence, if there is a derivation from S to t by G,
then all the terms in this derivation have a size smaller or equal to ‖t‖. Hence,
it is possible to construct a linear bounded automata which, starting from t,
will search backward (non deterministically) a derivation from S. The detailed
construction is given in Appendix A. ⊓⊔

Proposition 4. Emptiness is undecidable for CSTG.

Proof. It is a consequence of the same result for CS (word) grammars. ⊓⊔

Proposition 5. Given a CSTG G and a monotonic TRS R, one can construct
in PTIME a CSTG generating the closure of L(G) by R, and whose size is
polynomial in the size of G and R.

Proof. The construction is similar as the one in the proof of Proposition 2. ⊓⊔

3 Controlled Term Rewriting

3.1 Monotonic CntTRS

The result of Proposition 5 can be extended from uncontrolled to controlled
monotonic TRS. Intuitively, monotonic TRS are powerful enough to be able to
simulate a control with uncontrolled rewrite rules.

Theorem 1. Given a CSTG G and a monotonic CntTRS R, one can construct
in PTIME a CSTG generating the closure of L(G) by R, and whose size is linear
in the size of G and R.

Proof. (sketch) In order to prove this theorem, we show how to construct a
CSTG G∗ that accepts the set of terms reachable by R from the terms in L(G).
The production rules P∗ of G∗ consists in two sets: the rules P of G and P1,
that simulate rewriting by R. The basic idea for the construction of G∗ is the
introduction of non-terminals of the form 〈f, q〉 where f is a symbol and q is a
state of some SA.

First, we produce the term 〈t〉 where t ∈ L(G) and 〈t〉 is the term obtained
by replacing each symbol f by the non-terminal 〈f〉. Next, we simulate the
rewriting of R by P1. We simulate a transition f(q1, . . . , qn) → q of a SA by
some production rules in P1 of the form 〈f〉(〈f1, q1〉(x1), . . . , 〈fn, qn〉(xn)) →
〈f, q〉(〈f1, q1〉(x1), . . . , 〈fn, qn〉(xn)). Finally, if a final state occurs at the root
position of a term and a rewrite rule matches the subterm where a selection
state appears, then we rewrite the term. A detailed proof of Theorem 1 can be
found in Appendix B, as well as an illustration in the following example. ⊓⊔

Example 4. Consider the CntTRS R in Example 1 and the CSG G such that
L(G) = {f(a, b)}. We construct the CSG G∗ such that L(G∗) = {f(a, b), f(c, b),
g(c, b), g(c, c)}. Let the set of production rules P of G be {S → 〈f〉(〈a〉, 〈b〉), 〈a〉 →
a, 〈b〉 → b, 〈f〉(x1, x2)→ f(x1, x2)}, and mark i to each component of SA to dis-
tinguish each SA Ai. Let the axiom of G∗ be Sλ. We define the set of production
rules P∗ of G∗ as P∗ = P ∪ P ′ ∪ PA ∪ Pfin ∪ PR ∪ Pre where

P ′ = {Sλ → 〈f〉λ(〈a〉, 〈b〉), 〈f〉λ(x1, x2)→ f(x1, x2)}
PA = {〈c1〉 → 〈c1, q

i〉 | c1 → qi ∈ ∆i for some i}∪
{
〈f1〉λ(〈c1, qi1〉, 〈c2, q

i
2〉)

→ 〈f1, qi〉λ(〈c1, qi1〉, 〈c2, q
i
2〉)

c1, c2 ∈ {a, b, c},
f1(q

i
1, q

i
2)→ qi ∈ ∆i for some i

}

Pfin = {〈f1, qi〉λ(x1, x2)→ 〈f1, qi〉λfin(x1, x2) | f1 ∈ {f, g}, qi ∈ Fi for some i}∪

〈f1, qi〉λfin(〈c1, q
i
1〉, 〈c2, q

i
2〉)

→ 〈f1〉λ(〈c1, qi1〉fin, 〈c2, q
i
2〉fin)

f1 ∈ {f, g},
c1 ∈ {a, b, c},
f(qi1, q

i
2)→ q ∈ ∆i for some i

PR = {〈a, q11〉fin → 〈c〉} ∪ {〈b, q
2
2〉fin → 〈c〉} ∪ {〈f, q

3
f 〉

λ
fin
(x1, x2)→ 〈g〉λ(x1, x2)}

Pre = {〈c1, qi〉 → 〈c1〉, 〈c1, qi〉fin → 〈c1〉 | c1 ∈ {a, b, c}, qi ∈ Qi for some i}∪
{
〈f1, qi〉λ(x1, x2)→ 〈f1〉λ,
〈f1, qi〉λfin(x1, x2)→ 〈f1〉λ(x1, x2)

f1 ∈ {f, g},
qi ∈ Qi for some i

}

The term f(c, b) is produced by G∗ with the production Sλ −→
P ′
〈f〉λ(〈a〉, 〈b〉) ∗−−→

PA

〈f, qf 〉λ(〈a, q1〉, 〈b, q2〉)
∗−−→
Pfin

〈f〉λ(〈a, q1〉fin, 〈b, q2〉fin) −−→PR 〈f〉λ(〈c〉, 〈b, q2〉fin) −−→Pre

〈f〉λ(〈c〉, 〈b〉) ∗−−−−→
P∪P ′

f(c, b).

Corollary 2. Reachability is PSPACE-complete for monotonic CntTRS.

From Proposition 4, it immediately holds that regular model checking is un-
decidable for monotonic CntTRS. Moreover, the following lower bounds already

hold in the very restricted case of controlled rewrite rules over words, and where
each side of every rule has depth exactly one.

Proposition 6. Reachability is NLINSPACE-complete and regular model check-
ing is undecidable for monotonic and flat CntTRS over unary signatures.

Proof. We reduce the acceptance (for reachability) and emptiness (for regular
model checking) problems for a linear bounded automaton (LBA)M [20]. The
detailed reduction can be found in Appendix C, let us present here the gen-
eral idea. Every configuration of M will be represented by a term of the form
‖:a1 . . . aj−1a

p
jaj+1 . . . an:‖, where ‖:, :‖ are the symbols for left and right end-

markers, a1 . . . an is the content of the tape ofM, p is its current state and apj
marks the current position (j) of the head.

To every transition θ of M stating that in state p, reading a, M changes
state to p′, write b and moves left, we associate the four following monotonic
and flat controlled rules (Γ is the input alphabet ofM, the selected position in
the regular expression is obvious, it is the lhs of the rule)

‖:Γ ∗c apΓ ∗:‖ : ap(x) → 〈ap, θ〉(x),
‖:Γ ∗c 〈ap, θ〉Γ ∗:‖ : c(x) → 〈c, θ〉(x),

‖:Γ ∗〈c, θ〉 〈ap, θ〉Γ ∗:‖ : 〈ap, θ〉(x) → b(x),

‖:Γ ∗〈c, θ〉 bΓ ∗:‖ : 〈c, θ〉(x) → cp
′

(x).

The rules for a transition moving to the right are similar. ⊓⊔

Some remarks about the above result. In the above construction, the selec-
tion of the rewrite position by the SA is not necessary. Only the selection of the
rewritable terms by TA is needed (a weaker condition). Note also that linear
and flat TRS preserve regularity, with a PTIME construction of the TA recog-
nizing the closure (see e.g. [27]). Hence reachability is decidable in PTIME in
the uncontrolled case.

The conditional grammars of [9] can be redefined in our settings as (word)
grammars whose production rules are CF controlled rewrite rules (and deriva-
tions are defined using the controlled rewrite relation). It is shown in [9] that the
class of languages of conditional grammars without collapsing rules coincide with
CS (word) languages. Hence, it also holds that reachability is PSPACE-complete
and regular model checking is undecidable for CF non-collapsing CntTRS over
unary signatures.

3.2 Prefix control

Some other former results in the case of words imply that the above lower bounds
still hold when control is limited to prefix SA. It is shown in [25] that every CS
word language can be generated by a CS grammar with production rules of the
form AB → AC, A → BC, A → a (where A, B, C are non-terminal and a is
a terminal). It follows that every CS word language is the closure of a constant
symbol under a CF non-collapsing pCntTRS (over a unary signature).

Proposition 7. For all CS tree language L over a unary signature Σ, there
exists a CF non-collapsing pCntTRS R over Σ′ ⊃ Σ such that L = R∗({c}) ∩
T (Σ) for some constant c ∈ Σ′0 \Σ.

Proof. Since L is the language over unary symbols, L can be regarded as a
word language. Moreover, we can easily construct a pCntTRS that has the rule
c→ S(⊥) where S is the start symbol of the grammar for L and inverse of every
production rule. ⊓⊔

Corollary 3. Reachability is PSPACE-complete and regular model checking un-
decidable for CF non-collapsing pCntTRS over unary signatures.

Another consequence of Proposition 7 is that deterministic top-down SA (which
are incomparable with prefix SA in general but more general than prefix SA in
unary signatures) already capture CS languages, for unary signatures.

