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Is there any cartesian-closed category of continuous do-
mains that would be closed under Jones and Plotkin’s prob-
abilistic powerdomain construction? This is a major open
problem in the area of denotational semantics of probabilis
tic higher-order languages. We relax the question, and look
for quasi-continuous dcpos instead. We introduce a natural
class of such quasi-continuous dcpos,tt@RB-domains.

We show that they form a categanfQRB with pleasing
properties: wQRB is closed under the probabilistic pow- Figure 1. Part of the Hasse Diagram of V;(X)
erdomain functor, has all finite products, all bilimits, and

is stable under retracts, and even under so-called quasi-

retracts. But...wQRB is not cartesian closed.
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we obtain a category QR B of so-calledvQRB-domains
that not only has many desired, nice mathematical prop-
) erties (e.g., it is closed under bilimits, and everQ RB-
1 Introduction domain is stably compact), but is also closed urider
We in fact failed to solve the Jung-Tix problemQRB
Write V1 (X) (resp.V<1(X)) the dcpo of all continu-  is indeed not cartesian-closed. In spite of this, we believe
ous probability (resp., subprobability) valuations ovér our contribution to bring some progress towards settlirgg th
and call it the probabilistic (resp., subprobabilistic)zo- question, and at least to understand the structuié,¢fx )
domain of X. This construction was introduced by Jones better. To appreciate this, recall what is currently known
and Plotkin to give a denotational semantics to highertorde aboutV;. There are two landmark resultdv;(X) is a
probabilistic languages [13]—we define it precisely later.  continuous dcpo as soon &§ is ([6], building on Jones
A famous open problem in the area is whether the prob- [13]), and'V;(X) is stably compact (with its weak topol-
abilistic powerdomain of af'S-domain is again a¥'S- ogy) wheneverX is [16, 2]. Since then, no significant
domain [16], and similarly witlRB-domains in lieu oF'S- progress has been made. When it comes to solving the
domains. More generally, is there a category of nice enoughJung-Tix problem, we must in fact realize that therditis
dcpos that would be cartesian-closed and closed uvd@r  tle choice the only known cartesian-closed categories of
We call this theJung-Tix problem By “nice enough”, we  (pointed) continuous dcpos that may suit our needRdBe
mean nice enough to do any serious mathematics with, e.g.and FS [16]. l.e., all other known cartesian-closed cate-
to establish definability or full abstraction results inext gories of continuous dcpos, e.g., bc-domains or L-domains,
sional models of higher-order, probabilistic languagéss |  arenot closed undeV;. Next, we must recognize thht-
traditional to equate “nice enough” with “continuous”, and tle is knownabout the (sub)probabilistic powerdomain of
this is justified by the rich theory of continuous domains [7] anRB or FS-domain. In trying to show that eith&B or
However, quasi-continuousicpos (see [8], or [7, lll-  FS was closed undeY, Jung and Tix [16] only managed
3]) generalize continuous dcpos and are almost as well-to show that the subprobabilistic powerdomain; (X) of
behaved. We propose to widen the scope of the problem,a finite tree X was anRB-domain, and that the subprob-
and ask for a category of quasi-continuous dcpos that wouldabilistic powerdomain of @aeversed finite tregvas anF'S-
be closed undeV;. We show that, by mimicking the con- domain. This is still far from the goal.
struction of RB-domains [1], with some flavor of “quasi”, In fact, we do not know whethe¥;(X) is an RB-
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(07‘”? ' (L) are defined just aRB-domains are, only with a flavor of
! “quasi”, i.e., replacing approximating elements by approx
imating setsof elements. We establish their main proper-

Eg’f '8?3 Eg’f 83 ties there, in particular that they are quasi-continuotss, s
(0:0 (1:0) (0:0 (1:0) bly compact, and Lawson-compact. MuchRB-domains
(¢) Afinite poset (i) The non-continuous dcplz  (#44) No, + No are also characterized as the retracts of bifinite domains,
we show that, up to a few details, tligRB-domains are
Figure 2. Poset Examples the quasi-retracts of bifinite domains in Section 4. Quasi-

retractions are an essential concept in the stud@RB-
domains, as well as the close notioncafasi-projection—

two notions that we introduce. We also show that the cat-
egory of countably base@RB-domains is closed under
finite products (easy) and bilimits (hard, but similar to the
case ofRB-domains) in Section 5. The core of the paper
is Section 6, where we show that the catego@RB of

domain whenX is even the simple posé€tL,a,b, T} (a

andb incomparable,L < a,b < T, see Figure 1, right)—
but it is anFS-domain. For a more complex (arbitrarily
chosen) example, tak& to be the finite pointed poset of
Figure 2(i): thenV(X) andV < (X)) are continuous and

stably compact, but not known to i&B-domains ofF'S- countably baseQRB-domains is closed under the prob-

dorll}ams (and they are mucr:]h hart()jer to ws(;JaIlze,rt]oo). __abilistic powerdomain construction. This capitalizes tin a
O progress seems to have been made on the queStIO%revious sections, and will follow from Jung and Tix’ re-

since Jung and Tix' .19.98 atFempt. As part of our resu_lts, We sult thatV;(X) is anRB-domain wheneveX is a finite
show th.at for evety finite pomtgd po'sE’LTer;g..Flglure 4i), ’ tree, and applying suitable quasi-projections and bismit
Vi(X) ISa continuous;QRB-domain. This is also one o The key result will then be Theorem 6.1, which shows that
the basic results that we then leverage to show WigtX ) for any quasi-projectiory” of a stably compact spac¥,
is aanRB-domam fo_ranwaRB—Qoma_m, in particular V1(Y) is again a quasi-projection &f, (X), again up to a
everyRB-domain, not just every finite pointed posét, few details. We conclude in Section 7

One may obtain some intuition as to why this should be Other Related Work. Instead of solving the Jung-Tix

30’ aqd at theLsan;)e tlr?e'gwe an '(?ea of V\I’WRB', problem, one may try to circumvent it. One of the most suc-
ton:]amsts ri‘, e}f{( ea 'Pr:']ga 5’0'”‘? poset. r 3t:emtpt(|jng cessful such attempts led to the discoverydb-space§t]

ﬁ Snow ”adjl (ﬂ ). IS an ) V o;am, W‘e/ ar)e( edto S# Y andto compactly generated countably based monotone con-
the so-cafledie a“o'f‘f]ff:. 1(X) = hl(h ): |.e.,<t € vergence spaces [3], as cartesian-closed categories®f top
;:OI’]III’]UOUS mgpg‘ wit g\ltgl_rangel suc t sg((”) d v logical spaces where a reasonable amount of semantics can
or every co.ntmuous'pro ability va uat|9n ont, and we be done. This provides exciting new perspectives. The cat-
must try to find deflationg such thatf(v) is as close as one egory of qcb-spaces accommodates two probabilistic pow-
desires tav. All natural definitions off fail to be continu- erdomains [5]. The observationally induced one is essen-

ous, ‘i‘gd_i” fact to be m‘?”°t°”i3- (EQ., (?rT‘,ihamL’S Ck‘?”St][“C' tially V,(X) (with the weak topology), but differs from the
tion [12] is not monotonic, see Jung and Tix.) Looking for one obtained as a free algebra. Since the latter is essen-

mapsf such thatf(v) is instead a f"?"e’ non-emp@eto_f . tially the least one containing all finite linear combinatiaf
valuations below shows more promise—the monotonicity Dirac masses™._, a;8,,, it would be the preferred model

H . i=1 %Yz
reqw_rem_ents are slightly more rela>_<ed. Such a set-valuedto establish a definability result: if eachis definable, then
function is what we call guasi-deflatiorbelow. For exam- S a,6,, is the distribution one gets by picking each

. .. o . - =1 "1V xTy

pleé one may thml:] of fl>|<|lng’}/ 2 } ({IV _I 3 n F'Q%rel 1), with probabilitya;, which is easy to do by program. Unfor-
and mappingy to the collection of & va uat|ons' elow tunately, it is the other, observationally induced model th
v such that the measure of any subset is a multiple/of, seems to enjoy nice mathematical properties.
keeping only those’ that are maximal. (Pick them from
the left of Figure 1, in our example.) This still does not pro- L .
vide anything monotonic, but we managed to show thatone2 ~ Preliminaries
can indeed approximate every elememtf V;(X), contin-

uously inv, using quasi-deflations. The proof is non-trivial, We referto [1, 7, 20] for background material.pdsetX
and rests on deep properties relati@RB-domains and is a set with a partial ordering. Let | A be the downward
quasi-retractions—all notions that we define and study. closure{z € X | Jy € A-x < y}; we write| x for | {z},

Outline. We introduce most of the required notions in whenz € X. The upward closure$ A, 1z are defined
Section 2. Since we shall only start studying the proba- similarly. Whenz < y, x is belowy andy is abovez. X
bilistic powerdomain in Section 6, we shall refrain from is pointediff it has a least element.. A dcpois a poset
defining valuations, probabilities, and related concepts u X where every directed familyz;), , has a least upper
til then. We introduceQRB-domains in Section 3. They boundsup,¢; z;; directedness means that# () and for



everyi,i' € I, thereisan” € I suchthaty;, z;; < z;».
Every posetX comes with a topology, whose opebis

there is ay € F such thaty < z. E approximates, in

notation ' < z, iff for every directed family(z;),_, that

are the upward closed subsets such that, for every directedhas a least upper bound abavethen £ < z; for some

family (z;),.; that has a least upper boundlh z; € U
for some: € I. This is theScott topology When we see a
poset or dcpaX as a topological space, we will implicitly
assume the latter, unless marked otherwise.

