
Finite Models for Formal Security Proofs∗

Jean Goubault-Larrecq

goubault@lsv.ens-cachan.fr

LSV, ENS Cachan, CNRS, INRIA

61, avenue du président Wilson 94230 Cachan, France

Tel: +33-1 47 40 75 68 Fax: +33-1 47 40 75 21

May 20, 2009

Abstract

First-order logic models of security for cryptographic protocols, based on vari-

ants of the Dolev-Yao model, are now well-established tools. Given that we have

checked a given security protocolπ using a given first-order prover, how hard is it

to extract a formally checkable proof of it, as required in, e.g., common criteria at

the highest evaluation level (EAL7)? We demonstrate that this is surprisingly hard

in the general case: the problem is non-recursive. Nonetheless, we show that we

can instead extract finite modelsM from a setS of clauses representingπ, auto-

matically, and give two ways of doing so. We then define a model-checker testing

M |= S, and show how we can instrument it to output a formally checkable proof,

e.g., in Coq. Experience on a number of protocols shows that this is practical, and

that even complex (secure) protocols modulo equational theories have small finite

models, making our approach suitable.

∗Partially supported by project PFC (“plateforme de confiance”), pôle de comṕetitivité System@tic Paris-
région Ile-de-France. Part of this work was done during RNTL project EVA, 2000-2003.

1

Keywords:Dolev-Yao model, formal security proof, finite model, tree automaton,

H1, inductionless induction.

1 Introduction

So far, automated verification of cryptographic protocols in models in the style of Dolev

and Yao [36] has been considered under a variety of angles: (un)decidability results

[37, 49], practical decision procedures [65, 84, 6], extension to security properties other

than secrecy and authentication (e.g., [20]), to protocolsrequiring equational theories,

to soundness with respect to computational models (e.g., [56] for the latter two points),

in particular.

We consider yet another angle: producing formally checkable proofs of security,

automatically. There is indeed a more and more pressing needfrom the industrial com-

munity, as well as from national defense authorities, to getnot just Boolean answers

(secure/possibly insecure), but also formal proofs, whichcould be checked by one of

the established tools, e.g., Isabelle [70] or Coq [12]. Thisis required in Common

Criteria certification of computer products at the highest assurance level, EAL 7 [50],

a requirement that is becoming more and more common for security products. For

example, the PFC initiative (“trusted platform”) of the French p̂ole de comṕetitivité

System@tic will include a formal security model and formal proofs for its trusted

Linux-based PC platforms. Producing formal proofs for tools such as Isabelle or Coq

is also interesting because of their small trusted base, anddefense agencies such as the

French DGA would appreciate being able to extract formal Coqproofs from Blanchet’s

ProVerif tool [15].

It is certainly the case that hand-crafted formal proofs (e.g., [17, 71]) provide such

formally checkable certificates. Isabelle’s high degree ofautomation helps in this re-

spect, but can we hope for full automation as in ProVerif, andhaving formal proofs as

well? It is the purpose of this paper to give one possible answer to that question.

2

One note of caution: We shall concentrate on the core of the problem, which, as we

shall see, is related to a model-checking problem on sets of Horn clauses representing

the protocol, the security assumptions, the intruder model, and the security properties

to be proved. We consider such Horn clauses to be a sufficient,albeit rather low-level,

specification language for security protocols in this paper. It is more comfortable to

specify protocols and properties in higher-level languages such as ProVerif’s calculus.

To extend our work to such calculi, we would need not only a translation from the cal-

culus to Horn clause sets (e.g., ProVerif already relies on one), but also a way of lifting

proofs of security in the Horn clause model back to proofs of security on protocols ex-

pressed in the calculus. While we don’t expect this latter tobe difficult per se, we won’t

consider the question in this paper. As a matter of fact, all the sets of Horn clauses that

we shall give as examples were produced by hand. We hope however that our way of

specifying security protocols, assumptions, properties and the intruder model as Horn

clauses will be clear enough. This will be explained at length in Section 3 and later.

1.1 Outline

We explore related work in Section 2, then describe our security model,à la Dolev-Yao,

in Section 3. We really start in Section 4, where we show that our problem reduces to a

form of model-checking, which is unfortunately undecidable in general. To solve this,

we turn to finite models, expanding on Selinger’s pioneeringidea [77]. We observe

that, although representing finite models explicitly is usually practical, it is sometimes

cumbersome, and that such models are sometimes hard to find. Surprisingly, larger,

finite models in the form of alternating tree automata are sometimes easier to find: we

examine such models in Section 6. We then show how we can model-check clause sets

against both kinds of models in Section 7. Finally, we argue that the approach is equally

applicable to some security protocols that require equational theories in Section 8, and

we conclude in Section 9. Our claims are supported by severalpractical case studies.

3

2 Related Work

Many frameworks and techniques have been proposed to verifysecurity protocols in

models inspired from Dolev and Yao [36]. It would be too long to cite them all. How-

ever, whether they are based on first-order proving [84, 27, 15], tree automata [65], set

constraints [6], typing [1], or process algebra [4, 3], one may fairly say that most of

these frameworks embed into first-order logic. It is well-known that tree automata are

subsumed by set constraints, and that set constraints correspond to specific decidable

classes of first-order logic. This was first observed by Bachmair, Ganzinger, and Wald-

mann [9]. Some modern typing systems for secrecy are equivalent to a first-order logic

presentation [2], while safety properties of cryptographic protocols (weak secrecy, au-

thentication) presented as processes in a process algebra are naturally translated to

first-order logic [2], or even to decidable classes of first-order logic such asH1 [68].

In all cases, the fragments of first-order logic we need can bepresented as sets

of Horn clauses. Fix a first-order signature, which we shall leave implicit. Terms

are denoteds, t, u, v, . . . , predicate symbolsP , Q, . . . , variablesX, Y , Z, . . . We

assume there are finitely many predicate symbols. Horn clausesC are of the form

H ⇐ B where theheadH is either an atom or⊥, and thebodyB is a finite set

A1, . . . , An of atoms. IfB is empty (n = 0), thenC = H is a fact. For simplic-

ity, we assume that all predicate symbols are unary, so that all atoms can be writ-

ten P (t). This is innocuous, ask-ary relationsP (t1, . . . , tk) can be faithfully en-

coded asP (c(t1, . . . , tk)) for somek-ary function symbolc; we shall occasionally

take the liberty of using somek-ary predicates, for convenience. We assume basic

familiarity with notions of free variables, substitutionsσ, unification, models, Her-

brand models, satisfiability and first-order resolution [8]. It is well-known that sat-

isfiability of first-order formulae, and even of sets of Horn clauses, is undecidable.

We shall also use the fact that any satisfiable setS of Horn clauses has a least Her-

brand model. This can be defined as the least fixpointlfpTS of the monotone operator

4

TS(I) = {Aσ | A ⇐ A1, . . . , An ∈ S, Aσ ground, A1σ ∈ I, . . . , Anσ ∈ I}. If

⊥ ∈ lfpTS , thenS is unsatisfiable. Otherwise,S is satisfiable, andlfpTS is a set of

ground atoms, which happens to be the least Herbrand model ofS.