To add a final remark, we can observe that following Example 3, there is no
hope of regularity preservation even for very simple CF CntTRS containing only
flat and monotonic rules, and even restricting to prefix control.

3.3 Non-monotonic rewrite rules

It is also shown in [9] that the class of languages of conditional grammars with
collapsing rules coincide with recursively enumerable languages. As a conse-
quence, reachability is undecidable for CF CntTRS (with collapsing rules) al-
ready in the case of unary signatures. Actually, the following propositions shows
that flat (but not monotonic) controlled rewrite rules are sufficient for the sim-
ulation of Turing machines.

Proposition 8. Reachability is undecidable for flat CntTRS over unary signa-
tures.

Proof. Flat CntTRS is a super class of monotonic and flat CntTRS. We can
extend the flat CntTRS R that simulates the moves of LBA in the proof for
Proposition 6, by adding some flat rules of the form :‖ → ♭:‖ and ♭:‖ →:‖ to R
(:‖ denotes the right endmarker), in order to simulate all the moves of a TM. ⊓⊔

Note that when the signature is unary, all the rewrite rules are necessary linear.
Again, this result is in contrast with the case of uncontrolled rewriting, because
linear and flat TRS preserve regularity, and hence have a decidable reachability
problem. Restricting the control to prefix permits to obtain a decidability result
for non-monotonic rewrite rules, as long as they are not collapsing.

Theorem 2. Reachability is decidable in PSPACE for flat non-collapsing pC-
ntTRS over unary signatures.

Proof. We show the following claim: u rewrites to v iff u = u0 −→R u1 −→R · · · −→R
uk = v with ‖u0‖, . . . , ‖uk‖ ≤ max (‖u‖, ‖v‖).

The ”if” direction is trivial. For the ”only if” direction, assume given a reduc-
tion u = w1

∗−→
R

wn = v, and let max (‖u‖, ‖v‖) = M . We make an induction on
the number of strings wi longer thanM . Suppose that the reduction contains one
wi such that ||wi|| > M . Then there exists a sub-sequence wk

+−→
R

wm such that

‖wk‖ = ‖wm‖ = M , with k < m. It holds that wk = wk[⊥]M
∗−→
R

wm[⊥]M = wm

because we consider only prefix control. This reduces the number of string wi

longer than M . ⊓⊔

Non-monotonicity is also a source of undecidability of reachability for Cnt-
TRS even in the case of ground controlled rewrite rules.

Proposition 9. Reachability is undecidable for ground CntTRS.

Proof. By representing the words a1, . . . , an as right combs f(a1, f(· · · f(an,⊥))),
we can construct a ground CntTRS that simulates the moves of Turing Machine.
Like in the proof of Propositions 8 and 6, one move of the of the TM is simu-
lated by several rewrite steps, controlling the context left or right of the current
position of the TM’s head. Here, the controlled rewrite rule will have the form
A : a → a′ were a and a′ are constant symbols, and A controls c and d in a
configuration f(. . . f(c, f(a, f(d(, . . .))))), where a is at the rewrite position. ⊓⊔

This result is in contrast to uncontrolled ground TRS, for which reachability is
decidable in PTIME.

4 Recursive Prefix Control

We propose a relaxed form of control, where, in order to select the positions of
application of a controlled rewrite rule, the term to be rewritten is tested for
membership in the closure of a regular language L, instead of membership to L
directly. The idea is somehow similar to conditional rewriting (see e.g. [2]) where
the conditions are equations that have to be solved by the rewrite system.

The definition is restricted to control with prefix SA, and a recursive pCnt-
TRS R is defined as a pCntTRS. In order to define formally the rewrite relation,
let us recall first that in the computations of a prefix SA A, the states below
a selection state qs are universal (q0), i.e. that we can have any subterm at a
selected position (only the part of the term above the selected position matters).
Following this observation, we say that the variable position p in a context C[x1]
over Σ is selected by the prefix SA A if p is selected in C[c] where c is an arbi-
trary symbol of Σ0. A term s rewrites to t in one step by a recursive pCntTRS
R, denoted by s −−→

R
t, if there exists a controlled rewrite rule A : ℓ → r ∈ R,

where A is a prefix SA, a substitution σ, a position p ∈ Pos(s), and a context
C[x1] such that C[x1] −−→

∗

R
s[x1]p and the position of x1 is selected in C[x1] by

A, such that s|p = ℓσ and t = s[rσ]p. This definition is well-founded because
of the restriction to prefix control (remember that the root position is always
selected by prefix SA).

Example 5. Let Σ = {a, b, c, d,⊥} be a unary signature, and let R be the flat
recursive pCntTRS containing the rules C1 : a(a(x)) → b(x), and C2 : c(x) →
d(x), where the SA C1 selects the position after a prefix aa, and C2 selects the

position after a prefix aaaa. Then we have with R (we omit the parentheses and
the tail ⊥, and underline the part of the term which is rewritten)

aaaac −−→
R

aabc −−→
R

aabd

Note that for the last step, we have use the fact that aaaa −−→
R

aab, i.e. there
exists C[x1] = aaaa(x1) with C[x1] −−→R aab(x1) and the position of x1 in C[x1]
is selected by C2. The last rewrite step would not be possible if R would not be
recursive, because aab is not a prefix admitted by C2.

Theorem 3. Regular model-checking is decidable in EXPTIME for linear and
right-shallow recursive pCntTRS.

Proof. (sketch) We show that, given a right-shallow and linear recursive pCnt-
TRS R and given the language L ⊆ T (Σ) of a TA AL we can construct an
alternating tree automaton with epsilon-transitions (ε-ATA) A′ recognizing the
rewrite closure R∗(L). Intuitively, an alternating tree automata A is a top-down
tree automaton that can spawn in several copies during computation on a term
t. Formally, an ε-ATA over a signature Σ is a tuple A = 〈Q, q0, δ〉 where Q is a
finite set of states, q0 ∈ Q is the initial state and δ is a function which associates
to every state q ∈ Q a disjunction of conjunctions of propositional variables of
the following form a ∈ Σ, or 〈q′, ε〉, for q′ ∈ Q \ {q}, or 〈q′, i〉, for q′ ∈ Q and
1 ≤ i ≤ m where m is the maximal arity of a symbol in Σ.
A run of A on t ∈ T (Σ) is a function ρ from Pos(t) into 2Q such that for all
position p ∈ Pos(t), with t(p) = a ∈ Σn (n ≥ 0), and for all state q ∈ ρ(p), it
holds that a, 〈ρ(p.1), 1〉, . . . , 〈ρ(p.n), n〉, 〈ρ(p), ε〉 |= δ(q) where 〈S, p〉 is a notation
for all the variables 〈q, p〉 with q ∈ S, and |= denotes propositional satisfaction,
while assigning true to the propositional variables on the left of |=.
The language L(A) of A is the set of terms t ∈ T (Σ) on which there exists a
run ρ of A such that q0 ∈ ρ(ε) (terms recognized by A).

Roughly, the principle of the construction of A′ is to start with AL and the
SA of R, casted into ATA and merged, and to complete the transition functions
in order to reflect the effect of the possible rewrite steps. The detailed construc-
tion can be found in Appendix D. Let us present below the construction on an
example, based on the recursive pCntTRS R of Example 5. The transitions of
the prefix SA C1 and C2, for control in R are explicitly the following

C1 : ⊥ → q1s | q
1
0 , f(q

1
0)→ q1s | q

1
0 , a(q

1
s)→ q11 , a(q

1
1)→ q12 (f ∈ {a, b, c, d})

C2 : ⊥ → q2s | q
1
0 , f(q

2
0)→ q2s | q

2
0 , a(q

2
s)→ q21 , a(q

1
1)→ q22 , a(q

2
2)→ q23 , a(q

2
3)→ q24

They are casted into the following transition functions

δ1 : q12 7→ a ∧ 〈q11 , 1〉, q
1
1 7→ a ∧ 〈q1s , 1〉,

δ2 : q24 7→ a ∧ 〈q23 , 1〉, q
2
3 7→ a ∧ 〈q22 , 1〉, q

2
2 7→ a ∧ 〈q21 , 1〉, q

2
1 7→ a ∧ 〈q2s , 1〉

with moreover δi(qis) = ⊥ ∨
∨

f=a,b,c,d

(f ∧ 〈qi0, 1〉) and δi(qi0) 7→ ⊥ ∨
∨

f=a,b,c,d

(f ∧

〈qi0, 1〉) for i = 1, 2. The initial language L = {aaaac} is recognized by a ε-ATA

A′L with the transition function δL : q5 7→ a ∧ 〈q4, 1〉, q4 7→ a ∧ 〈q3, 1〉, q3 7→
a ∧ 〈q2, 1〉, q2 7→ a ∧ 〈q1, 1〉, q1 7→ c ∧ 〈q0, 1〉, q0 7→ ⊥.