1 € I. (We shall also writey < x, wheny € X, as short-
hand for{y} < «x; this is the more familiar way-below
relation. But beware thabf < = means that all elements
of E approximater collectively while none in particular

There is a deep connection between order and topology.may approximate: individually.) We compare finite sub-

Given any topological spacg’, its specialization quasi-
ordering < is defined byr < y iff every open containing:
also containg. The specialization quasi-ordering of a dcpo
X (with ordering<, and equipped with its Scott topology),
is the original ordering<.

A subsetA of a topological spac« is saturatediff it is
the intersection of all opens containingA. Equivalently,
A'is upward closed in the specialization quasi-ordering [20,
Remark after Definition 4.34]. So we can, and shall of-
ten prove inclusionst C B where B is upward closed by
showing that every opeli containingB also containsA.

Amapf : X — Y between topological spacesden-
tinuousiff f=1(V) is open for every open subsgtof Y.
Every continuous map is monotonic with respect to the un-
derlying specialization quasi-orderings. Wh&randY are
posets, it is equivalent to requiygto be Scott-continuous
i.e., to be monotonic and to preserve existing directed leas
upper bounds. Axomeomorphisnf a bijective continuous
map whose inverse is also continuous.

Given a setX, and a family5 of subsets ofX, there is a
smallest topology containing: thenB is asubbasef the
topology, and its elements are thgbbasic opensto show
thatf : X — Y is continuous, it is enough to show that the
inverse image of every subbasic operyofs open inX.

Theinterior int(A) of a subsetA of a topological space
X is the largest open contained.n A subset) of a topo-
logical spaceX is compactff one can extract a finite sub-
cover from every open cover @. The important ones are
thesaturatedcompacts. For any finite subsét1 A is com-

pact and saturated; we call such special saturated compact

the finitary compacts X is locally compactiff for each
openU and eachx € U, there is a compact saturated subset
Q@ such thatr € int(Q) and@ C U. X is soberiff every
irreducible closed subset is the closure of a unique point;
in the presence of local compactness (and whers Ty,
i.e., when the specialization quasi-ordering is an ordgrin
it is equivalent to require thaX be well-filtered[7, Theo-
rem [I-1.21], i.e., to require that, for every opén for ev-
ery filtered family(Q;), ., of saturated compacts such that
ﬂfej Q; CU,Q; CUforsomei € I already. We say that
the family isfilterediff it is directed in theD ordering, and
make it explicit by using, as superscript. (Symmetrically,
we write| J' for directed unions.)

Given any posefX, any finite subsef of X, and any
elementz of X, we write £ < z iff z € 1T F, i.e., iff

sets in theSmyth quasi-ordering*, defined byE <% E’
iff + £ D 1 E’, or equivalently, for every/ € E’, there is
ay € E such thaty < ¢'. Two finite subsets and E’
areequivalentiff £ <* £’ andFE’ <! E,iff 1 E =1 E'.
The collection of equivalence classes of non-empty finite
subsetsr of X is denoted by Fi(X'). The quasi-ordering
<*induces a partial ordering, again writtefi, on Fin( X).
We abuse notation and confuse finite subdetwith their
equivalence classes. Observe thafik? £’ andE’ < x,
thenEF < z, so in particular the notatio” < x is inde-
pendent of the choice df in its equivalence class.

A quasi-continuous dcpd& (see [8] or [7, Definition Il1-
3.2]) is a dcpo such that, for everye X, the collection of
all E € Fin(X) such thatE < z is directed (w.r.t.<*)
and\gerincx) T £ = T2. The theory of quasi-continuous

dcpos is:EI%aés well explored than thatadntinuous dcpgs
but quasi-continuous dcpos retain many of the properties
of the latter. (Every continuous dcpo is quasi-continuous,
but not conversely. A counterexample is giveniy, see
Figure 2(ii).) Every quasi-continuous dcpd is locally
compact and sober [7, 111-3.7]. In a quasi-continuous dcpo
X, for every E € Fin(X), the seffE defined agz € X |

E < z},is open, and equaist(1 E) [7, I11-3.6(ii)]; every
openU is the union of all the subsefs®, E € Fin(X),
contained inJ [7, 111-5.6]; and for every compact saturated
subset) and every open subsét containing, there is a
finite subsetF of X such thatQ) C TE andE C U [7,

I11-5.7]. In particular,Q = + E. Another
] P Q mE finite,Qg;T:E T

onsequence igterpolation writing A <« B for B C
A (i.e., A < yforeveryy € B), if E < z in a quasi-
continuous dcpaX, for someFE € Fin(X), andz € X,
thenE < E’ < « for someE’ € Fin(X).

Let Q(X) be theSmyth powerdomaiof X, i.e., the
poset of all non-empty compact saturated subgets§ X,
ordered byD. Q(X) is a continuous dcpo whenevef
is locally compact and sober, with least upper bounds of
directed families computed as filtered intersections, and
whereQ <« Q' iff @' C int(Q). Then, the subsets
OU ={Q' € Q(X) | @ C U}, U open, form a subbase
of the topology of9(.X). Note thatd commutes with finite
intersections and directed unions|(J!_, U; = U], 0U;).

If X is a quasi-continuous dcpo, the above shows that

ever € Q(X) can be written ag)*
yQ € QX) ﬂEeFin(x),QgTE
i.e., as the directed least upper bound of those non-empty



finitary compacts E (E € Fin(X)) that are way-belov®.
In other words, the finitary compacts fornbasisof Q(X).

3 QRB-Domains

A deflationon a posetX is a continuous map : X —
X such thatf(z) < z for everyz € X, and which takes
only finitely many values. AR B-domainis a pointed dcpo
with a directed family of deflation$f;),., such that, for
everyz € X, z = sup,¢; fi(x) [1, Exercise 4.3.11(9)].

We modelQRB-domains afteRB-domains, replacing
single approximating elemenfs(z) by finite subsets.

Definition 3.1 (QRB-Domain) A quasi-deflationon a
posetX is a continuous map : X — Fin(X) such that
x € To(x) foral z € X, andImg is finite. We let
Ime =J,cx ().

A QRB-domainis a pointed dcpoX with a generating
family of quasi-deflationsi.e., a directed family of quasi-
deflations(¢;), ., witht 2 = ﬂje, T pi(z) foreachr € X.

We order quasi-deflations pointwise, i.ep, < 1 iff
o(x) <¥ ¢(z) for everyx € X. One can see the fini-
tary compactg ¢;(z) as being smaller and smaller upward
closed sets containing

Thaty is continuous means thatis monotonic ¢ < y
implies p(x) <* ¢(y)), and that for every directed family
()¢, Of elements ofX, (sup;c; z;) is afinite subset

E of X such thatt E = N}, T ¢(x;).
It is obvious that everlR B-domain is aQRB-domain.

Lemma 3.2 Let ¢ be a quasi-deflation oX. For every
z € X,p(x) < x.

Proof. Let(z;); .,

per bound above. Sincey is continuousﬂﬁEJ To(z;) C
T p(z). But sincelm ¢ is finite, there are only finitely many
setsp(xz;), j € J. Soto(x;) € Te(x) for somej € J.
Sincex; € T o(xj), zj; € To(z),i.e,p(x) < x;. O

be a directed family having a least up-

Corollary 3.3 EveryQRB-domain is quasi-continuous.

In general, QRB-domains are not continuous. E.g.,
N> (Figure 2 (i7)) is not continuous. However\,

is a QRB-domain: for alli,j € N, take p;;(w) =
W, @ij(oam) = {(0,min(m, 1)), (1,)}, ‘pij(Lm) =
{(0,4), (1, min(m, 5))}. Then(pi;), ;o is the desired di-
rected family of quasi-deflations.

compact. We show th&@)RB-domains are stably compact
as well. For this, we need the following consequence of
Rudin’s Lemma, a finitary form of well-filteredness:

Proposition 3.4 ([7, 111.3-4]) Let X be a dcpo(E;),.; be
a directed family in Fii.X'). For every open subsét of X,
if ., 1 E; C U, thenE; C U for somei € 1.

Corollary 3.5 Let X be a dcpo. For every open subgét
of X, the subsetig,U = {F € Fin(X) | E C U} is open
in Fin(X).

