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Abstract

Is there any cartesian-closed category of continuous do-
mains that would be closed under Jones and Plotkin’s prob-
abilistic powerdomain construction? This is a major open
problem in the area of denotational semantics of probabilis-
tic higher-order languages. We relax the question, and look
for quasi-continuous dcpos instead. We introduce a natural
class of such quasi-continuous dcpos, the!QRB-domains.
We show that they form a category!QRB with pleasing
properties:!QRB is closed under the probabilistic pow-
erdomain functor, has all finite products, all bilimits, and
is stable under retracts, and even under so-called quasi-
retracts. But. . .!QRB is not cartesian closed.

1 Introduction

Write V1(X) (resp.V≤1(X)) the dcpo of all continu-
ous probability (resp., subprobability) valuations overX,
and call it the probabilistic (resp., subprobabilistic) power-
domain ofX. This construction was introduced by Jones
and Plotkin to give a denotational semantics to higher-order
probabilistic languages [13]—we define it precisely later.

A famous open problem in the area is whether the prob-
abilistic powerdomain of anFS-domain is again anFS-
domain [16], and similarly withRB-domains in lieu ofFS-
domains. More generally, is there a category of nice enough
dcpos that would be cartesian-closed and closed underV1?
We call this theJung-Tix problem. By “nice enough”, we
mean nice enough to do any serious mathematics with, e.g.,
to establish definability or full abstraction results in exten-
sional models of higher-order, probabilistic languages. It is
traditional to equate “nice enough” with “continuous”, and
this is justified by the rich theory of continuous domains [7].

However, quasi-continuousdcpos (see [8], or [7, III-
3]) generalize continuous dcpos and are almost as well-
behaved. We propose to widen the scope of the problem,
and ask for a category of quasi-continuous dcpos that would
be closed underV1. We show that, by mimicking the con-
struction ofRB-domains [1], with some flavor of “quasi”,
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Figure 1. Part of the Hasse Diagram of V1(X)

we obtain a category!QRB of so-called!QRB-domains
that not only has many desired, nice mathematical prop-
erties (e.g., it is closed under bilimits, and every!QRB-
domain is stably compact), but is also closed underV1.

We in fact failed to solve the Jung-Tix problem:!QRB

is indeed not cartesian-closed. In spite of this, we believe
our contribution to bring some progress towards settling the
question, and at least to understand the structure ofV1(X)
better. To appreciate this, recall what is currently known
aboutV1. There are two landmark results:V1(X) is a
continuous dcpo as soon asX is ([6], building on Jones
[13]), andV1(X) is stably compact (with its weak topol-
ogy) wheneverX is [16, 2]. Since then, no significant
progress has been made. When it comes to solving the
Jung-Tix problem, we must in fact realize that there islit-
tle choice: the only known cartesian-closed categories of
(pointed) continuous dcpos that may suit our needs areRB

andFS [16]. I.e., all other known cartesian-closed cate-
gories of continuous dcpos, e.g., bc-domains or L-domains,
arenot closed underV1. Next, we must recognize thatlit-
tle is knownabout the (sub)probabilistic powerdomain of
anRB or FS-domain. In trying to show that eitherRB or
FS was closed underV1, Jung and Tix [16] only managed
to show that the subprobabilistic powerdomainV≤1(X) of
a finite treeX was anRB-domain, and that the subprob-
abilistic powerdomain of areversed finite treewas anFS-
domain. This is still far from the goal.

In fact, we do not know whetherV1(X) is an RB-
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Figure 2. Poset Examples

domain whenX is even the simple poset{⊥, a, b,⊤} (a
andb incomparable,⊥ ≤ a, b ≤ ⊤, see Figure 1, right)—
but it is anFS-domain. For a more complex (arbitrarily
chosen) example, takeX to be the finite pointed poset of
Figure 2(i): thenV1(X) andV≤1(X) are continuous and
stably compact, but not known to beRB-domains orFS-
domains (and they are much harder to visualize, too).

No progress seems to have been made on the question
since Jung and Tix’ 1998 attempt. As part of our results, we
show that for every finite pointed posetX, e.g. Figure 2(i),
V1(X) is a continuous!QRB-domain. This is also one of
the basic results that we then leverage to show thatV1(X)
is an!QRB-domain forany!QRB-domain, in particular
everyRB-domain, not just every finite pointed poset,X.

One may obtain some intuition as to why this should be
so, and at the same time give an idea of what (!)QRB-
domains are. LetX be a finite pointed poset. In attempting
to show thatV1(X) is anRB-domain, we are led to study
the so-calleddeflationsf : V1(X) → V1(X), i.e., the
continuous mapsf with finite range such thatf(�) ≤ �
for every continuous probability� valuation onX, and we
must try to find deflationsf such thatf(�) is as close as one
desires to�. All natural definitions off fail to be continu-
ous, and in fact to be monotonic. (E.g., Graham’s construc-
tion [12] is not monotonic, see Jung and Tix.) Looking for
mapsf such thatf(�) is instead a finite, non-emptysetof
valuations below� shows more promise—the monotonicity
requirements are slightly more relaxed. Such a set-valued
function is what we call aquasi-deflationbelow. For exam-
ple, one may think of fixingN ≥ 1 (N = 3 in Figure 1),
and mapping� to the collection of all valuations�′ below
� such that the measure of any subset is a multiple of1/N ,
keeping only those�′ that are maximal. (Pick them from
the left of Figure 1, in our example.) This still does not pro-
vide anything monotonic, but we managed to show that one
can indeed approximate every element� of V1(X), contin-
uously in�, using quasi-deflations. The proof is non-trivial,
and rests on deep properties relatingQRB-domains and
quasi-retractions—all notions that we define and study.

Outline. We introduce most of the required notions in
Section 2. Since we shall only start studying the proba-
bilistic powerdomain in Section 6, we shall refrain from
defining valuations, probabilities, and related concepts un-
til then. We introduceQRB-domains in Section 3. They

are defined just asRB-domains are, only with a flavor of
“quasi”, i.e., replacing approximating elements by approx-
imating setsof elements. We establish their main proper-
ties there, in particular that they are quasi-continuous, sta-
bly compact, and Lawson-compact. Much asRB-domains
are also characterized as the retracts of bifinite domains,
we show that, up to a few details, theQRB-domains are
the quasi-retracts of bifinite domains in Section 4. Quasi-
retractions are an essential concept in the study ofQRB-
domains, as well as the close notion ofquasi-projection—
two notions that we introduce. We also show that the cat-
egory of countably basedQRB-domains is closed under
finite products (easy) and bilimits (hard, but similar to the
case ofRB-domains) in Section 5. The core of the paper
is Section 6, where we show that the category!QRB of
countably basedQRB-domains is closed under the prob-
abilistic powerdomain construction. This capitalizes on all
previous sections, and will follow from Jung and Tix’ re-
sult thatV1(X) is anRB-domain wheneverX is a finite
tree, and applying suitable quasi-projections and bilimits.
The key result will then be Theorem 6.1, which shows that
for any quasi-projectionY of a stably compact spaceX,
V1(Y ) is again a quasi-projection ofV1(X), again up to a
few details. We conclude in Section 7.

Other Related Work. Instead of solving the Jung-Tix
problem, one may try to circumvent it. One of the most suc-
cessful such attempts led to the discovery ofqcb-spaces[4]
and to compactly generated countably based monotone con-
vergence spaces [3], as cartesian-closed categories of topo-
logical spaces where a reasonable amount of semantics can
be done. This provides exciting new perspectives. The cat-
egory of qcb-spaces accommodates two probabilistic pow-
erdomains [5]. The observationally induced one is essen-
tially V1(X) (with the weak topology), but differs from the
one obtained as a free algebra. Since the latter is essen-
tially the least one containing all finite linear combination of
Dirac masses

∑
i=1 ai�xi

, it would be the preferred model
to establish a definability result: if eachxi is definable, then∑

i=1 ai�xi
is the distribution one gets by picking eachxi

with probabilityai, which is easy to do by program. Unfor-
tunately, it is the other, observationally induced model that
seems to enjoy nice mathematical properties.

2 Preliminaries

We refer to [1, 7, 20] for background material. AposetX
is a set with a partial ordering≤. Let ↓A be the downward
closure{x ∈ X ∣ ∃y ∈ A ⋅ x ≤ y}; we write↓x for ↓{x},
whenx ∈ X. The upward closures↑A, ↑x are defined
similarly. Whenx ≤ y, x is belowy andy is abovex. X
is pointed iff it has a least element⊥. A dcpo is a poset
X where every directed family(xi)i∈I has a least upper
boundsupi∈I xi; directedness means thatI ∕= ∅ and for
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everyi, i′ ∈ I, there is ani′′ ∈ I such thatxi, xi′ ≤ xi′′ .
Every posetX comes with a topology, whose opensU

are the upward closed subsets such that, for every directed
family (xi)i∈I that has a least upper bound inU , xi ∈ U
for somei ∈ I. This is theScott topology. When we see a
poset or dcpoX as a topological space, we will implicitly
assume the latter, unless marked otherwise.

There is a deep connection between order and topology.
Given any topological spaceX, its specialization quasi-
ordering≤ is defined byx ≤ y iff every open containingx
also containsy. The specialization quasi-ordering of a dcpo
X (with ordering≤, and equipped with its Scott topology),
is the original ordering≤.

A subsetA of a topological spaceX is saturatediff it is
the intersection of all opensU containingA. Equivalently,
A is upward closed in the specialization quasi-ordering [20,
Remark after Definition 4.34]. So we can, and shall of-
ten prove inclusionsA ⊆ B whereB is upward closed by
showing that every openU containingB also containsA.

A mapf : X → Y between topological spaces iscon-
tinuousiff f−1(V ) is open for every open subsetV of Y .
Every continuous map is monotonic with respect to the un-
derlying specialization quasi-orderings. WhenX andY are
posets, it is equivalent to requiref to beScott-continuous,
i.e., to be monotonic and to preserve existing directed least
upper bounds. Ahomeomorphismif a bijective continuous
map whose inverse is also continuous.

Given a setX, and a familyℬ of subsets ofX, there is a
smallest topology containingℬ: thenℬ is asubbaseof the
topology, and its elements are thesubbasic opens. To show
thatf : X → Y is continuous, it is enough to show that the
inverse image of every subbasic open ofY is open inX.