Let δ0 be the union of δ1, δ2 and δL. It holds that, starting from q3, δ0 permits
to ”reach” a(a(q1)), denoted a(a(q1)) |=0 q3. Formally, the relation t |=i q holds
in the following cases, for t = a(t1, . . . , tn) ∈ T (Σ ∪ Q), with n ≥ 0 and the
symbols of Q are assumed of arity 0

δi(q) = φ1 ∨ φ2 and t |=i φ1 or t |=i φ2

δi(q) = φ1 ∧ φ2 and t |=i φ1 and t |=i φ2

δi(q) = 〈q′, ε〉 and t |=i q
′

δi(q) = 〈q′, j〉, with 1 ≤ j ≤ n and tj |=i q
′

δi(q) = a.

In order to simulate the first rule ofR, we let δ1(q3) = δ0(q3)∨
(
b∧〈q1, 1〉∧〈q1s , ε〉

)
.

The term a(a(q1)) corresponds to the lhs of this rule, b(q1) is matching the rhs
and 〈q1s , ε〉 ensures that the control is satisfied (following the recursive definition).
Similarly, a(a(q2s)) |=1 q22 , and we can let δ2(q

2
2) = δ0(q

2
2) ∨

(
b ∧ 〈q2s , 1〉 ∧ 〈q

1
s , ε〉

)
.

Moreover, c(q0) |=2 q1, and with the second rule of R, we can let

δ3(q1) = δ0(q1) ∨
(
d ∧ 〈q0, 1〉 ∧ 〈q

2
s , ε〉

)
.

With these transitions, we have the following runs for 2 descendants of L

a a b c ⊥
{

q5

q12

} {

q4

q11

} {

q3

q1s

} {

q1

q10

} {

q0

q10

}
a a b d ⊥

q5

q24
q12

q4

q23
q11

q3

q22
q1s

q1

q2s
q10

q0

q20
q10

The ε-ATA A′ can be casted into a TA A whose size is exponential in the
size of A′ and such that L(A) = L(A′) = R∗(L), and hence we can decide the
problem of regular model checking for R in exponential time. ⊓⊔

Conclusion

We have proposed a definition of controlled term rewrite systems based on selec-
tion automata for the specification of authorized rewrite position, and a restric-
tion where the selection of a position depends only on the labels on its prefix path.
We have shown that reachability is PSPACE-complete for controlled monotonic
(non-size-reducing) rewrite rules, using context-sensitive tree languages, and for
prefix-controlled context-free non-collapsing rewrite rules. When allowing size
decreasing rules, reachability becomes undecidable, even for flat and linear or
ground rules. Finally, we have presented a relaxed form of prefix control called
recursive prefix control which permits to obtain preservation of regular tree lan-
guages, hence decidability of reachability and regular model checking (in EXP-
TIME). The proof involves the construction of alternating tree automata with
ε-transitions, and we believe that this technique could be useful for computing
the rewrite closure of other classes of automata with local constraints.

The proof of undecidability for ground CntTRS (Proposition 9) does not
work when restricting to prefix control. It could be interesting to know whether
reachability is decidable for ground pCntTRS. Also, we are interested in know-
ing how the decidability result of Theorem 2 can be generalized to non-unary
signatures.

In [9], the conditional grammars (i.e. controlled (in the above sense) context-
free word grammars) are related to grammars with a restriction on the possible
production sequences (the list of names of production rules used must belong
to a regular language). It could be interesting to establish a similar comparison
for term rewriting. In particular, results on the restriction defined by authorized
sequences of rewrite rules could be useful for the analysis of languages for the
extensional specification of the set of possible rewrite derivations like in [3].

Rewriting of unranked ordered labeled tree has been much less studied that
its counterpart for ranked terms. We would like to study controlled rewriting in
this case, in particular in the context of update rules for XML [6,17].

Acknowledgements The authors wish to thanks Olivier Ly for his suggestion
for the proof of Proposition 9, and Sylvain Schmitz, Géraud Senizergues and
Hubert Comon-Lundh for their useful remarks and recommendations.

References

1. P. A. Abdulla, B. Jonsson, P. Mahata, and J. d’Orso. Regular tree model checking.
In Proceedings of the 14th International Conference on Computer Aided Verifica-
tion, CAV ’02, pages 555–568, London, UK, UK, 2002. Springer-Verlag.

2. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, New York, 1998.

3. P. Borovansky, H. Kirchner, C. Kirchner, and C. Ringeissen. Rewriting with strate-
gies in elan: a functional semantics. International Journal of Foundations of Com-
puter Science (IJFCS), 12(1):69–95, 2001.

4. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract regular
tree model checking of complex dynamic data structures. In K. Yi, editor, Static
Analysis, volume 4134 of Lecture Notes in Computer Science, pages 52–70. Springer
Berlin / Heidelberg, 2006.

5. J. Chabin and P. Réty. Visibly pushdown languages and term rewriting. In Pro-
ceedings 6th International Symposium on Frontiers of Combining Systems (FroCos
2007), volume 4720 of Lecture Notes in Computer Science, pages 252–266. Springer,
2007.

6. D. Chamberlin and J. Robie. Xquery update facility 1.0. W3C Candidate Recom-
mendation. http://www.w3.org/TR/xquery-update-10/, 2009.

7. H. Comon. Sequentiality, second order monadic logic and tree automata. In Pro-
ceedings, Tenth Annual IEEE Symposium on Logic in Computer Science (LICS),
pages 508–517. IEEE Computer Society, 1995.

8. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, C. Löding, D. Lugiez, S. Tison,
and M. Tommasi. Tree Automata Techniques and Applications. http://tata.

gforge.inria.fr, 2007.

9. J. Dassow, G. Paun, and A. Salomaa. Handbook of Formal Languages, volume 2,
chapter Grammars with Controlled Derivations, pages 101–154. Springer, 1997.

10. I. Durand and A. Middeldorp. Decidable call-by-need computations in term rewrit-
ing. Information and Computation, 196(2):95 – 126, 2005.

11. J. Engelfriet. Top-down tree transducers with regular look-ahead. Mathematical
Systems Theory, 10:289–303, 1977.

12. G. Feuillade, T. Genet, and V. V. T. Tong. Reachability analysis over term rewrit-
ing systems. J. Autom. Reasoning, 33(3-4):341–383, 2004.

13. M. Frick, M. Grohe, and C. Koch. Query evaluation on compressed trees (ex-
tended abstract). In Proceedings of the 18th Annual IEEE Symposium on Logic
in Computer Science, pages 188–, Washington, DC, USA, 2003. IEEE Computer
Society.

14. G. Gottlob and C. Koch. Monadic datalog and the expressive power of languages
for web information extraction. Journal of the ACM, 51(1):74–113, 2004.

15. I. Guessarian. Pushdown tree automata. Mathematical Systems Theory, 16(1):237–
263, 1983.

16. D. Hofbauer and J. Waldmann. Deleting string rewriting systems preserve regu-
larity. Theor. Comput. Sci., 327(3):301–317, 2004.

17. F. Jacquemard and M. Rusinowitch. Rewrite-based verification of xml updates. In
Proceedings of the 12th ACM SIGPLAN International Symposium on Principles
and Practice of Declarative Programming (PPDP), PPDP ’10, pages 119–130, New
York, NY, USA, 2010. ACM.

18. N. D. Jones and N. Andersen. Flow analysis of lazy higher-order functional pro-
grams. Theoretical Computer Science, 375(1-3):120 – 136, 2007.

19. Y. Kojima and M. Sakai. Innermost reachability and context sensitive reacha-
bility properties are decidable for linear right-shallow term rewriting systems. In
A. Voronkov, editor, Proceedings of the 19th International Conference on Rewriting
Techniques and Applications (RTA), volume 5117 of Lecture Notes in Computer
Science, pages 187–201. Springer, 2008.

20. S. Y. Kuroda. Classes of languages and linear-bounded automata. Information
and Control, 7:207–223, 1964.

21. S. Lucas. Context-sensitive rewriting strategies. Inf. Comput., 178:294–343, Octo-
ber 2002.

22. T. Milo, D. Suciu, and V. Vianu. Typechecking for xml transformers. J. of Comp.
Syst. Sci., 66(1):66–97, 2003.

23. T. Nagaya and Y. Toyama. Decidability for left-linear growing term rewriting
systems. Inf. Comput., 178(2):499–514, 2002.

24. F. Neven and T. Schwentick. Query automata over finite trees. Theoretical Com-
puter Science, 275(1-2):633–674, 2002.

25. M. Penttonen. One-sided and two-sided context in formal grammars. Information
and Control, 25:371–392, 1974.

26. P. Réty and J. Vuotto. Tree automata for rewrite strategies. J. Symb. Comput.,
40:749–794, July 2005.

27. K. Salomaa. Deterministic tree pushdown automata and monadic tree rewriting
systems. J. Comput. Syst. Sci., 37(3):367–394, 1988.

28. G. Sénizergues. Formal languages and word-rewriting. In H. Comon and J.-P.
Jouannaud, editors, Term Rewriting, Advanced Course of French Spring School of
Theoretical Computer Science, Font Romeux, France, volume 909 of Lecture Notes
in Computer Science, pages 75–94. Springer, 1993.