Proof. First, O5,U is upward closed: i € Og,U and
E <! E’, thent E C U (sinceU is upward-closed) and
TE' C1TE,sotE C U,whencel’ € Of,U. The rest of
the claim is Proposition 3.4, verbatim. O

Lemma 3.6 Let X, Y be dcpos. For every map : X —

Fin(Y), let+ : Fin(X) — Fin(Y) mapE € Fin(X) to

U,ep ¢(x) (resp., iflm < is finite, then let)* : Q(X) —

Fin(Y") mapQ € Q(X) tolJ,q %(z)). If ¢ is continuous,
then so is)’ (resp.,%).

Proof. First, 4" is monotonic: ifE <! E’, i.e., for ev-
ery ' € E', there is anr € E with z < 2/, in partic-
ular t¢(2’) C T4(z), then for everyr’ € E’, ip(z’) C
TyH(E). Sotyt(E) C tot(B).

Next, we show continuity. This follows from the claim
that 1 (NI, T Ei) = Nie; To1(E;) for every directed
family (E;),c; in Fin(X). The inclusionC is clear by
monotonicity. Conversely, since both sides of the equality
are saturated, it is enough to show that every open subset
U that contains the left-hand side also contains the right-
hand side. iU containswf(ﬂfe] T E;), then for everyr €
Nic; T Ei () C U, ie, Ve, T Ei € ¢ (TmU). Now
=1 (OgaU) is open, since is continuous and using Corol-
lary 3.5. By Proposition 3.4F; C ¢~ (OsU) for some
ieI,ie,y!(E;) CU. Inparticular)., T4 (E;) C U,
and we conclude.

The arguments are similar f@r*, assumindm ¢ finite.

To show continuity, we need to show that every open subset
U that containg)* (ﬂfel Q;) also contain:ﬂjel TP (Qi).

In this case,ﬂjeI Q: C ¢~ YO U), from which@; C

=1 (OgaU) for somei € I by the Hofmann-Mislove The-
orem [1, Corollary 7.2.11], which applies sinéeis sober.
ThenU containsy* (Q;), and we conclude as above. O

RB-domains_ are not just continuous domains, they are One may equate F{iX ) with the subset of thosg@ € Q(X)
stably compagcti.e., locally compact, sober, compact and that are finitary. Them' is the restriction of/* to Fin(X).

coherent. We say that a topological spaceaserentiff

the intersection of any two compact saturated subsets isLemma 3.7 Let X be aQRB-domain, andv;),.; a gen-

compact (and saturated).

In a stably compact space, thesrating family of quasi-deflations. For every open suliset

intersection of any family of compact saturated subsets isof X, UIEI gpi_l(\:\ﬁnU) =U.

4



Proof. That the union is directed is becausg' (OsnU) C
¢;1(DfinU) whenever p; is pointwise belowy;, i.e.,
pi(z) <F gy (z) forall z € X. Sincex € ¢;(z) for ev-
eryi € I, ¢; '(OsU) C U: for eachz € ¢; '(OgaU),
vi(z) contains an element below and is included i/,
sox € U, sinceU is upward closed. Finally, we claim that
every element of U is in ¢; ' (05, U) for somei € I. In-
deed,txz C U, so(),c; Twi(x) € U. By Proposition 3.4,
wi(x) C U forsomei € 1,i.e.,p;(x) € O U. O

Lemma 3.8 Let X be aQRB-domain, andy;),.; a gen-
erating family of quasi-deflations. For every compact sat-
urated subset) of X, Q = (., T¢(Q). For every

iel
E€FnX,1E = Tol(E).

Proof. Sincey;(z) < z for all z, and@ is upward-closed,
11 (Q) containg?) for everyi € I. SoQ C ﬂjel 1e*(Q).
Conversely, sincé) is saturated, it is enough to show that
every openlU containing@ also containsﬂfe,Tw*(Q).
SinceQ C U, by Lemma 3.7Q C U,c; »; ' (OmnU). By
compactnessy) C go,;l(DﬁnU) for somei € I, i.e., for
everyz € Q, p;(xz) CU. Sop!(Q) C U. The statement
abouty! is similar. 0

Theorem 3.9 EveryQRB-domain is stably compact.

Proof. Let X be aQRB-domain, with generating family
of quasi-deflationgy; ), . ;. Fix two compact saturated sub-
sets) and@’. We must show tha® N (@’ is compact. With-
out loss of generality, assun@n Q' # 0. We first claim
that there is a directed family; ), ; in Fin(X) such that,
for all E, E’' € Fin(X) such that) € 1E andQ’ C 1E’,
QNQ’ is contained in somgE;, i € I, with E; C TENTE'.
Let E; = U,cqng ¥i(z) (we cannot writep; (Q N Q"),
since we do not know yet thalNQ’ is compact). SincdE
is open and containg, by Lemma 3.8 and Proposition 3.4
there is ani € I such thatt ¢! (Q) C AE. Similarly, there
is ani € I such thatt ¢! (Q’) € TE'—we take the samg
using directedness. Thel;, C ! (Q) N ¢ (Q") € TEN
AE'. Letus show tha® N @’ C 1E;: foreveryz € QNQ’,
pi(r) < x by Lemma 3.2; butp;(z) C E;, soE; <f
vi(z), whenceE; < x.
From this, we deduce th@ N Q' = N}, 1 E;. (The in-
tersection is filtered, sincel;),.; is directed in Fig.X).)
In one direction,Q N Q' C E; C 1 E; for eachi €
I. Conversely, sinc€ N Q" # 0, Q # 0, soQ =

1 "
E, hence E C Q.
mEEFin(X),QgTET mEeFin(x),QgTET cQ
Similarly, " TE' C Q. Forall E, E with

E'eFin(X),Q'CTE/
Q C*1E, Q' CTE' thereisan € I suchthatt E; C TEN

E, T +E c N E N
t SO (ies 1 = mE,E/eFin(X),QQTE,Q'QTE'T
IE'CQnQ.

It follows that@Q N Q' is compact. Explicitly, ifQ N Q’
ﬂjeITEi is contained in a unio’ = J, ; U; of opens,
thenE; € U for somei € I by Proposition 3.4. For each
x € E;, pick j, € Jsuchthatr € U;,. ThenQN@Q’ C
UxEEi UJT .

So X is coherent.X is compact since pointed, and also
locally compact and sober, as a quasi-continuous dcpb.

The Lawson topologys the smallest topology contain-
ing both the Scott-opens and the complements of all sets
1TE, E € Fin(X). WhenX is a quasi-continuous dcpo,
since? F is compact saturated and every non-empty com-
pact saturated subset is a filtered intersection of such sets
T E, the Lawson topology coincides with thpatch topol-
ogy, i.e., the smallest topology containing the original Scott
topology and all complements of compact saturated subsets.
Every stably compact space is patch-compact, i.e., compact
in its patch topology [7, Section VI-6]. So:

Corollary 3.10 EveryQRB-domain is Lawson-compact.
In the sequel, we shall need some form of countability:

Definition 3.11 An wQRB-domain is a QRB-domain
with a countablegenerating family of quasi-deflations.

Proposition 3.12 A pointed dcpaX is anwQRB-domain
iff there is a generatingsequenceof quasi-deflations
(¢i);ens i€, foreveryi,i/ € N, i < i/, ¢;(z) <* ¢y (x)
for everyx € X, andtx = ﬂjEN 1 ;i (x) for everyzr € X.

Proof. Let X be anwQRB-domain, andv;), . be a
countable generating family of quasi-deflations. Builda se
quence(j;),y by letting jo = 0, andj;; be anyj € N
such thaty; is above; and;,, by directedness. Then
let p; = 1y, for everyi € N. By construction, whenever
1 <14, @; is belowy; 1. And for everyi € N, 1); is below

@i = 1, S0tz = iy Tyi(x) for everyz € X Then
(¥j.);c s the desired sequence. O

Proposition 3.13 A QRB-domain X is an wQRB-
domain iff it is countably basedi.e., its topology has a
countable subbase.

Proof. Only if: let (¢;);. be a generating sequence of
quasi-deflations orX’; we claim that the countably many
subsetsfy;(y), y € Imy;, i € N, form a subbase of the
topology.

It is enough to show that, for every opéhandx € U,
z € To;(y) for somey € Imyp; such thatp;(y) C U:
sincetz = ﬂjeNT%(x) C U, use Proposition 3.4 to find
j € Nsuch thatr € 1;(z) andy;(x) € U. So there is
ay € ¢;(z) such thaty < z, andy € U. Repeating the
argument ory, we findi € N such thaty € 1¢;(y) and
¢i(y) CU. Sincey < z,z € T 9i(y).



