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Abstract. We give a constructive proof of Kruskal’s Tree Theorem—
precisely, of a topological extension of it. The proof is in the style of
a constructive proof of Higman’s Lemma due to Murthy and Russell
(1990), and illuminates the role of regular expressions there. In the pro-
cess, we discover an extension of Dershowitz’ recursive path ordering to
a form of cyclic terms which we call µ-terms. This all came from recent
research on Noetherian spaces, and serves as a teaser for their theory.

1 Introduction

Kruskal’s Theorem [33] states that the homeomorphic embedding ordering on
finite trees is a a well quasi-ordering. This is a deep and fundamental theorem in
the theory of well quasi-orderings. The aim of this paper is to give a constructive,
that is, an intuitionistic proof of this fact1.

I will explain what all that means in Section 2. I should probably admit right
away that I have not actively looked for such a proof. It came to me in 2010 as
a serendipitous by-product of research I was doing on Noetherian spaces, seen
as a generalization of well quasi-ordered spaces. The result is, hopefully, a nice
piece of mathematics. It is also an opportunity for me to explain various related
developments which I would dare to say have independent interest.

I would like to issue a word of warning, though. The constructive proofs of
the topological Higman and Kruskal theorems I am giving here were the first
I found. The non-constructive proofs of [29, Section 9.7] came second. These
are the ones I chose to publish, for good reason: once cast in formal language,
the original constructive proofs are terribly heavy. I have therefore opted for
a somewhat lighter presentation here, which stresses the beautiful core of the
proof, at the cost at being somewhat sketchy in Sections 4 (Higman) and 5
(Kruskal). And this core is: these theorems reduce to questions of termination
problems, which one can solve by using multiset orderings (Higman), resp. an
extension of Dershowitz’ multiset path ordering (Kruskal).

1 I will avoid any debate of what intuitionism or constructivism is, and assume the
logic of any of the modern proof assistants based on intuitionistic type theory, such
as Coq [6]. The full calculus of inductive constructions with universes is definitely
not needed, though. I only need first-order intuitionistic logic, plus a few inductively
defined predicates and relations, and their associated induction principles.
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2 Well quasi-orderings, Noetherian spaces

A quasi-ordering on a set X is a reflexive and transitive binary relation ď on X.
Given a subset A of X, we write ÒA for its upward closure ty P X | Dx P A ¨x ď
yu, and call A upward closed if and only if A “ ÒA. A basis of an upward closed
subset E is any set A such that E “ ÒA; E has a finite basis if and only if one
can take A finite. We define the downward closure ÓA, and downward closed
subsets, similarly. We also write ě for the converse of ď, ă for the strict part of
ď (x ă y iff x ď y and not y ď x), ą for that of ě.

There are many equivalent definitions of a well quasi-ordering (wqo for short),
of which here are a few:

1. every infinite sequence pxnqnPN in X is good, namely, there are two indices
m ă n with xm ď xn;

2. every infinite sequence pxnqnPN in X is perfect, i.e., has an infinite ascending
subsequence xn0 ď xn1 ď . . . ď xni ď . . . (with n0 ă n1 ă . . . ă ni ă . . .);

3. ď is well-founded (there is no infinite descending sequence of elements x0 ą
x1 ą . . . ą xn ą . . .) and has no infinite antichain (an infinite sequence of
pairwise incomparable elements);

4. every upward closed subset U has a finite basis;
5. every ascending chain U0 Ď U1 Ď . . . Ď Un Ď . . . of upward closed subsets is

stationary (i.e., all Uns are equal from some rank n onwards);
6. every descending chain F0 Ě F1 Ě . . . Ě Fn Ě . . . of downward closed subsets

is stationary;
7. the strict inclusion ordering Ă is well-founded on downward closed subsets,

i.e., there is no infinite descending chain F0 Ą F1 Ą . . . Ą Fn Ą . . . of
downward closed subsets.

The latter shows that being a wqo is merely a termination property, only one
not on words, or on terms, as would be familiar in computer science [13], but
rather on downward closed subsets.

There are many useful wqos in nature: N with its natural ordering ď, any
finite set, any finite product of wqos (in particular Nk with its componentwise
ordering: this is Dickson’s Lemma [18]), any finite coproduct of wqos, the set of
finite words X˚ over a well-quasi-ordered alphabet X (with the so-called word
embedding quasi-ordering: this is Higman’s Lemma [30]), the set of finite trees,
a.k.a., first-order terms, T pXq over a well-quasi-ordered signature X (with the
so-called tree embedding quasi-ordering: this is Kruskal’s Theorem [33]), notably.

There are also more and more applications of wqo theory in computer science.



Termination. An early application is Nachum Dershowitz’ discovery of the mul-
tiset path ordering on terms. This is a strict ordering ămpo on terms that is
well-founded, i.e., such that there is no infinite ąmpo-chain t0 ą

mpo t1 ą
mpo

. . . ąmpo tn ą
mpo . . .: to show that a rewrite system R terminates, it is enough

to show that ` ąmpo r for every rule `Ñ r in R. Dershowitz’ initial proof ([12],
see also [11]) rested on the remark that ąmpo is a simplification ordering: if t em-
beds into s, then t ďmpo s. Given any infinite ąmpo-descending chain as above,
by Kruskal’s Theorem one can find i ă j such that ti embeds into tj . It follows
that ti ďmpo tj , contradicting ti ąmpo tj . This uses characterization 1 of wqos.

This simple argument definitely relies on Kruskal’s deep result. The realiza-
tion that Dershowitz’ theorem required much less logical clout [26, 8] came to me
as both a relief and a disappointment : I’ll recapitulate the elementary argument
in Section 3. I’ll also give a slight extension of this elementary argument to a
form of cyclic terms I have decided to call µ-terms. This will be instrumental in
the rest of the paper, and may even be useful in the rewriting community.

Minimal patterns. A second application arises from characterization 4. Given
an upward closed language L of elements in a wqo X, one can test whether
x P L by just checking finitely many equalities x1 ď x, . . . , xn ď x. Indeed,
property 4 states that one can write L as Òtx1, . . . , xnu. For example, this is how
van der Meyden shows that fixed monadic queries to indefinite databases can
be evaluated in linear time in the size of the database [44], where x, x1, . . . , xn
are (encodings of models as) finite sequences of finite sets of logical atoms. The
query L defines the minimal patterns x1, . . . , xn to be checked, in the embedding
quasi-ordering on words. That the latter is a wqo is Higman’s Lemma, and the
fact that its standard proofs are non-constructive implies the curious fact that
one cannot a priori compute x1, . . . , xn from L. That is, a linear time algorithm
exists for each L. . . but what is it? Ogawa [40] solves the issue by extracting the
computational content of Murthy and Russell’s constructive proof of Higman’s
Lemma [37]. This computes the values x1, . . . , xn, hence derives a linear-time
algorithm for the query L, from L given as input.