A Proof of Proposition 3

We give here a non-deterministic linear space decision algorithm for the mem-
bership problem for CSTG, using a simulation of CSTG by linear bounded au-
tomata.

Let α be the transformation of terms of T (Σ) into strings defined as follows:
α(x) = “(x)” for x ∈ X and α(f(t1, . . . , tn)) = “(f(”α(t1) · · ·α(tn)“))” for
n ≥ 0.

Lemma 1. α(C[t1, . . . , tn]) = α(C)[α(t1), . . . , α(tn)] (where α(C) = α(C[x1, . . . , xn])).

Proof. We show this lemma by induction on the size of C.

If ||C|| = 0, then this lemma holds trivially.

Otherwise, let p1, . . . , pn be the positions where ti’s occur in C[t1, . . . , tn]. We take
C[t1, . . . , tn] as f(t′1, . . . , t

′
m) and then we have α(C[t1, . . . , tn]) = α(f(t′1, . . . , t

′
m)) =

“(f(”α(t′1) · · ·α(t
′
m)“))”. For j such that there exists pi where jp

′ = pi for some
p′, t′j is represented as Cj [ti] by some context Cj and hence α(t′j) = α(Cj [ti]) =
α(Cj)[α(ti)] from the induction hypothesis. By applying the above claim for all
pi’s, we have α(C[t1, . . . , tn]) = α(C)[α(t1), . . . , α(tn)]. ⊓⊔

Lemma 2. ||α(t)|| = 5||t||Σ + 3||t||X where |α(t)| is the length of α(t), ||t||Σ is
the number of the occurrence of signature in Σ, and ||t||X is the number of the
occurence of variables in X .

Proof. We show this lemma by induction on the structure of term.

If t = x, then ||α(t)|| = ||“(x)”|| = 3 = 5||t||Σ + 3||t||X .

If t = f(t1, . . . , tn), then ||α(t)|| = ||“(f(”α(t1) · · ·α(tn)“))”|| = 5+||α(t1) · · ·α(tn)||.
From the induction hypothesis, we have ||α(t1) · · ·α(tn)|| = 5Σn

i=1||ti||Σ+3Σn
i=1||ti||X .

Thus, we have ||α(t)|| = 5+5Σn
i=1||ti||Σ +3Σn

i=1||ti||X = 5||t||Σ+3||t||X . ⊓⊔

From Lemma 1, a term C[ℓσ] is transformed to α(C)[α(ℓ)α(σ)] where α(σ) =
α(xσ) for all domain x of σ. Hence, we can simulate the term rewriting C[ℓσ]→
C[rσ] by the string rewriting α(C)[α(ℓ)α(σ)] → α(C)[α(r)α(σ)].

Since each production rules of CSTG is monotonic, we can simulate inverse
of production rules by LBA.

In the following, we show the simulation of one-step of inverse production of
CSTG by LBA. For the production rule ℓ→ r, let α(ℓσ) = ℓ1(x1σ

′)ℓ2(x2σ
′) · · · (xmσ′)ℓn,

α(rσ′) = r1(xm1σ
′)r2(xm2σ

′) · · · (xmm
σ′)rn′ where xmj

∈ {x1, . . . xn}, and (xσ′) =
α(xσ). We simulate α(ℓσ)→ α(rσ).

In the following, we use different notation for LBA from the one in the proof
for Proposition 6 for readability. We denote the configuration such that the head
of LBA reads u in u1 · · ·u · · ·un and whose state is q as ‖:u1 · · ·uq · · ·un:‖, while
we denote ‖:u1 · · ·uq · · ·un:‖ in the proof for Proposition 6.

Simulation of one-step of inverse production. LBAMℓ can simulate the string
rewriting α(ℓ) = ℓ1(x1σ)ℓ2(x2σ) · · · (xmσ)ℓnσ → α(r) = r1(xm1σ)r2(xm2σ) · · · (xmm

σ)rn′σ
where ℓ → r ∈ R for inverse monotonic TRS R, i.e. ||ℓ|| ≥ ||r||, li, rj ∈
(Σ∪{(,)})∗ for 1 ≤ i ≤ n and 1 ≤ j ≤ n′, σ is substitution in X → (Σ∪{(,)})∗,
xi ∈ X for 1 ≤ i ≤ m, and xmj

∈ {x1, . . . xm} and no xi and xj for i 6= j are
same.
Mℓ is constructed by connecting the following automata.

1. LBAMℓ
in

such that
Initial state qℓ

in

Final state qℓ1
in

Behavier Head of the automaton moves right and can change state to qℓ1
in

in any time.
2. LBAMli for 1 ≤ i ≤ n such that

Initial state qℓi
in

Final state qℓif

Behavier u1q
ℓi
in
· · ·ukv

∗−−−→
M

ℓi
♭∗vq

ℓi
f if u1 · · ·un = ℓi. Otherwise, the au-

tomaton terminate and input does not accepted. The final state appears
at v i.e. the next symbol of rewritten ℓi.

3. LBAMi() for 1 ≤ i ≤ n− 1 and n > 1 such that
Initial state qℓif
Final state q

ℓi+1

in

Behavier If first symbol is “(”, then move head to next symbol of corre-

sponding “)” and change state to q
ℓi+1

in
.

4. LBAM← such that
Initial state qℓnf
Final state qmσ

in

Behavier Move left until reading “)”.
5. LBAMiσ for 1 ≤ i ≤ msuch that

Initial state qiσ
in

Final state qiσf
Behavier Move “(xiσ)” to right until the next symbol become other than

♭. Final state appears at the first position of “(” in “(xiσ)”.
6. LBAMiσ← for 2 ≤ i ≤ m such that

Initial state qiσf

Final state q
(i−1)σ
in

Behavier Move left until reading “)”.
7. LBAMsh such that

Initial state q1σf
Final state qshf
Behavier Shuffle “(x1σ) · · · (xmσ)” to “(xm1σ) · · · (xmm

σ)”. Final state ap-
pears at first “(” in “(xm1σ)”.

8. LBAM′← such that
Initial state qshf
Final state qr1

in

Behavier Move left until reading the symbol other than ♭.
9. LBAMri for 1 ≤ i ≤ n′ such that

Initial state qri
in

Final state qrif
Behavier Rewrite ♭∗ to ri. The final state appears at the next symbol of

ri.
10. LBAM′i() for 1 ≤ i ≤ n′ such that

Initial state qrif
Final state q

ri+1

in

Behavier Move “(u)” that is most near and at right side of head to left
until no symbol ♭ is there at left of “(u)”. Final state appears at next
symbol of “)” of “(u)”.

11. LBAM♭ such that
Initial state q

rn′
f

Final state qℓf
Behavier Move all of ♭ to right-end and finally head move to left-end.
Move ♭ to right-end.

In the following, we prove that C[ℓσ] −→
R
C[rσ] iff α(C)[α(ℓσ)] ∗−→

A
α(C)[α(rσ)]

for inverse monotonic TRSs.

Lemma 3. If C[ℓσ] −→
R
C[rσ] for inverse monotonic TRS R, then || : ql

in
α(C)[α(lσ)]:‖ ∗−→

A

♭lq
l
fα(C)[α(rσ)]♭∗ : ||.

Proof. From Lemma 1, we can take α(C) = u1 · · ·uk�v1 · · · , vh, α(ℓσ) = ℓ1(x1σ) · · · (xmσ)ℓn,
and α(rσ) = r1(xm1σ) · · · (xmm

σ)rn. Thus, this lemma holds from the following
transition sequence.

‖:qℓ
in
uℓ1(x1σ) · · · (xmσ)ℓnv:‖ (1)

∗−−→
M

ℓ
‖:uqℓ1

in
ℓ1(x1σ) · · · (xmσ)ℓnv:‖ (2)

∗−−−→
M

ℓ1
‖:u♭∗qℓ1

in
(x1σ) · · · (xmσ)ℓnv:‖ (3)

∗−−−→
A

1()
‖:u♭∗(x1σ)q

ℓ2
in
· · · (xmσ)ℓnv:‖ (4)

∗−−−−−−→
A

ℓi ,Ai()
‖:u♭∗(x1σ) · · · (xmσ)♭∗qℓnf v:‖ (5)

∗−−→
A
← ‖:u♭∗(x1σ) · · · (xmσqmσ

in
)♭∗v:‖ (6)

∗−−−→
A

mσ ‖:u♭∗(xm1σ)σ) · · · ♭
∗qmσ

f (xmσ)v:‖ (7)
∗−−−−−−−→
A

iσ ,Aiσ←
‖:u♭∗q1σf (x1σ) · · · (xmσ)v:‖ (8)

∗−−→
A

sh
‖:u♭∗qshf (xm1σ) · · · (xmm

σ)v:‖ (9)

∗−−−→
A
′←

‖:uqr1
in
♭∗(xm1σ) · · · (xmm

σ)v:‖ (10)
∗−−→
A

r1
‖:ur1q

r1
f ♭∗(xm1σ) · · · (xmm

σ)v:‖ (11)
∗−−−→
A
′i()

‖:ur1(xm1σ)q
r2
in
♭∗ · · · (xmm

σ)v:‖ (12)

∗−−−−−−→
A

ri ,A′i()
‖:ur1(xm1σ) · · · (xmm

σ)rn′q
rn′
f ♭∗v:‖ (13)

∗−−→
A

♭
‖:qℓfur1(xm1σ) · · · (xmm

σ)rn′v♭
∗:‖ (14)

Since ||ℓ|| ≥ ||r||, we can generate the all ri’s because Σn
i=1||ℓi|| < Σn′

i=1||ri||
and there are sufficient ♭’s to be rewritten to each ri. ⊓⊔

Lemma 4. If ‖:ql
in
α(C)[α(ℓ′σ)]:‖ ∗−−→

A
l
‖:qlfα(C)[α(r

′σ)]♭∗:‖, then C[ℓ′σ] −→
R
C[r′σ]

for monotonic TRS R.