Figure 3. A quasi-retraction

If: let (), be a generating family of quasi-deflations
on X, and assume that the topology &f has a countable
subbases. The finite intersections of elements Bfform
a baseB’, i.e., every open is a union of elements 8
Moreover, B’ is countable. Write3’ as{U;, | k € N},
and assume without loss of generality that # ) for ev-
ery k € N. Fix x;, € Uy for eachk € N: by Proposi-
tion 3.4 and using directedness, one fings I such that
@i, (xr) € Uy andy;, is above every; , j < k. Defineyy,
asy;,. The family (41 ),y is @ non-decreasing sequence
of deflations, and is generatingz C (), oy T%x(x) since
eachy, is a deflation; conversely, every open containing
contains somé&/y, hencef ¢ (), hencg ), .y T¥x(x). O

4 Quasi-Retracts of Bifinite Domains

again. Every retraction (with sections) defines a canon-
ical quasi-retraction: let(y) = 1 s(y), thenQr(s(y))
Mr(z) | s(y) <z} =1r(s(y)) = Ty. The converse fails.
Let indeedN,, be the dcpo of all natural numbers with an
added top element, andX =N, + N, = {(k,m) | k €
{0,1},m € N, }, ordered by(k,m) < (¢,n) iff Kk = ¢ and

m < n (see Figur®@? (ii7)). LetY = N3, andr map(k, w)

to w, and(k,m) to itself whenevern € N: r is continu-
ous, and has a quasi-section, defined @y m) = 1(k, m)
whenevem € N, ¢(w) = {(0,w), (1,w)}. Sor is a quasi-
retraction. ButY is not a retract ofX: X is a continuous
dcpo, and every retract of a continuous dcpo is again one;
recall that\V; is not continuous.

Categorically, as G. Plotkin remarked, in any full subcat-
egoryC of Top where@Q is a monad, every quasi-retraction
r: X — Y induces a continuous map-(_) : X — 9Q(Y),
which is then a retraction in the Kleisli catega®y,.

Lemma 4.2 Every quasi-retraction : X — Y is onto.

Proof. Let ¢ be the associated quasi-section. For every
y €Y, Ty = Qr(c(y)). Sincey € Qr(<(y)), r(z) <y
for somez € ¢(y). Butr(z) is then inQr(s(y)) = Ty, so
y < r(x). Thereforey = r(x). O

The next proposition essentially states that every quasi-
retractY” of a QRB-domain X is a QRB-domain. How-
ever, we need to considér, instead, whereY, is the
spaceY with the Scott topology of its specialization quasi-
ordering<. Y, = Y if Y is already a dcpo, but we shall

The RB-domains can be characterized as the retractspeed to consider more general topological spaces later (viz

of the so-called bifinite domains (which we define below).
Recall that aretraction of X ontoY is a continuous map
r : X — Y such that there is continuous map ¥ — X
(thesection) with (s(y)) = y for everyy € Y.

We shall show that{) QRB-domains are not just closed

in Theorem 6.5)Y is amonotone convergence spaftey,,
is a dcpo and every open &fis open inY,, [7].

Proposition 4.3 LetY be a well-filtered monotone conver-
gence space. If is a quasi-retract of an) QRB-domain,

under retractions, but under a more relaxed notion that wethenY,, is an (wv)QRB-domain.

shall quasi-retractions In fact, our aim in this section is
to show that the pointed QRB-domains are exactly the
quasi-retracts of bifinite domains, up to some details.
For each continuous: X — Y, defineQr : 9(X) —
Q(Y) by 9r(Q) = t{r(z) | x € Q}. Qris continuous,
sinceQr~1(OV) = Or—1(V) for every operV/.

Definition 4.1 (Quasi-retract) A quasi-retractiom : X —
Y of X ontoY is a continuous map such that there is a
continuous mag : Y — Q(X) (the quasi-sectiopsuch
that Or(s(y)) = Ty foreveryy € Y.

The topological spac® is aquasi-retracof X iff there
is a quasi-retraction ofX ontoY'.

While a sectiors : Y — X picks an elemend(y) in the in-
verse image —!(y), continuously, a quasi-section is only

Proof. Let X be aQRB-domain,r : X — Y a quasi-
retraction, and; : Y — Q(X) a matching quasi-section.
Note thatY is pointed: lettingl the least element ok,
we claim thatr(_L) is the least element df . Indeed, for
everyy € Y, pick somex € X such thatr(z) = y by
Lemma 4.2, them(L) < r(z) = y.

For each quasi-deflatiop on X, letg : Y — Fin(Y')
mapy to Qr(t¢*(<(y))). le.oy) = NHr(z) | 3o €
<(y) - z € ¢(x)}, where the upward closureis taken w.r.t.
the specialization quasi-ordering Bf(equivalently, ofYy,).

For every open subsét of Y, ¢—1(0OV) is the set
of all y € Y such that for everyr € <(y), for ev-
ery z € o(z), r(z) € V. le, for everyz € <(y),
o(z) € r~Y(V), thatis,c(y) € o 1 (Tmnr~1(V)). So
o~ HaV) = ¢ HOp~Y(Osr~1(V))). Since the latter is

required to pick a non-empty compact, saturated collec- open, and the setsV form a subbase of the topology of

tion of elements from—1(1 %) (see Figure 3), continuously

Q(X), pis continuous front” to Fin(Y").



We need to show thap is Scotteontinuous instead.
(This would be automatic i” were a dcpo, but we are
not making this assumption.) To this end, observe at
is not only continuous fronQ(X) to Q(Y), but is also
Scott-continuous. Indeed, for every filtered fan"(ly)

iel
of compact saturated subsets d&f, Qr(ﬂlel C
ﬂze[ r(Q;) by monotonicity. For the converse |nclu-

sion, every opert/ containingQr(ﬂjeI ;) must be such
that ﬂ;e] ;. C r Y(U), soQ; € r~1(U) for some
i € I by wellfilteredness; s®@r(Q;) € U, whencelU

contalnsﬂzel r(Q;). Then, for every directed family
(yz),g inY, §lsup;e; vi) = Qr(1¢™(Mies s(y:))) (since
S : — Q(X) is continuous and every open &f is

open inYm ¢ is also continuous fronY, to Q(X), hence
Scott-continuous)= Qr(ﬂjeﬁgo*(g(yi))) (Lemma 3.6)

ﬂlel or(Tv*(s(y;))) (Qr is Scott-continuous). S@
is Scott-continuous frony” to Fin(Y").

We now claim thaty € 1 ¢(y) for everyy € Y. Since
or(s(y)) = ty, y € Qr(s(y)), so there is amr € (y)
such that(z) < y. Nowzx € T ¢(x), sothereisa € ¢(x)
such that: < z. Thenr(z) < r(x) <y, soy € p(y).

Let now (¢;),.; be a generating family of quasi-
deflations onX. Clearly, if p; is belowy;, theng; is below
©j,S0(P;),c; s directed.

It remains to show thaﬂjeIT@(y) = 1y for ev-
eryy € Y. Sincey € 1¢(y), it remains to show
ﬂfel T :(y) € 1y: we show that every opeWi containing

y containg /., T @i(y). Sincey € V andQr(s(y)) = 1y,
Qr(s(y)) €V, sos(y) € Qr~ ( V) = Or V), ie.,
s(y) Cr~1(V). By Lemma 3. 7UZ€I 07 (Qhinr~Y(V)) =
r~1(V). Sinces(y) is compacts(y) C o; ' (Dfnr— (V)
for somei € 1. Soy isin¢ ! (Op; ! (Tfnr=1(V))), which
is equal to@‘l(DV) (see above). It follows that contains
i(y), henceﬂieIT@(y). SoY, is aQRB-domain.

The case ofwQRB-domains is similar, where now
(v:),cn Is @ generatingequencef quasi-deflations. O

The assumption ol is always satisfied in the following
important case. A quasi-retractien X — Y, with quasi-
sections : Y — 9Q(X), is aquasi-projectioniff, addition-
ally, z € ¢(r(x)) for everyz € X. In this case, we say that
Y is aquasi-projectionof X. The quasi-retraction of Fig-
ure 3 is meant to be a quasi-projectianis in the gray area

¢(y). The following is reminiscent of the fact that every re-
tract of a stably compact space is again stably compact [19,
Proposition, bottom of p.153, and subsequent discussion];

see Appendix A for a proof.

Proposition 4.4 Every T, quasi-projectionY” of a stably
compact spac« is stably compact.

Let us turn to bifinite domains. A pointed dcp© is

idempotentdeflations( f;), . such that, for every: € X,

x = sup;ey fi(z) [1, Theorem 4.2.6]. By idempotent,
we mean thatf; o f; = f;. An alternative definition is
as follows. First, a retractiop : X — Y, with section

e : Y — X, is aprojectioniff, additionally, e(p(z)) < x

for everyx € X; thene is usually called aembeddinge is
left-adjoint top, hence each of, p is determined uniquely
by the other one. Arexpanding sequencef dcpos is a
family (X;),cy with projection maps{p”)l JeNi<; where
pij + X; = Xi, pii = idx,, andp;, = pi; o pji Wwhenever
i< < k [1, Definition 3.3.6]. Given any € ],y X;

write x; its ith component. The limitim;cy X; = {a: e
[LienXi | Vi < j € N-pyj(w;) = x;} is a depo, and
is both a limit and a colimit in suitable categories (this is a
bilimit). Then the bifinite domains are (up to isomorphism)
the bilimits of expanding systems of finite, pointed posets
[1, Theorem 4.2.7].