The interior int(A) of a subsetA of a topological space
X is the largest open contained inA. A subsetQ of a topo-
logical spaceX is compactiff one can extract a finite sub-
cover from every open cover ofQ. The important ones are
thesaturatedcompacts. For any finite subsetA, ↑A is com-
pact and saturated; we call such special saturated compacts
the finitary compacts. X is locally compactiff for each
openU and eachx ∈ U , there is a compact saturated subset
Q such thatx ∈ int(Q) andQ ⊆ U . X is soberiff every
irreducible closed subset is the closure of a unique point;
in the presence of local compactness (and whenX is T0,
i.e., when the specialization quasi-ordering is an ordering),
it is equivalent to require thatX be well-filtered [7, Theo-
rem II-1.21], i.e., to require that, for every openU , for ev-
ery filtered family(Qi)i∈I of saturated compacts such that∩↓

i∈I Qi ⊆ U ,Qi ⊆ U for somei ∈ I already. We say that
the family isfiltered iff it is directed in the⊇ ordering, and
make it explicit by using↓ as superscript. (Symmetrically,
we write

∪↑ for directed unions.)
Given any posetX, any finite subsetE of X, and any

elementx of X, we writeE ≤ x iff x ∈ ↑E, i.e., iff

there is ay ∈ E such thaty ≤ x. E approximatesx, in
notationE ≪ x, iff for every directed family(xi)i∈I that
has a least upper bound abovex, thenE ≤ xi for some
i ∈ I. (We shall also writey ≪ x, wheny ∈ X, as short-
hand for{y} ≪ x; this is the more familiar way-below
relation. But beware thatE ≪ x means that all elements
of E approximatex collectively, while none in particular
may approximatex individually.) We compare finite sub-
sets in theSmyth quasi-ordering≤♯, defined byE ≤♯ E′

iff ↑E ⊇ ↑E′, or equivalently, for everyy′ ∈ E′, there is
a y ∈ E such thaty ≤ y′. Two finite subsetsE andE′

areequivalentiff E ≤♯ E′ andE′ ≤♯ E, iff ↑E = ↑E′.
The collection of equivalence classes of non-empty finite
subsetsE of X is denoted by Fin(X). The quasi-ordering
≤♯ induces a partial ordering, again written≤♯, on Fin(X).
We abuse notation and confuse finite subsetsE with their
equivalence classes. Observe that ifE ≤♯ E′ andE′ ≪ x,
thenE ≪ x, so in particular the notationE ≪ x is inde-
pendent of the choice ofE in its equivalence class.

A quasi-continuous dcpoX (see [8] or [7, Definition III-
3.2]) is a dcpo such that, for everyx ∈ X, the collection of
all E ∈ Fin(X) such thatE ≪ x is directed (w.r.t.≤♯)
and

∩
E∈Fin(X)

E≪x

↑E = ↑x. The theory of quasi-continuous

dcpos is less well explored than that ofcontinuous dcpos,
but quasi-continuous dcpos retain many of the properties
of the latter. (Every continuous dcpo is quasi-continuous,
but not conversely. A counterexample is given byN2, see
Figure 2(ii).) Every quasi-continuous dcpoX is locally
compact and sober [7, III-3.7]. In a quasi-continuous dcpo
X, for everyE ∈ Fin(X), the set↑↑E defined as{x ∈ X ∣
E ≪ x}, is open, and equalsint(↑E) [7, III-3.6(ii)]; every
openU is the union of all the subsets↑↑E, E ∈ Fin(X),
contained inU [7, III-5.6]; and for every compact saturated
subsetQ and every open subsetU containingQ, there is a
finite subsetE of X such thatQ ⊆ ↑↑E andE ⊆ U [7,
III-5.7]. In particular,Q =

∩↓

E finite,Q⊆↑↑E
↑E. Another

consequence isinterpolation: writing A ≪ B for B ⊆
↑↑A (i.e.,A ≪ y for everyy ∈ B), if E ≪ x in a quasi-
continuous dcpoX, for someE ∈ Fin(X), andx ∈ X,
thenE ≪ E′ ≪ x for someE′ ∈ Fin(X).

Let Q(X) be theSmyth powerdomainof X, i.e., the
poset of all non-empty compact saturated subsetsQ of X,
ordered by⊇. Q(X) is a continuous dcpo wheneverX
is locally compact and sober, with least upper bounds of
directed families computed as filtered intersections, and
whereQ ≪ Q′ iff Q′ ⊆ int(Q). Then, the subsets
□U = {Q′ ∈ Q(X) ∣ Q′ ⊆ U}, U open, form a subbase
of the topology ofQ(X). Note that□ commutes with finite
intersections and directed unions (□

∪↑
i∈I Ui =

∪↑
i∈I □Ui).

If X is a quasi-continuous dcpo, the above shows that
everyQ ∈ Q(X) can be written as

∩↓

E∈Fin(X),Q⊆↑↑E
↑E,

i.e., as the directed least upper bound of those non-empty
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finitary compacts↑E (E ∈ Fin(X)) that are way-belowQ.
In other words, the finitary compacts form abasisof Q(X).

3 QRB-Domains

A deflationon a posetX is a continuous mapf : X →
X such thatf(x) ≤ x for everyx ∈ X, and which takes
only finitely many values. AnRB-domainis a pointed dcpo
with a directed family of deflations(fi)i∈I such that, for
everyx ∈ X, x = supi∈I fi(x) [1, Exercise 4.3.11(9)].

We modelQRB-domains afterRB-domains, replacing
single approximating elementsfi(x) by finite subsets.

Definition 3.1 (QRB-Domain) A quasi-deflation on a
posetX is a continuous map' : X → Fin(X) such that
x ∈ ↑'(x) for all x ∈ X, and Im' is finite. We let
Im' =

∪
x∈X '(x).

A QRB-domainis a pointed dcpoX with a generating
family of quasi-deflations, i.e., a directed family of quasi-
deflations('i)i∈I with↑x =

∩↓
i∈I ↑'i(x) for eachx ∈ X.

We order quasi-deflations pointwise, i.e.,' ≤  iff
'(x) ≤♯  (x) for every x ∈ X. One can see the fini-
tary compacts↑'i(x) as being smaller and smaller upward
closed sets containingx.

That' is continuous means that' is monotonic (x ≤ y
implies'(x) ≤♯ '(y)), and that for every directed family
(xj)j∈J

of elements ofX, '(supj∈J xj) is a finite subset

E of X such that↑E =
∩↓

i∈I ↑'(xj).
It is obvious that everyRB-domain is aQRB-domain.

Lemma 3.2 Let ' be a quasi-deflation onX. For every
x ∈ X, '(x) ≪ x.

Proof. Let (xj)j∈J
be a directed family having a least up-

per bound abovex. Since' is continuous,
∩↓

j∈J ↑'(xj) ⊆
↑'(x). But sinceIm' is finite, there are only finitely many
sets'(xj), j ∈ J . So↑'(xj) ⊆ ↑'(x) for somej ∈ J .
Sincexj ∈ ↑'(xj), xj ∈ ↑'(x), i.e.,'(x) ≤ xj . ⊓⊔

Corollary 3.3 EveryQRB-domain is quasi-continuous.

In general, QRB-domains are not continuous. E.g.,
N2 (Figure 2 (ii)) is not continuous. However,N2

is a QRB-domain: for all i, j ∈ ℕ, take 'ij(!) =
!, 'ij(0,m) = {(0,min(m, i)), (1, j)}, 'ij(1,m) =
{(0, i), (1,min(m, j))}. Then('ij)i,j∈ℕ

is the desired di-
rected family of quasi-deflations.

RB-domains are not just continuous domains, they are
stably compact, i.e., locally compact, sober, compact and
coherent. We say that a topological space iscoherentiff
the intersection of any two compact saturated subsets is
compact (and saturated). In a stably compact space, the
intersection of any family of compact saturated subsets is

compact. We show thatQRB-domains are stably compact
as well. For this, we need the following consequence of
Rudin’s Lemma, a finitary form of well-filteredness:

Proposition 3.4 ([7, III.3-4]) LetX be a dcpo,(Ei)i∈I be
a directed family in Fin(X). For every open subsetU ofX,
if
∩↓

i∈I ↑Ei ⊆ U , thenEi ⊆ U for somei ∈ I.

Corollary 3.5 LetX be a dcpo. For every open subsetU
ofX, the subset□FinU = {E ∈ Fin(X) ∣ E ⊆ U} is open
in Fin(X).

Proof. First, □finU is upward closed: ifE ∈ □finU and
E ≤♯ E′, then↑E ⊆ U (sinceU is upward-closed) and
↑E′ ⊆ ↑E, so↑E′ ⊆ U , whenceE′ ∈ □finU . The rest of
the claim is Proposition 3.4, verbatim. ⊓⊔

Lemma 3.6 LetX, Y be dcpos. For every map : X →
Fin(Y ), let  † : Fin(X) → Fin(Y ) mapE ∈ Fin(X) to∪

x∈E  (x) (resp., ifIm is finite, then let ∗ : Q(X) →
Fin(Y ) mapQ ∈ Q(X) to

∪
x∈Q  (x)). If  is continuous,

then so is † (resp., ∗).

Proof. First,  † is monotonic: ifE ≤♯ E′, i.e., for ev-
ery x′ ∈ E′, there is anx ∈ E with x ≤ x′, in partic-
ular ↑ (x′) ⊆ ↑ (x), then for everyx′ ∈ E′,  (x′) ⊆
↑ †(E). So↑ †(E′) ⊆ ↑ †(E).

Next, we show continuity. This follows from the claim
that ↑ †(

∩↓
i∈I ↑Ei) =

∩↓
i∈I ↑ 

†(Ei) for every directed
family (Ei)i∈I in Fin(X). The inclusion⊆ is clear by
monotonicity. Conversely, since both sides of the equality
are saturated, it is enough to show that every open subset
U that contains the left-hand side also contains the right-
hand side. IfU contains †(

∩↓
i∈I ↑Ei), then for everyx ∈∩↓

i∈I ↑Ei,  (x) ⊆ U , i.e.,
∩↓

i∈I ↑Ei ⊆  −1(□finU). Now
 −1(□finU) is open, since is continuous and using Corol-
lary 3.5. By Proposition 3.4,Ei ⊆  −1(□finU) for some
i ∈ I, i.e., †(Ei) ⊆ U . In particular,

∩↓
i∈I ↑ 

†(Ei) ⊆ U ,
and we conclude.

The arguments are similar for ∗, assumingIm finite.
To show continuity, we need to show that every open subset
U that contains ∗(

∩↓
i∈I Qi) also contains

∩↓
i∈I ↑ 

∗(Qi).