We shall concentrate onreachabilityproperties (i.e., weak secrecy) in this paper,

without equational theories for the most part. While this may seem unambitious, re-

member that our goal is not toverify cryptographic protocols but to extractformally

checkable proofsautomatically, and one of our points is that this is substantially harder

than mere verification. We shall deal with equational theories in Section 8, and claim

that producing formally checkable proofs is not much harderthan in the non-equational

case. We will not deal with strong secrecy, although this reduces to reachability, up to

some abstraction [16]. Weak and strong secrecy are, in fact,close notions under rea-

sonable assumptions [31].

We also concentrate on security proofs inlogical models, derived from the Dolev-

Yao model [36]. Proofs incomputationalmodels would probably be more relevant.

E.g., naive Dolev-Yao models may be computationally unsound [64]. However, some

recent results show that symbolic (Dolev-Yao) security implies computational security

in a number of frameworks, usually provided there are no key cycles at least, and

modulo properly chosen equational theories on the symbolicside. See e.g. [51], or

[79]. The latter is a rare example of a framework for developing formal proofs (e.g., in

Coq or Isabelle) ofcomputational soundnesstheorems. The search for such theorems

is hardly automated for now; yet, we consider this to be out ofthe scope of this paper,

and concentrate on Dolev-Yao-like models.

The starting point of this paper is Selinger’s fine paper “Models for an Adversary-

Centric Protocol Logic” [77]. Selinger observes that security proofs (in first-order

formulations of weak secrecy in Dolev-Yao-like models) aremodels, in the sense of

first-order logic. To be a bit more precise, a protocolπ encoded as a set of first-order

Horn clausesS is secure if and only ifS is consistent, i.e., there is no proof of false⊥

5

from S. One may say this in a provocative way [41] by stating that a proof of security

for π is theabsenceof a proof for (the negation of)S. Extracting a formal Coq proof

from such an absence may then seem tricky. However, first-order logic iscomplete, so

if S is consistent, it must besatisfiable, that is, it must have a model. Selinger then

observed that you could proveπ secure by exhibiting a model forS, and demonstrated

this by building a small, finite model (5 elements) for the Needham-Schroeder-Lowe

public-key protocol [66, 59]. We shall demonstrate throughseveral case studies that

even complex protocols requiring rather elaborate equational theories can be proved

secure using finite models with only few elements. However, we shall observe that

even such models may be rather large, and harder than expected to check.

The idea of proving properties by showing the consistency ofa given formulaF , i.e,

showing that¬F has no proof, is known asproof by consistency[53], or inductionless

induction [58, 24]. Note that the formal Coq proofs we shall extract from models of

S, using our toolh1mc, are proofs of security forπ that work by (explicit) induction

over term structure. The relationship between inductionless and explicit induction was

elicited by Comon and Nieuwenhuis [26], in the case of first-order logic with equality

and induction along the recursive path ordering.

We shall use two approaches to extracting a formal proof of security from a finite

model. The first one is based on explicit enumeration. The second is an approach based

on model-checking certain classes of first-order formulaeF against certain classes of

finite modelsM, i.e., on testing whetherM |= F . There is an extensive body of

literature pertaining to this topic, see e.g. the survey by Dawar [32]. One particular

(easy) result we shall recall is that model-checking first-order formulae against finite

models, even of size2, is PSPACE-complete. Many results in this domain have

focused on fixed-parameter tractability, and to be specific,on whether model-checking

was hard with respect to the size of the model, given a fixed formula as parameter.

Even then, the parametrized model-checking problem isAW[∗]-complete, and already

6

W[k]-hard forΠk formulae. This will be of almost no concern to us, as our formulae

F will grow in general faster than our models.

Since our presentation at CSF’08 [43], we learned that Matzinger [62] had already

designed, in 1997, what is essentially our model-checking algorithm of Section 7, re-

stricted to non-alternating automata, with an explicitly defined strategy for rule appli-

cation, a different presentation, none of the optimizations that are in fact required in

practice, and no report of an implementation.

None of the works cited above addresses the question of extracting a model from

a failed proof attempt. Tammet worked on this for resolutionproofs [81]. The next

step, producing formally checked, inductive proofs from models, seems new. In one

of our approaches, finite models will be presented in the formof tree automata, and

formally checking models in this case essentially amounts to producing formal proofs

of computations on tree automata. This was pioneered by Rival and the author [74];

the procedure of Section 7 is several orders of magnitude more efficient.

3 A Simple Protocol Model,à la Dolev-Yao

Our first-order model for protocols is close to Blanchet’s [14], to Selinger’s [77], and

to a number of other works. While the actual model is not of paramount importance

for now, we need one to illustrate our ideas. Also, models in the style presented here

will behave nicely in later sections.

Blanchet uses a single predicateatt, so thatatt(M) if and only if M is known

to the Dolev-Yao attacker. We shall instead use a family of predicatesatti, where

i is a phase, to be able to model key and nonce corruption (more below). The facts

that the Dolev-Yao attacker can encrypt, decrypt, build lists, read off any element from

a list, compute successors and predecessors are axiomatized by the Horn clauses of

Figure 1. We take the usual Prolog convention that identifiers starting with capital

letters such asM , K, A, B, X, are variables, while uncapitalized identifiers such as

7

sym, crypt, att are constants, function or predicate symbols. We letcrypt(M, K)

denote the result of symmetric or asymmetric encryptingM with key K, and write

it {M}K for convenience. The keyk(sym, X) is the symmetric key used in session

X; the termsessioni(A, B, Na) will denote any session between principalsA andB

sharing the nonceNa, while in phasei; we shall also usek(sym, [A, S]) to denote long-

term symmetric keys between agentsA andS. The keyk(pub, X) denotes agentX ’s

long-term public key, whilek(prv, X) is X ’s private key. Lists are built usingnil and

cons; we use the ML notationM1 :: M2 for cons(M1, M2), and[M1, M2, . . . , Mn]

for M1 :: M2 :: . . . :: Mn :: nil. We usesuc to denote the successor function

λn ∈ N · n + 1, as used in our running example, the Needham-Schroeder symmetric

key protocol [66].

atti({M}K) ⇐ atti(M), atti(K) (1)

atti(M) ⇐ atti({M}k(pub,X)), atti(k(prv, X)) (2)

atti(M) ⇐ atti({M}k(prv,X)), atti(k(pub, X)) (3)

atti(M) ⇐ atti({M}k(sym,X)), atti(k(sym, X)) (4)

atti(nil) (5)

atti(M1 :: M2) ⇐ atti(M1), atti(M2) (6)

atti(M1) ⇐ atti(M1 :: M2) (7)

atti(M2) ⇐ atti(M1 :: M2) (8)

atti(suc(M)) ⇐ atti(M) (9)

atti(M) ⇐ atti(suc(M)) (10)

Figure 1: Intruder capabilities

This protocol, whose purpose is to establish a fresh, secretsession keyKab between

two agents, Alice (A) and Bob (B), using a trusted third party (S), is shown in Figure 2.

It has the convenient property that there is a well-known attack against it, so that the

keyKab that Bob will end up having is possibly known to the attacker,while the keys

Kab thatS sent and that Alice received will remain secret. Note that all three keysKab

may be different.