The key lemma to prove Theorem 4.6 below is the fol-
lowing. It is tempting to think that this lemma is merely
Rudin’s Lemma [7, 111-3.3], itself a key lemma in the the-
ory of quasi-continuous dcpos. But this is wrong. Rudin’s
Lemma would only secure the existence of a directed fam-
ily Z whose least upper bound 45 and which intersects
eachy;(y); but Z may intersect each;(y) in more than
one elemeny;.

Lemma 4.5 LetY be a dcpoy € Y, and(E?), ., a non-
decreasing sequence in Fir) (w.r.t. <) such thatty =

ﬂ on T E}. There is a non-decreasing sequerigg), . in
Y such thaty; € EY for everyi € N, andsup,cy v;i = y.

Proof. Consider the collectio® of all sequencesE;),
of non-empty set&; C EY such thaty € 1 E; andE; <*
E;, for everyi € N. D is non-empty, sianE?)ieI is
in it. OrderD by pointwise inclusion. By Zorn’s Lemma,
D has a minimal elemer{Z; ), ;. Assume for the sake of
contradiction that somé’; contains at least two elements,
and pickj minimal. Definey; for everyi < j as follows:
y; is any element of; belowy (usingy € 1 E;), and, by
induction onj — 4, y;_1 is any element of; _; belowy;
(usingE;_1 <* E;). The family (E}),  defined byE! =
E; foreveryi > j+1,andE! = {y,} for eachi < jis then
in D, and contradicts the minimality df~;), . So each
E; contains exactly one element, say for eachi € N,

yi € EY,yi <, and(y;),cy is non-decreasing.

In particular, sup,cy yi € ﬂfGNTE? = 1y. Soy <
sup; e ¥i- Sincey; < y for eachi, equality follows. O

Theorem 4.6 The following are equivalent for a dcgo:
(1) Y is anwQRB-domain;
(i4) Y is a well-filtered quasi-retract of a bifinite domain;

a bifinite domainiff there is a non-decreasing sequence of (iii) Y is a quasi-projection of a bifinite domain.



Proof. (iii) = (i1). Y is stably compact by Proposition 4.4
since every bifinite domain is stably compact. 5ds well-
filtered [1, Corollary 7.2.11].

(i) = (i). LetY be wellfiltered. As a dcpo, it
is a monotone convergence space. Wiiteas a quasi-
retract of a bifinite domaitX. X is anRB-domain, hence
an wQRB-domain. By Proposition 4.3y = Y, is an
wQRB-domain.

(1) = (d¢i7). LetY be anwQRB-domain, with gen-
erating sequence of quasi-deflatiofis;), . Let X be
the set of all non-decreasing sequenges (y;);cy in Y
such thaty; € U;.;Imy;, andy;, € T oi(supgen k)
Order X componentwise. As in [14, Theorem 4.9, Theo-
rem 4.1], X is a bifinite domain: for eacli, € N, con-
sider the idempotent deflatiofi;,, defined by f;, ()
(Ymin(i.io));oy- TO Show that this is well-defined, we must
show thatymin(i,io) € T@i(supkeN ymin(k:,io))! i'e'! that
Ymin(i,io) € T@Z(yln) If i < o, thenymin(i,io) =Y €
Ti(supren yk) € Ti(yi,) sincey € X and,; is mono-
tonic, elseymin(i i) = Yi, € Twi(yo) Sincey; is a quasi-
deflation. It is easy to see thf, is Scott-continuous.

Let nowr : X — Y mapy to sup;cy ¥i, ands map
yeYto{ye X |VieN- -y € 1Tei(y)}: <(y)isnon-
empty, using Lemma 4.5.

Next, we claim that(y) is compact inX. For each
io € N, let@;, = {§ € X [ Vi < io-y; € Ti(y)}. Let
K;, be the set of all elementgof ();, such thaty; = y;,
for everyi > iy. Note thatk;, is finite, (recall that each
y; With ¢ < 4 is taken from the finite séyjﬁ Im ¢;), and
thatQ;, = T K;,. Indeed, for everyj € Q,,, its image
fio (%) by the idempotent deflatiofi, is in K;,, and is be-

low 3. So@Q;, is (finitary) compact. Every bifinite domain

Lemma 5.1 For any two (v)QRB-domainsX, Y, X x Y,
with the product ordering, is an)QRB-domain.

Bilimits are harder to deal with. But the difficulty was
solved by Jung [14, Section 4.1] in the cas®dB-domains
and deflations, and we proceed in a very similar way. All
proofs are in Appendix C.

Consider any se€ of functions from X to Fin(X)
such thaty(z) <* {x}, i.e.,z € 1¢(z), for everyx €
X. We say thatG is gfs (for quasi-finitely separatingiff
given any finitely many pair6Ey, x;) € Fin(X) x X with
By <z, 1 <k <n,thereis a) € G thatseparateghe
pairs, i.e., such thak;, <! (x;) <* {z3} (equivalently,
xp € T(xg) C 1 Ey) foreveryk, 1 <k <n.

Proposition 5.2 Let X be a poset. TheX is a QRB-
domain iff X is a quasi-continuous dcpo and the geétof
quasi-deflations oiX is gfs.

Proof. (Sketch.) This is a variant on [14, Theorem 4.5],
and is proved similarly. In the if direction, assurteqgfs,
and defined = {¢f oy | ¢ € G}. Itis easy to see that
H is a generating family of quasi-deflations provided it is
directed. To show that it is directed, pigkandy’ from G,

let E = Im, E' = Im ¢’. Using the form of interpolation
available in quasi-continuous dcpos, find a finite/Sgsuch
thatp(y) < B, < y for eachy € E, and similarlyE;,
such thaty’(y') < E;, < y' for eachy’ € E'. By dfs, find

¥ € G that separates the pait&y, y), (¢(v), 2), (£, y'),
and(¢'(y'),2") forally € B,z € By, y' € E', 2 € E,.
One checks thap' o ¢ andy'" o ¢’ are belowyt o1y, O

Theorem 5.3 Any bilimit of wQRB-domains is an

is stably compact [1, Theorem 4.2.18], and any intersection,,QRB-domain.
of saturated compacts in a stably compact space is (satu-

rated) compact, so(y) = (; cn @i, IS Saturated compact.
Soc¢(y) € Q(Y). ltis easy to see thatandr are Scott-
continuous.

Given anyz € Qr(s(y)), there is a non-decreasing se-
quencey in ¢(y), i.e., such that;, € 1¢;(y) for every
i € N, with sup;eny; < 2. Sincey; € 1 ¢;(y) for every
i € N, sup;enyi iSin;en Twi(y) =Ty, s0z € Ty. That
is, Qr(s(y)) C 1y. Conversely, we note thgte Or(s(y)),
i.e., that there is a sequengewith y; € 1 ;(y) for every
i € N, and such thatup,y y; < y: this is by Lemma 4.5.
So Or(s(y)) = Ty. Finally, for everyy € X, since
Yi € Twilsuprenyr) = Twi(r(y)) for everyi € N,
¥ € ¢(r(y)). Sor is a quasi-projection. O

5 Products, Bilimits
If (0i);ex (resp.(wj)jej) is a generating family of qua-

si-deflations onX (resp.Y), (Xij)ig?je(] isoneonX xY,
wherey;; (z,y) = pi(z) x ¢¥;(y)(see Appendix B), so:

Proof. (Sketch.) As in [14, Theorem 4.5]. L&fX;),

be an expanding sequence@RB-domains X its bilimit,

p; : X — X, the canonical projection and : X; — X the
canonical embedding. One checks that, for any finite set of
pairs(Ek, Zx) with E), < & in X, one can separate them
by quasi-deflations of the form Fi o ¢ o p;, wherei € N,

¢ is a quasi-deflation oX;, and Fire;(E) = {e;(z) | z €

E}; then use Proposition 5.2. O

6 The Probabilistic Powerdomain

Let X be a fixed topological space, and &tX) be the
lattice of open subsets &f. A continuous valuatiowr on X
[13] is @ map fromO(X) to R* such that/(()) = 0, which
is monotonic(v(U) < v(V) wheneverU C V), modu-
lar W(UUV)+v(UNV)=vU)+v(V) forall opens
U, V), andcontinuous(v (!, U;) = sup;c; v(U;) for ev-
ery directed family(U;),.,; of opens). A(sub)probability
valuationv is additionally such that is (sub)normalized



ie, thatv(X) = 1 (v(X) < 1). Let V{(X) (V<1(X))
be the dcpo of all (sub)probability valuations dn, or-
dered pointwise, i.eyy < V' iff v(U) < v/(U) for ev-
ery openU. V; (V<) defines a endofunctor on the cate-
gory of dcpos, and its action is defined on morphishisy
Vif(0)(U) = v(f1(U)).