WSTS. Another application is in verification of well-structured transition sys-
tems (WSTS) [1, 25]. A WSTS is a (possible infinite-state) transition system
pX,Ñq, with a wqo ď of the set of states X, satisfying a monotonicity property.
For simplicity, we shall only consider strong monotonicity: if s Ñ s1 and s ď t,
then there is a state t1 such that tÑ t1 and s1 ď t1.

Examples of WSTS abound. Petri nets are WSTS whose state space is Nk,
where k is the number of places. Affine nets [24] generalize these and many other
variants, and are still WSTS on Nk. Lossy channel systems [3] are networks of
finite-state automata that communicate over FIFO queues. They are WSTS
whose state space is

śm
i“1Qi ˆ

śn
j“1Σ

˚
j , where Qi is the finite state space of

the ith automaton, and Σj is the finite alphabet of the jth queue. Let us also
cite data nets [34], BVASS [46, 10], and recent developments in the analysis of
processes [36, 4, 47, 42], which require tree representations of state.



The simple structure of a WSTS implies that coverability is decidable in
every effective WSTS. This is the following question: given a state s P X and
an upward closed subset U of X, is there a state t P U that is reachable from
s, i.e., such that s Ñ˚ t, where Ñ˚ is the reflexive-transitive closure of Ñ? By
effective WSTS, we mean that we can represent states on a computer (which
implies that every upward closed subset U is representable as well, as a finite set
E, by property 4), that ď is decidable, and that the set of one-step predecessors
PrepUq “ ts P X | Dt P U ¨ s Ñ tu of a state t is computable. This is the case
of all WSTS mentioned above. Inclusion of upward closed subsets is decidable,
since ÒE1 Ď ÒE2 if and only if for every x P E1, there is a y P E2 with y ď x.
That coverability is decidable is almost trivial: using a while loop, compute the
successive sets U0 “ U , Un`1 “ Un Y PrepUnq, and stop when Un`1 Ď Un;
this must eventually happen by property 5. Then there is a state in U that is
reachable from s if and only if s P Un.

In 1969, Karp and Miller [32] devised another way (historically, the first one)
of deciding coverability. They built a so-called coverability tree, and showed that
it was finite and effectively constructible by resorting to Dickson’s Lemma, plus
a few additional tricks. One of the tricks they required was to extend the state
space from Nk to Nkω, where Nω is N plus a fresh top element ω, the limit of any
ever growing sequence. Although it would seem natural that the construction
would generalize to every WSTS, progress was slow. One of the blocking factors
was to define a completion pX of a well quasi-ordered state space X, so that Karp
and Miller’s construction would adapt.

By analogy with Nk, pX should be X with some limit points added, and this
naturally calls for topology. Alain Finkel once asked me whether there would be
a notion of completion from topology that could serve this purpose. We realized
that the sobrification of X (see [29, Section 8.2]) was the right candidate, and
this led us to a satisfactory extension of Karp and Miller’s procedure to all WSTS
[20, 21, 23].

Noetherian spaces. In the process, going to topology begged the question whether
there is a topological characterization of wqos. I realized in [27] that this would
be the notion of Noetherian space, invented in algebraic geometry in the first
half of the 20th century. A Noetherian space is a space where every ascending
chain of opens is stationary: comparing this with property 5, we have merely
replaced “upward closed” by “open”.

Every quasi-ordered set can be equipped with the so-called Alexandroff topol-
ogy, whose opens are just the upward closed subsets. Property 5 immediately
implies that every wqo is Noetherian, once equipped with its Alexandroff topol-
ogy. The framework of Noetherian spaces also allows us to extend the WSTS
methodology to more kinds of transition systems. I have explained this in [28],
applying this to two examples: a certain kind of multi-stack automata, and con-
current polynomial programs manipulating numerical values (in R) that com-
municate through discrete signals over lossy channels. The decidability results
that I’m stating in these settings are far from trivial, but are low-hanging fruit
once we have the theory of Noetherian spaces available.



By “theory of Noetherian spaces”, I do not mean the one we inherit from
algebraic geometry, rather some natural results that arise from cross-fertilization
with wqo theory. (See [29, Section 9.7] for a complete treatment.) Of interest to
us are the following generalizations of Higman’s Lemma and Kruskal’s Theorem,
respectively:
Topological Higman Lemma [29, Theorem 9.7.33]: if X is Noetherian, then

the space of finite words X˚ with the word topology is Noetherian, too.
Topological Kruskal Theorem [29, Theorem 9.7.46]: ifX is Noetherian, then

set space of finite trees T pXq with symbol functions taken from X is Noethe-
rian under the tree topology.

We define the word and tree topologies as follows. Intuitively, think of an open
set U as a test—namely, x passes the test if and only if x P U . In the word
topology, we wish the following to be a test: given tests U1, . . . , Un on letters
(open subsets of X), the word w passes the test X˚U1X

˚ . . . X˚UnX
˚ if and

only if w contains a (not necessarily contiguous) subword a1a2 . . . an with each
ai in Ui. In the tree topology, the basic tests are whether a given tree has an
embedded subtree of a given shape, and where each function symbol is in a given
open subset of X (possibly different at each node). In each case, these tests form
bases for the required topologies, i.e., the opens are all unions of such tests.

The proofs I give of these theorems in [29, Section 9.7] are elegant, yet terribly
topological, and rest on many results that require classical logic, and the Axiom
of Choice. Instead, we shall use the following remark.

Call a closed subset F irreducible if and only if, for every finite family of
closed subsets F1, . . . , Fn, if F Ď F1Y . . .YFn, then F Ď Fi for some i already.
By [29, Theorem 9.7.12], a space X is Noetherian if and only if: pÓq the strict
inclusion relation Ă is well-founded on the set SpXq of irreducible closed subsets
of X (SpXq happens to be the sobrification of X we alluded to above), pT q the
whole space X can be written as the union of finitely many irreducible closed
subsets of X, and pW q given any two irreducible closed subsets F1, F2 of X,
F1 X F2 can be written as the union of finitely many irreducible closed subsets
of X. It follows that every closed subset will be a finite union of irreducible
closed subsets, and that the strict inclusion ordering Ă will be well-founded on
closed subsets. The latter generalizes property 7, since in a quasi-ordered set,
the (Alexandroff) closed sets are exactly the downward closed sets.

This leads us to the following proof plan:
(A) Find concrete representations of all irreducible closed subsets. This pro-

gramme was initiated in [20] and carried out in [22], where we call the latter
S-representations. In both the word and tree cases, our S-representations are
certain forms of regular expressions, over words, or over trees. On words, this
generalizes the products and the semi-linear regular expressions (SRE) of [2];
on trees, no prior work seems to have existed. These are effective representa-
tions: we can decide inclusion (in polynomial time, modulo an oracle deciding
inclusion of irreducible closed subsets of letters, resp., of function symbols),
and we can compute finite intersections of S-representations (in polynomial
time again, provided the number of input representations is bounded).



(B) Show directly that strict inclusion is well-founded on S-representations. This
will establish property pÓq. Properties pT q and pW q are mostly obvious, since
we even have algorithms to compute finite intersections.