The protocol itself is modeled in a simple way, originally inspired from strand

8

1. A −→ S : A, B, Na

2. S −→ A : {Na, B, Kab, {Kab, A}Kbs
}Kas

3. A −→ B : {Kab, A}Kbs

4. B −→ A : {Nb}Kab

5. A −→ B : {Nb + 1}Kab

Figure 2: The Needham-Schroeder symmetric-key protocol

spaces [82], and similarly to Blanchet [14]. Each agent’s role is modeled as a sequence

of (receive, send) pairs. Given any such pair(M1, M2), we add a Horn clause of the

form atti(M2) ⇐ atti(M1). This denotes the fact that the attacker may use the

agent’s role to his profit by sending a messageM1 of a form that the agent will accept,

and learningM2 from the agent’s response. Accordingly, the protocol rulesfor the

Needham-Schroeder symmetric key protocol are shown in Figure 3. We use Blanchet’s

trick of abstracting nonces by function symbols applied to the free parameters of the

session, so thatnai(A, B) denotesNa, depending on the identitiesA andB of Alice

and Bob respectively and the phasei, andnbi(Kab, A, B) denotesNb, depending on

the phasei, the received keyKab, and identitiesA andB (all three being variables,

by our convention). In clause (15), representing the fact that Alice receives{Nb}Kab

(message 4 of Figure 2) to send{Nb+1}Kab
(message 5), we use an auxiliary predicate

alice keyi to recover Alice’s version ofKab, received in message 2. We also define

a predicatebob keyi in (17) to recover Bob’s version ofKab after message 5.

The fact that variables such asA, B are used throughout for agent identities, instead

of actual agent identities (for which we reserve the constants a, b, s, andi for the

attacker), is due to the fact that we wish to model unboundedly many sessions of the

protocol in parallel. E.g., (11) states that any pair of agents A, B may initiate the

protocol and emit message 1 of Figure 2. We assume that the only possible agents are

Alice (a), Bob (b), the trusted third-party (s), and the Dolev-Yao attackeri. Since we

only deal with secrecy, considering this many agents is sufficient [27].

This way of modeling protocols has been standard at least since Blanchet’s seminal

9

atti([A,B, nai(A, B)]) ⇐ agent(A), agent(B) (11)

atti({[Na, B, kab, {[kab, A]}kbs
}kas)) ⇐ atti([A, B, Na]) (12)

wherekab = k(sym, sessioni(A, B, Na),

kbs = k(sym, [B, s]), kas = k(sym, [A, s])

atti(M) ⇐ atti({[nai(A, B), B, Kab, M]}k(sym,[A,s])) (13)

atti({nbi(Kab, A, B)}Kab
) ⇐ atti({[Kab, A]}k(sym,[B,s]) (14)

atti({suc(Nb)}Kab
) ⇐ atti({Nb}Kab

), alice keyi(A, Kab) (15)

alice keyi(A, Kab) ⇐ atti({[nai(A, B), B, Kab, M]}k(sym,[A,s])) (16)

bob keyi(B, Kab) ⇐ atti({nbi(Kab, A, B)}Kab
) (17)

Figure 3: Protocol rules

agent(a) agent(b) agent(i) agent(s)

Figure 4: Agents

work [14]. One should however note that this is only a safe approximation of the

protocol, not an exact description as in [27] for example. Inparticular, our encoding

forgets about the relative orderings of messages. In particular, if the intruder sends

some messageM to A, thenA usesM to compute another messageM ′ to B, then

our model will makeatti(M
′) true. This means thatM ′ will be known to the intruder

forever, so that replay attacks are accounted for. This can also be taken to mean, as a

much stranger consequence, that we estimate that the intruder will have knownM ′ all

the time in the past as well, including at the times it was preparing the first messageM .

Closer inspection reveals that what we are really modeling here is the fact that several

sessions of the same protocol can run in parallel, asynchronously: the intruder sends

M to A in the first session,A sends backM ′ to B in the first session, then the intruder

uses thisM ′ to compute another messageM1 sent toA, who starts a second session

and sendsM ′
1 to B, and so on. For further discussion on the implications of this way

of modeling protocols, see Blanchet’s paper, cited above [14]. Blanchet also discusses

why this is asafeapproximation (Section 2.5), i.e., is there is any attack atall, then

10

att2(M) ⇐ att1(M) (18)

att2(k(sym, session1(A, B, Na))) (19)

att2(k(sym, na1(A, B))) (20)

att2(k(sym, nb1(Kab, A, B))) (21)

Figure 5: Phases

there will be a proof of⊥ from our clause set.

This approximation is precise enough in most cases. Some cases where it is not

include protocols with timestamps (see Section 5), protocols that combine two sub-

protocols, one where long-term keys are established, and a second one where these are

used to exchange short-term keys, and finally protocols where we assume that some

secrets can be corrupted over time. We model all three situations by distinguishing two

phasesi = 1, 2. More are possible. The phasei labels theatt predicate, i.e., we have

two predicatesatt1 andatt2 instead of just one predicateattacker as in [14].

Let us deal with the case of secret corruption. Intuitively,phase 1 represents ses-

sions that are old enough that the old session keysk(sym, session1(A, B, Na)) may

have been guessed or discovered by the intruder. This is (again) a conservative approx-

imation: we estimate that all old secrets (in phase1) are compromised, although only

some or even none of them may have been actually compromised.On the other hand,

no secret in phase2 is compromised—unless the protocol itself leaks them. To model

phases, we only need a few more clauses, shown in Figure 5: (18) states that the in-

truder has memory, and remembers all old messages from phase1 in phase 2, while the

other clauses state that all old session keys, as well as all old nonces, are compromised.

This is similar, e.g., to Paulson’s Oops moves [71].

Figure 6 lists our security assumptions, i.e., what we estimate the attacker might

know initially: all agent identities are known, as well as all public keysk(pub, X), and

the attacker’s own private keyk(prv, i)—whatever the phase. Note that talking about

public and private keys in this protocol, which only uses symmetric keys, is overkill.

11

atti(X) ⇐ agent(X)

atti(k(pub, X)) atti(k(prv, i))

Figure 6: The attacker’s initial knowledge

We include them to illustrate the fact that the model is not limited to symmetric key

encryption, and public-key protocols would be encoded justas easily.

Finally, Figure 7 lists our security goals, or rather their negated forms. Note that

we are only concerned with the security of phase 2 data, sincephase 1 is compromised

by nature. Negation comes from the fact that a formulaG is a consequence of a setS

of clauses such as those listed above if and only ifS,¬G is inconsistent. E.g., (22) is

the negation of∃Na · att2(k(sym, session2(a, b, Na))), and corresponds to asking

whether the secret keyKas, as generated by the trusted third-party in current sessions,

can be inferred by the attacker. (23) asks whether there is a keyKab that would be both

known to the attacker, and is plausibly accepted by Alice (a) as its new symmetric key;

we again use the auxiliary predicatealice key2. Finally, (24) asks whether there is

a keyKab as could be used in the final check of the protocol by Bob (message 5 of

Figure 2), and that would be, in fact, compromised.