In this case,
∩↓

i∈I Qi ⊆  −1(□finU), from whichQi ⊆
 −1(□finU) for somei ∈ I by the Hofmann-Mislove The-
orem [1, Corollary 7.2.11], which applies sinceX is sober.
ThenU contains ∗(Qi), and we conclude as above. ⊓⊔

One may equate Fin(X) with the subset of thoseQ ∈ Q(X)
that are finitary. Then † is the restriction of ∗ to Fin(X).

Lemma 3.7 LetX be aQRB-domain, and('i)i∈I a gen-
erating family of quasi-deflations. For every open subsetU
ofX,

∪↑
i∈I '

−1
i (□finU) = U .
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Proof. That the union is directed is because'−1
i (□finU) ⊆

'−1
i′ (□finU) whenever'i is pointwise below'i′ , i.e.,

'i(x) ≤♯ 'i′(x) for all x ∈ X. Sincex ∈ 'i(x) for ev-
ery i ∈ I, '−1

i (□finU) ⊆ U : for eachx ∈ '−1
i (□finU),

'i(x) contains an element belowx, and is included inU ,
sox ∈ U , sinceU is upward closed. Finally, we claim that
every elementx of U is in '−1

i (□finU) for somei ∈ I. In-
deed,↑x ⊆ U , so

∩
i∈I ↑'i(x) ⊆ U . By Proposition 3.4,

'i(x) ⊆ U for somei ∈ I, i.e.,'i(x) ∈ □finU . ⊓⊔

Lemma 3.8 LetX be aQRB-domain, and('i)i∈I a gen-
erating family of quasi-deflations. For every compact sat-
urated subsetQ of X, Q =

∩↓
i∈I ↑'

∗
i (Q). For every

E ∈ FinX, ↑E =
∩↓

i∈I ↑'
†
i (E).

Proof. Since'i(x) ≤ x for all x, andQ is upward-closed,
↑'∗

i (Q) containsQ for everyi ∈ I. SoQ ⊆
∩↓

i∈I ↑'
∗(Q).

Conversely, sinceQ is saturated, it is enough to show that
every openU containingQ also contains

∩↓
i∈I ↑'

∗(Q).
SinceQ ⊆ U , by Lemma 3.7,Q ⊆

∪
i∈I '

−1
i (□finU). By

compactness,Q ⊆ '−1
i (□finU) for somei ∈ I, i.e., for

everyx ∈ Q, 'i(x) ⊆ U . So'∗
i (Q) ⊆ U . The statement

about'† is similar. ⊓⊔

Theorem 3.9 EveryQRB-domain is stably compact.

Proof. Let X be aQRB-domain, with generating family
of quasi-deflations('i)i∈I . Fix two compact saturated sub-
setsQ andQ′. We must show thatQ∩Q′ is compact. With-
out loss of generality, assumeQ ∩ Q′ ∕= ∅. We first claim
that there is a directed family(Ei)i∈I in Fin(X) such that,
for all E,E′ ∈ Fin(X) such thatQ ⊆ ↑↑E andQ′ ⊆ ↑↑E′,
Q∩Q′ is contained in some↑↑Ei, i ∈ I, withEi ⊆ ↑↑E∩↑↑E′.

LetEi =
∪

x∈Q∩Q′ 'i(x) (we cannot write'∗
i (Q∩Q′),

since we do not know yet thatQ∩Q′ is compact). Since↑↑E
is open and containsQ, by Lemma 3.8 and Proposition 3.4
there is ani ∈ I such that↑'∗

i (Q) ⊆ ↑↑E. Similarly, there
is ani ∈ I such that↑'∗

i (Q
′) ⊆ ↑↑E′—we take the samei,

using directedness. ThenEi ⊆ '∗
i (Q) ∩ '∗

i (Q
′) ⊆ ↑↑E ∩

↑↑E′. Let us show thatQ∩Q′ ⊆ ↑↑Ei: for everyx ∈ Q∩Q′,
'i(x) ≪ x by Lemma 3.2; but'i(x) ⊆ Ei, soEi ≤♯

'i(x), whenceEi ≪ x.
From this, we deduce thatQ∩Q′ =

∩↓
i∈I ↑Ei. (The in-

tersection is filtered, since(Ei)i∈I is directed in Fin(X).)
In one direction,Q ∩ Q′ ⊆ ↑↑Ei ⊆ ↑Ei for eachi ∈
I. Conversely, sinceQ ∩ Q′ ∕= ∅, Q ∕= ∅, so Q =∩↓

E∈Fin(X),Q⊆↑↑E
↑E, hence

∩↓

E∈Fin(X),Q⊆↑↑E
↑↑E ⊆ Q.

Similarly,
∩↓

E′∈Fin(X),Q′⊆↑↑E′

↑↑E′ ⊆ Q′. For allE,E′ with

Q ⊆ ↑↑E,Q′ ⊆ ↑↑E′, there is ani ∈ I such that↑Ei ⊆ ↑↑E∩
↑↑E′, so

∩↑
i∈I ↑Ei ⊆

∩↓

E,E′∈Fin(X),Q⊆↑↑E,Q′⊆↑↑E′

↑↑E ∩

↑↑E′ ⊆ Q ∩Q′.

It follows thatQ∩Q′ is compact. Explicitly, ifQ∩Q′ =∩↓
i∈I ↑Ei is contained in a unionU =

∪
j∈J Uj of opens,

thenEi ∈ U for somei ∈ I by Proposition 3.4. For each
x ∈ Ei, pick jx ∈ J such thatx ∈ Ujx . ThenQ ∩ Q′ ⊆∪

x∈Ei
Ujx .

SoX is coherent.X is compact since pointed, and also
locally compact and sober, as a quasi-continuous dcpo.⊓⊔

The Lawson topologyis the smallest topology contain-
ing both the Scott-opens and the complements of all sets
↑E, E ∈ Fin(X). WhenX is a quasi-continuous dcpo,
since↑E is compact saturated and every non-empty com-
pact saturated subset is a filtered intersection of such sets
↑E, the Lawson topology coincides with thepatch topol-
ogy, i.e., the smallest topology containing the original Scott
topology and all complements of compact saturated subsets.
Every stably compact space is patch-compact, i.e., compact
in its patch topology [7, Section VI-6]. So:

Corollary 3.10 EveryQRB-domain is Lawson-compact.

In the sequel, we shall need some form of countability:

Definition 3.11 An !QRB-domain is a QRB-domain
with acountablegenerating family of quasi-deflations.

Proposition 3.12 A pointed dcpoX is an!QRB-domain
iff there is a generatingsequenceof quasi-deflations
('i)i∈ℕ

, i.e., for everyi, i′ ∈ ℕ, i ≤ i′, 'i(x) ≤♯ 'i′(x)

for everyx ∈ X, and↑x =
∩↓

i∈ℕ
↑'i(x) for everyx ∈ X.

Proof. Let X be an!QRB-domain, and( j)j∈ℕ
be a

countable generating family of quasi-deflations. Build a se-
quence(ji)i∈ℕ

by letting j0 = 0, andji+1 be anyj ∈ ℕ

such that j is above i and ji , by directedness. Then
let 'i =  ji for every i ∈ ℕ. By construction, whenever
i ≤ i′, 'i is below'i+1. And for everyi ∈ ℕ,  i is below
'i =  ji , so↑x =

∩↓
i∈ℕ

↑'i(x) for everyx ∈ X Then
( ji)i∈ℕ

is the desired sequence. ⊓⊔

Proposition 3.13 A QRB-domain X is an !QRB-
domain iff it is countably based, i.e., its topology has a
countable subbase.

Proof. Only if: let ('i)i∈ℕ
be a generating sequence of

quasi-deflations onX; we claim that the countably many
subsets↑↑'i(y), y ∈ Im'i, i ∈ ℕ, form a subbase of the
topology.

It is enough to show that, for every openU andx ∈ U ,
x ∈ ↑↑'i(y) for somey ∈ Im'i such that'i(y) ⊆ U :
since↑x =

∩↓
j∈ℕ

↑'j(x) ⊆ U , use Proposition 3.4 to find
j ∈ ℕ such thatx ∈ ↑'j(x) and'j(x) ⊆ U . So there is
a y ∈ 'j(x) such thaty ≤ x, andy ∈ U . Repeating the
argument ony, we find i ∈ ℕ such thaty ∈ ↑'i(y) and
'i(y) ⊆ U . Sincey ≤ x, x ∈ ↑'i(y).
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Figure 3. A quasi-retraction

If: let ('i)i∈I be a generating family of quasi-deflations
onX, and assume that the topology ofX has a countable
subbaseℬ. The finite intersections of elements ofℬ form
a baseℬ′, i.e., every open is a union of elements ofℬ′.
Moreover,ℬ′ is countable. Writeℬ′ as {Uk ∣ k ∈ ℕ},
and assume without loss of generality thatUk ∕= ∅ for ev-
ery k ∈ ℕ. Fix xk ∈ Uk for eachk ∈ ℕ: by Proposi-
tion 3.4 and using directedness, one findsik ∈ I such that
'ik(xk) ⊆ Uk and'ik is above every'ij , j ≤ k. Define k

as'ik . The family ( k)k∈ℕ
is a non-decreasing sequence

of deflations, and is generating:↑x ⊆
∩

k∈ℕ
↑ k(x) since

each k is a deflation; conversely, every open containingx
contains someUk, hence↑ k(x), hence

∩
k∈ℕ

↑ k(x). ⊓⊔

4 Quasi-Retracts of Bifinite Domains

The RB-domains can be characterized as the retracts
of the so-called bifinite domains (which we define below).
Recall that aretraction of X ontoY is a continuous map
r : X → Y such that there is continuous maps : Y → X
(thesection) with r(s(y)) = y for everyy ∈ Y .

We shall show that (!)QRB-domains are not just closed
under retractions, but under a more relaxed notion that we
shall quasi-retractions. In fact, our aim in this section is
to show that the pointed!QRB-domains are exactly the
quasi-retracts of bifinite domains, up to some details.

For each continuousr : X → Y , defineQr : Q(X) →
Q(Y ) by Qr(Q) = ↑{r(x) ∣ x ∈ Q}. Qr is continuous,
sinceQr−1(□V ) = □r−1(V ) for every openV .

Definition 4.1 (Quasi-retract) A quasi-retractionr : X →
Y of X onto Y is a continuous map such that there is a
continuous map& : Y → Q(X) (the quasi-section) such
thatQr(&(y)) = ↑ y for everyy ∈ Y .

The topological spaceY is a quasi-retractofX iff there
is a quasi-retraction ofX ontoY .