In the case of the topological Higman Lemma (on words), we shall obtain a
re-reading of Murthy and Russell’s celebrated constructive proof of Higman’s
Lemma ([37]; see also [40], footnotes 6 and 7, for fixes to the definition of se-
quential regular expression). Our S-representations will be their sequential reg-
ular expressions, seen as the result of building SREs (originating in [2]) over
a cotopology. Our constructive proof of Kruskal’s Theorem, and indeed of its
topological generalization, is in the same spirit, and we believe it provides a
satisfactory answer to Murthy and Russell’s final question [37].

Intuitionism. One difficulty with finding intuitionistic proofs in the theory of
wqos is that properties 1–7 are not constructively equivalent. Notably, 2 is intu-
itionistically strictly stronger than 1, as Veldman notes [45, 1.3]. Indeed, 2 fails
on X “ N in an intuitionistic setting, while 1 is constructively valid. Similarly,
4 fails on N2, intuitionistically, even for decidable subsets of N2 [45, 1.2].

Following Murthy and Russell, a constructive wqo is defined by the following
reformulation of property 1: (1’) the opposite of the prefix ordering on bad finite
sequences of words in X˚ is well-founded. A finite sequence x0, x1, . . . , xn is
bad iff it is not good, that is, if xi ę xj for no i ă j. The well-foundedness
requirement means that one cannot extend finite sequences (adding xn`1, xn`2,
etc.) indefinitely, keeping them all bad.

Murthy and Russell actually proved property 7. They derived (1’) from 7,
assuming ď decidable in the constructive sense that @x, y P X ¨ x ď y _  px ď
yq is provable. All the other constructive proofs I know of Higman’s Lemma
prove (1’), some of them directly [41, 7, 5]; the latter two do not require ď to
be decidable. There are fewer intuitionistic proof of Kruskal’s Theorem. One is
due to Monika Seisenberger [43], who gives a direct proof of (1’) on trees, based
on a intuitionistic variant of Nash-Williams’ minimal bad sequence argument
[38]. She requires the quasi-ordering ď on function symbols to be decidable.
Wim Veldman’s proof [45] does not make this requirement, but models tree
embedding with so-called at-most-ternary relations rather than using a binary
relation ď. He shows that Kruskal’s original proof [33] can be made constructive,
replaying the needed part of Ramsey theory in intuitionistic logic. Curiously, our
proofs of the topological versions of Higman’s Lemma and Kruskal’s Theorem
are entirely constructive, and we only need to assume ď decidable to deduce the
ordinary, order-theoretic versions of these results from the topological versions.

3 Path Orderings

Path orderings (mpo, lpo, rpo) have been an essential ingredient of termination
proofs for rewrite systems since their inception by Nachum Dershowitz in 1982
[12]. We shall concentrate on Dershowitz’ original multiset path ordering (a.k.a.,
mpo). He proved that the mpo was well-founded as a consequence of Kruskal’s



Theorem. We give an elementary, inductive, intuitionistic proof instead. This is
based on a paper I wrote in 2001 [26]. Coupet-Grimal and Delobel [8] imple-
mented a similar proof in Coq, with a proof of the Dershowitz-Manna Theo-
rem (which I had not given, but Nipkow had [39]—see below). Dershowitz and
Hoot’s earlier proof that the general path ordering is well-founded [15] is non-
constructive but elementary as well. Even earlier, Lescanne had already given an
inductive proof that the mpo was well-founded [35, Theorem 5]; his proof relies
on Zorn’s Lemma (op.cit., Lemma 5), and ours will be simpler anyway, but his
notion of decomposition ordering is illuminating.

Let X be a set with a binary relation ă on it. We again write ą for the
converse of ă. One thinks of ă as a strict ordering, but this is not needed. What
will be important is that ă is well-founded : classically, this means that there is
no infinite ą-chain x1 ą x2 ą . . . ą xn ą . . . Constructively, it is better to say
that ă is well-founded iff every element is ă-accessible, where ă-accessibility is
the predicate defined inductively by (i.e., the least predicate such that):

every y ă x is ă-accessible

x is ă-accessible

The set of ă-accessible elements is traditionally called the well-founded part
of ă, i.e., the set of elements that cannot start an infinite ą-chain. Since ă-
accessibility is defined inductively, we obtain the following useful principle of
ă-induction: to prove that a property P holds of every ă-accessible element x,
it is enough to show it under the additional assumption that P holds of every
y ă x (the induction hypothesis). Another useful principle is ă-inversion: if x is
ă-accessible, and x ą y, then y is ă-accessible as well.

Write t|x1, . . . , xn|u for the (finite) multiset consisting of the elements x1, . . . ,
xn P X. Let HHH be the empty multiset, and Z denote multiset union. We use
the letters M , M 1, . . . , for multisets. Intuitionistically, we assume an inductive
definition of multisets, e.g., as finite lists, and we will reason up to permutation.
(This actually incurs some practical difficulties in proof assistants such as Coq,
which we shall merrily gloss over.) On the set MpXq of multisets of elements of
X, we define the multiset extension ămul of ă, inductively, by:

for every i (1 ď i ď n), x ą xi

M Z t|x|u ąmul M Z t|x1, . . . , xn|u

That is, we replace some element x by arbitrarily many smaller elements x1, . . . ,
xn. The following Dershowitz-Manna Theorem [17] is crucial.

Lemma 1 (Dershowitz-Manna, Nipkow). For all ă-accessible elements x1,
. . . , xn P X, t|x1, . . . , xn|u is ămul-accessible. In particular, if ă is well-founded
on X, then ămul is well-founded on MpXq.

Proof. We give Nipkow’s intuitionistic proof [39]. Let Acc denote the set of ămul-
accessible multisets. We prove that t|x1, . . . , xn|u P Acc by induction on n. The
case n “ 0 is obvious, while the induction step consists in showing that, for



every ă-accessible x: p˚q for everyM P Acc,M Zt|x|u P Acc. Fix an ă-accessible
x, and use ă-induction. This provides us with the induction hypothesis: paq for
every y ă x, for every M P Acc, M Z t|y|u P Acc. To prove p˚q, we show by
ămul-induction on M P Acc that: p˚˚q M Z t|x|u P Acc. This gives us the extra
induction hypothesis pbq: for every M 1 ămul M , M 1Zt|x|u P Acc. It now remains
to show that paq and pbq imply p˚˚q. By definition of ămul-accessibility, this
means showing that every multiset M1 ămul M Z t|x|u is in Acc. There are two
cases: either M1 “ M 1 Z t|x|u for some M 1 ămul M , and the claim follows from
pbq; or M1 “ M Z t|x1, . . . , xm|u with x ą x1, . . . , xm, then the claim follows by
induction on m, using pbq in the base case and paq in the induction step. [\

It follows that, under the same assumptions, the transitive closure ă`mul of ămul
is well-founded: for any relation R, R-accessibility and R`-accessibility coincide.