Proof. From Lemma 1, we can represent α(C[ℓ′σ]) and α(C[r′σ]) as uℓ′1(x1σ) · · ·
(xmσ)ℓ′nv and ur′1(xm1σ) · · · (xmm

σ)r′n′v where α(C) = u�v, α(ℓ′σ) = ℓ′1(x1σ) · · ·
(xmσ)ℓ′n, and α(r′σ) = r′1(xm1σ) · · · (xmm

σ)r′n′ . From the construction ofAℓ, the
transition ‖:qℓ

in
uℓ′1(x1σ) · · · (xmσ)ℓ′nv:‖

∗−−→
A

ℓ
‖:qℓfr

′
1(xm1σ) · · · (xmm

σ)r′n′♭
∗:‖ is as

of the form the transition in Lemma 3. Transition ‖:uqℓ1
in
ℓ1(x1σ) · · · (xmσ)ℓnv:‖

∗−−→
A

ℓ

‖:u♭∗(x1σ) · · · (xmσ)♭∗qℓnf v:‖ and ‖:uqr1
in
♭∗(xm1σ) · · · (xmm

σ)rn′v:‖
∗−−→
A

ℓ
‖:ur1(xm1

σ) · · · (xmm
σ)rn′q

rn′
f v:‖ implies that ℓ1(x1σ) · · · (xmσ)ℓn = α(lσ) and r1(xm1σ)

· · · (xmm
σ)rn′ = α(rσ) for some l → r ∈ R. Thus, we have C[ℓ′σ] −→

R
C[r′σ]. ⊓⊔

We construct the LBAA = 〈Q,Γ, qin, {qf}, Θ〉 that simulates context-sensitive
grammar G = 〈N, T, P, S〉 from Aℓ’s for ℓ → r ∈ P−1. Q is disjoint union
of all Qℓ’s. Γ are same for all Aℓ’s. Θ is consists of union of all Θℓ’s and
the rules 〈qin, x, qin, x, left〉 for x 6= ‖:, 〈qin, ‖:, qℓin, ‖:, right〉, 〈q

ℓ
f , ‖:, qin, ‖:, stay〉,

〈qin, ‖:, qS1 , ‖:, right〉, 〈qS1 , “(”, qS2 , “(”, right〉, 〈qS2 , S, qS3 , S, right〉, 〈qS3 , “)”, q♭, “)”, right〉,
〈q♭, ♭, q♭, ♭, right〉, and 〈q♭, :‖, qf , :‖, stay〉.

The following lemmas state completeness and soundness of LBA A.

Lemma 5. If t ∈ L(G), then α(t) ∈ A.

Proof. We prove that ‖:qinα(t):‖
∗−→
A

:‖(S)♭∗qf :‖ for the start symbol S of G. If
t = S, then this lemma holds trivially. Otherwise, let t −→

P
t′ ∗−→

P
S. We have

‖:qinα(t):‖
∗−→
A

qℓ
in
‖:α(t):‖ ∗−→

A
qℓf‖:α(t

′):‖ −→
A

qin‖:α(t′):‖ from Lemma 3. Thus,
we have qin‖:α(t):‖

∗−→
A

qf‖:(S)♭∗:‖ by applying lemma 3 as the above transition.
⊓⊔

Lemma 6. If α(t) ∈ A, then t ∈ L(G).

Proof. α(t) ∈ A implies ‖:qinα(t):‖
∗−→
A
‖:(S)♭∗qf :‖.

If t = S, then this lemma holds trivially.
Otherwise, we have the transition ‖:qinα(t):‖

∗−→
A

qℓ
in
‖:α(t):‖ −→

A
qℓf‖:α(t

′):‖ ∗−→
A

‖:(S)♭∗qf :‖ for some ℓ and t′. From lemma 4, we have t −→
R

t′. Thus, we have
t −→
R

S by applying lemma 4 repeatedly. ⊓⊔

The Proposition 3 follows from Lemmata 5 and 6.

B Proof of Theorem 1

We give below a detailed proof of Theorem 1, which states that given a CSTG G
and a monotonic CntTRS R, one can construct in PTIME a CSTG generating
the closure of L(G) by R, and whose size is linear in the size of G and R.

We denote the ith rewrite rule of CntTRS by Ai : ℓi → ri where ℓi, ri ∈
T (F,X) andAi = 〈Qi, Q

f
i , Si, ∆i〉 is a selection automaton. We assume that Qi’s

are disjoint each other. In the sequel, we use large character A for non-terminal,
and C, C′ for contexts that has no terminal, 〈t〉 for the term obtained by replacing
every signature a in t by the non-terminal 〈a〉, 〈t〉λ for the term obtained by

replacing root symbol f of 〈t〉 by 〈f〉λ, and let Q :=
⋃

i

Qi, F :=
⋃

i

Fi, and

∆ :=
⋃

i

∆i.

We sometimes denote the sequence of terms t1, . . . , tn by t for readability.

Completion procedure.

Input CSTG G = 〈N , S,Σ, P 〉 such that arbitrary terminal a is only produced
from the non-terminal 〈a〉 by the rule 〈a〉(x1, . . . , xn) → a(x1, . . . , xn), and
monotonic CntTRS R

Output Context-sensitive tree grammar G∗ = 〈N∗, Sλ, Σ, P∗〉 that recognizes
R∗(L(G)).

Step1(initialize) Let N∗ be as follows:

– N∗ := N ∪ {Aλ, 〈A, q〉, 〈A, q〉λ, 〈A, q〉fin, 〈A, q〉λfin | A ∈ N , q ∈ Q, 1 ≤
i ≤ n} where n is the number of rewrite rules.

Before constructing P∗, we construct P ′ to mark λ at root symbol.

P ′ := P

∪ {Aλ(C[x1, . . . , xn])→ A′λ(C′[x1, . . . , xn]) | A(C[x1, . . . , xn])→ A′(C′[x1, . . . , xn]) ∈ P}

∪ {〈a〉λ(x1, . . . , xn)→ a(x1, . . . , xn) | 〈a〉(x1, . . . , xn)→ a(x1, . . . , xn) ∈ P}

P∗ is composed by P ′ and the following sets of production rules. These are
used to simulate a selection automaton.

PA :=

〈f〉(〈f1, q1〉(x1), . . . , 〈fn, qn〉(xn))
→ 〈f, q〉(〈f1, q1〉(x1), . . . , 〈fn, qn〉(xn))
〈f〉λ(〈f1, q1〉(x1), . . . , 〈fn, qn〉(xn))
→ 〈f, q〉λ(〈f1, q1〉(x1), . . . , 〈fn, qn〉(xn))

f, f1, . . . , fn ∈ Σ,
f(q1, . . . , qn)→ q ∈ ∆

Pfin :=

〈f, qf 〉λ(x)→ 〈f, qf 〉λfin(x)
〈f, q〉fin(〈f1, q1〉(x1), . . . , 〈fn, qn〉(xn))
→ 〈f〉(〈f1, q1〉fin(x1), . . . , 〈fn, qn〉fin(xn))
〈f, q〉λfin(〈f1, q1〉(x1), . . . , 〈fn, qn〉(xn))

→ 〈f〉λ(〈f1, q1〉fin(x1), . . . , 〈fn, qn〉fin(xn))

f, f1, . . . , fn ∈ Σ,
f(q1, . . . , qn)→ q ∈ ∆
q ∈ F

PR :=

{
〈f, q〉fin(〈l1〉, . . . , 〈ln〉)→ 〈ri〉
〈f, q〉λfin(〈l1〉, . . . , 〈ln〉)→ 〈ri〉

λ q ∈ Si,Ai : f(l1, . . . , ln) = ℓi → ri ∈ R

}

.