While a sections : Y → X picks an elements(y) in the in-
verse imager−1(y), continuously, a quasi-section is only
required to pick a non-empty compact, saturated collec-
tion of elements fromr−1(↑ y) (see Figure 3), continuously

again. Every retractionr (with sections) defines a canon-
ical quasi-retraction: let&(y) = ↑ s(y), thenQr(&(y)) =
↑{r(z) ∣ s(y) ≤ z} = ↑ r(s(y)) = ↑ y. The converse fails.
Let indeedℕ! be the dcpo of all natural numbers with an
added top element!, andX = ℕ! + ℕ! = {(k,m) ∣ k ∈
{0, 1},m ∈ ℕ!}, ordered by(k,m) ≤ (ℓ, n) iff k = ℓ and
m ≤ n (see Figure??(iii)). LetY = N2, andr map(k, !)
to !, and(k,m) to itself wheneverm ∈ ℕ: r is continu-
ous, and has a quasi-section, defined by&(k,m) = ↑(k,m)
wheneverm ∈ ℕ, &(!) = {(0, !), (1, !)}. Sor is a quasi-
retraction. ButY is not a retract ofX: X is a continuous
dcpo, and every retract of a continuous dcpo is again one;
recall thatN2 is not continuous.

Categorically, as G. Plotkin remarked, in any full subcat-
egoryCCC of TopTopTop whereQ is a monad, every quasi-retraction
r : X → Y induces a continuous map↑ r(_) : X → Q(Y ),
which is then a retraction in the Kleisli categoryCCCQ.

Lemma 4.2 Every quasi-retractionr : X → Y is onto.

Proof. Let & be the associated quasi-section. For every
y ∈ Y , ↑ y = Qr(&(y)). Sincey ∈ Qr(&(y)), r(x) ≤ y
for somex ∈ &(y). But r(x) is then inQr(&(y)) = ↑ y, so
y ≤ r(x). Thereforey = r(x). ⊓⊔

The next proposition essentially states that every quasi-
retractY of aQRB-domainX is aQRB-domain. How-
ever, we need to considerY� instead, whereY� is the
spaceY with the Scott topology of its specialization quasi-
ordering≤. Y� = Y if Y is already a dcpo, but we shall
need to consider more general topological spaces later (viz.,
in Theorem 6.5).Y is amonotone convergence spaceiff Y�
is a dcpo and every open ofY is open inY� [7].

Proposition 4.3 LetY be a well-filtered monotone conver-
gence space. IfY is a quasi-retract of an (!)QRB-domain,
thenY� is an (!)QRB-domain.

Proof. Let X be aQRB-domain,r : X → Y a quasi-
retraction, and& : Y → Q(X) a matching quasi-section.
Note thatY is pointed: letting⊥ the least element ofX,
we claim thatr(⊥) is the least element ofY . Indeed, for
every y ∈ Y , pick somex ∈ X such thatr(x) = y by
Lemma 4.2, thenr(⊥) ≤ r(x) = y.

For each quasi-deflation' onX, let '̂ : Y → Fin(Y )
map y to Qr(↑'∗(&(y))). I.e., '(y) = ↑{r(z) ∣ ∃x ∈
&(y) ⋅ z ∈ '(x)}, where the upward closure↑ is taken w.r.t.
the specialization quasi-ordering ofY (equivalently, ofY�).

For every open subsetV of Y , '̂−1(□V ) is the set
of all y ∈ Y such that for everyx ∈ &(y), for ev-
ery z ∈ '(x), r(z) ∈ V . I.e., for everyx ∈ &(y),
'(x) ⊆ r−1(V ), that is, &(y) ⊆ '−1(□finr

−1(V )). So
'̂−1(□V ) = &−1(□'−1(□finr

−1(V ))). Since the latter is
open, and the sets□V form a subbase of the topology of
Q(X), '̂ is continuous fromY to Fin(Y ).
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We need to show that̂' is Scott-continuous instead.
(This would be automatic ifY were a dcpo, but we are
not making this assumption.) To this end, observe thatQr
is not only continuous fromQ(X) to Q(Y ), but is also
Scott-continuous. Indeed, for every filtered family(Qi)i∈I

of compact saturated subsets ofX, Qr(
∩↓

i∈I Qi) ⊆∩↓
i∈I Qr(Qi) by monotonicity. For the converse inclu-

sion, every openU containingQr(
∩↓

i∈I Qi) must be such

that
∩↓

i∈I Qi ⊆ r−1(U), so Qi ⊆ r−1(U) for some
i ∈ I by well-filteredness; soQr(Qi) ⊆ U , whenceU
contains

∩↓
i∈I Qr(Qi). Then, for every directed family

(yi)i∈I in Y , '̂(supi∈I yi) = Qr(↑'∗(
∩↓

i∈I &(yi))) (since
& : Y → Q(X) is continuous and every open ofY is
open inY�, & is also continuous fromY� to Q(X), hence
Scott-continuous)= Qr(

∩↓
i∈I ↑'

∗(&(yi))) (Lemma 3.6)

=
∩↓

i∈I Qr(↑'
∗(&(yi))) (Qr is Scott-continuous). Sô'

is Scott-continuous fromY to Fin(Y ).
We now claim thaty ∈ ↑ '̂(y) for everyy ∈ Y . Since

Qr(&(y)) = ↑ y, y ∈ Qr(&(y)), so there is anx ∈ &(y)
such thatr(x) ≤ y. Nowx ∈ ↑'(x), so there is az ∈ '(x)
such thatz ≤ x. Thenr(z) ≤ r(x) ≤ y, soy ∈ '̂(y).

Let now ('i)i∈I be a generating family of quasi-
deflations onX. Clearly, if'i is below'j , then'̂i is below
'̂j , so('̂i)i∈I is directed.

It remains to show that
∩↓

i∈I ↑ '̂i(y) = ↑ y for ev-
ery y ∈ Y . Since y ∈ ↑ '̂(y), it remains to show∩↓

i∈I ↑ '̂i(y) ⊆ ↑ y: we show that every openV containing

y contains
∩↓

i∈I ↑ '̂i(y). Sincey ∈ V andQr(&(y)) = ↑ y,
Qr(&(y)) ⊆ V , so &(y) ∈ Qr−1(□V ) = □r−1(V ), i.e.,
&(y) ⊆ r−1(V ). By Lemma 3.7,

∪↑
i∈I '

−1
i (□finr

−1(V )) =

r−1(V ). Since&(y) is compact,&(y) ⊆ '−1
i (□finr

−1(V ))
for somei ∈ I. Soy is in &−1(□'−1

i (□finr
−1(V ))), which

is equal to'̂−1
i (□V ) (see above). It follows thatV contains

'̂i(y), hence
∩↓

i∈I ↑ '̂i(y). SoY� is aQRB-domain.
The case of!QRB-domains is similar, where now

('i)i∈ℕ
is a generatingsequenceof quasi-deflations. ⊓⊔

The assumption onY is always satisfied in the following
important case. A quasi-retractionr : X → Y , with quasi-
section& : Y → Q(X), is aquasi-projectioniff, addition-
ally, x ∈ &(r(x)) for everyx ∈ X. In this case, we say that
Y is aquasi-projectionof X. The quasi-retraction of Fig-
ure 3 is meant to be a quasi-projection:x is in the gray area
&(y). The following is reminiscent of the fact that every re-
tract of a stably compact space is again stably compact [19,
Proposition, bottom of p.153, and subsequent discussion];
see Appendix A for a proof.

Proposition 4.4 EveryT0 quasi-projectionY of a stably
compact spaceX is stably compact.

Let us turn to bifinite domains. A pointed dcpoX is
a bifinite domainiff there is a non-decreasing sequence of

idempotentdeflations(fi)i∈ℕ
such that, for everyx ∈ X,

x = supi∈ℕ fi(x) [1, Theorem 4.2.6]. By idempotent,
we mean thatfi ∘ fi = fi. An alternative definition is
as follows. First, a retractionp : X → Y , with section
e : Y → X, is aprojection iff, additionally, e(p(x)) ≤ x
for everyx ∈ X; thene is usually called anembedding; e is
left-adjoint top, hence each ofe, p is determined uniquely
by the other one. Anexpanding sequenceof dcpos is a
family (Xi)i∈ℕ

with projection maps(pij)i,j∈ℕ,i≤j
where

pij : Xj → Xi, pii = idXi
, andpik = pij ∘ pjk whenever

i ≤ j ≤ k [1, Definition 3.3.6]. Given any⃗x ∈
∏

i∈ℕ
Xi,

write xi its ith component. The limitlimi∈ℕXi = {x⃗ ∈∏
i∈ℕ

Xi ∣ ∀i ≤ j ∈ ℕ ⋅ pij(xj) = xi} is a dcpo, and
is both a limit and a colimit in suitable categories (this is a
bilimit). Then the bifinite domains are (up to isomorphism)
the bilimits of expanding systems of finite, pointed posets
[1, Theorem 4.2.7].

The key lemma to prove Theorem 4.6 below is the fol-
lowing. It is tempting to think that this lemma is merely
Rudin’s Lemma [7, III-3.3], itself a key lemma in the the-
ory of quasi-continuous dcpos. But this is wrong. Rudin’s
Lemma would only secure the existence of a directed fam-
ily Z whose least upper bound isy, and which intersects
each'i(y); but Z may intersect each'i(y) in more than
one elementyi.

Lemma 4.5 LetY be a dcpo,y ∈ Y , and(E0
i )i∈ℕ

a non-
decreasing sequence in Fin(Y ) (w.r.t. ≤♯) such that↑ y =∩↓

i∈ℕ
↑E0

i . There is a non-decreasing sequence(yi)i∈ℕ
in

Y such thatyi ∈ E0
i for everyi ∈ ℕ, andsupi∈ℕ yi = y.

Proof. Consider the collectionD of all sequences(Ei)i∈ℕ

of non-empty setsEi ⊆ E0
i such thaty ∈ ↑Ei andEi ≤

♯

Ei+1 for every i ∈ ℕ. D is non-empty, since(E0
i )i∈I is

in it. OrderD by pointwise inclusion. By Zorn’s Lemma,
D has a minimal element(Ei)i∈ℕ

. Assume for the sake of
contradiction that someEj contains at least two elements,
and pickj minimal. Defineyi for every i ≤ j as follows:
yj is any element ofEj belowy (usingy ∈ ↑Ej), and, by
induction onj − i, yi−1 is any element ofEi−1 below yi
(usingEi−1 ≤♯ Ei). The family(E′

i)i∈ℕ
defined byE′

i =
Ei for everyi ≥ j+1, andE′

i = {yi} for eachi ≤ j is then
in D, and contradicts the minimality of(Ei)i∈ℕ

. So each
Ei contains exactly one element, sayyi; for eachi ∈ ℕ,
yi ∈ E0

i , yi ≤ y, and(yi)i∈ℕ
is non-decreasing.