Let now Σ be a signature, i.e., just a set whose elements will be understood
as function symbols, with arbitrary, finite arity. The terms s, t, u, v, . . . , are
inductively defined as tuples fpt1, . . . , tnq of an element f of Σ and of finitely
many terms t1, . . . , tn. The base case is obtained when n “ 0. There are no
variables here, so our terms are the ground terms considered in the literature
[16]. This is no loss of generality, as one can encode general terms as ground
terms over a signature that includes all variables, understanding the variable
term x as the application xpq to no argument. However, please do not confuse
the latter (free) variables with the (µ-bound) variables that we introduce later.

Let « be the relation defined inductively by: fps1, . . . , smq « gpt1, . . . , tnq if
and only if f “ g, m “ n, and there is a permutation π of t1, . . . , nu such that
sπpiq « ti for each i, 1 ď i ď n. This is an equivalence relation, and relates terms
that are equal up to permutations of arguments, anywhere in the term.

Call precedence any binary relation ă on Σ. The multiset path ordering, or
mpo, ămpo is defined inductively (together with an auxiliary relation !) by:

Di ¨ si
ą
„

mpo t
pSubq

fps1, . . . , smq ą
mpo t

fps1, . . . , smq " gpt1, . . . , tnq
@j ¨ fps1, . . . , smq ą

mpo tj
pGtq

fps1, . . . , smq ą
mpo gpt1, . . . , tnq

where s ą„
mpo t abbreviates s ąmpo t or s « t, and here are the clauses for !:

f ą g
p" Funq

fps1, . . . , smq " gpt1, . . . , tnq

t|s1, . . . , sm|u pą
mpoq`mul t|t1, . . . , tn|u

p" Argsq
fps1, . . . , smq " fpt1, . . . , tnq

In other words, ! is the lexicographic product of ă and of pămpoq`mul. The
relation ! is a lifting (a notion called as such in [19], and which one can trace
back to [31]), meaning that it is well-founded on the set Acc of terms of the form
fps1, . . . , smq with f ă-accessible and s1, . . . , sm ămpo-accessible. Beware that
this does not mean that any "-chain starting from a term fps1, . . . , smq with
f ă-accessible and s1, . . . , sm ămpo-accessible is finite. It only means that any
infinite such chain must eventually exit Acc, i.e., reach a term gpt1, . . . , tnq where
g is not ă-accessible, or where some tj is not ămpo-accessible. Intuitionistically,



we define the restriction !
|Acc of ! to Acc by t !

|Acc s iff t P Acc and s P Acc
and t ! s; and we note that every term in Acc is !

|Acc-accessible.
Replacing " by other liftings would yield similar orderings: if we compare

arguments lexicographically, for example, we would get the lexicographic path
ordering (lpo), and mixing the two kinds yields the recursive path ordering (rpo)
[13]. The following theorem is intuitionistic.

Proposition 1. Every term whose function symbols are all ă-accessible is ămpo-
accessible. In particular, if ă is well-founded, then ămpo is well-founded on
terms.

Proof. In the course of the proof, we shall need to observe that: p˚q for every
ămpo-accessible term u, for every term t such that u « t, t is ămpo-accessible.
This requires us to show first that if u « t and t ąmpo s, then u ąmpo s, an easy
induction on the definition of ămpo. We show p˚q by ămpo-induction on u, i.e.,
that for every t such that u « t, for every s ămpo t, s is ămpo-accessible; the
assumptions imply s ămpo u, and the claim follows by induction hypothesis.

Let Acc be the set of ămpo-accessible terms, andW be the set of terms whose
function symbols are all ă-accessible. As above, we define Acc as the set of terms
of the form fpt1, . . . , tnq such that f is ă-accessible and whose arguments t1, . . . ,
tn are in Acc. We show that every t PW is in Acc, by structural induction on t.
This means showing that for every s P Acc, s is in Acc.

We first give a classical argument, in the hope that it
will be clearer. We shall need to use the immediate sub-
term relation Ÿ, defined inductively by gpt1, . . . , tmq Ź
tj for all g, t1, . . . , tm and j. This is a well-founded rela-
tion. Assume there is term s P Acc that is not in Acc. In
other words, the set AccrAcc is non-empty. Since ! is
a lifting, it is well-founded on Acc, hence on AccrAcc:
so there is a !-minimal element s in Acc r Acc. Since
s R Acc, it starts an infinite ąmpo-chain, so s ąmpo t
for some t R Acc. Among these terms t we pick one that
is Ÿ-minimal: writing t as gpt1, . . . , tnq, this assures us
that for every j such that s ąmpo tj , tj P Acc.

Acc r Acc

8

ąmpo

ąmpo
ąmpoąmpo

Ÿ-minimal

8

8

t “ gpt1, . . . , tnq

s “ fps1, . . . , smq

The fact s ąmpo t is obtained by rule pSubq or by rule pGtq. pSubq is out of the
question, though, since that would mean s “ fps1, . . . , smq with some si ą„

mpo t;
but s P Acc implies si P Acc, hence t P Acc, either because si « t, using p˚q,
or because si ąmpo t, using ămpo-inversion: contradiction. So rule pGtq must
have been used: s " t “ gpt1, . . . , tnq with s ąmpo tj for every j. Since s was
chosen "-minimal, t cannot be in AccrAcc, and since t R Acc, t is not in Acc:
so tj R Acc for some j. However, s ąmpo tj together with the fact that t was
Ÿ-minimal implies tj P Acc, a contradiction.

We obtain an intuitionistic proof by replacing minimal counter-examples by
induction principles. We wish to show that for every term s P Acc then s P Acc.
Since ! is a lifting, s P Acc is !

|Acc-accessible, so !|Acc-induction applies and
we obtain the following induction hypothesis: paq for every t ! s, if t P Acc then



t P Acc. Our goal is to prove that s P Acc, i.e., that every t ămpo s is in Acc.
We show this by Ÿ-induction on t “ gpt1, . . . , tnq, which means that we have the
extra induction hypothesis: pbq for every j, if tj ămpo s then tj P Acc. If t ămpo s
was obtained by pSubq, then s “ fps1, . . . , smq with si ą„

mpo t for some i; since
s P Acc, si P Acc hence t P Acc, either by p˚q if si « t, or by ămpo-inversion if
si ą

mpo t. If t ămpo s was obtained by pGtq, then s " t and s ąmpo tj for every
j. By pbq, tj P Acc for every j. Also, s " t implies f ą„ g, and since s P Acc, f is
ă-accessible, hence also g: so t “ gpt1, . . . , tnq is in Acc. By paq, t P Acc. [\

I’m not claiming that the above proof is novel. This is the core of Theorem 1
of [26], later improved by Dawson and Goré [9]. Dershowitz [14] gives a broader
perspective on this kind of results. That its proof is constructive is also one
argument set forth in [26], and, as I’ve said already, this was made precise and
implemented in Coq by Coupet-Grimal and Delobel [8].

I had also argued that the proof technique of [26] extended to prove abstract
termination arguments, some of whose applied to graphs, for example. I’ll de-
velop this now for a new relation on a class of so-called µ-terms, defined by the
following (pseudo-)grammar:

s, t, u, v, . . . ::“ x variables
| fpt1, . . . , tnq applications, f P Σ,n P N
| µx “ s ¨ t iterators.