If Y is a retract ofX, thenV(Y) is easily seen to be
a retract ofVy(X), using theV; endofunctor. The follow-

(i) heoior <h (i) W < (W or).oi

forall h € (X — RI), W € (Y — RI). For (i), for

everyr € X, h, oior(x) = min,gi(x)) h(z) < h(x),

sincex € i(r(x)). (This is where we use the fact that
is a quasi-projection.) Fafii), for everyy € Y, for every
x € i(y), r(x)isin Qr(i(y)) = Ty, soy < r(x). So
(B or)s 0i(y) = minge,(y) h'(r(x)) > h'(y). (We let the

ing result is more involved. Here we need to replace the "€@der check that, in facth’ o 7). oi = h'.)

Scott topology orV,(X) by theweak topologywhich is

the smallest one containing the subbasic opéhs 1|, de-

fined as{r € V(X) | v(U) > r}, for each open subset
U of X andr € R. WhenX is a continuous pointed dcpo,
theKirch-Tix Theorenstates that it coincides with the Scott
topology (see [2], who attribute it to Tix [21, Satz 4.10],
who in turn attributes it to Kirch [18, Satz 8.6]). However,

We also note that the mapping +— h, Is
Scott-continuous: by [9, Proposition 1]h.(Q)
¢.cx M(x)dug, where the unanimity gamey, is contin-
uous for every compact saturated §ef9, Section 3], and
observe that Choquet integration along continuous games is
Scott-continuous in the integrated functibfi9, Section 4].

We recall from [10, Proposition 4] that there is a

the weak topology is better behaved in the general case. LeMap CCoeury : VP11 (X) — Q(PT,, (X)) sending

V1 wik(X) beV;(X) with its weak topology.

Theorem 6.1 (Key Claim) If Y is a quasi-projection of
X, and X is stably compact, theV; ,,+(Y) is a quasi-
projection ofVy . (X).

Proof. Letr : X — Y be the quasi-retraction, : ¥ —
Q(X) be the quasi-section. Definé : V. (X) —
Vi wk(Y) by v = Vyr. To defined’ : Vi 1 (Y) —
Q(V1 wk(X)), we require some auxiliary machinery.

Let RI beR™ with its Scott topology, andX — RT)
be the poset of all bounded continuous maps fr&nto
RF. Vi ,x(X) is canonically isomorphic to the space
P2, (X) of so-called continuous normalized linear pre-
visions on X [10]. A prevision F' on X is a mapF :
(X — RI) — RI such thatF(af) = aF(f) for ev-
ery a € RT. A prevision F' is lower, or superlinear
ifft F(h+ h') > F(h)+ F(I') for every h, ', upper,
or sublinear iff F(h + 1) < F(h) + F(h') for every
h, b, lineariff F(h+ h') = F(h) + F(h'), normalizediff
F(a+h)=a+ F(h)forallh € (X — R})anda € R"
[10]. On any space of previsions, the weak topologyis
the smallest suchthgt > r] = {F € Y | F(h) > r}is
open for everyh € (X — R}) andr € R. LetP2, (Y),
resp.V/ Py ,x(X), be the space of continuous normalized
linear (resp. lower) previsions ali. The homeomorphism
Viwk(Y) = P2 (V) mapsy € V), (X) to the pre-
vision \h € (X — RY) - ¢ _ h(x)dv, where ¢ denotes
Choquet integral [9], and conversely everye PlAwk(X)
toU € O(X) — G(xuv), whereyy is the characteristic
function of U. Note thatr’ = Vr transports through this
isomorphism to the map sending eaGh ¢ P2, (X) to
A €Y 5 RE)-G'(W or) e P (Y).

Givenh € (X — RI), leth, map each) € 9(X) to
mingecq h(z). Thenh, isin (Q(X) — RT) (see [9]). We
claim that:

each continuous normalized lower previsifrto its heart
CCoeur,(F) = {G € P2, (X) | F < G}. When

X is stably compactC'Coeur, (F) is always non-empty,
compact, and saturated. (The first two properties are non-
trivial.) Moreover,CCoeur; is continuous.

EquateV ,,(X) with P{, (X): from now on, prob-
ability valuations will be taken to be elements of
P2 (X). Defines’ : Vi i(Y) = Q(Viwi(X)) by
¢(G) = CCoeur(Fg ), whereF,, (h) = G(h, o). One
checks easily thaf; is a lower normalized prevision. It
is continuous becaus® is, and becausk — h. is Scott-
continuous. Sq’(G) is well-defined.

The map sendingr to F; is also continuous, since the
inverse image ofh > r]is [h. oi > r]. Sinces’ is the com-
position of C'Coeury with this map, it is also continuous.

Let us show thatQr’'(¢'(G)) = 1G for every G €
P2 . (Y). We first use Keimel's topological version of
Roth’s Sandwich Theorem [17, Theorem 8.2]: in a topo-
logical coneC (i.e., a spac&' with a continuous addition
+ : C x C — C and a continuous scalar multiplication
. R x C — C satisfying the expected equalities), for
every superlinear continuous map C' — R} (whereRg
is R U {400} with its Scott topology), for every sublinear
mapp : C — R such thaty < p, there is a continu-
ous linear map\ : C — RY such thaty < A < p. Let
C = (X — R}). This is a continuous poset as soon as
X is locally compact; for our purposes, we may use [11,
Proposition 7.11], which states this, and a bit more, in the
case whereX is stably compact. Also addition and scalar
multiplication are Scott-continuous. Since the Scott topo
ogy of the product of two continuous posets is the product
of the Scott topologieg' is a continuous cone.

Let ¢ = Fg, ie., q(h) = G(he o), plh) =
SUDy,/ e iy vy wor<n G(R). Since F is a continuous
lower prevision,q is superlinear and continuous. It is easy
to see thatp is sublinear. Moreoverg < p: for each




Figure 4. The path space of Figure 2 (7)

h, let v’ h« o i, thenh’ o r < h by (i) above, so
that ¢(h) = G(h') < p(h). Find a continuous linear
mapA : C — R{ suchthaty = F; < A < p by
Keimel's Theorem. Sinceis onto (Lemma 4.2), whenever
h or < h, SUp,cy h'(y) < sup,ecx h(x); sinceG is nor-
malized,p(h) < sup,cx h(z) < +oo. In particular,A is
in fact a continuous linear previsior is also normalized:
for every constant € R*, a = ¢(a) < Aa) < p(a) < q,
SoA(a+ h) = Aa) + A(h) = a+ A(R).

Recall that’(G) = CCoeur,(F; ). The above allows
us to show tha€ is in Qr'(¢’(G)), i.e., that there is &' €
J(@) (i.e., inP2, (X) and such thaf); < G) such that
(G") < G. TakeG" = A: sinceq = F; < A < p,
we obtainF; < G’, and on the other han@'(h' o 1) =
AW or) < p(h or) = Supyic iy rty nror<nor GA").
Sincer is onto,h” o r < A’/ o r entailsh” < 1/, hence
G(h") < G(KW). SoG' (K or) < G(K).

Conversely, we claim tha@r'(¢'(G)) is included int G.
This is easier: every elemefitof Qr/(¢'(G)) is above some
r(G") with G’ € ¢'(G) (so thatF;, < G’). ThenA(h') >
" (G")(h') =G (W or) > F;(hor)=G((h or),o0i) >
G(I) by (ii), for everyh’ € (Y — R}). SoA € 1G.

S0 9r'(¢(G)) = 1 G for everyG € wak(Y), hence
V1 wi(Y) is a quasi-retract oV 5 (X).

Finally, we show thatz’ € ¢'(r'(G")) for every G’ €
P2 . (X). By (i), foreveryh € (X — R}), G'(h.oio
r) < G'(h),i.e.r'(G")(hyoi) < G'(h). Thatis,F, o) <
G'\ie., G € CCoeury(F, ) =<' (r'(G")). O

Apply this to finite posets. Let be the strict part oK.

Definition 6.2 (Path Space)Let Y be any finite pointed
poset. Writey — 4/ iff y is immediately belowy/, i.e.,
y <y, and thereis na € Y such thaty < z < ¢/. Apath
minY is any sef{yo,y1,...,yn} C Y withyy = L —
y1 — ... — y,. Thepath spac@l(Y) is the set of paths in
Y, ordered byC.

Alternatively, the ordering on pathg — vy1 — ... — yn
is the prefix ordering on sequencgsy; . . . yn.

Lemma 6.3 Every finite pointed posel” is a quasi-
projection of its path spacH(Y").
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Proof. See Figure 4, which displays the path space of the

spaceY” of Figure 2(7). Each gray region is labeled with an

element fromY’, which is the image by of every point in

the region; e.g., the top righf-element region is mapped

to j in Y. Converselys maps eacly € Y to the points in

Figure 4 that are in the corresponding gray region or above.
Formally, letX = II(Y), and definer : X — Y by

r(m) max7, .8, r(Yyo = Y1 — ... = Yn) = Yn.