In particular,supi∈ℕ yi ∈
∩↓

i∈ℕ
↑E0

i = ↑ y. So y ≤
supi∈ℕ yi. Sinceyi ≤ y for eachi, equality follows. ⊓⊔

Theorem 4.6 The following are equivalent for a dcpoY :
(i) Y is an!QRB-domain;
(ii) Y is a well-filtered quasi-retract of a bifinite domain;
(iii) Y is a quasi-projection of a bifinite domain.
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Proof. (iii) ⇒ (ii). Y is stably compact by Proposition 4.4
since every bifinite domain is stably compact. SoY is well-
filtered [1, Corollary 7.2.11].

(ii) ⇒ (i). Let Y be well-filtered. As a dcpo, it
is a monotone convergence space. WriteY as a quasi-
retract of a bifinite domainX. X is anRB-domain, hence
an !QRB-domain. By Proposition 4.3,Y = Y� is an
!QRB-domain.

(i) ⇒ (iii). Let Y be an!QRB-domain, with gen-
erating sequence of quasi-deflations('i)i∈ℕ

. Let X be
the set of all non-decreasing sequencesy⃗ = (yi)i∈ℕ

in Y
such thatyi ∈

∪
j≤i Im'j , and yi ∈ ↑'i(supk∈ℕ yk).

OrderX componentwise. As in [14, Theorem 4.9, Theo-
rem 4.1],X is a bifinite domain: for eachi0 ∈ ℕ, con-
sider the idempotent deflationfi0 defined byfi0(y⃗) =
(ymin(i,i0))i∈ℕ

. To show that this is well-defined, we must
show thatymin(i,i0) ∈ ↑'i(supk∈ℕ ymin(k,i0)), i.e., that
ymin(i,i0) ∈ ↑'i(yi0). If i ≤ i0, thenymin(i,i0) = yi ∈
↑'i(supk∈ℕ yk) ⊆ ↑'i(yi0) sincey⃗ ∈ X and'i is mono-
tonic, elseymin(i,i0) = yi0 ∈ ↑'i(y0) since'i is a quasi-
deflation. It is easy to see thatfi0 is Scott-continuous.

Let now r : X → Y map y⃗ to supi∈ℕ yi, and & map
y ∈ Y to {y⃗ ∈ X ∣ ∀i ∈ ℕ ⋅ yi ∈ ↑'i(y)}: &(y) is non-
empty, using Lemma 4.5.

Next, we claim that&(y) is compact inX. For each
i0 ∈ ℕ, letQi0 = {y⃗ ∈ X ∣ ∀i ≤ i0 ⋅ yi ∈ ↑'i(y)}. Let
Ki0 be the set of all elements⃗y of Qi0 such thatyi = yi0
for every i ≥ i0. Note thatKi0 is finite, (recall that each
yi with i ≤ i0 is taken from the finite set

∪
j≤i Im'j), and

thatQi0 = ↑Ki0 . Indeed, for every⃗y ∈ Qi0 , its image
fi0(y⃗) by the idempotent deflationfi0 is inKi0 , and is be-
low y⃗. SoQi0 is (finitary) compact. Every bifinite domain
is stably compact [1, Theorem 4.2.18], and any intersection
of saturated compacts in a stably compact space is (satu-
rated) compact, so&(y) =

∩
i0∈ℕ

Qi0 is saturated compact.
So &(y) ∈ Q(Y ). It is easy to see that& andr are Scott-
continuous.

Given anyz ∈ Qr(&(y)), there is a non-decreasing se-
quencey⃗ in &(y), i.e., such thatyi ∈ ↑'i(y) for every
i ∈ ℕ, with supi∈ℕ yi ≤ z. Sinceyi ∈ ↑'i(y) for every
i ∈ ℕ, supi∈ℕ yi is in

∩
i∈ℕ

↑'i(y) = ↑ y, soz ∈ ↑ y. That
is,Qr(&(y)) ⊆ ↑ y. Conversely, we note thaty ∈ Qr(&(y)),
i.e., that there is a sequencey⃗ with yi ∈ ↑'i(y) for every
i ∈ ℕ, and such thatsupi∈ℕ yi ≤ y: this is by Lemma 4.5.
So Qr(&(y)) = ↑ y. Finally, for every y⃗ ∈ X, since
yi ∈ ↑'i(supk∈ℕ yk) = ↑'i(r(y⃗)) for every i ∈ ℕ,
y⃗ ∈ &(r(y⃗)). Sor is a quasi-projection. ⊓⊔

5 Products, Bilimits

If ('i)i∈X (resp.( j)j∈J
) is a generating family of qua-

si-deflations onX (resp.Y ), (�ij)i∈I,j∈J
is one onX×Y ,

where�ij(x, y) = 'i(x)×  j(y)(see Appendix B), so:

Lemma 5.1 For any two (!)QRB-domainsX, Y ,X×Y ,
with the product ordering, is an (!)QRB-domain.

Bilimits are harder to deal with. But the difficulty was
solved by Jung [14, Section 4.1] in the case ofRB-domains
and deflations, and we proceed in a very similar way. All
proofs are in Appendix C.

Consider any setG of functions from X to Fin(X)
such that (x) ≤♯ {x}, i.e., x ∈ ↑ (x), for everyx ∈
X. We say thatG is qfs (for quasi-finitely separating) iff
given any finitely many pairs(Ek, xk) ∈ Fin(X)×X with
Ek ≪ xk, 1 ≤ k ≤ n, there is a ∈ G thatseparatesthe
pairs, i.e., such thatEk ≤♯  (xk) ≤♯ {xk} (equivalently,
xk ∈ ↑ (xk) ⊆ ↑Ek) for everyk, 1 ≤ k ≤ n.

Proposition 5.2 Let X be a poset. ThenX is a QRB-
domain iffX is a quasi-continuous dcpo and the setG of
quasi-deflations onX is qfs.

Proof. (Sketch.) This is a variant on [14, Theorem 4.5],
and is proved similarly. In the if direction, assumeG qfs,
and defineH = {'† ∘ ' ∣ ' ∈ G}. It is easy to see that
H is a generating family of quasi-deflations provided it is
directed. To show that it is directed, pick' and'′ fromG,
letE = Im', E′ = Im'′. Using the form of interpolation
available in quasi-continuous dcpos, find a finite setEy such
that'(y) ≪ Ey ≪ y for eachy ∈ E, and similarlyE′

y′

such that'′(y′) ≪ E′
y′ ≪ y′ for eachy′ ∈ E′. By qfs, find

 ∈ G that separates the pairs(Ey, y), ('(y), z), (E′
y′ , y′),

and('′(y′), z′) for all y ∈ E, z ∈ Ey, y′ ∈ E′, z′ ∈ E′
y′ .

One checks that'† ∘ ' and'′† ∘ '′ are below † ∘  . ⊓⊔

Theorem 5.3 Any bilimit of !QRB-domains is an
!QRB-domain.

Proof. (Sketch.) As in [14, Theorem 4.5]. Let(Xi)i∈ℕ

be an expanding sequence ofQRB-domains,X its bilimit,
pi : X → Xi the canonical projection andei : Xi → X the
canonical embedding. One checks that, for any finite set of
pairs(E⃗k, x⃗k) with E⃗k ≪ x⃗k in X, one can separate them
by quasi-deflations of the form Finei ∘' ∘ pi, wherei ∈ ℕ,
' is a quasi-deflation onXi, and Finei(E) = {ei(x) ∣ x ∈
E}; then use Proposition 5.2. ⊓⊔

6 The Probabilistic Powerdomain

LetX be a fixed topological space, and letO(X) be the
lattice of open subsets ofX. A continuous valuation� onX
[13] is a map fromO(X) to ℝ

+ such that�(∅) = 0, which
is monotonic(�(U) ≤ �(V ) wheneverU ⊆ V ), modu-
lar (�(U ∪ V ) + �(U ∩ V ) = �(U) + �(V ) for all opens
U, V ), andcontinuous(�(

∪↑
i∈I Ui) = supi∈I �(Ui) for ev-

ery directed family(Ui)i∈I of opens). A(sub)probability
valuation� is additionally such that� is (sub)normalized,
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i.e., that�(X) = 1 (�(X) ≤ 1). Let V1(X) (V≤1(X))
be the dcpo of all (sub)probability valuations onX, or-
dered pointwise, i.e.,� ≤ �′ iff �(U) ≤ �′(U) for ev-
ery openU . V1 (V≤1) defines a endofunctor on the cate-
gory of dcpos, and its action is defined on morphismsf by
V1f(�)(U) = �(f−1(U)).

If Y is a retract ofX, thenV1(Y ) is easily seen to be
a retract ofV1(X), using theV1 endofunctor. The follow-
ing result is more involved. Here we need to replace the
Scott topology onV1(X) by theweak topology, which is
the smallest one containing the subbasic opens[U > r], de-
fined as{� ∈ V1(X) ∣ �(U) > r}, for each open subset
U of X andr ∈ ℝ. WhenX is a continuous pointed dcpo,
theKirch-Tix Theoremstates that it coincides with the Scott
topology (see [2], who attribute it to Tix [21, Satz 4.10],
who in turn attributes it to Kirch [18, Satz 8.6]). However,
the weak topology is better behaved in the general case. Let
V1 wk(X) beV1(X) with its weak topology.

Theorem 6.1 (Key Claim) If Y is a quasi-projection of
X, andX is stably compact, thenV1 wk(Y ) is a quasi-
projection ofV1 wk(X).

Proof. Let r : X → Y be the quasi-retraction,& : Y →
Q(X) be the quasi-section. Definer′ : V1 wk(X) →
V1 wk(Y ) by r′ = V1r. To define& ′ : V1 wk(Y ) →
Q(V1 wk(X)), we require some auxiliary machinery.

Let ℝ+
� beℝ+ with its Scott topology, and⟨X → ℝ

+
� ⟩

be the poset of all bounded continuous maps fromX to
ℝ

+
� . V1 wk(X) is canonically isomorphic to the space

P
△
1 wk(X) of so-called continuous normalized linear pre-

visions onX [10]. A previsionF on X is a mapF :
⟨X → ℝ

+
� ⟩ → ℝ

+
� such thatF (af) = aF (f) for ev-

ery a ∈ ℝ
+. A prevision F is lower, or superlinear,

iff F (ℎ + ℎ′) ≥ F (ℎ) + F (ℎ′) for every ℎ, ℎ′, upper,
or sublinear, iff F (ℎ + ℎ′) ≤ F (ℎ) + F (ℎ′) for every
ℎ, ℎ′, linear iff F (ℎ+ ℎ′) = F (ℎ) + F (ℎ′), normalizediff
F (a+ ℎ) = a+ F (ℎ) for all ℎ ∈ ⟨X → ℝ

+
� ⟩ anda ∈ ℝ

+

[10]. On any space of previsionsY , theweak topologyis
the smallest such that[ℎ > r] = {F ∈ Y ∣ F (ℎ) > r} is
open for everyℎ ∈ ⟨X → ℝ

+
� ⟩ andr ∈ ℝ. LetP△

1 wk(Y ),
resp.