The iterator µx “ spxq ¨ t should be thought of as some kind of infinite term
. . . sp. . . spsptqq . . .q. The variable x is bound in µx “ s¨t, its scope is s. A term t is
ground if and only if fvptq “ H, where the set fvptq of free variables of t is defined
inductively by fvpxq “ txu, fvpfps1, . . . , smqq “

Ťm
i“1 fvpsiq, fvpµx “ s ¨ s1q “

pfvpsqr txuq Y fvps1q. For instance, µx “ fpxq ¨ gpaq is a ground µ-term.
Again, we give ourselves a precedence ă on Σ. We extend the definition of

« by letting µx “ s ¨ s1 « µx “ t ¨ t1 if and only if s « t and s1 « t1, and x « x
for every variable x. (We make an abuse of notation here and silently assume a
form of α-renaming. A more correct definition would be: µx “ s ¨ s1 « µy “ t ¨ t1

iff srx :“ zs « try :“ zs and s1 « t1, for z a fresh variable. We shall make similar
abuses of notation in rules pµGtµq, pµ!q and pµ!µq below, to avoid clutter.) We
take the same rules defining ămpo and ! as above, and add the following to also
compare variables and iterations, either together or with other terms:

(t ground µ-term)
pV arq

x ąmpo t

s1 ą„
mpo t

pµSubq
µx “ s ¨ s1 ąmpo t

µx “ s ¨ s1 " gpt1, . . . , tnq
@j ¨ µx “ s ¨ s1 ąmpo tj

pµGtq
µx “ s ¨ s1 ąmpo gpt1, . . . , tnq

µx “ s ¨ s1 " µx “ t ¨ t1

µx “ s ¨ s1 ąmpo t1
pµGtµq

µx “ s ¨ s1 ąmpo µx “ t ¨ t1

s ąmpo gpt1, . . . , tnq
pµ!q

µx “ s ¨ s1 " gpt1, . . . , tnq

s ąmpo t
pµ!µq

µx “ s ¨ s1 " µx “ t ¨ t1



The unusual rule pV arq states that every ground µ-term is strictly smaller than
any variable. This allows us to check, for example, that µx “ fpxq ¨ gpaq ąmpo

fpfpfpfpgpaqqqqq, where a is a constant: using pµGtq and pµ!q, this requires us
to check two premises, of which one is fpxq ąmpo fpfpfpfpgpaqqqqq; the latter
follows, using pGtq, from x ąmpo fpfpfpgpaqqqq, and this, in turn, is an instance
of pV arq. We leave the rest of the verification to the reader.

The above rules are probably not the ones one would have imagined. In
particular, it would seem natural to consider µx “ spxq ¨ s1 and spµx “ s ¨ s1q
as equivalent. This would suggest the following alternative to pµGtq: to prove
µx “ spxq ¨ s1 ąmpo t (where t “ gpt1, . . . , tnq, and for simplicity we assume
both sides of the inequality to be ground), prove spµx “ spxq ¨ s1q ąmpo t and
@j ¨ µx “ s ¨ s1 ąmpo tj . Instead of proving spµx “ spxq ¨ s1q ąmpo t, pµGtq
(together with pµ!q) only requires us to prove spxq ąmpo t, a seemingly much
weaker statement, since x is not just greater than or equal to µx “ spxq ¨ s1, but
strictly greater than any ground term by pV arq. Although they are not what
we would imagined at first, these are the rules that arise from our study of the
topological Kruskal Theorem (Section 5).

The following is new, and probably useful in other contexts. Our proof is
intuitionistic. The proof is similar to Proposition 1, or to Theorem 1 of [26], but
we need a few easy additional arguments near the end of the proof.

Theorem 1. Every µ-term whose function symbols are all ă-accessible is ămpo-
accessible. In particular, if ă is well-founded, then ămpo is well-founded on µ-
terms.

Proof. One might think that Theorem 1 is an easy consequence of Proposition 1:
encode µx “ s ¨ s1 as the ordinary term µps, s1q, and the variable x as xpq, and
extend the precedence appropriately. This strategy does not work, as for example
pV arq requires x ąmpo µx “ fpxq¨gpaq. In the encoding, this would force x ąmpo

µpfpxq, gpaqq, which is plainly false, since µpfpxq, gpaqq ąmpo x.
We imitate the proof of Proposition 1. Again, we have: p˚q for every ămpo-

accessible µ-term u, for every µ-term t such that u « t, t is ămpo-accessible.
Define the immediate subterms of a µ-term in the expected way, as follows: the
immediate subterms of gpt1, . . . , tmq are t1, . . . , tn, the immediate subterms of
µx “ s ¨ s1 are s and s1, and variables have no immediate subterms. We need to
define Ÿ slightly differently, inductively, by: piq gpt1, . . . , tmq Ź tj for all g P Σ,
µ-terms t1, . . . , tm and j; piiq x Ź t for every variable x and ground µ-term t;
piiiq µx “ s ¨ s1 Ź s1 (not s!).

We first show that Ÿ is well-founded. This is done in several steps. We first
show that every ground µ-term t is Ÿ-accessible, by induction on t; crucially, if
µx “ s ¨ s1 is ground and µx “ s ¨ s1 Ź s1, then s1 is ground and the induction
hypothesis applies. We then do a secondary induction to establish that every
µ-term is Ÿ-accessible, using the previous claim in the case of variables.

Let Acc be the set of ămpo-accessible µ-terms, and W be the set of µ-terms
whose function symbols are all ă-accessible. Say that a µ-term is head accessible
if and only if it is a variable, an iterator µx “ s ¨ s1 with s head accessible, or an



application fps1, . . . , smq with f ă-accessible. The point is: p:q if s " gpt1, . . . , tnq
and s is head accessible, then g is ă-accessible. This is proved by induction on
the proof of s " gpt1, . . . , tnq; the base case is when s is of the form fps1, . . . , smq,
where necessarily f ě g, and f is ă-accessible since s is head accessible.

We also define Acc as the set of head accessible µ-terms s whose immediate
subterms are all in Acc.

Again, ! is a lifting, namely, every term in Acc is !
|Acc-accessible. This is

proved in two steps. We first show that every variable x is !
|Acc-accessible (vac-

uous: x " t for no µ-term t), and that every application fps1, . . . , smq in Acc is
!
|Acc-accessible: this is by double induction (ă-induction on f , then pămpoq`mul-

induction on t|s1, . . . , sm|u), using the fact that fps1, . . . , smq " t implies that
t “ gpt1, . . . , tnq with f ą g or [f “ g and t|s1, . . . , sm|u pąmpoq`mul t|t1, . . . , tn|u].
We then show that every iterator µx “ s ¨ s1 in Acc is !

|Acc-accessible, by ă
mpo-

induction on s. To do so, we consider the µ-terms t P Acc such that t ! µx “ s¨s1.
Those obtained by rule pµ!q are !

|Acc-accessible by the first step, and those ob-
tained by rule pµ!µq are !

|Acc-accessible by the induction hypothesis.
Let us pause a minute, and observe the following, called ‘Property 1’ in [26].