Pre :=

〈f, q〉λ(x)→ 〈f〉λ(x)
〈f, q〉(x)→ 〈f〉(x)
〈f, q〉λfin(x)→ 〈f〉

λ(x)

〈f, q〉fin(x)→ 〈f〉(x)

f ∈ Σ,
q ∈ Q

PA is used to simulate transition of SA, Pfin is used to propagate information
that final state occur at the root position by marking fin, PR is used to
simulate rewriting by CntTRS R, and Pre is used to clear states in each
non-terminal of the form 〈f, q〉.

Lemma 7. S ∗−→
P

A(t1, . . . , tn) iff Sλ ∗−−→
P ′

Aλ(t1, . . . , tn).

Proof. We can prove this lemma by induction on the length of ∗−→
P

for only if
part and ∗−→

P ′
for if part. ⊓⊔

Lemma 8. For all i, f(t1, . . . , tn)
∗−−→
Ai

q iff 〈f〉(〈t1〉, . . . , 〈tn〉)
∗−−→
G∗
〈f, q〉(〈t1〉, . . . , 〈tn〉)

and 〈f〉λ(〈t1〉, . . . , 〈tn〉)
∗−−→
G∗
〈f, q〉λ(〈t1〉, . . . , 〈tn〉).

Proof. Since Qi’s are disjoint each other, we can easily prove only if part of
this Lemma by the rules in PA and Pre. In the following, we prove if part by
induction on ||f(t1, . . . , tn)||.

Let f(t1, . . . , tn) be f(f1(t1), . . . , fn(tn)) for n ≥ 0. Since 〈f, q〉 is produced by
the rule 〈f〉(〈f1, q1〉(x1), . . . , 〈fn, qn〉(xn))→ 〈f, q〉(〈f1, q1〉(x1), . . . , 〈fn, qn〉(xn))
where f(q1, . . . , qn)→ q ∈ ∆i for some i, we have fi(ti)

∗−−→
∆i

qi from the induction

hypothesis. Thus, f(f1(t1), . . . , fn(tn))→ q follows.
In the case where the root position has mark λ, we can prove similarly. ⊓⊔

Lemma 9. 1. For q ∈ Qi, C[f(t1, . . . , tn)]
∗−−→
Ai
C[q] ∗−−→

Ai
qf for some qf ∈ Fi iff

〈C〉λ[〈f〉(〈t1〉, . . . , 〈tn〉)]
∗−−→
G∗
〈C〉λ[〈f, q〉fin(〈t1〉, . . . , 〈tn〉)] for ||C|| > 0, and

2. f(t1, . . . , tn)
∗−−→
Ai

qf ∈ Fi iff 〈f〉λ(〈t1〉, . . . , 〈tn〉)
∗−−→
G∗
〈f, q〉λfin(〈t1〉, . . . , 〈tn〉).

Proof. 2 of this lemma follows from Lemma 8 and rules in Pfin.
We prove both direction of 1 of this lemma by induction on the length of the

position p that f(t1, . . . , tn) occur in C[f(t1, . . . , tn)]. Let C[x] = C′[f ′(t′1, . . . , x, . . . , t
′
n)]

and hence C[f(t1, . . . , tn)] is represented as C′[f ′(t′1, . . . , f(t1, . . . , tn), . . . , t
′
n)].

(only if part) Assume that we have the transition C′[f ′(f1(t′1), . . . , f(t1, . . . ,
tn), . . . , fn(t′n))]

∗−−→
Ai
C′[f ′(q′1, , . . . , q, . . . , q

′
n)] −−→Ai

C′[q′] ∗−−→
Ai

qf ∈ Fi. Then,

from Lemma 8, we have 〈fi〉(〈t′i〉)
∗−−→
G∗
〈fi, q′i〉(〈t

′
i〉) and 〈f〉(〈t1〉, . . . , 〈tn〉)

∗−−→
G∗

〈f, q〉(〈t1〉, . . . , 〈tn〉), and from the induction hypothesis or 1 of this lemma,
we have the production:

〈C′〉[〈f ′〉(〈f1〉(〈t′1〉), . . . , 〈f〉(〈t1〉, . . . , 〈tn〉), . . . , 〈fn〉(〈t
′
n〉))]

∗−−→
G∗
〈C′〉[〈f ′, q′〉fin(〈f1〉(〈t′1〉), . . . , 〈f〉(〈t1〉, . . . , 〈tn〉), . . . , 〈fn〉(〈t

′
n〉))]

Thus, we obtaine the production

〈C′〉[〈f ′〉(〈f1〉(〈t′1〉), . . . , 〈f〉(〈t1〉, . . . , 〈tn〉), . . . , 〈fn〉(〈t
′
n〉))]

∗−−→
G∗

〈C′〉[〈f ′, q′〉fin(〈f1, q′1〉(〈t
′
1〉), . . . , 〈f, q〉(〈t1〉, . . . , 〈tn〉), . . . , 〈fn, q

′
n〉(〈t

′
n〉))]

−−→
G∗
〈C′〉[〈f ′〉(〈f1, q′1〉fin(〈t

′
1〉), . . . , 〈f, q〉fin(〈t1〉, . . . , 〈tn〉), . . . , 〈fn, q

′
n〉fin(〈t

′
n〉))]

−−→
G∗

〈C′〉[〈f ′〉(〈f1〉(〈t′1〉), . . . , 〈f, q〉fin(〈t1〉, . . . , 〈tn〉), . . . , 〈fn〉(〈t
′
n〉))]

from the rule in Pfin and Pre, and f(q′1, . . . , q, . . . , q
′
n)→ q′ ∈ ∆i .

(if part) Since the non-terminal 〈f, q〉fin must be produced by the rule 〈f ′, q′〉fin(〈f1,
q′1〉(x1), . . . , 〈f, q〉(x), . . . , 〈fn, q′n〉(xn))→ 〈f ′〉(〈f1, q′1〉fin(x1), . . . , 〈f, q〉fin(x)

, . . . , 〈fn, q′n〉fin(xn)), we have the production 〈C′〉[〈f ′〉(〈f1〉(〈t′1〉), . . . , 〈f〉(〈t1〉,

. . . , 〈tn〉), . . . , 〈fn〉(〈t′n〉))]
∗−−→
G∗
〈C′〉[〈f ′, q′〉fin(〈f1, q′1〉(〈t

′
1〉), . . . , 〈f, q〉(〈t1〉, . . . ,

〈tn〉), . . . , 〈fn, q′n〉(〈t
′
n〉))]. Hence, from the induction hypothesis, we have

C′[f ′(f1(t1), . . . , f(t1, . . . , tn), . . . , f(tn))]
∗−−→
∆i
C′[q′] ∗−−→

∆i
qf for some qf ∈ Fi.

Moreover, we have f(q1, . . . , q, . . . , qn)→ q ∈ ∆i since states are disjoint for
each Ai, and from Lemma 8, fi(ti

∗−−→
Ai

qi for all i and f(t1, . . . , tn)
∗−−→
Ai

q.

Therefore, we have C[f(t1, . . . , tn)]
∗−−→
Ai
C[q] ∗−−→

Ai
qf ∈ Fi.

⊓⊔

Lemma 10. If C[ℓσ] −→
R
C[rσ] and C[ℓσ] ∈ L(G∗), then C[rσ] ∈ L(G∗).

Proof. Consider the case where ||C|| > 0. We suppose that C[ℓσ] is rewrit-
ten to C[rσ] by the rule Ai : f(l1, . . . , ln) → r. Then, we have the transition

C[f(l1, . . . , ln)σ]
∗−−→
Ai
C[q] ∗−−→

Ai
qf where q ∈ Si and qf ∈ Qf

i . Since Sλ ∗−−→
G∗

〈C〉[〈f(l1, . . . , ln)σ〉], we have Sλ ∗−−→
G∗
〈C〉λ[〈f, q〉(〈l1〉, . . . , 〈ln〉)〈σ〉]

∗−−→
G∗
〈C〉λ[〈f, q〉fin

(〈l1〉, . . . , 〈ln〉)〈σ〉] from 1 of Lemma 9. From the production rule PR, we have
〈C〉[〈f, q〉fin(〈l1〉, . . . , 〈ln〉)〈σ〉]

∗−−→
G∗
〈C〉[〈r〉〈σ〉]. Thus, we have Sλ ∗−−→

G∗
C[rσ]. In

the case of ||C|| = 0, we can prove similary to the previous case. ⊓⊔

Lemma 11. If s ∈ L(G) and s ∗−→
R

t, then t ∈ L(G∗).

Proof. From Lemma 7, we have Sλ ∗−−→
G∗
〈s〉λ, and since P∗ has the rules in P

and the rule 〈f〉λ(x1, . . . , xn) → f(x1, . . . , xn), we have Sλ ∗−−→
G∗

s. By applying

Lemma 10 repeatedly, we also have t ∈ L(G∗). ⊓⊔

Lemma 12. If t ∈ L(G∗), then there exists s such that s ∗−→
R

t and s ∈ L(G).

Proof. We show this lemma by induction on the number of the rules in PR that
occur in the production S ∗−−→

G∗
t.