`
P1 wk(X), be the space of continuous normalized

linear (resp. lower) previsions onX. The homeomorphism
V1 wk(Y ) ∼= P

△
1 wk(Y ) maps� ∈ V1 wk(X) to the pre-

vision�ℎ ∈ ⟨X → ℝ
+
� ⟩ ⋅ C

∫
x∈X

ℎ(x)d�, where C
∫

denotes

Choquet integral [9], and conversely everyG ∈ P
△
1 wk(X)

to U ∈ O(X) 7→ G(�U ), where�U is the characteristic
function ofU . Note thatr′ = V1r transports through this
isomorphism to the map sending eachG′ ∈ P

△
1 wk(X) to

�ℎ′ ∈ ⟨Y → ℝ
+
� ⟩ ⋅G

′(ℎ′ ∘ r) ∈ P
△
1 wk(Y ).

Givenℎ ∈ ⟨X → ℝ
+
� ⟩, let ℎ∗ map eachQ ∈ Q(X) to

minx∈Q ℎ(x). Thenℎ∗ is in ⟨Q(X) → ℝ
+
� ⟩ (see [9]). We

claim that:

(i) ℎ∗ ∘ i ∘ r ≤ ℎ (ii) ℎ′ ≤ (ℎ′ ∘ r)∗ ∘ i

for all ℎ ∈ ⟨X → ℝ
+
� ⟩, ℎ

′ ∈ ⟨Y → ℝ
+
� ⟩. For (i), for

everyx ∈ X, ℎ∗ ∘ i ∘ r(x) = minz∈i(r(x)) ℎ(z) ≤ ℎ(x),
sincex ∈ i(r(x)). (This is where we use the fact thatr
is a quasi-projection.) For(ii), for everyy ∈ Y , for every
x ∈ i(y), r(x) is in Qr(i(y)) = ↑ y, so y ≤ r(x). So
(ℎ′ ∘ r)∗ ∘ i(y) = minx∈i(y) ℎ

′(r(x)) ≥ ℎ′(y). (We let the
reader check that, in fact,(ℎ′ ∘ r)∗ ∘ i = ℎ′.)

We also note that the mappingℎ 7→ ℎ∗ is
Scott-continuous: by [9, Proposition 1],ℎ∗(Q) =
C
∫
x∈X

ℎ(x)duQ, where the unanimity gameuQ is contin-
uous for every compact saturated setQ [9, Section 3], and
observe that Choquet integration along continuous games is
Scott-continuous in the integrated functionℎ [9, Section 4].

We recall from [10, Proposition 4] that there is a
mapCCoeur1 :

`
P1 wk(X) → Q(P△

1 wk(X)) sending
each continuous normalized lower previsionF to its heart
CCoeur1(F ) = {G ∈ P

△
1 wk(X) ∣ F ≤ G}. When

X is stably compact,CCoeur1(F ) is always non-empty,
compact, and saturated. (The first two properties are non-
trivial.) Moreover,CCoeur1 is continuous.

EquateV1 wk(X) with P
△
1 wk(X): from now on, prob-

ability valuations will be taken to be elementsG of
P

△
1 wk(X). Define & ′ : V1 wk(Y ) → Q(V1 wk(X)) by

& ′(G) = CCoeur1(F
−
G ), whereF−

G (ℎ) = G(ℎ∗ ∘ i). One
checks easily thatF−

G is a lower normalized prevision. It
is continuous becauseG is, and becauseℎ 7→ ℎ∗ is Scott-
continuous. So& ′(G) is well-defined.

The map sendingG to F−
G is also continuous, since the

inverse image of[ℎ > r] is [ℎ∗ ∘ i > r]. Since& ′ is the com-
position ofCCoeur1 with this map, it is also continuous.

Let us show thatQr′(& ′(G)) = ↑G for every G ∈

P
△
1 wk(Y ). We first use Keimel’s topological version of

Roth’s Sandwich Theorem [17, Theorem 8.2]: in a topo-
logical coneC (i.e., a spaceC with a continuous addition
+ : C × C → C and a continuous scalar multiplication
. : ℝ+

� × C → C satisfying the expected equalities), for

every superlinear continuous mapq : C → ℝ
+
� (whereℝ+

�

is ℝ ∪ {+∞} with its Scott topology), for every sublinear

map p : C → ℝ
+
� such thatq ≤ p, there is a continu-

ous linear mapΛ : C → ℝ
+
� such thatq ≤ Λ ≤ p. Let

C = ⟨X → ℝ
+
� ⟩. This is a continuous poset as soon as

X is locally compact; for our purposes, we may use [11,
Proposition 7.11], which states this, and a bit more, in the
case whereX is stably compact. Also addition and scalar
multiplication are Scott-continuous. Since the Scott topol-
ogy of the product of two continuous posets is the product
of the Scott topologies,C is a continuous cone.

Let q = F−
G , i.e., q(ℎ) = G(ℎ∗ ∘ i), p(ℎ) =

supℎ′∈⟨Y→ℝ
+
� ⟩,ℎ′∘r≤ℎG(ℎ

′). SinceF−
G is a continuous

lower prevision,q is superlinear and continuous. It is easy
to see thatp is sublinear. Moreover,q ≤ p: for each

9
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Figure 4. The path space of Figure 2 (i)

ℎ, let ℎ′ = ℎ∗ ∘ i, then ℎ′ ∘ r ≤ ℎ by (i) above, so
that q(ℎ) = G(ℎ′) ≤ p(ℎ). Find a continuous linear

map Λ : C → ℝ
+
� such thatq = F−

G ≤ Λ ≤ p by
Keimel’s Theorem. Sincer is onto (Lemma 4.2), whenever
ℎ′ ∘ r ≤ ℎ, supy∈Y ℎ

′(y) ≤ supx∈X ℎ(x); sinceG is nor-
malized,p(ℎ) ≤ supx∈X ℎ(x) < +∞. In particular,Λ is
in fact a continuous linear prevision.Λ is also normalized:
for every constanta ∈ ℝ

+, a = q(a) ≤ Λ(a) ≤ p(a) ≤ a,
soΛ(a+ ℎ) = Λ(a) + Λ(ℎ) = a+ Λ(ℎ).

Recall that& ′(G) = CCoeur1(F
−
G ). The above allows

us to show thatG is inQr′(& ′(G)), i.e., that there is aG′ ∈

& ′(G) (i.e., inP△
1 wk(X) and such thatF−

G ≤ G′) such that
r′(G′) ≤ G. TakeG′ = Λ: sinceq = F−

G ≤ Λ ≤ p,
we obtainF−

G ≤ G′, and on the other handG′(ℎ′ ∘ r) =
Λ(ℎ′ ∘ r) ≤ p(ℎ′ ∘ r) = supℎ′′∈⟨Y→ℝ

+
� ⟩,ℎ′′∘r≤ℎ′∘r G(ℎ

′′).
Sincer is onto,ℎ′′ ∘ r ≤ ℎ′ ∘ r entailsℎ′′ ≤ ℎ′, hence
G(ℎ′′) ≤ G(ℎ′). SoG′(ℎ′ ∘ r) ≤ G(ℎ′).

Conversely, we claim thatQr′(& ′(G)) is included in↑G.
This is easier: every elementΛ ofQr′(& ′(G)) is above some
r′(G′) with G′ ∈ & ′(G) (so thatF−

G ≤ G′). ThenΛ(ℎ′) ≥
r′(G′)(ℎ′) = G′(ℎ′ ∘ r) ≥ F−

G (ℎ′ ∘ r) = G((ℎ′ ∘ r)∗ ∘ i) ≥
G(ℎ′) by (ii), for everyℎ′ ∈ ⟨Y → ℝ

+
� ⟩. SoΛ ∈ ↑G.

SoQr′(& ′(G)) = ↑G for everyG ∈ P
△
1 wk(Y ), hence

V1 wk(Y ) is a quasi-retract ofV1 wk(X).
Finally, we show thatG′ ∈ & ′(r′(G′)) for everyG′ ∈

P
△
1 wk(X). By (i), for everyℎ ∈ ⟨X → ℝ

+
� ⟩, G

′(ℎ∗ ∘ i ∘
r) ≤ G′(ℎ), i.e.,r′(G′)(ℎ∗ ∘ i) ≤ G′(ℎ). That is,F−

r′(G′) ≤

G′, i.e.,G′ ∈ CCoeur1(F
−
r′(G′)) = & ′(r′(G′)). ⊓⊔

Apply this to finite posets. Let< be the strict part of≤.

Definition 6.2 (Path Space)Let Y be any finite pointed
poset. Writey → y′ iff y is immediately belowy′, i.e.,
y < y′, and there is noz ∈ Y such thaty < z < y′. A path
� in Y is any set{y0, y1, . . . , yn} ⊆ Y with y0 = ⊥ →
y1 → . . . → yn. Thepath spaceΠ(Y ) is the set of paths in
Y , ordered by⊆.

Alternatively, the ordering on pathsy0 → y1 → . . . → yn
is the prefix ordering on sequencesy0y1 . . . yn.

Lemma 6.3 Every finite pointed posetY is a quasi-
projection of its path spaceΠ(Y ).

Proof. See Figure 4, which displays the path space of the
spaceY of Figure 2(i). Each gray region is labeled with an
element fromY , which is the image byr of every point in
the region; e.g., the top right,5-element region is mapped
to j in Y . Conversely,& maps eachy ∈ Y to the points in
Figure 4 that are in the corresponding gray region or above.

Formally, letX = Π(Y ), and definer : X → Y by
r(�) = max�, i.e., r(y0 → y1 → . . . → yn) = yn.
Conversely, for everyy ∈ Y , let &(y) be the set of all paths
� that go throughy, i.e., such thaty ∈ �. The mapsr
and& are vacuously continuous,&(y) is trivially non-empty,
compact, and saturated. ComputeQr(&(y)): this is the set
of elementsz that are aboveyn, for some pathy0 → y1 →
. . .→ yn going throughy. SoQr(&(y)) = ↑ y. Conversely,
it is clear that� ∈ &(r(�)) for every path�. ⊓⊔

Y is certainly not a retract ofΠ(Y ) in general: it is, iffY is
a tree, i.e., a finite pointed poset where↓ y is totally ordered
for everyy ∈ Y (if Y is a tree, thenY ∼= Π(Y ), conversely
Π(Y ) is a tree, and every retract of a tree is a tree).