For all µ-terms s, t, if s ąmpo t then either:

piq s Ź u ą„
mpo t for some µ-term u, or:

piiq s " t and s ąmpo u for every u Ÿ t.

Case piq happens in case s ąmpo t was derived using pSubq, pµSubq, or pV arq.
Case piiq happens in case it was derived using pGtq, pµGtq, or pµGtµq.

We now show that every t P W is in Acc, by structural induction on t. This
means showing that for every s P Acc, s is in Acc. Since ! is a lifting, s P
Acc is !

|Acc-accessible, so !|Acc-induction applies and we obtain the following
induction hypothesis: paq for every t ! s, if t P Acc then t P Acc. Our goal is
to prove that s P Acc, i.e., that every t ămpo s is in Acc. We show this by Ÿ-
induction on t, which means that we have the extra induction hypothesis: pbq for
every u Ÿ t, if u ămpo s then u P Acc. Since t ămpo s, either piq or piiq is true.
If piq holds, then s Ź u ą

„
mpo t, so u P Acc since s P Acc and u Ÿ s; therefore

t P Acc, by p˚q if u « t, by ămpo-inversion if u ąmpo t. So assume piiq. We claim
that t is in Acc. This is trivial if t is a variable. If t is an application gpt1, . . . , tnq
then for each j, tj Ÿ s, so by taking u “ tj in pbq, we obtain that tj is in Acc;
g is ă-accessible since s " gpt1, . . . , tnq, using p:q; so t P Acc. If t is an iterator
µx “ t1 ¨ t2, then pbq only implies that t2 is in Acc. To obtain t1 P Acc, we realize
that we can only have derived s " t by rule pµ!µq, which implies that s is of
the form µx “ s1 ¨ s2 with s1 ąmpo t1: since s P Acc, s1 is in Acc hence t1 is in
Acc by ămpo-inversion. In any case, t is in Acc. Since also t ! s, paq applies, so
that t is in Acc, as desired. [\

4 A constructive proof of Higman’s Lemma

It is time to apply all this and prove the topological Higman Lemma. Given a set
X with a quasi-ordering ď, the embedding quasi-ordering ď˚ on X˚ is the small-



est relation such that x1 ď y1, . . . , xn ď yn imply x1 . . . xn ď w0y1w1 . . . wn´1

ynwn, where w0, w1, . . . , wn´1, wn are arbitrary words in X˚. In other words,
to go down in ď˚, remove some letters and replace the others by smaller ones.
Higman’s Lemma states that if ď is wqo, then so is ď˚. The topological Higman
Lemma states that if X is a Noetherian topological space, then X˚ with the
word topology is Noetherian, too. We have already discussed this in Section 2.

Step (A) of our proof plan consists in discovering an S-representation of
X˚, for X Noetherian. (Step (A) is not constructive.) In [22], we defined an S-
representation of a Noetherian spaceX as a tuple pS,S J_K ,�, τ,^q, where S is a
set of elements, meant to denote the irreducible closed subsets of X, through the
denotation map J_K, � denotes inclusion, τ represents the whole space, and ^
implements intersection. We change this slightly, and replace � by its strict part
Ă 2. Hence, call S-representation of a Noetherian space X any tuple pS,Ă, τ,^q,
where S is a set, J_K : S Ñ SpXq is a bijective denotation function, Ă is a binary
relation on S denoting strict inclusion (i.e., a Ă b iff JaK Ă JbK), τ is a finite subset
of S denoting the whole of X (JτK “ X, where we extend the notation JaK for
a P S to JAK for A P PpSq, by letting JAK “

Ť

aPA JaK), and for all a, b P S, a^ b
is a finite subset of S denoting their intersection (Ja^ bK “ JaKXJbK). When X is
Noetherian, Ă will be well-founded (property pÓq), τ will exist by property pT q,
and ^ will make sense because of property pW q.

Since Ja1K is irreducible for every a1 P A1, the inclusion JAK Ď JA1K is equiv-
alent to A Ď5 A1, where we write Ď for the union of Ă and “, and the Hoare
quasi-ordering Ď5 is defined by: for every a P A, there is an a1 P A1 such that
a Ď a1. Since A, A1 are antichains, one can encode them as multisets. A mo-
ment’s notice shows that the strict part of Ď5 is just Ămul

`. This will be used
to compare antichains A, A1 below.

eP Ď
w P 1

pw1q
eP Ă

w e1P 1

a Ă a1 P Ď
w P 1

pw2q
a?P Ă

w a1
?
P 1

P Ă
w P 1

pw3q
a?P Ă

w a?P 1

@i ¨ ei Ă
e A1

˚
P Ď

w P 1

pw4q
e1 . . . ekP Ă

w A1
˚
P 1

P Ă
w P 1

pw5q
A˚P Ă

w A˚P 1

Fig. 1. Deciding strict inclusion between word-products

Given an S-representation pS,S J_K ,Ă, τ,^q of X, Theorem 6.14 of [22] gives
us an S-representation pSw,S J_Kw ,Ăw, τw,^wq of X˚. Sw is a set of so-called
2 In all rigor, we should also include the associated congruence ”, defined by a ” b
iff a � b and b � a. We silently assume we are working in the quotient of the S-
representation by ”. In proof assistants such as Coq, this is not an option, and the
standard solution is to use setoid types. In any case, considering ” explicitly would
make our exposition too complex, and we shall therefore avoid it. We also change
the notation from � to Ă to avoid a conflict with the relations Ź of Section 3



word-products, first invented in the setting of forward coverability procedures
for lossy channel systems [2]. Define the atomic expressions as a? with a P S
(denoting the set of words with at most one letter in JaK), and A˚ with A a non-
empty finite antichain of S (denoting the set of words, of arbitrary length, whose
letters are all in JAK). The word-products P , P 1, . . . , are the finite sequences
e1e2 . . . en of atomic expressions, denoting the concatenations of words in the
denotations of e1, e2, . . . , en, and we define Sw as those that are reduced, namely
those where Jeiei`1K

w is included neither in JeiK
w nor in Jei`1K

w for every i.
Inclusion between word-products is decidable, using simple formulae given for
example in [22, Lemma 6.8, Lemma 6.9], and this allows us to give computable
predicates that sieve out the non-reduced word-products. We are more interested
in the relation Ăw. Two reduced word-products, that is, two elements of Sw,
have equal denotations iff they are equal. One can show that the strict inclusion
relation Ăw on reduced word-products is defined inductively by the rules of
Figure 1. We write P Ďw P 1 for P Ăw P 1 or P “ P 1. We also define the
auxiliary relation Ăe (strict inclusion of atomic expressions) by: a? Ăe a1

? iff
a Ă a1; a? Ăe A1

˚ iff a Ď a1 for some a1 P A1; A˚ Ăe a1
? never; and A˚ Ăe A1

˚ iff
A Ă

`
mul A

1. We define τw as the antichain tτ˚u, and omit the definition of ^w

[22, Lemma 6.11].
We now embark on step (B) of our proof plan. Contrarily to step (A), we

must pay attention to only invoke constructive arguments. So forget everything
we have done in step (A), except for the final result. Say that pS,Ă, τ,^q is a
constructive S-representation (without reference to X) if and only if S is a set
with a strict ordering Ă, and where: pÓq Ă is well-founded; pT q S “ Ó τ ; pW q for
all a, b P S, Ó aX Ó b “ Ópa^ bq; Ď stands for the union of Ă and “, ÓA for the
downward closure of a subset A of S with respect to Ď, and Ó a for Ótau.