Consider the case that there is no rule in PR in the production Sλ ∗−−→
G∗

t.

We have Sλ ∗−−→
G∗
〈t〉 ∗−−→

G∗
t. Here we aim at one symbol 〈a〉 in 〈t〉. Suppose that

〈a〉 is produced by the rule in P∗\(P ∪ PR). In this case, we can produce 〈a〉 by
the rule of the form 〈a, q〉 → 〈a〉 or 〈a, q〉fin → 〈a〉. Since the symbols 〈a, q〉 or
〈a, q〉fin is produced from 〈a〉 by the rules in PA and Pfin, the symbol 〈a〉 must
be produced by P . Moreover, this claim also holds for the symbols of the form
〈a〉λ. By applying this claim to all symbols in 〈t〉, we have Sλ ∗−→

P ′
〈t〉, and hence

S ∗−→
P
〈t〉 from Lemma 7.

Otherwise, let t = C[C1[t1, . . . , tn]] where ||C|| > 1, and t is produced as
Sλ ∗−−→

G∗
〈C〉λ[〈C2〉[〈t1〉, . . . , 〈tn〉]] −−→PR 〈C〉λ[〈C1〉[〈t1〉, . . . , 〈tn〉]]

∗−−→
G∗

t. From the

construction of PR, we have the rewrite ruleAi : C1[x1, . . . , xm]→ C2[x1, . . . , xm]
where C1[x1, . . . , xm]σ = C1[t1, . . . , tn] and C2[x1, . . . , xm]σ = C2[t1, . . . , tn] for
some σ. Since root symbol in 〈C2〉 is of the form 〈f, q〉fin, we have the transition

C[C2[t1, . . . , tn]]
∗−−→
Ai
C[q] ∗−−→

Ai
qf for some q ∈ Si and qf ∈ Qf

i from Lemma 9.

Hence we have C[C2[t1, . . . , tn]] −→R C[C1[t1, . . . , tn]]. Here, we can easily obtain

the production 〈C〉λ[〈C2〉[〈t1〉, . . . , 〈tn〉]]
∗−−→
G∗
C[C2[t1, . . . , tn]]. Thus, there exists

s such that s ∗−→
R
C[C2[t1, . . . , tn]] from the induction hypothesis and we have

s ∗−→
R

t.

If ||C|| = 0, then root symbol in 〈C2〉 is of the form 〈f, q〉λf . In this case, we
can prove similary to the previous case. ⊓⊔

Theorem 1 follows from Lemma 11 and Lemma 12.

C Proof of Proposition 6

We give a detailed proof of Proposition 6, which states that reachability is
NLINSPACE-complete and regular model checking is undecidable for monotonic
and flat CntTRS over unary signatures.

It works by reducing the acceptance (for reachability) and emptiness (for
regular model checking) problems for linear bounded automata (LBA) [20].

Let M = 〈P, Γ, p0, G,Θ〉 be a non-deterministic LBA where P is the set
of states, Γ is an input alphabet containing in particular the left and right
endmarkers ‖: and :‖ are p0 ∈ P is the initial state, G ⊆ P is the set of accepting
states and Θ is the transition relation in P × Γ × P × Γ × {left, right}. The
transition relation Θ is such that M cannot move left from ‖:, cannot move
right from :‖ or print another symbols over ‖: or :‖.

Let Γ ′ = Γ ∪ {ap | a ∈ Γ, p ∈ P} and let us define the unary signature
Σ = Γ ′ ∪ (Γ ′×Θ) ∪ {⊥}, where ⊥ has arity 0 and every other symbol has arity
1. For the sake of simplicity, a term a1(a2(. . . an(⊥))) will be denoted by the
string a1 a2 . . . an.

Every configuration of M will be represented by a term of T (Σ) of the
form ‖:x1 . . . xj−1x

p
jxj+1 . . . xn:‖, where, for each 1 ≤ i ≤ n, xi ∈ Γ \ {‖:, :‖}

is the content of the ith cell of the tape of M, j is the current position of
the head of M and p ∈ P is the current state. In particular, given an input
word x1 . . . xn ∈

(
Γ \ {‖:, :‖}

)∗
, the initial configuration ofM is represented by

‖:xp0

1 x2 . . . xn:‖. We assume indeed wlog that the computation space of M is
limited to the exact size of the input word. We moreover assume wlog that when
M reaches an accepting state, it writes a special blank symbol ♭ ∈ Γ \ {‖:, :‖}
in all the cells of the tape (except the left and right ends), then moves to the
leftmost cell, and finally changes its state to a special state p1 which does not
occur in the left hand of any transition of Θ.

To every transition θ = 〈p, a, p′, b, left〉 in Θ, we associate the four following
monotonic and flat controlled rules

‖:Γ ∗c apΓ ∗:‖ : ap(x)→ 〈ap, θ〉(x)
‖:Γ ∗c 〈ap, θ〉Γ ∗:‖ : c(x)→ 〈c, θ〉(x)
‖:Γ ∗〈c, θ〉 〈ap, θ〉Γ ∗:‖ : 〈ap, θ〉(x)→ b(x)

‖:Γ ∗〈c, θ〉 bΓ ∗:‖ : 〈c, θ〉(x)→ cp
′

(x)

We use here for SA a simplified notation with regular expressions, assuming that
the SA selects the position of the only rewritable letter in the expression.

Similarly, to every transition θ = 〈p, a, p′, b, right〉 in Θ, we associate the
following controlled rules

‖:Γ ∗apc Γ ∗:‖ : ap(x)→ 〈ap, θ〉(x)
‖:Γ ∗〈ap, θ〉 c Γ ∗:‖ : c(x)→ 〈c, θ〉(x)
‖:Γ ∗〈ap, θ〉 〈c, θ〉Γ ∗:‖ : 〈ap, θ〉(x)→ b(x)

‖:Γ ∗ b 〈c, θ〉Γ ∗:‖ : 〈c, θ〉(x)→ cp
′

(x)

Let R be the CntTRS containing all the controlled rewrite rules associated to
the transitions of Θ. It is easy to show that R simulates the moves ofM, and
that only the correct moves ofM are simulated by R.

Therefore, with the above hypotheses,M will accept the initial word x1 . . . xn

iff ‖:xp0

1 x2 . . . xn:‖ −−→
∗

R
‖: ♭p1 ♭ . . . ♭

︸ ︷︷ ︸

n−1

:‖ and the language ofM is empty iff

R∗
(
‖:((Γ \ {‖:, :‖})× P) (Γ \ {‖:, :‖})∗ :‖

)
∩ ‖: ♭p1 ♭∗:‖ = ∅.

D Proof of Theorem 3

We give below a detailed proof of Theorem 3, stating that regular model-checking
is decidable in EXPTIME for linear and right-shallow recursive pCntTRS.

Given a right-shallow and linear recursive pCntTRS R and the language
L ⊆ T (Σ) of a TA AL = 〈QL, FL, ∆L〉, the proof is the construction of an
alternating tree automata with epsilon-transitions (ε-ATA) A′ recognizing the
rewrite closure R∗(L).

Intuitively, an alternating tree automata A is a top-down tree automaton
that can spawn in several copies during computation on a term t. At every
computation step, there are several copies of A in different positions of t, each
copy in its own state. Initially, there is one copy of A in its initial state at the
root of t. Then, the copies can be propagated down to the leaves step by step.

Formally, an alternating TA with ε-transitions (ε-ATA) over a signature Σ
is a tuple A = 〈Q, q0, δ〉 where Q is a finite set of states, q0 ∈ Q is the initial
state and δ is a function which associates to every state q ∈ Q a disjunction of
conjunctions of propositional predicates of the following form

– a ∈ Σ,

– 〈q′, ε〉, for q′ ∈ Q \ {q},
– 〈q′, i〉, for q′ ∈ Q and 1 ≤ i ≤ m where m is the maximal arity of a symbol

in Σ.

We say that a set P of predicates as above satisfies a disjunction of conjunctions
D, denoted by P |= D, if either D is the empty disjunction or D = C1∨ . . .∨Ck,
for k ≥ 1, and there exists one j, 1 ≤ j ≤ k, such that every propositional
predicate in the conjunction Cj belongs to P .

A run of A on t ∈ T (Σ) is a function ρ from Pos(t) into 2Q such that for all
position p ∈ Pos(t), with t(p) = a ∈ Σn, n ≥ 0, and for all state q ∈ ρ(p), it
holds that

a, 〈ρ(p.1), 1〉, . . . , 〈ρ(p.n), n〉, 〈ρ(p), ε〉 |= δ(q)

where 〈S, p〉 is a notation for all the predicates 〈q, p〉 with q ∈ S.

The language L(A) of A is the set of terms t ∈ T (Σ) on which there exists a
run ρ of A such that q0 ∈ ρ(ε) (terms recognized by A).