Conversely, for every € Y, let¢(y) be the set of all paths

= that go throughy, i.e., such thaty € =. The maps-

andg are vacuously continuous(y) is trivially non-empty,

compact, and saturated. Comp@e(s(y)): this is the set

of elements: that are above,,, for some pathyy — y; —

... — yp going throughy. SoQr(<(y)) = T y. Conversely,

it is clear thatr € ¢(r(m)) for every pathr. O

Y is certainly not a retract dfi(Y") in general: itis, iffY is
atree i.e., afinite pointed poset whetey is totally ordered
foreveryy € Y (if Y is atree, they” = TI(Y'), conversely
II(Y) is a tree, and every retract of a tree is a tree).

Proposition 6.4 For every finite pointed posét, V1 (Y) is
a continuousvQRB-domain.

Proof. Y is trivially a continuous pointed dcpo. Then
we know thatV,(Y") is again continuous [6, Section 3],
and thatV,(Y) = V1 ,+(Y) by the Kirch-Tix Theorem.
Similarly for V,(I1(Y")). II(Y') is clearly stably compact,
since finite. By Theorem 6.1, using Lemma 6M3;(Y)

is a quasi-projection oV (II(Y)). ButII(Y) is a tree,
so V1 (TI(Y")) is an RB-domain, after Jung and Tix [16,
Theorem 13]. Their proof actually exhibits a generatieg
quenceof deflations. SV, (II(Y")) is anwQRB-domain.
We also know thaV, (Y") is stably compact, sincg is [2].
SoV,(Y) is anwQRB-domain, by Proposition 4.3. O

We can finally prove the main theorem of this paper.

Theorem 6.5 The probabilistic powerdomain of any
wQRB-domain is anvQRB-domain.

Proof. LetY be anwnQRB-domain. By Theorem 4.6 is
a quasi-projection of some bifinite domaih = lim;cy Xj;.
SinceV is a locally continuous functor on the category of
dcpos,V,(X) is also a bilimit of the space€; (X;),: € I.
(E.g., this is mentioned in [16, Lemma 11].) Ea¥h(X;)
is a continuousvQRB-domain by Proposition 6.4, hence
S0 isV1(X), by Theorem 5.3 and since bilimits of contin-
uous dcpos are continuous [1, Theorem 3.3.11].
SinceX is bifinite, it is stably compact, an¥; (X)
V1 w1 (X) becauseX is continuous and pointed, using the
Kirch-Tix Theorem. SoV, .. (Y') is a quasi-projection of
V1 (X) by Theorem 6.1. Sinc¥ is stably compact (The-
orem 3.9),Vy ,(Y) is stably compact [2], and is in par-
ticular sober, hence a well-filtered monotone convergence



space [1, Corollary 7.2.11, Proposition 7.2.13]. So Propos
tion 4.3 applies{V; ,x(Y)), is anwQRB-domain.

It is easy to see that the specialization quasi-ordeting
of Vi (Y is the usual ordering oW (Y), i.e.,v < v/ iff
v(U) < v/'(U) for every operlJ of Y (note that ifv < v/,
thenv’ € [U > r| for everyr < v(U)).

So(Viwi(Y)), = Vi(Y), and we conclude. O

Using the fact thaV; (X)) is continuous whenevex is
continuous and pointed [6, Section 3], it also follows:

Corollary 6.6 The probabilistic powerdomain of any con-
tinuouswQRB-domain (in particular, evenRB-domain)
is again a continuous QRB-domain. O

7 Conclusion, Failures and Perspectives

We have shown that the categanfQRB of wQRB-

domains and continuous maps was a category of quasi-
continuous, stably compact dcpos that is closed, not only
under finite products, bilimits, retracts (and even quasi-
retracts), but also under the probabilistic powerdomain

functorV,. Itis thus reasonably well-behaved.

But wQRB is not cartesian-closed: as the anonymous

referees (which | thank heartily) have noticed, the spéce
of [1, Figure 12] is anvQRB-domain such thdl’ — T is
not even Lawson-compact, so not@@RB-domain. This
also shows that, althoudhi is both continuous (even alge-
braic) and anvQRB-domain,T" is not anRB-domain: so
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A Quasi-retracts of Stably Compact Spaces = € U,cos®)} = TUyelr@) | = € sy} =

TUyeq Qris(®) =1U,eq Ty = Q-

" Lemma A.3 Any quasi-retracly” of a coherent spacq is
coherent.

The purpose of the rest of this section is to show that
whenX is stably compact, and is not only a quasi-retract
of X but a quasi-projection of, thenY is also stably com-
pact. Since ever@RB-domain is stably compack; will Proof. Let @, Q- be two compact saturated subsetd’of
be stably compact, hence sober, in this case, and the asthens’(Q;) N<’(Q-) is compact saturated i, using the
sumption thatr; be a well-filtered monotone convergence fact thatX is coherent. S@r(s’'(Q1) N <'(Q2)) is com-
space will be satisfied for free. pact saturated itv. We claim thatQr(s'(Q1) N ¢'(Q2)) =

Before we embark on showing that the quasi-projection ; N @, which will finish the proof. In one direction,
of every stably compact space is stably compact, we recallevery elementy of Q; N Q- is in Qr(<'(Q1) N ¢'(Q-)):
that no such subtlety would be needed in the classical caséyy Lemma 4.2, picke such thaty = r(x), and observe

of retracts of continuous dcpos: any topological retrac of

thatz € ¢’(Q1) (indeedz € <(y), wherey € Q) and

continuous dcpo is in fact a continuous dcpo, and in partic- € ¢/(Q5). In the other directionQr(¢’(Q1) N ¢'(Q2)) C

ular, has the Scott topology.
In all proofs of this section, let : X — Y be a quasi-
retraction, with matching quasi-section Y — 9Q(X).

Lemma A.1 Every quasi-retract” of a compact spac¥
is compact.

Proof. The image of a compact set by a continuous map is

compact. Now apply Lemma 4.2. O

Definec’ : Q(Y) — Q(X) by (Q) = U,eq<s®).
Then¢’ is well-defined, and continuous. This is folklore.
For completeness, here is a proof. Fiks{Q) is trivially
saturated for any) € Q(Y). To show that it is compact,
observe that a subsét is compact iff in everydirected

Q(r)(¢"(Q1)) N QM) (s"(Q2)) = Q1 N Qo, sinceQr o’ is
the identity onQ(Y"). O

Notice that, for every open subsét of YV, V
¢~ HOr~1(V)); indeed,y € ¢ HOr (V) iff <(y)
Or=1(V), iff <(y)  r='(V), iff Qr(c(y)) <
tycV.

V,i

=M

Lemma A.4 Any quasi-projectiort” of a locally compact
spaceX is locally compact.

Proof. Let V' be any open subset &f, andy € V. Then
y € ¢ HOr1(V)), i.e.,s(y) € r~1(V). SinceX is lo-
cally compact, whenevep is compact and’/ is open inX
and@ C U, there is a compact saturated sub@étof X

cover of K by opens, one of the opens of the cover already sych that) C int(Q’) andQ’ C U. (This is well-known:

contains K; realize also thatd commutes with directed
unions; if¢'(Q) € Ul., U, then@ € s 1(OUl., Uj) =

< HUJe, OU;) = Uje, s (00)), s0Q € <~H(OT])
for somej € J, i.e.,<'(Q) C U;. Then for every subbasic
opendU, U open inX, ¢’ '(OU) = O¢~H(OU), so¢’ is
continuous.

Lemma A.2 Any quasi-retract” of a well-filtered spac&’
is well-filtered.

Proof. Let (Q;);.; be a filtered family of compact satu-

rated subsets df, and assume thﬁ!]jel Q; € V,whereV
is openinY. Let @} = ¢’(Q;). This is compact saturated,
and forms a directed family, sincg is monotonic. We
claim that(),.; Q; € »~*(V). Indeed, every: € (,.; Q;
is such that, for every € I, there is ay; € @, such that
x € ¢(y;); thenr(z) € Qr(s(y;)) = Tv., sor(z) € Q;, for
everyi € . Sinceﬂjel Q; CV,r(z)isinV, whence the
claim.

Since X is well-filtered,Q’; C r=1(V) for somei € I.
Then, forevery € Q;, s(y) C<'(Q;) = Q: Cr~*(V), so
y € Qr(s(y) € Qr(r~1(V)) CV.SoQ; C V. O

Now notice thatQr o ¢’ is the identity onQ(Y"). In-
deed, for everyQ € Q(Y), Qr(<(Q)) = t{r(z) |
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by local compactness, there is a compact saturated subset

Q.. such thatr € int(Q,) and@, C U for eachz € Q;
since@ C U, int(Q.), by compactness there is a finite
subsetE of @ such thatQ C J,.int(Q.). Then take
Q/ = Ug;eE Qm)

Take@ = ¢(y), U = r—1(V), and pickQ’ as above, i.e.,
s(y) Cint(Q') and@’ C r—1(V). LetQ” = Qr(Q'), so
that@” is compact saturated i and@Q”’ C V.