⊥⇐ att2(k(sym, session2(a, b, Na))) (22)

⊥⇐ att2(Kab), alice key2(a, Kab) (23)

⊥⇐ att2(Kab), bob key2(b, Kab) (24)

Figure 7: (Negated) security goals

Call, somewhat abusively, theprotocol π the collection comprised of the crypto-

graphic protocol itself, the (Dolev-Yao) security model, the security assumptions and

the security goals. LetSπ be the corresponding clause set. The clause setSNS denoting

the symmetric-key Needham-Schroeder protocol NS is then the union of the clauses in

Figure 1 (i = 1, 2), Figure 3 (i = 1, 2), Figure 6 (i = 1, 2), Figure 4, Figure 5, and

12

Figure 7.

Unsurprisingly, running a first-order prover againstSNS reveals a possible attack

against Bob. E.g., SPASS v2.0 [86] finds that the above set of clauses is inconsistent,

with a small resolution proof, where only 309 clauses were derived, in 0.07 seconds

on a2.4 GHz Intel Centrino Duo class machine. Examining the proof reveals that the

attack is actual. This is the well-known attack where the attacker uses an old message 3

from a previous session (for whichKab is now known), and replays it to Bob. The at-

tacker can then decrypt message 4, since he knowsKab, and Bob will accept message 5

as confirmation.

Removing the failing security goal (24) produces a consistent set of clausesSsafe
NS :

so there is no attack on the other two security goals. This seems to be out of reach

for SPASS (at least without any specific option): after 10 minutes already, SPASS

is lost considering terms with 233 nested applications of the successor functionsuc;

we decided to stop SPASS after 4h 10 min, where this number hadincreased to 817.

However, our own toolh1, from theh1 tool suite [40], shows both that there is a

plausible attack against Bob and definitely no attack against Alice or the trusted third-

party, in0.68 s;h1 works by first applying a canonical abstraction to the given clause

setS [42, Proposition 3], producing an approximationS′ in the decidable classH1

[68, 84]; thenh1 decidesS′ by the terminating resolution algorithm of [42]. We refer

to this paper for details. We shall return to this approach inSection 6.

4 Undecidability

An intuitive idea to reach our goal, i.e., producing formal proofs from a security

proof discovered by a tool such as ProVerif, SPASS orh1, is to instrument it so

as to return a trace of its proof activity, which we could thenconvert to a formal

proof. However, this cannot be done. As illustrated onSsafe
NS , the protocol, with-

out the security goal (24), is secure because wecannotderive any fact of the form

13

att2(k(sym, session2(a, b, na))) for any termna, and there is no termkab such

that bothatt2(kab) andalice key2(a, kab) would be derivable. In short, security

is demonstrated through theabsenceof a proof.

It would certainly be pointless to instrument ProVerif, SPASS orh1 so as to doc-

ument everything itdidn’t do. However, these tools all work by saturating the input

clause setS representing the protocolπ to get a final clause setS∞, using some form

of the resolution rule, and up to specific redundancy elimination rules. To produce a

formally checkable security proof of the protocolπ—in case no contradiction is de-

rived fromS—, what we can therefore safely assume is: (A)S∞ is consistent, (B)S∞

is entailed byS, and (C)S∞ is saturated up to redundancy (see [8]).

Bruno Blanchet kindly reminded me that point (C) could in principle be used to pro-

duce a formal proof thatπ is secure. We have to: (a) prove formally that the saturation

procedure is complete, in the sense that wheneverS∞ is saturated up to redundancy,

and every clause inS is redundant relative toS∞, thenS is consistent; and: (b) pro-

duce a formal proof thatS∞ is indeed saturated up to redundancy. Task (b) is complex,

and complexity increases with the sophistication of the saturation strategy; realize that

even the mundane task of showing, in Isabelle or Coq, that twogiven literals do not

unify requires some effort. Moreover,S∞ is in general rather large, and task (b) will

likely produce long proofs. Task (a) is rather formidable initself. However, a gifted

and dedicated researcher might be able achieve as much, as suggested to me by Ćedric

Fournet, while the effort in achieving (b) is likely to be comparable to the one we put

into our toolh1mc (Section 7).

We believe that the most serious drawback of this approach isin fact non-maintain-

ability: (a) and (b) have to be redone for each different saturation procedure, i.e., for

different tools, or when these tools evolve to include new redundancy elimination rules

or variants of the original resolution rule.

This prompts us to use only points (A) and (B) above, not (C). Fortunately, and this

14

is one of the points that Selinger makes [77], a clause set is consistent if and only if

it has amodel. We may therefore look for models ofS as witnesses of security forπ.

While Selinger proposes this approach to check whetherπ is secure, it can certainly be

used to fulfill our purpose: assume that we know thatS is consistent, typically because

ProVerif, SPASS orh1, has terminated on a clause setS∞ that is saturated under some

complete set of logical rules (forms of resolution in the cited provers) and which does

not contain the empty clause⊥; then our tasks reduces to answering two questions:

(1) how can we extract a model from a saturated set of clausesS∞ not containing⊥?

(2) given a modelM that acts as a certificate of satisfiability, hence as a certificate of

security forπ, how do we convertM to a formal Coq proof?

Question (2) is not too hard, at least in principle: produce aproof thatM satisfies

each clauseC in S, by simply enumerating all possible values of each free variable in

C, and checking that this always yields “true”. For larger models, we shall see that

we can instead build a model-checking algorithm to check whetherM satisfiesS (in

notation,M |= S), and keep a trace of the computation of the model-checker. Then

we convert this trace into a formal proof. We shall see how to do this in Section 7.

Question (1) is easy, but ill-posed, because we did not impose any restriction on

the format the model should assume. (Note that we don’t know whetherM is finite,

in particular in the cases of SPASS and ProVerif.) The answeris thatS∞ is itself a

perfectly valid description of a model, namely the unique least Herbrand modellfpTS∞

of S∞ (I owe this simple remark to Andreas Podelski, personal communication, 1999).

What this model lacks, at least, is being effective: there isin general no way of testing

whether a given ground atomA holds or not in this model. In our case, the important

result is the following, which shows that we cannot in general even test whetherM |=

S, whereM = lfpTS∞
, contradicting our goal (2).

Proposition 4.1 The following problem is undecidable: Given a satisfiable set of first-

order Horn clausesS∞, and a set of first-order Horn clausesS, check whether the

15

least Herbrand model ofS∞ satisfiesS. This holds even ifS contains just one ground

unit clause, andS∞ contains only three clauses.

Proof. By [34], the satisfiability problem for clause setsS1 consisting of just three

clausesp(fact), p(left) ⇐ p(right), and⊥ ⇐ p(goal) is undecidable. TakeS∞ to

consist of the clausesp(fact), p(left) ⇐ p(right), andq(∗) ⇐ p(goal), whereq is a

fresh predicate symbol and∗ a fresh constant. TakeS to contain just the clauseq(∗).