Proposition 6.4 For every finite pointed posetY , V1(Y ) is
a continuous!QRB-domain.

Proof. Y is trivially a continuous pointed dcpo. Then
we know thatV1(Y ) is again continuous [6, Section 3],
and thatV1(Y ) = V1 wk(Y ) by the Kirch-Tix Theorem.
Similarly for V1(Π(Y )). Π(Y ) is clearly stably compact,
since finite. By Theorem 6.1, using Lemma 6.3,V1(Y )
is a quasi-projection ofV1(Π(Y )). But Π(Y ) is a tree,
so V1(Π(Y )) is anRB-domain, after Jung and Tix [16,
Theorem 13]. Their proof actually exhibits a generatingse-
quenceof deflations. SoV1(Π(Y )) is an!QRB-domain.
We also know thatV1(Y ) is stably compact, sinceY is [2].
SoV1(Y ) is an!QRB-domain, by Proposition 4.3. ⊓⊔

We can finally prove the main theorem of this paper.

Theorem 6.5 The probabilistic powerdomain of any
!QRB-domain is an!QRB-domain.

Proof. LetY be an!QRB-domain. By Theorem 4.6,Y is
a quasi-projection of some bifinite domainX = limi∈ℕXi.
SinceV1 is a locally continuous functor on the category of
dcpos,V1(X) is also a bilimit of the spacesV1(Xi), i ∈ I.
(E.g., this is mentioned in [16, Lemma 11].) EachV1(Xi)
is a continuous!QRB-domain by Proposition 6.4, hence
so isV1(X), by Theorem 5.3 and since bilimits of contin-
uous dcpos are continuous [1, Theorem 3.3.11].

SinceX is bifinite, it is stably compact, andV1(X) =
V1 wk(X) becauseX is continuous and pointed, using the
Kirch-Tix Theorem. SoV1 wk(Y ) is a quasi-projection of
V1(X) by Theorem 6.1. SinceY is stably compact (The-
orem 3.9),V1 wk(Y ) is stably compact [2], and is in par-
ticular sober, hence a well-filtered monotone convergence
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space [1, Corollary 7.2.11, Proposition 7.2.13]. So Proposi-
tion 4.3 applies:(V1 wk(Y ))� is an!QRB-domain.

It is easy to see that the specialization quasi-ordering⪯
of V1 wk(Y ) is the usual ordering onV1(Y ), i.e.,� ⪯ �′ iff
�(U) ≤ �′(U) for every openU of Y (note that if� ⪯ �′,
then�′ ∈ [U > r] for everyr < �(U)).

So(V1 wk(Y ))� = V1(Y ), and we conclude. ⊓⊔

Using the fact thatV1(X) is continuous wheneverX is
continuous and pointed [6, Section 3], it also follows:

Corollary 6.6 The probabilistic powerdomain of any con-
tinuous!QRB-domain (in particular, everyRB-domain)
is again a continuous!QRB-domain. ⊓⊔

7 Conclusion, Failures and Perspectives

We have shown that the category!QRB of !QRB-
domains and continuous maps was a category of quasi-
continuous, stably compact dcpos that is closed, not only
under finite products, bilimits, retracts (and even quasi-
retracts), but also under the probabilistic powerdomain
functorV1. It is thus reasonably well-behaved.

But !QRB is not cartesian-closed: as the anonymous
referees (which I thank heartily) have noticed, the spaceT
of [1, Figure 12] is an!QRB-domain such that[T → T ] is
not even Lawson-compact, so not an!QRB-domain. This
also shows that, althoughT is both continuous (even alge-
braic) and an!QRB-domain,T is not anRB-domain: so
Corollary 6.6 is not enough to settle the Jung-Tix problem
in the positive either.

Shifting the focus towards the Kleisli category
!QRBQ, for example, may be needed. This is a full
subcategory of Jung, Kegelmann and Moshier’s pleasing
category SCSSCSSCS∗ of stably compact spaces and closed
relations [15]. We plan to explore this in the future.
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A Quasi-retracts of Stably Compact Spaces

The purpose of the rest of this section is to show that,
whenX is stably compact, andY is not only a quasi-retract
ofX but a quasi-projection ofX, thenY is also stably com-
pact. Since everyQRB-domain is stably compact,Y will
be stably compact, hence sober, in this case, and the as-
sumption thatY� be a well-filtered monotone convergence
space will be satisfied for free.

Before we embark on showing that the quasi-projection
of every stably compact space is stably compact, we recall
that no such subtlety would be needed in the classical case
of retracts of continuous dcpos: any topological retract ofa
continuous dcpo is in fact a continuous dcpo, and in partic-
ular, has the Scott topology.

In all proofs of this section, letr : X → Y be a quasi-
retraction, with matching quasi-section& : Y → Q(X).

Lemma A.1 Every quasi-retractY of a compact spaceY
is compact.

Proof. The image of a compact set by a continuous map is
compact. Now apply Lemma 4.2. ⊓⊔

Define & ′ : Q(Y ) → Q(X) by & ′(Q) =
∪

y∈Q &(y).
Then & ′ is well-defined, and continuous. This is folklore.
For completeness, here is a proof. First,& ′(Q) is trivially
saturated for anyQ ∈ Q(Y ). To show that it is compact,
observe that a subsetK is compact iff in everydirected
cover ofK by opens, one of the opens of the cover already
containsK; realize also that□ commutes with directed
unions; if& ′(Q) ⊆

∪↑
j∈J Uj , thenQ ⊆ &−1(□

∪↑
j∈J Uj) =

&−1(
∪↑

j∈J □Uj) =
∪↑

j∈J &
−1(□Uj), soQ ⊆ &−1(□Uj)

for somej ∈ J , i.e., & ′(Q) ⊆ Uj . Then for every subbasic
open□U , U open inX, & ′−1

(□U) = □&−1(□U), so& ′ is
continuous.

Lemma A.2 Any quasi-retractY of a well-filtered spaceX
is well-filtered.

Proof. Let (Qi)i∈I be a filtered family of compact satu-

rated subsets ofY , and assume that
∩↓

i∈I Qi ⊆ V , whereV
is open inY . LetQ′

i = & ′(Qi). This is compact saturated,
and forms a directed family, since& ′ is monotonic. We
claim that

∩
i∈I Q

′
i ⊆ r−1(V ). Indeed, everyx ∈

∩
i∈I Q

′
i

is such that, for everyi ∈ I, there is ayi ∈ Qi such that
x ∈ &(yi); thenr(x) ∈ Qr(&(yi)) = ↑ yi, sor(x) ∈ Qi, for
everyi ∈ I. Since

∩↓
i∈I Qi ⊆ V , r(x) is in V , whence the

claim.
SinceX is well-filtered,Q′

i ⊆ r−1(V ) for somei ∈ I.
Then, for everyy ∈ Qi, &(y) ⊆ & ′(Qi) = Q′

i ⊆ r−1(V ), so
y ∈ Qr(&(y)) ⊆ Qr(r−1(V )) ⊆ V . SoQi ⊆ V . ⊓⊔

Now notice thatQr ∘ & ′ is the identity onQ(Y ). In-
deed, for everyQ ∈ Q(Y ), Qr(& ′(Q)) = ↑{r(x) ∣

x ∈
∪

y∈Q &(y)} = ↑
∪

y∈Q{r(x) ∣ x ∈ &(y)} =
↑
∪

y∈Q Qr(&(y)) = ↑
∪

y∈Q ↑ y = Q.

Lemma A.3 Any quasi-retractY of a coherent spaceX is
coherent.

Proof. LetQ1,Q2 be two compact saturated subsets ofY .
Then& ′(Q1) ∩ &

′(Q2) is compact saturated inX, using the
fact thatX is coherent. SoQr(& ′(Q1) ∩ & ′(Q2)) is com-
pact saturated inY . We claim thatQr(& ′(Q1) ∩ & ′(Q2)) =
Q1 ∩ Q2, which will finish the proof. In one direction,
every elementy of Q1 ∩ Q2 is in Qr(& ′(Q1) ∩ & ′(Q2)):
by Lemma 4.2, pickx such thaty = r(x), and observe
that x ∈ & ′(Q1) (indeedx ∈ &(y), wherey ∈ Q1) and
x ∈ & ′(Q2). In the other direction,Qr(& ′(Q1) ∩ & ′(Q2)) ⊆
Q(r)(& ′(Q1))∩Q(r)(& ′(Q2)) = Q1 ∩Q2, sinceQr ∘ & ′ is
the identity onQ(Y ). ⊓⊔

Notice that, for every open subsetV of Y , V =
&−1(□r−1(V )); indeed,y ∈ &−1(□r−1(V )) iff &(y) ∈
□r−1(V ), iff &(y) ⊆ r−1(V ), iff Qr(&(y)) ⊆ V , iff
↑ y ⊆ V .

Lemma A.4 Any quasi-projectionY of a locally compact
spaceX is locally compact.

Proof. Let V be any open subset ofY , andy ∈ V . Then
y ∈ &−1(□r−1(V )), i.e., &(y) ⊆ r−1(V ). SinceX is lo-
cally compact, wheneverQ is compact andU is open inX
andQ ⊆ U , there is a compact saturated subsetQ′ of X
such thatQ ⊆ int(Q′) andQ′ ⊆ U . (This is well-known:
by local compactness, there is a compact saturated subset
Qx such thatx ∈ int(Qx) andQx ⊆ U for eachx ∈ Q;
sinceQ ⊆

∪
x∈Q int(Qx), by compactness there is a finite

subsetE of Q such thatQ ⊆
∪

x∈E int(Qx). Then take
Q′ =

∪
x∈E Qx.)

TakeQ = &(y),U = r−1(V ), and pickQ′ as above, i.e.,
&(y) ⊆ int(Q′) andQ′ ⊆ r−1(V ). LetQ′′ = Qr(Q′), so
thatQ′′ is compact saturated inY andQ′′ ⊆ V .