We claim that, sincer is a quasi-projection,
r~1(¢71(OU)) C U for every open subset of X.
Indeed, for everyz € r~1(¢~1(QU)), <(r(z)) C U.
Sincer is a quasi-projectiong € ¢(r(z)), sox € U.
So the open subséV = ¢~ 1(0int(Q')) of Y is such
that»—1(W) C int(Q’). In particular,W is included in
the image ofQ)’ by r, hence inQ”. Also,y € W, since
<(y) C int(Q"). Soy is included in an open subsBt of
Q", hence inint(Q"). O

Recall that a space %) iff its specialization quasi-
ordering< is an ordering, i.e.y < ¢’ andy’ < y imply
y = v'. In general, a quasi-projection oflg space may
fail to beTy. E.g., takeX = {a, b} with its discrete topol-
ogy,Y = {¢, d} with the topology containing onlff andY
itself, r(a) = r(b) = ¢, s(¢) = ¢(d) = {a,b}. Note that
Te=1td=YinY.



However, putting together the results in this Appendix,
we obtain:
Proposition 4.4: Every T, quasi-projectiony” of a stably
compact spac« is stably compact.

Proof. Y is T, by assumption, and locally compact,

well-filtered, compact, and coherent. In the presence of lo-

cal compactnesd,;, and well-filteredness are equivalent to
sobriety [7, Theorem II-1.21], whence the claim. O

B Proof of Lemma5.1

Proof. Let (¢:);c; be a directed family of quasi-
deflations withtz = ()i, Twi(x) for all =z € X,
and (wj)jeJ a directed family of quasi-deflations with
Ty = ﬂjGJij(y) for all y € Y. Consider the
maps x;;, sending (z,y) to y;(z) x ;(y). Clearly,
(z,y) € 7Txij(z,y), and Imy;; is finite. For all
i,7, xi; is easily seen to be Scott-continuous, and
ml‘lej,jeJTXij(xay) = ﬂz‘lef,jeJT(QOi(x) x ¥;(y))

Nier Tes(@) x Niey 195 (y) = T2 x Ty = 1(z,y). The
case ofuQRB-domains is similar. O

C Proof of Theorem 5.3

Proposition 5.2: Let X be a poset. TheX is a QRB-
domain iff X is a quasi-continuous dcpo and the &eof
quasi-deflations oX is qfs.

Proof. If X is a QRB-domain, then le{Ey, xy) €
Fin(X) x X, be suchthak, <« zy foreveryk, 1 < k <mn,
and(y;),.; be a generating family of quasi-deflations. For
eachk, 1 < k < n, zp = oy, = g, Teila) € TE,
so0 by Proposition 3.4 there is are I such thatt ¢;(z)) C
$E;, C 1 Ej,. And we may pick the samefor everyk, by
directedness. Sg; is the desired € G.

Conversely, assume thét is gfs. We show thati =
{pfop | ¢ € G} is a generating family of quasi-
deflations. First, for eaclyr € G, o' o ¢ is continuous
by Lemma 3.6. Since € 1¢(z), pick 2’ € ¢(z) such
thatz’ < x. Thenz € T ¢(a'), sincep(a’) <* ¢(x). So
2 € Upepw Te@) = ¢l op(z). Sopl o pis a quasi-
deflation.

Let us show thaf{ is directed. Picky andy’ from G.
Let E = Imyp, E' = Im¢'. Foreachy € F, o(y) < y
by Lemma 3.2. Sinc&X is quasi-continuous, use interpo-
lation, and pick a finite seE, such thatp(y) < E, < y.
Similarly, let E;, be a finite set such thaf;,, <y’ and
¢'(y') < E,, foreachy’ € E'.

Consider the finite collection of all pair§E,,y),
(0(y).2), (Bl ), and('(y/), =), wherey € M, = €
E, y € FE', 2 € E,. SinceG is qfs, thereis a) € G
such thatE <! w(x) <! {x} for all the above pairs
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(E,z). In particular, looking at the paifE,,y), we get:
(a) E, <* 9(y) for everyy € E. And looking at the pair
( o(y) <t y(z)forally € E, z € E,. It follows:
<t yT(E,) for everyy € E. Then, for every
e X, plop(x) = Uyegp(z) ply) <* Uye¢(m) W1 (By)
(by (0)) <* U, e o) ¥ 0 9(y) (by @) = &T 00T 0 () <
Ut odpt({a}) (sincep(z) <* {2}) = YT o (x). Soplop
is below ! o 1. Similarly, ¢'T o ¢’ is belowyt o v, soH
is directed.

Finally, we claim thaf) . T ¢' o p(z) = tz. IntheD
direction, this is becausg' o ¢ is a quasi-retraction. Con-
versely, letE € Fin(X) be such thafl <« x. By interpola-
tion, find E’ € Fin(X) such thatt < E’ < x. SinceG is
gfs, applied to the pairsZ’, z) and(F, y) for eachy € F’,
there is an element € G such thatt’ <* p(z) andE <*
o(y) foreveryy € E'. SOE <! pf(E") <! T o p(z). So

ﬂcpEGT(pT © @(I) C ﬂlEEFin(X),E(mTE = TCC, asX is
quasi-continuous. O

Theorem 5.3: Any bilimit of wQRB-domains is an
wQRB-domain.

Proof. Let(X;),.y be an expanding sequence@R B-
domains, with projectiong;; : X; — X; and embeddings
€ij X, — XJ,’L < j. Let X = limieNXi. There is
a projectionp; : X — X, given byp;(Z¥) = x;, and an
embedding:; : X; — X for everyi € N.

Foreachmay : Y — Z, letFinf : Fin(Y) — Fin(Z)
map F € Fin(Y) to its image byf. We observe that
if E < p;(Z) in X;, then Fire;;(E) < p;(Z) for ev-
ery j > i. Indeed, consider any directed familyx), .,
such thaip,; (%) < supgc; yk. Thenp;(Z) = p;;i(p;(Z)) <
supy.cr pij(yk), SO for somek € I, there is az € E with
z < pij(yx). Thene;;(z) < ei(pij(yr)) < yr. We con-
clude sincez;;(z) € Fine;;(E).

It follows that the familyDz of all finite subsets of the
form Fine;(E), whereE € Fin(X;) and E < p;(Z),
i € N, is directed. Indeed, given Fi(E) and Fine; (E’)
in Dz, we can first assume that= j. Otherwise, say if
j > 1, then Fire;(E) is also equal to Fin;(Fine;;(E)),
and by(a) Fine;;(E) < p;(Z). Then, sinceX; is quasi-
continuous, there is ah” € Fin(X;) such thatE, £/ <*
E" < p;(Z), and we are done.

Moreover, (i, (p)ep, TFine:(£) equalst2. That
it containsz is obvious: wheneve# < p;(Z), pick
z € E with z < p;(Z), so thate;(z) < e;(pi(%)) <
Z, henced € 1Fine;(E). Conversely, every? €
Nrine:(myep, TFiNei(E) must be such that; = p;(%) €
Ni<p.(x) Pi(TFine;(E)). But E < p(7) implies that
some element oF is belowp; (Z), hence that some element
of Fine;(E) is belowe; (p;(Z)) < &; thenp;(1Fine;(E))
contains an element below(Z) = z;: soz; < z;. As this
holds for everyi, & < z. SO(\ejn, (myep TFiNei(£) C 14

In particular,X is a quasi-continuous dcpo.



We check that the set of quasi-deflations &h is
gfs. Consider a finite collection of pair§Ey,#;) <
Fin(X) x X with B, < #, 1 < k < n. Since
ﬂFmei(E)eka 1Fine;(E) = 1 &}, by Proposition 3.4, for
eachk, picki € NandE, € Fin(X;) such thatF, <
pi(Z,) andEj, <! Fine;(Ey,). (We can pick the samefor
every k, as above.) Sincg; is a QRB-domain, there is
a quasi-deflatiop on X; such thatp(p;(Z%)) C 1 E) for
everyk,1 <k <n.

Considery : X — Fin(X) defined as Fin; o ¢ o p;.
Fine;, restricted talm ¢, which is finite, is trivially Scott-
continuous. Sap is continuous. For every € X, some
elementy of ¢(p;(Z)) is belowp;(Z), sincey is a quasi-
deflation. There;(y) is belowe;(p;(Z¥)) < Z, and is in
¥ (&). Sov is a quasi-deflation.

Moreover, by construction, for each, 1 < k < n,
Y(#) C tFine;(Ey), so¢(fx) C 1Ey, sinceE), <f
Fine;(Ey). So the set of quasi-deflations shis qfs.

By Proposition 5.2X is then aQRB-domain. Itis easy
to see that any (countable) bilimit of countably-based guas
continuous dcpos is countably-based. Indeed, a countably
based quasi-continuous dcpg;, has a countable base of
sets of the fomffE;,, E € Fin(X;), k € N. The Dz
construction above, suitably modified, shows that the sets
TFinei(EZ—k), i,k € N, form a, necessarily countable,
base of the topology oX'. By Proposition 3.13X is an
wQRB-domain. O
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