Note thatS∞, as a set of definite clauses, is satisfiable. We claim thatS1 is unsat-

isfiable if and only iflfpTS∞
satisfiesS. If S1 is unsatisfiable, then⊥ ∈ lfpTS1

=

TS1
(lfpTS1

). By definition of TS1
, and since⊥ ⇐ p(goal) is the only clause of

S1 with head⊥, there is a ground instancep(goal σ) in lfpTS1
. Now lfpTS1

=

⋃
n∈N

Tn
S1

(∅), since theTS1
operator is Scott-continuous. By an easy induction onn

(which, intuitively, is proof length), every atom of the form p(t) in Tn
S1

(∅) is inTn
S∞

(∅).

Sop(goal σ) is in lfpTS∞
, whenceq(∗) is in the least Herbrand model ofS∞, i.e., the

latter satisfiesS. Conversely, iflfpTS∞
satisfiesS, that is,q(∗), by similar arguments

we show that it must satisfy some instancep(goal σ), which is then inlfpTS1
, so that

S1 is unsatisfiable. �

Despite the similarity, this theorem is not a direct consequence of Marcinkowski and

Pacholski’s result [61], that the Horn clause implication problemC1 |= C2 is undecid-

able. Recall thatC1 |= C2 whenever every model ofC1 satisfiesC2. Indeed, this is

not equivalent to (not entailed by, to be precise) the fact that the least Herbrand model

of C1 satisfiesC2.

Replacing the ground unit clauseq(∗) of S above byatt1(∗) shows that:

Corollary 4.2 The following problem is undecidable: given a satisfiable set of first-

order Horn clausesS∞, check whetherlfpTS∞
is a model of a first-order formulation

of a cryptographic protocolπ. This holds even ifπ contains absolutely no message

exchange (i.e., the number of protocol steps is zero), has only one phase, the initial

knowledge of the intruder consists of just one ground message∗, the Dolev-Yao intruder

16

has no deduction capability at all (i.e., we don’t include any of the rules of Figure 1),

and the number of security goals is zero.

To mitigate this seemingly devastating result, recall thatSPASS and ProVerif use

variants of resolution, and the clause setsS∞ produced by SPASS or ProVerif are sat-

urated up to redundancy. SPASS uses sophisticated forms of ordered resolution with

selection and sorts, while ProVerif uses two restrictions of resolution. “Saturated up

to redundancy” [8] means that every conclusion of the chosenresolution rule with

premises inS∞ is either already inS∞, or redundant with respect toS∞, e.g., sub-

sumed by some clause inS∞. It is well-known that, for all variants of resolution that

can be shown complete by Bachmair and Ganzinger’s forcing technique [8], the mod-

els of a setS∞ that is saturated up to redundancy are exactly the models of the subset

Sprod ⊆ S∞ of all the so-calledproductiveclauses ofS∞. In particular, for Horn

clauses,lfpSprod = lfpS∞. For example, the first phase of the ProVerif algorithm

uses a form of resolution with selection, where all literalsof the formatti(M) are se-

lected in clause bodies. The effect is that the clauses ofSprod cannot contain any literal

of the formatti(M) in their body. It is then a trivial observation that Proposition 4.1

still holds withS∞ replaced bySprod (just makep different fromatti). However, this

first phase is not a complete procedure in itself. Ordered resolution with selection [8],

as well as the kind of resolution used in SPASS [85] are complete. Using the former

for example,Sprod consists of clauses where no atom is selected in any clause body,

and the head is maximal with respect to the chosen stable, well-founded ordering≻.

Even so, this does not help in general:

Proposition 4.3 Proposition 4.1 and Corollary 4.2 still hold ifS∞ is replaced by a set

Sprod of productive clauses, again even of cardinality3.

Proof. Modify the construction ofS∞ slightly, and take it to consist ofp(c, fact),

p(f(X), left) ⇐ p(X, right), andq(∗) ⇐ p(X, goal). Let≻ be defined byq(M) ≻

p(N) for every termsM and N , andp(M, N) ≻ p(M ′, N ′) if and only if M ′ is

17

a proper subterm ofM . Select no atom in any clause body. ThenSprod = S∞ is

a set of productive clauses. As in Proposition 4.1,S1 is unsatisfiable if and only if

lfpTSprod
|= q(∗). �

5 Explicit, Finite Models

There is a much simpler solution: directly findfinitemodelsM of the setS of clauses

representing the protocolπ. This won’t enable us to verify protocols that are secure

becauseS is satisfiable, but not finitely satisfiable. But again Selinger’s early experi-

ments [77] suggest that this is perhaps not a problem in practice. To wit, remember that

there is a 5 element model for Selinger’s encoding of the Needham-Schroeder-Lowe

public-key protocol. In fact, our encoding of the 7-messageNeedham-Schroeder-Lowe

protocol has a 4 element model, found by Koen Claessen’s toolParadox. As for our

running example, our toolh1 finds a 46 element model forSsafe
NS (see Section 3), but

there is also a 4 element model (see below).

There are certainly protocols which could only be shown secure using techniques

requiring infinite models. In particular, this is likely forparametric verification ofre-

cursiveprotocols—where by parametric we mean that verification should conclude for

all values of an integer parametern, typically the number of participants or the number

of rounds. Solving first-order clause sets representing such protocols was addressed by

Küsters and Truderung [57]. Examples of such protocols are Bull and Otway’s recur-

sive authentication protocol [18], or the IKA protocols [80]. Note however that both

are flawed [76, 73], so thatS would in fact be unsatisfiable in each case.

Finding finite models of first-order clause sets is a sport, and is in particular ad-

dressed in the finite model category of the CASC competition at annual CADE confer-

ences. Paradox [21] is one such model-finder, and won the competition in 2003, 2004,

2005, 2006. Paradox v2.3 finds a 4 element model forSsafe
NS (see Section 3), in1.6 s.

Due to the algorithm used by Paradox, this also guarantees that there is no 3 element

18

crypt !1 !2 !3 !4
!1 !1 !1 !4 !1
!2 !2 !1 !4 !4
!3 !3 !4 !4 !4
!4 !3 !2 !2 !2

Figure 8:crypt, in Paradox’s 4 element model

model. We have also tested other model finders, such as Mace4 [63] or the experimen-

tal tool Darwin [10]. None returned on any of the examples that we tested them on, in

a time limit of two hours (and sometimes more).

Paradox represents finite models in the obvious way, as tables representing the

semantics of functions, and truth-tables representing predicates. Call theseexplicitly

presentedmodels. The explicitly presented model found by Paradox onSsafe
NS has4

element!1, !2, 3, and!4. All identitiesa, b, i, s have value!1; this is also the value of

nil, prv andpub, while the value ofsym is !2. Theatt1 predicate holds of value!1

only, whileatt2 holds of!1 and!2 only. The table for encryption is shown in Figure 8:

thatcrypt applied to!2 and!1 yields!2 then means that encrypting a message learned

between phase 1 and phase 2 (with value!2) with a key that was already known in

phase 1 (with value!1) cannot be known in phase 1 but will have been learned by the

time we enter phase 2 (i.e., it has value!2). It is also useful to think of these values as

pairwise disjointtypes: messages of type!1 are those known in phase 1, messages of

type!2 are those known in phase 2 but unknown in phase 1. The other values (or types)

are harder to interpret. Both!3 and !4 can be thought as types of messages that will

remain secret even after phase 2. The only difference between them is that encrypting

messages of type!4 with data of type!2 (known in phase 2 but not before) will produce

ciphertexts that are known in phase 2 (of type!2), while messages of type!3 are safer,

in the sense that encrypting them with data of type!2 yield ciphertexts of type!4, which

remain unknown even in phase!2 (but don’t encrypt them twice).