We claim that, since r is a quasi-projection,
r−1(&−1(□U)) ⊆ U for every open subsetU of X.
Indeed, for everyx ∈ r−1(&−1(□U)), &(r(x)) ⊆ U .
Since r is a quasi-projection,x ∈ &(r(x)), so x ∈ U .
So the open subsetW = &−1(□int(Q′)) of Y is such
that r−1(W ) ⊆ int(Q′). In particular,W is included in
the image ofQ′ by r, hence inQ′′. Also, y ∈ W , since
&(y) ⊆ int(Q′). Soy is included in an open subsetW of
Q′′, hence inint(Q′′). ⊓⊔

Recall that a space isT0 iff its specialization quasi-
ordering≤ is an ordering, i.e.,y ≤ y′ andy′ ≤ y imply
y = y′. In general, a quasi-projection of aT0 space may
fail to beT0. E.g., takeX = {a, b} with its discrete topol-
ogy,Y = {c, d} with the topology containing only∅ andY
itself, r(a) = r(b) = c, &(c) = &(d) = {a, b}. Note that
↑ c = ↑ d = Y in Y .

12



However, putting together the results in this Appendix,
we obtain:
Proposition 4.4: Every T0 quasi-projectionY of a stably
compact spaceX is stably compact.

Proof. Y is T0 by assumption, and locally compact,
well-filtered, compact, and coherent. In the presence of lo-
cal compactness,T0 and well-filteredness are equivalent to
sobriety [7, Theorem II-1.21], whence the claim. ⊓⊔

B Proof of Lemma 5.1

Proof. Let ('i)i∈I be a directed family of quasi-

deflations with ↑x =
∩↓

i∈I ↑'i(x) for all x ∈ X,
and ( j)j∈J

a directed family of quasi-deflations with

↑ y =
∩↓

j∈J ↑ j(y) for all y ∈ Y . Consider the
maps �ij , sending (x, y) to 'i(x) ×  j(y). Clearly,
(x, y) ∈ ↑�ij(x, y), and Im�ij is finite. For all
i, j, �ij is easily seen to be Scott-continuous, and∩↓

i∈I,j∈J ↑�ij(x, y) =
∩↓

i∈I,j∈J ↑('i(x) ×  j(y)) =
∩↓

i∈I ↑'i(x) ×
∩↓

j∈J ↑ j(y) = ↑x × ↑ y = ↑(x, y). The
case of!QRB-domains is similar. ⊓⊔

C Proof of Theorem 5.3

Proposition 5.2: Let X be a poset. ThenX is aQRB-
domain iffX is a quasi-continuous dcpo and the setG of
quasi-deflations onX is qfs.

Proof. If X is aQRB-domain, then let(Ek, xk) ∈
Fin(X)×X, be such thatEk ≪ xk for everyk, 1 ≤ k ≤ n,
and('i)i∈I be a generating family of quasi-deflations. For

eachk, 1 ≤ k ≤ n, xk = ↑xk =
∩↓

i∈I ↑'i(xk) ⊆ ↑↑Ek,
so by Proposition 3.4 there is ani ∈ I such that↑'i(xk) ⊆
↑↑Ek ⊆ ↑Ek. And we may pick the samei for everyk, by
directedness. So'i is the desiredg ∈ G.

Conversely, assume thatG is qfs. We show thatH =
{'† ∘ ' ∣ ' ∈ G} is a generating family of quasi-
deflations. First, for each' ∈ G, '† ∘ ' is continuous
by Lemma 3.6. Sincex ∈ ↑'(x), pick x′ ∈ '(x) such
thatx′ ≤ x. Thenx ∈ ↑'(x′), since'(x′) ≤♯ '(x). So
x ∈

∪
x′∈'(x) ↑'(x

′) = '† ∘ '(x). So'† ∘ ' is a quasi-
deflation.

Let us show thatH is directed. Pick' and'′ from G.
Let E = Im', E′ = Im'′. For eachy ∈ E, '(y) ≪ y
by Lemma 3.2. SinceX is quasi-continuous, use interpo-
lation, and pick a finite setEy such that'(y) ≪ Ey ≪ y.
Similarly, let E′

y′ be a finite set such thatE′
y′ ≪ y′ and

'′(y′) ≪ E′
y′ for eachy′ ∈ E′.

Consider the finite collection of all pairs(Ey, y),
('(y), z), (E′

y′ , y′), and('′(y′), z′), wherey ∈ M , z ∈
Ey, y′ ∈ E′, z′ ∈ Ey′ . SinceG is qfs, there is a ∈ G
such thatE ≤♯  (x) ≤♯ {x} for all the above pairs

(E, x). In particular, looking at the pair(Ey, y), we get:
(a) Ey ≤♯  (y) for everyy ∈ E. And looking at the pair
('(y), z), '(y) ≤♯  (z) for all y ∈ E, z ∈ Ey. It follows:
(b) '(y) ≤♯  †(Ey) for every y ∈ E. Then, for every
x ∈ X, '† ∘ '(x) =

∪
y∈'(x) '(y) ≤♯

∪
y∈'(x)  

†(Ey)

(by (b)) ≤♯
∪

y∈'(x)  
† ∘ (y) (by a) =  † ∘ † ∘'(x) ≤♯

 † ∘ †({x}) (since'(x) ≤♯ {x}) =  † ∘ (x). So'† ∘'

is below † ∘  . Similarly,'′† ∘ '′ is below † ∘  , soH
is directed.

Finally, we claim that
∩

'∈G ↑'† ∘'(x) = ↑x. In the⊇
direction, this is because'† ∘ ' is a quasi-retraction. Con-
versely, letE ∈ Fin(X) be such thatE ≪ x. By interpola-
tion, findE′ ∈ Fin(X) such thatE ≪ E′ ≪ x. SinceG is
qfs, applied to the pairs(E′, x) and(E, y) for eachy ∈ E′,
there is an element' ∈ G such thatE′ ≤♯ '(x) andE ≤♯

'(y) for everyy ∈ E′. SoE ≤♯ '†(E′) ≤♯ '† ∘ '(x). So∩
'∈G ↑'† ∘ '(x) ⊆

∩↓
E∈Fin(X),E≪x ↑E = ↑x, asX is

quasi-continuous. ⊓⊔

Theorem 5.3: Any bilimit of !QRB-domains is an
!QRB-domain.

Proof. Let (Xi)i∈ℕ
be an expanding sequence ofQRB-

domains, with projectionspij : Xj → Xi and embeddings
eij : Xi → Xj , i ≤ j. Let X = limi∈ℕXi. There is
a projectionpi : X → Xi, given bypi(x⃗) = xi, and an
embeddingei : Xi → X for everyi ∈ ℕ.

For each mapf : Y → Z, let Finf : Fin(Y ) → Fin(Z)
mapE ∈ Fin(Y ) to its image byf . We observe that
if E ≪ pi(x⃗) in Xi, then Fineij(E) ≪ pj(x⃗) for ev-
ery j ≥ i. Indeed, consider any directed family(yk)k∈I

such thatpj(x⃗) ≤ supk∈I yk. Thenpi(x⃗) = pij(pj(x⃗)) ≤
supk∈I pij(yk), so for somek ∈ I, there is az ∈ E with
z ≤ pij(yk). Theneij(z) ≤ eij(pij(yk)) ≤ yk. We con-
clude sinceeij(z) ∈ Fineij(E).

It follows that the familyDx⃗ of all finite subsets of the
form Finei(E), whereE ∈ Fin(Xi) andE ≪ pi(x⃗),
i ∈ ℕ, is directed. Indeed, given Finei(E) and Finej(E′)
in Dx⃗, we can first assume thati = j. Otherwise, say if
j ≥ i, then Finei(E) is also equal to Finej(Fineij(E)),
and by(a) Fineij(E) ≪ pj(x⃗). Then, sinceXi is quasi-
continuous, there is anE′′ ∈ Fin(Xi) such thatE,E′ ≤♯

E′′ ≪ pi(x⃗), and we are done.
Moreover,

∩
Finei(E)∈Dx⃗

↑Finei(E) equals↑ x⃗. That
it containsx is obvious: wheneverE ≪ pi(x⃗), pick
z ∈ E with z ≤ pi(x⃗), so thatei(z) ≤ ei(pi(x⃗)) ≤
x⃗, hence x⃗ ∈ ↑Finei(E). Conversely, every⃗z ∈∩

Finei(E)∈Dx⃗
↑Finei(E) must be such thatzi = pi(z⃗) ∈∩

E≪pi(x⃗)
pi(↑Finei(E)). But E ≪ pi(x⃗) implies that

some element ofE is belowpi(x⃗), hence that some element
of Finei(E) is belowei(pi(x⃗)) ≤ x⃗; thenpi(↑Finei(E))
contains an element belowpi(x⃗) = xi: soxi ≤ zi. As this
holds for everyi, x⃗ ≤ z⃗. So

∩
Finei(E)∈D ↑Finei(E) ⊆ ↑ x⃗.

In particular,X is a quasi-continuous dcpo.
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We check that the set of quasi-deflations onX is
qfs. Consider a finite collection of pairs(E⃗k, x⃗k) ∈

Fin(X) × X with E⃗k ≪ x⃗k, 1 ≤ k ≤ n. Since∩
Finei(E)∈Dx⃗k

↑Finei(E) = ↑ x⃗k, by Proposition 3.4, for

eachk, pick i ∈ ℕ andEk ∈ Fin(Xi) such thatEk ≪

pi(x⃗k) andE⃗k ≤♯ Finei(Ek). (We can pick the samei for
everyk, as above.) SinceXi is aQRB-domain, there is
a quasi-deflation' onXi such that'(pi(x⃗k)) ⊆ ↑Ek for
everyk, 1 ≤ k ≤ n.

Consider : X → Fin(X) defined as Finei ∘ ' ∘ pi.
Finei, restricted toIm', which is finite, is trivially Scott-
continuous. So is continuous. For every⃗x ∈ X, some
elementy of '(pi(x⃗)) is belowpi(x⃗), since' is a quasi-
deflation. Thenei(y) is below ei(pi(x⃗)) ≤ x⃗, and is in
 (x⃗). So is a quasi-deflation.

Moreover, by construction, for eachk, 1 ≤ k ≤ n,
 (x⃗k) ⊆ ↑Finei(Ek), so  (x⃗k) ⊆ ↑ E⃗k, sinceE⃗k ≤♯

Finei(Ek). So the set of quasi-deflations onX is qfs.
By Proposition 5.2,X is then aQRB-domain. It is easy

to see that any (countable) bilimit of countably-based quasi-
continuous dcpos is countably-based. Indeed, a countably
based quasi-continuous dcpoXi has a countable base of
sets of the form↑↑Eik, E ∈ Fin(Xi), k ∈ ℕ. The Dx⃗

construction above, suitably modified, shows that the sets
↑↑Finei(Eik), i, k ∈ ℕ, form a, necessarily countable,
base of the topology onX. By Proposition 3.13,X is an
!QRB-domain. ⊓⊔
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