Given an ε-ATA A = 〈Q, q0, δ〉, one can build a TA A′ = 〈2Q, {S ⊆ Q | q0 ∈
S}, ∆〉 where∆ contains all the TA transitions of the form a(S1, . . . , Sn)→ S, for
a ∈ Σn, S1, . . . , Sn, S ⊆ Q such that for all q ∈ S, a, 〈S1, 1〉, . . . , 〈Sn, n〉, 〈S, ε〉 |=
δ(q). With these definitions, it is easy to see that every run of A on t is also a
run of A′ on t, and reciprocally, hence L(A′) = L(A).

On the other hand, given a TA A = 〈Q,F,∆〉, one can construct an ε-ATA

A′ = 〈Q ∪ {q0}, q0, δ〉, with q0 /∈ Q, δ(q0) =
∨

q∈F

〈q, ε〉, and for all q ∈ Q,

δ(q) =
∨

a(q1,...,qn)→q∈∆

(a ∧ 〈q1, 1〉 ∧ . . . ∧ 〈qn, n〉)

We will now construct an ε-ATA A′ recognizing the rewrite closure R∗(L).
Let sr(R) be the set of ground direct subterms of the rhs of rules of R. For
each r ∈ sr(R), we construct a TA Ar = 〈Qr, Fr, ∆r〉 such that L(Ar) = {r}.
It is defined by Qr = Pos(r), Fr = {ε} and ∆ = {a(p.1, . . . , p.n) → p | p ∈
Pos(r), r(p) = a ∈ Σn}.

Let A′r be the ε-ATA associated to Ar as above. Let A′L = 〈QL, q0, δL〉 be
the ε-ATA associated to AL and for each controlled rule C : ℓ → r of R, let C′

be the ε-ATA associated to C. We assume wlog that all the automata defined
above have disjoint state sets. We will construct incrementally a finite sequence
of ε-ATA A′0, . . . ,A

′
k whose last element A′k recognizes R∗(L).

The first ε-ATA of the sequence, A′0 = 〈Q0, q0, δ0〉 is defined as the disjoint
union of the ε-ATAs A′L, all the A

′
r for r ∈ sr(R), and all C′, for C prefix SA

controlling a rule of R. Every other A′i in this sequence will be 〈Q0, q0, δi〉, where
the transition function δi is defined as follows.

We introduce a notation that will be useful for the construction of the δi. Let
t = a(t1, . . . , tn) be a ground term of T (Σ ∪Q), where n ≥ 0 and the symbols of
Q are assumed of arity 0. We write t |=i q if we are in one of the following cases

δi(q) = φ1 ∨ φ2 and t |=i φ1 or t |=i φ2

δi(q) = φ1 ∧ φ2 and t |=i φ1 and t |=i φ2

δi(q) = 〈q
′, ε〉 and t |=i q

′

δi(q) = 〈q′, j〉, with 1 ≤ j ≤ n and tj |=i q
′

δi(q) = a.

Assume that we have constructed all the functions up to δi, and let us define
δi+1. If there is a linear controlled rule C : ℓ → b(r1, . . . , rm) in R, where every

ri is either a variable or a ground term of T (Σ), and a substitution σ from X
into Q grounding for ℓ, for all state q ∈ Q such that ℓσ |=i q, let

δi+1(q) = δi(q)∨
(
b∧

∧

i∈N

〈qri , i〉∧
∧

j∈V

〈rjσ, j〉∧〈qs, ε〉
)
, δi+1(q

′) = δi(q
′) for all q′ 6= q

where N = {i ≤ m | ri ∈ T (Σ)}, V = {j ≤ m | rj ∈ X}, and qs is the unique
selection state of the ε-ATA C′ associated to C.

If there is a linear controlled rule C : ℓ → x in R, where x ∈ X , and a
substitution σ from X into Q grounding for ℓ and such that ℓσ |=i q then let

δi+1(q) = δi(q) ∨ 〈qs, ε〉, δi+1(q
′) = δi(q

′) for all q′ 6= q

where qs is the unique selection state of the ε-ATA C′ associated to C.
The number of conjunctions that can be added to a δi(q) in the above construc-
tion is bounded. Assuming that we do not add twice the same conjunction, the
process will terminate with a fixpoint A′k = A′. The size of A′ is polynomial in
the sizes of AL and R. It can be shown that L(A′) ⊆ R∗(L) by induction on the
multiset of indexes i of the transition functions δi used in a run of A′ on a term,
and that L(A′) ⊇ R∗(L) by induction on the length of a rewrite sequence.

It follows that there exists a TA A whose size is exponential in the size of A′

and such that L(A) = L(A′) = R∗(L), and hence we can decide the problem of
regular model checking for R in exponential time.

Example 6. Let us come back the recursive pCntTRS R of Example 5. The
transitions of the prefix SA C1 and C2 for control in R are explicitly the following
(their final states are respectively q12 and q24)

C1 : ⊥ → q1s | q
1
0 , f(q

1
0)→ q1s | q

1
0 , a(q

1
s)→ q11 , a(q

1
1)→ q12 (f ∈ {a, b, c, d})

C2 : ⊥ → q2s | q
1
0 , f(q

2
0)→ q2s | q

2
0 , a(q

2
s)→ q21 , a(q

1
1)→ q22 , a(q

2
2)→ q23 , a(q

2
3)→ q24

The associated ε-ATA C′1 and C′2 have the following transition functions

δ1 : q12 7→ a ∧ 〈q11 , 1〉, q
1
1 7→ a ∧ 〈q1s , 1〉, q

1
s 7→ ⊥ ∨

∨

f=a,b,c,d

(f ∧ 〈q10 , 1〉),

q10 7→ ⊥ ∨
∨

f=a,b,c,d

(f ∧ 〈q10 , 1〉)

δ2 : q24 7→ a ∧ 〈q23 , 1〉, q
2
3 7→ a ∧ 〈q22 , 1〉, q

2
2 7→ a ∧ 〈q21 , 1〉, q

2
1 7→ a ∧ 〈q2s , 1〉,

q2s 7→ ⊥ ∨
∨

f=a,b,c,d

(f ∧ 〈q20 , 1〉), q20 7→ ⊥ ∨
∨

f=a,b,c,d

(f ∧ 〈q20 , 1〉)

Let us consider the initial language L = {aaaac}, recognized by the ε-ATA A′L
with the following transition function

δL : q5 7→ a ∧ 〈q4, 1〉, q4 7→ a ∧ 〈q3, 1〉, q3 7→ a ∧ 〈q2, 1〉, q2 7→ a ∧ 〈q1, 1〉, q1 7→
c ∧ 〈q0, 1〉, q0 7→ ⊥.

The transition function δ0 in the above construction is the union of δ1, δ2 and
δL. It holds that a(a(q1)) |=0 q3. Hence, with the first rule of R, we can let

δ1(q3) = δ0(q3) ∨
(
b ∧ 〈q1, 1〉 ∧ 〈q

1
s , ε〉

)

Similarly, a(a(q2s)) |=1 q22 , and we can let δ2(q
2
2) = δ0(q

2
2) ∨

(
b ∧ 〈q2s , 1〉 ∧ 〈q

1
s , ε〉

)
.

Moreover, c(q0) |=2 q1, and with the second rule of R, we can let

δ3(q1) = δ0(q1) ∨
(
d ∧ 〈q0, 1〉 ∧ 〈q

2
s , ε〉

)

With these transitions functions, we have the following runs for 2 descendants
of L

a a b c ⊥
{

q5

q12

} {

q4

q11

} {

q3

q1s

} {

q1

q10

} {

q0

q10

}
a a b d ⊥

q5

q24
q12

q4

q23
q11

q3

q22
q1s

q1

q2s
q10

q0

q20
q10

automaton for the initial term aaaac

q5 ←−
a

q4 ←−
a

q3 ←−
a

q2 ←−
a

q1 ←−
c

q0 ←−−
⊥

selection automaton A1

u2 ←−
a

u1 ←−
a

us ←−−−
⊥,Σ

u0 ←−−
Σ

u0

(last transition is a loop)
the sequence of transitions q3 ←−

a
q2 ←−

a
q1 matches the lhs of the first

rewrite rule A1 : aa → b, and we add the alternating transition: q3 ∧ us ←−
b

q1.
(the conjunction with us simulates the recursive control)

selection automaton A2

v4 ←−
a

v3 ←−
a

v2 ←−
a

v1 ←−
a

vs ←−−−
⊥,Σ

v0 ←−−
Σ

u0

the sequence of transitions v2 ←−
a

v1 ←−
a

vs matches the lhs of the first rewrite

rule A1 : aa→ b, and we add the alternating transition: v2 ∧ us ←−
b

vs.
the transition q1 ←−

c
q0 matches the lhs of the second rewrite rule A2 : c→ d,

and we add the alternating transition: q1 ∧ vs ←−
d

q0.
with these transitions, we have the following runs for 2 descendants of aaaac

a a b c ⊥
{

q5

u2

} {

q4

u1

} {

q3

us

} {

q1

u0

} {

q0

u0

}
a a b d ⊥

q5

v4

u2

q4

v3

u1

q3

v2

us

q1

vs

u0

q0

v0

u0