19

Model-checking clause setsS against such small modelsM, represented as tables,

i.e., checking whetherM |= S, is straightforward, and works in polynomial time,

assuming the number of free variables in each clause ofS is bounded: letk be the

largest number of free variables in clauses ofS, n the number of elements inM, then

for each clauseC in S, enumerate the at mostnk tuplesρ of values for the variables

of C, then check thatC underρ is true. Call one such step of verification thatC holds

underρ a check. In the example of Section 3,k = 4, there are50 clauses with at most

5 free variables: a conservative estimate shows that we need at most50× 45 = 51 200

checks. A precise computation shows that we need8.40 + 11.41 + 17.42 + 8.43 +

4.44 + 2.45 = 3 908 checks.

However, the assumption that the number of free variables isbounded is important

in the latter paragraph. In general, using the same construction that the one showing

that model-checking first-order formulae against finite models isPSPACE-complete,

we obtain:

Lemma 5.1 Checking whetherM |= S, whereM is an explicitly presented finite

model andS is a set of Horn clauses, iscoNP-complete, even whenM is restricted

to 2-element models andS contains just one positive, unit clause.

Proof. We show that checkingM 6|= S is NP-complete. Membership inNP is easy:

guess an unsatisfied clauseC in S and values for its free variables. Conversely, we

show that the problem isNP-hard already whenM is the two-element model{0, 1},

with one predicatetrue, which holds of1 but not of0. We also assume term constants

t (denoting1), f (denoting0), and (denoting logical conjunction),or (denoting logical

disjunction),not (denoting negation). We are now ready to reduce SAT: let the input

be a setS0 of propositional clauses on a vector~A of propositional variables, seen as

a conjunctionF (~A). Build a first-order termF ∗(~A), where now the variables in~A

are seen as term variables, by replacing ands (∧) by and, ors (∨) by or, negations

(¬) by not, and so on, inF (~A). Let S consist of the unique positive unit clause

20

true(not(F ∗(~A))). ClearlyM |= S if and only if S0 is not satisfiable. �

What this lemma illustrates, and what practice confirms, is that it is not so much

the numberk of elements of the model that counts, or even the number of entries in its

tables, but what we called the number ofchecksneeded. Both the number of entries in

the tables and the number of checks can be exponentially large. However, the approach

is, as we shall see, practical.

We have conducted an experiment on several secrecy protocols. Results are to be

found in Figure 10, and we shall comment on the protocols shortly. Most were found in

the Spore library [78]. The only exceptions are EKE and EAP-AKA (see below). The

reader should be aware that the proportion of secrecy protocols that are in fact secure is

small, and, despite our trying to avoid vulnerable protocols, we actually lost some time

experimenting with some other protocols that eventually turned out not to be secure.

(E.g., although the Kao-Chow protocol [52] is well-known tobe vulnerable, the Kao

Chow Authentication v.3 protocol is not reported as vulnerable in SPORE; however we

found out that it was subject to an attack.)

The NS row is our exampleSsafe
NS , while the amended NS row is a corrected ver-

sion [67] that satisfies all required security properties. Paradox always finds smallest

possible models, since it looks for models of sizek for increasing values ofk. On the

other hand,h1 is a resolution prover that decides the classH1, all of whose satisfiable

formulae have finite models; the models extracted are in particular not minimal in any

way. We report figures found byh1 so as to appreciate how even small models in

terms of number of elements (e.g.,57 for the amended NS protocol) are in fact large

in practice (e.g.,188 724 entries—we actually report a number of transitions in a de-

terministic tree automaton describing the model, as explained in Section 6, and this is

a lower boundon the actual number of entries), and require many checks (e.g., more

than one billion).

The NSL7 row is the 7-message version of the Needham-Schroeder-Lowe protocol,

21

1. A −→ S : A, B
2. S −→ A : {Kb, B}K−1

s

3. A −→ B : {Na, A}Kb

4. B −→ S : B, A
5. S −→ B : {Ka, A}K−1

s

6. B −→ A : {Na, Nb, B}Ka

7. A −→ B : {Nb}Kb

Figure 9: The 7-Message NSL Protocol

Protocol Paradox h1

Time #elts #entries #checksTime #elts #entries #checks
NS 1.62s 4 824 3 908 0.70s 46 217 312 430 106

amended NS [67](≥ 30 872s) (≥ 5) – – 1.71s 57 188 724 1.245 109

NSL7 [67, 59] 4.85s 4 2 729 2 208 8.03s over-approximated
Yahalom [72] 3 190s 6 5 480 38 864 4.82s ≥ 57 ≥ 2.46 109

Kerberos [19] 17.87s 5 1 767 5 518 0.94s 57 7 952 84.5 106

X.509 [78] 3 395s 4 142 487 12 670 0.44s ≥ 29 ≥ 228.5 106

EAP-AKA [7] 54.3s 3 2 447 1 457 1.93s 72 22 550 7.74 109

EKE [11] 0.44s 4 3 697 4 632 1.88s 48 16 016 64.5 106

Figure 10: Model sizes

checking that the secrecy of the exchanged messages is preserved, instead of mutual

authentication. See Figure 9. Contrarily to the above protocols, this is an asymmetric

key protocol. The messages 1, 2, 4 and 5, which are usually left out of models of this

protocol, are meant forA andB to get their peer’s respective public keysKb andKa

from the serverS. This is a rare example where the standard approximation strategy

of h1 fails (without added tricks), andh1 does not conclude that the protocol is safe;

Paradox finds a 4 element model, showing it is indeed safe.

The Yahalom row is Paulson’s corrected version of the Yahalom protocol [72].

While it is found secure byh1 in 4.8 s, the model found (in implicit form, see Section 6)

is so big that we have been unable to convert it to an explicit representation in 2 GB

of main memory using our determinizerpldet. However, note thath1 did find a

model—it is just too big to print in an explicit form. The samething happened on the

X.509 row.

22

The Kerberos row is Burrows, Abadi and Needham’s [19, Section 6] simplified

version (4 messages) of the Kerberos protocol. This is also known as the shared key

Denning-Sacco protocol [33], with Lowe’s modification [60], and is a variant of NS

where nonces are replaced by timestamps. We model timestamps as two constantst1

andt2, wheret1 is used by honest agents in phase 1 andt2 in phase 2. In other words,

we use the safe approximation that all old timestamps are equated, all current times-

tamps are equated, but we do draw a distinction between old and current timestamps.

We also add clausesatti(tj) for all i, j ∈ {1, 2}, meaning that all timestamps are

known to the intruder at all times.

The X.509 row is the so-called “BAN modified version of CCITT X.509 (3)”, as

referenced in the SPORE database [78]. Several other versions of the X.509 protocol

are vulnerable. This particular version is a 3-message protocol that uses nonces and

asymmetric cryptography, and no timestamp.