We now posit pSw,Ăw, τw,^wq by the syntax given above, in step (A). Sw is
the set of reduced word-products over S, Ăw is defined inductively by pw1q–pw5q,
τw “ tτ˚u, and we define ^w by the recursive formula of [22, Lemma 6.11].

Theorem 2. If pS,Ă, τ,^q is a constructive S-representation, then so is pSw,
Ăw, τw,^wq.

Proof. (Sketch.) There is a boring part, consisting in checking that Ăw is a
strict ordering, and that properties pT q and pW q hold. We omit it here. The
interesting part is checking that Ăw is well-founded. Define a mapping µ from
atomic expressions to pairs pi, Aq P t0, 1u ˆMpSq by µpa?q “ p0, t|a|uq, µpA˚q “
p1, Aq, and order them by the lexicographical product ă of the ordering 0 ă 1
and of Ă

`
mul. Extend µ to word-products by µpe1 . . . enq “ t|µpe1q, . . . , µpenq|u. In

other words, we look at word-products as though they were multisets of atomic
expressions, where the latter as read as multisets of letters from S, plus a tag,
0 or 1. It is fairly easy to show that for all reduced word-products P , P 1, if
P Ă P 1 then µpP q ă

`
mul µpP

1q, by induction on the structure of a proof of
P Ă P 1. By Lemma 1, ă

`
mul is well-founded. By ă

`
mul-induction on µpP q, P is

then Ă-accessible, for every P P Sw. [\



The statement of Theorem 2 seems very far from Higman’s Lemma. Call
constructive Noetherian space any tuple pX,T,ă, εq, where ă is a well-founded
ordering on the set T (T is the cotopology) whose reflexive closure ĺ makes T
a distributive lattice (this much implies classically that pT,ĺq is the lattice of
closed subsets of some Noetherian space, up to isomorphism), and ε Ď X ˆ T
(membership) is a binary relation such that for all A,B P T , A ĺ B iff for every
x ε A, x ε B. We observe the following:

paq Given a constructive S-representation pS,Ă, τ,^q, we think of elements of S
as irreducible closed subsets of some Noetherian spaceX, and we can build all
closed sets as finite unions thereof. We encode the latter as finite antichains,
hence as multisets. Letting T “MpSq, ă “ Ă

`
mul then defines the canonical

cotopology on pS,Ă, τ,^q. Any subset X of S then gives rise to a constructive
Noetherian space pX,MpSq,Ă`mul, εq, where x ε M iff t|x|u pĂmulq

˚
M .

pbq Conversely, every cotopology pT,ăq gives rise to a trivial constructive S-
representation pS,Ă, τ,^q where S “ T , Ă is ă, τ “ tJu where J is the top
element of T , and A^B “ tA[Bu where [ is meet in T .

Given paq and pbq, Theorem 2 and Lemma 1 then imply:

Corollary 1 (Topological Higman Lemma, Constructively). For every
constructive Noetherian space pX,T,ă, εq, pX˚,MpTwq, păw

mulq
`, εwq is a con-

structive Noetherian space, with w εw M iff t|ηwpwq|u păw
mulq

˚
M , where ηwpx1

x2 . . . xmq “ x?1x
?
2 . . . x

?
m.

This implies the usual form of Higman’s Lemma, by similar arguments as
in [37]. Assuming a decidable constructive wqo ď on a set X, one can show,
constructively, that the antichains E “ tx1, . . . , xnu (interpreted as the down-
ward closed set X r ÒE) are the elements of a cotopology, where ă is the strict
part of ĺ; we let E ĺ E1 iff X r ÒE Ď X r ÒE1, iff for every y P X 1, there
is an x P E such that x ď y; and x ε E iff x P X r ÒE, iff for every y P E,
y ę x. Recall that a finite sequence w1, . . . , wn in X˚ is bad iff wi ď

˚ wj for
no i ă j. Following Murthy and Russell, we show that the converse of the prefix
ordering on bad sequences w1, . . . , wn is well-founded, by păw

mulq
`-induction on

the closed subset X˚ r Òtw1, . . . , wnu—this induction principle is given to us
by Corollary 1. The set X˚ r Òtw1, . . . , wnu is represented, constructively, as
the finite intersection of the sets X r Òwi, using the J and [ operations of the
cotopology; writing wi as the word x1x2 . . . xm, X r Òwi is the word-product
pXrÒx1q˚X?pXrÒx2q˚X? . . . X?pXrÒxmq˚ ifm ě 1, the empty set otherwise
[22, Lemma 6.1]. This is the core of Murthy and Russell’s proof:

Theorem 3 (Murthy-Russell). Let X be a set with a decidable constructive
wqo ď. Then ď˚ is a (decidable) constructive wqo on X˚.

5 A constructive proof of Kruskal’s Theorem

We use the same strategy for trees, i.e., first-order terms. Given a set X with a
quasi-ordering ď, the (tree) embedding quasi-ordering ĺď is inductively defined



by s ĺď t, where s “ fps1, . . . , smq and t “ gpt1, . . . , tnq, iff s ĺď tj for some j,
or f ď g and s1 . . . sm ĺ˚ď t1 . . . tn; note the use of the word embedding ordering
ĺ˚ď on lists of immediate subterms, considered as words.

Given a constructive S-representation pS,Ă, τ,^q, we define a set St of reg-
ular expressions on trees (the tree-products P , Q, . . . ) inductively, as follows.
Let l be a fresh constant. The elements P of St are the tree steps ar?spP q,
where a P S and P is a reduced word-product over St, and the tree iterators
p
Ťm
i“1 aipQiqq

r˚s.lA, where A is a finite set of elements of St, ai P S, and Qi is a
word-product over SYtlu, which is either equal to tlu˚ (which we shall simply
write l˚), or of the form Qi1l?Qi2l? . . .l?Qiki where all Qijs are reduced
word-products over St [22, Lemma 9.20].

Tree steps are the analogue of a? for words. Intuitively, ar?spe1e2q will contain
all the terms of the form fpt1, t2q with f in (the denotation of) a, t1 in e1 and
t2 in e2, plus all the terms from e1 and from e2. Of course, e1e2 is not a word-
product, but, say, e?1e?2 is, and ar?spe?1e?2q will contain not just the terms above,
but also the terms of the form fpt1q, fpt2q and fpq, with f P a, t1 P e1, t2 P e2.