The EAP-AKA row is the extensible authentication protocol (EAP), with authenti-

cation and key agreement (AKA), from the AVISPA repository [7]. This is developed

from the UMTS AKA authentication and key agreement protocol, see Figure 11. This

is meant for a serverS and a so-called peerP to agree on a session key for encryption

CK = f3(SK, Ns), and a session key for integrityIK = f4(SK, Ns), whereSK

is a long-term secret betweenS andP , Ns is a nonce generated byS at step 3, and

f3 andf4 are key generation functions. We modelSK ask(sym, [S, P]). The proto-

col also uses request ids and response ids, which we model as constantsrequest id

andrespond id, a final signalsuccess, a network address identifierNAI for P ,

modeled asnai(P), another key generation functionf5, two so-called authentication

functionsf1 andf2, a hash functionh, and a sequence numberSqn, which we model

assessioni(NAI, S, P) in phasei, thus merging all old sequence numbers, and all

current sequence numbers, keeping old and current sequencenumbers distinct. We test

whetherP ’s andS’s version of the two keysCK andIK are secret. Secrecy is not

23

1. S −→ P : request id

2. P −→ S : respond id, NAI
3. S −→ P : Ns, AT AUTN

whereAT AUTN = ({Sqn}AK , f1(SK, Sqn, Ns))
AK = f5(SK, Ns)

4. P −→ S : AT RES, h(h(NAI, IK, CK), AT RES)
whereAT RES = f2(SK, Ns)

5. S −→ P : success

Figure 11: The EAP-AKA Protocol

guaranteed forP ’s keys in this model, where several current sessions may have the

same sequence number. However, the keys ofS are definitely secret. This is what our

models for EAP-AKA establish.

Finally, the EKE row is an experiment on Bellovin and Merritt’s encrypted key

exchange protocol [11, Section 2.1], see Figure 12. The new ingredients here are as

follows. First,enc anddec denote encryption and decryption through acipher, i.e.,

we have not onlydec(enc(M, K), K) = M but alsoenc(dec(M, K), K) = M ; the

latter means that every message can be thought of as the result of the encryption of

some message. In particular, the clauses for EKE should be understood modulo an

equational theory, generated by the latter two equations. It is however to precompile

these equations into the remaining clauses, so that only Horn clauses without equations

remain, by computing all superpositions [8] in a preprocessing step. It turns out that

for such an equational theory, this terminates. A similar trick is used by Blanchet in

his tool ProVerif to compile his rules [14]. In message 1, thepublic keyKa and its

private keyK−1
a are generated fresh, andPab is a shared password betweenA andB.

R is a fresh nonce in message 2, as isNa in message 3 andNb in message 4. The final

shared key, which should be secret, isR. We naturally assume that all passwords used

in phase 1 are known to the attacker in phase 2.

Although this protocol may seem short, this is the one that requires the most

clauses:124, compared to46 for X.509, 49 for EAP-AKA or Yahalom,50 for NS

24

1. A −→ B : enc(Ka, Pab)
2. B −→ A : enc({R}Ka

, Pab)
3. A −→ B : {Na}R

4. B −→ A : {Na, Nb}R

5. A −→ B : {Nb}R

Figure 12: The EKE protocol

or NSL7,51 for Kerberos, and55 for amended NS. The reason is another peculiarity

of this protocol: we need to model the fact thatPab is aweak secret, i.e., one whose val-

ues we can feasibly enumerate. Modeling resistance againstdictionary attacks, as done

by Corinet al. [28], is out of reach of our simple style of models. Instead, we model

the weaker, but in fact adequate enough, property ofresistance against time-memory

trade-off attacks. The latter [46] are the most effective form of dictionary attacks. We

model the resistance of a weak secretP to these attacks by checking that there are no

two messagesM1, M2 that aretestableand such thatM2 = enc(M1, P). A mes-

sage is testable if and only if, intuitively, some part of it (but not necessarily all of it)

is knowable by the intruder. The idea is that time-memory trade-offs will enumerate

all (known) messagesM1 and test whether encryption withP yields any recognizable

pattern; or enumerate all knownM2 and test whether decryption withP yields any rec-

ognizable pattern. Intuitively, the difference with general resistance against dictionary

attacks [28] is that we only allow tests onP of the formC[enc(M, P)] orC[dec(M, P)]

for some public contextC and some public termM ; in particular,P only occurs once

in these tests.

We model testability through thetestablei predicate (in phasei) defined in Fig-

ure 13. Note that any known message is testable, that a paircons(M1, M2) is testable

if and only if one ofM1, M2 is (such a pair is known if and only ifbothM1 andM2

are). All other clauses model testability using encryptionand decryption.

While this is probably the seemingly most complex problem ofour set, it is in fact

25

testablei(M) ⇐ atti(M)
testablei(cons(M1, M2)) ⇐ testablei(M1)
testablei(cons(M1, M2)) ⇐ testablei(M2)

testablei(suc(M)) ⇐ testablei(M)
testablei(M) ⇐ testablei(suc(M))

Testing by decrypting with a known key:
testablei(crypt(M, k(pub, K))) ⇐ testablei(M), atti(k(prv, K))
testablei(crypt(M, k(prv, K))) ⇐ testablei(M), atti(k(pub, K))
testablei(crypt(M, k(sym, K))) ⇐ testablei(M), atti(k(sym, K))

Testing by encrypting with a known key:
testablei(M) ⇐ testablei(crypt(M, K)), atti(K)

Testing key by decrypting known message:
testablei(k(prv, K)) ⇐ testablei(M), atti(crypt(M, k(pub, K)))
testablei(k(pub, K)) ⇐ testablei(M), atti(crypt(M, k(prv, K)))
testablei(k(sym, K)) ⇐ testablei(M), atti(crypt(M, k(sym, K)))

Testing key by encrypting known message:
testablei(X) ⇐ testablei(crypt(M, X)), atti(M)

Testing by cipher decryption:
testablei(enc(M, K)) ⇐ testablei(M), atti(K)

testablei(M) ⇐ testablei(dec(M, K)), atti(K)
Testing by cipher encryption:

testablei(M) ⇐ testablei(enc(M, K)), atti(K)
testablei(dec(M, K)) ⇐ testablei(M), atti(K)

Testing key by cipher-encrypting known message:
testablei(X) ⇐ testablei(enc(M, X)), atti(M)
testablei(X) ⇐ testablei(M), atti(dec(M, X))

Testing key by cipher-decrypting known message:
testablei(X) ⇐ testablei(dec(M, X)), atti(M)
testablei(X) ⇐ testablei(M), atti(enc(M, X))

Figure 13: Testability

26

one of the easiest to solve: see Figure 10.

Note that whileh1 returns exact answers in a matter of seconds, except for NSL7

on which it thinks there may be some attacks, Paradox finds models but usually takes

much more time. An extreme example is Yahalom, where the 6 element model is found

in 53 min, or X.509, with56 min, or amended NS, where we ran out of patience after8

hours1/4 (the only thing we know is that the least model contains at least 5 elements

here).

From an explicitly presented finite modelM, as returned by Paradox, it is in easy

to extract a formally checkable proof. In Coq, we declare an inductive type of values

of M, e.g.,Inductive M : Set := v1 : M | v2 : M | v3 : M | v4 : M for a

4 element model. Then, define all function and predicate symbols by their semantics.