Tree iterators p
Ťm
i“1 aipQiqq

r˚s.lA define the following language L, induc-
tively, by the following two rules. First, A is a set tP1, . . . , Pnu of tree-products,
and every element of any Pi is in L. Second, given any term t in the set de-
noted by a

r?s
i pQiq, the term obtained from t by replacing each occurrence of

l by a (possibly different) term from L is again in L. For example, if P con-
tains terms t1, t2 and t3, then papl?l?qqr˚s.ltP u will contain fpt1, t1q, fpt2, t2q,
but also fpt1, t2q, fpt1, fpt2, t2qq, fpfpt1, fpt2, t1qq, fpt1, t3qq, for f in a, among
other terms. As another example, papl˚qqr˚s.lH is the set of terms all of whose
function symbols are in a.

Much as we only considered reduced word-products in Section 4, we shall
restrict to canonical tree-products here. The tree-products considered in [22,
Section 9] are normal tree-products, a closely related notion. Normality requires,
for example, that in a tree iterator, p

Ťm
i“1 aipQiqq

r˚s.lA, piq m is non-zero, piiq
l occurs in every Qi, and piiiq A contains just one tree-product in case every
Qi is l-linear, i.e., does not contain l˚ and only one occurrence of l?. Here,
we need to require that the support supp Qi of every Qi, namely, the set of
(l-free) terms t such that the one-element sequence t is in the denotation of Qi,
is entirely contained in the denotation of A. This is easy to ensure, by adding
the required tree-products from supp Qi to A. . . but breaks piiiq. Instead, we
define canonical tree iterators as those satisfying piq, piiq, piii1q: if every Qi is
l-linear, then A denotes the union of

Ťm
i“1 supp Qi with at most one tree-

product; we also require: pivq the tree steps aipQiq are pairwise incomparable,
pvq the elements of A are pairwise incomparable, and pviq p

Ťm
i“1 aipQiqq

r˚s.lA
must not be included in

Ťm
i“1 supp Qi. Similarly, we define canonical trees steps

as those a?pP q that are not included in supp P . Every tree-product can be
canonicalized, i.e., transformed to a canonical one with the same denotation.

One can decide inclusion of canonical tree-products, in polynomial time, and
also compute finite intersections thereof (^t, τ t), using formulae given in [22,
Section 9], plus canonicalization. From these formulae, we deduce the rules for
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Fig. 2. Deciding strict inclusion between tree-products

strict inclusion Ăt on St—to be precise, on St union tlu, where l will be
topmost—given in Figure 2. We again write Ďt for the reflexive closure of Ăt.
For a word-product P over St Y tlu, define subpP q (denoting the support of
P ) by: subpe1 . . . enq “

Ťn
i“1 subpeiq, subpP

?q “ tP u for P P St, subpl?q “ H,
subpA˚q “ A for A an antichain in St, subpl˚q “ H. We also use an auxiliary
relation Ťt, which should be reminiscent of !. The whole definition should, in
fact, remind you of the definition of ămpo on µ-terms, and this is no accident.

Theorem 4. If pS,Ă, τ,^q is a constructive S-representation, then so is pSt,
Ăt, τ t,^tq.

Proof. (Sketch.) Only property pÓq deserves attention. Define a syntactic trans-
lation from P P St to µ-terms xP y, as follows. Our signature consists of all
elements of S, plus one fresh function symbol u (union). The following formulae
also define x_y translations of various other syntactic categories, e.g., xP y will
be a list of µ-terms for every word-product P over St, so that xa?pP qy “ axP y
will be the application of the function symbol a to the list of arguments xP y. We
use only one µ-bound variable, which we call l: this serves for tree iterators,
which are translated as iterators of the form µ l “ s ¨ t (third row below).

xar?spP qy “ axP y xe1e2 . . . emy “ pxe1y, xe2y, . . . , xemyq xly “ l

xP ?y “ xP y xA˚y “ xAy “ upxP1y, . . . , xPnyq where A “ t|P1, . . . , Pn|u

xp
Ťm
i“1 aipQiqq

r˚s.lAy “ µ l “ upxa
r?s
1 pQ1qy, . . . , xa

r?s
m pQmqyq ¨ xAy



Define the precedence ă by a ă b iff a, b P S and a Ă b, or a “ u and b P S (u is
least). We check that P Ăt P 1 implies xP y ămpo xP 1y. (This was how ămpo was
found on µ-terms!) Theorem 1 then implies that Ăt is well-founded on St. [\

Corollary 2 (Topological Kruskal Theorem, Constructively). For ev-
ery constructive Noetherian space pX,T,ă, εq, pT pXq,MpT tq, păt

mulq
`, εtq is

a constructive Noetherian space, with t εt M iff t|ηtptq|u păt
mulq

˚
M , where

ηtpfpt1, t2, . . . , tnqq “ f r?spηtpt1q
?ηtpt2q

? . . . ηtptnq
?q.

As for Higman’s Lemma, we obtain the ordinary form of Kruskal’s Theorem by
assuming a decidable constructive wqoď onX, and proving that the complement
At of the upward closure of a single tree t in ĺď is defined as the following
tree-product, built using tree iterators only: letting a abbreviate X r Ò f and
b abbreviate X itself, Afpq “ papl˚qqr˚s.lH, and Afpt1, . . . , tnq for n ě 1 is
equal to papl˚qY bpAt1l?At2l? . . .l?Atnqq

r˚s.lH (see [22, Lemma 9.8]; then use
canonicalization). The following is then constructive.
Theorem 5 (Kruskal, Constructively). Let X be a set with a decidable con-
structive wqo ď. Then ĺď is a (decidable) constructive wqo on T pXq.

6 Conclusion

The main thing one should remember is that proving that a given quasi-ordering
is well is just a matter of proving termination—not of the ordering itself, but of
strict inclusion between downward-closed subsets. In and of itself, this would be
no breakthrough. However, in applying this to Higman’s and Kruskal’s classical
theorems, this exposed a tight coupling between the word embedding ordering
and the multiset ordering (on word-products), and between the tree embedding
quasi-ordering and Dershowitz’ multiset path ordering (on tree-products).

While I have given relatively exhaustive proofs of the termination results of
Section 3, I have barely sketched the constructive proofs of the (topological)
Higman and Kruskal theorems in Sections 4 and 5. Playing these proofs in a
proof assistant such as Coq is in order, but certainly somewhat of an endeavor.

Finally, I would like to stress that although our proof techniques establish
the classical, order-theoretic versions of Higman’s and Kruskal’s theorems un-
der a decidability assumption, the topological versions are entirely constructive.
It therefore seems that the constructive contents of the order-theoretic and the
topological theorems are different—something that should be explored, by inves-
tigating into the computational contents of the relevant constructive proofs. We
also believe that the notion of constructive Noetherian space, and the related
notion of S-representation, should be of some importance, in intuitionistic logic
(where it sheds some light on the precise role of the sequential regular expressions
of Murthy and Russell, notably), as well as in the field of WSTS model-checking.
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