E.g.,crypt (Figure 8) would be described by:

Definition crypt(m : M)(k : M) : M :=

match m, k with

v1, v1 ⇒ v1 | v1, v2 ⇒ v1 | v1, v3 ⇒ v4 | v1, v4 ⇒ v1

| v2, v1 ⇒ v2 | v2, v2 ⇒ v1 | v2, v3 ⇒ v4 | v2, v4 ⇒ v4

| v3, v1 ⇒ v3 | v3, v2 ⇒ v4 | v3, v3 ⇒ v4 | v3, v4 ⇒ v4

| v4, v1 ⇒ v3 | v4, v2 ⇒ v2 | v4, v3 ⇒ v2 | v4, v4 ⇒ v2

end.

andatt2 would be described by:

Definition att2(m : M) : Prop :=

match m with v1 ⇒ True | v2 ⇒ True | ⇒ False end.

The sizeof such a description is proportional to what we called the number of

entries above. Proofs of clausesC from the clause setS are then very short: ifC

containsk free variables, we write its proof in Coq’s tactic language as:

intro x1; case x1; . . . intro xk; case xk; simpl; tauto.

27

Protocol Checking Time #lines
NS 3.29s 1 038
NSL7 1.76s 4 415
Yahalom 36.6s 14 646
Kerberos 2.57s 2 584
X.509 11.01s 35 472
EAP-AKA 4.42s 3 763
EKE 1.99s 5 023

Figure 14: Checking Explicit Models with Coq

The effect of this command line is to enumerate allnk assignments of values to vari-

ables. This not only takes time proportional to the number ofchecks (the #checks

columns in Figure 10), but also produces a proof term of size proportional to it.

We conclude that the explicitly presented models approach is practical, however

only for small models. While this approach is applicable forthe 3 to 6 element models

that Paradox found in Figure 10, it is completely unrealistic for the models found by

h1, whether representable explicitly (NS, amended NS) or not (Yahalom). Note that

the MACE algorithm underlying Paradox is doubly exponential in the numbern of

elements of the model. In practice, the largest models we have discovered with Paradox

contained 7 elements. However, when this works, this works well, despite Lemma 5.1.

6 Large Models, and Tree Automata

There are several reasons why we would like to find a more efficient method for pro-

ducing formally checkable proofs. This will be solved in Section 7. As it stands, the

strategy of Section 5 does not scale up. That is, it does not apply to security proofs that

would require finite models larger than 6 elements. And thereare a few reasons why

we would like some larger finite models.

The first one is that Dolev-Yaosecrecyproperties are in fact simple to prove. Re-

member that the 4 element model that Paradox found forSsafe
NS mapped each intruder

identity to the same value,!1. No such model can ever be used to prove authentica-

28

tion properties, where we need to make a distinction betweenidentities. This phe-

nomenon is already illustrated on Paulson’s corrected version of the Yahalom protocol

[72], whose security depends on checking the identity of an agent included in a mes-

sage.

A second reason is that thestyle of protocol specification that we used in Sec-

tion 3 makes it more likely that secure protocols have small models, but we may need

other styles in other applications. One may describe our style asstateless: agents only

remember past values, not because we have modeled a local state containing all val-

ues of their internal variables, but because they are given back to them in received

messages. For example, look at message 2 of Figure 2: Alice receives{Na, B, Kab,

{Kab, A}Kbs
}Kas

from the trusted third party. The corresponding clause is (13) (see

Figure 3), where Alice expects a message of the form{[nai(A, B), B, Kab, M]}k(sym,[A,s]).

While freshness is checked by verifying that the nonce partNa is of the formnai(. . .),

Blanchet’s clever trick of parametrizingnai by some free parameters forces this term to

match only ifA was indeed the intended recipient (viz. the occurrence ofA in the key

k(sym, [A, s])), and to remember whomA wanted to talk to (viz. the two occurrences

of B must match). Other, more precise, protocol verification tools employstateful

models, whereby each agent maintains a state vector consisting of its local program

counter, and all values of its variables (see [17] for an early example). This is needed

in verifying protocols where sessions must be sequential, e.g., for the Otway-Rees pro-

tocol [69], which is secure if sessions are sequential, but insecure if sessions can be run

in parallel [22]. We have played with such a model, and found it satisfiable both with

h1 (with a 54 element model, in1.1 s) and with Paradox (with a 4 element model, in

227 s). However, the fact that state vectors have high arity (up to 9) entails that, while

function tables only require143 entries—for the 4 element model—,predicateentries

require706 716.

We can only expect to need even larger models when considering composition of

29

qeven

qodd

qlist−even

s (_)

0
cons (_, _)

nils (_)

Figure 15: A tree automaton for lists of even numbers

protocols, or Web services [13], or cryptographic APIs [30], in order of increased com-

plexity. However, note that the number of elements in the model is fairly independent

of thesizeof the protocol.

Our model-checking technique will be able to check the larger models found byh1

(see Figure 10). Some of it rests on intuitions on how we decideH1 by resolution [42],

and the relationship to tree automata.

Tree automaton are best explained as graph-like structures, more precisely as cer-

tain hypergraphs. Figure 15 displays one tree automata, which we take as example.

We take0 to denote zero,s(t) to denote the successor oft in N, i.e.,t + 1 (so that the

numbern is encoded ass(. . . (s(0))), with n copies ofs), nil to denote the empty

list, andcons to be the binary list constructor (so that the list[1, 2, 4] is encoded as

cons(1, cons(2, cons(4, nil)))). The states of this tree automaton areqeven, qodd, and

qlist-even. The transitions are hyperedges fromn statesq1, . . . ,qn to another stateq, la-

beled by ann-ary function symbolf . Graphically, we represent this as an arrow going

from f(, . . . ,) to q, and lines from each stateqi to the corresponding underscore

in the label. The idea is that ift1 is a ground term recognized atq1, and . . . , andtn

is a ground term recognized atqn, thenf(t1, . . . , tn) should be recognized atq. For

example, in the tree automaton above,0 is recognized atqeven (this is the casen = 0,

where there are in fact no source state), sos(0) is recognized atqodd, s(s(1)) is rec-

30

ognized atqeven. We usually define the set of termsrecognized ata stateq as those

obtained by finitely many applications of such transitions.We let the reader check that,

in the example above,qeven recognizes the even natural numbers,qodd the odd natural

numbers, andqlist-even the lists of even numbers.

The Horn clause format allows one to express the semantics oftree automata di-

rectly. Turn each stateq into a unary predicate symbol, and readq(t) as “t is recognized

at q”. Then the semantics of each transition is expressed as a Horn clause. In the ex-

ample above, write the following:

qeven(O) qeven(s(X)) ⇐ qodd(X) qodd(s(X)) ⇐ qeven(X)

qlist-even(cons(X, Y)) ⇐ qeven(X), qlist-even(Y) qlist-even(nil)

Then observe that this does not just give the semantics of thetree automaton, but in

fact completely describes it. Accordingly, define atree automatonas a finite set oftree

automaton clauses, defined as being of the formP (f(X1, . . . , Xn)) ⇐ P1(X1), . . . ,

Pn(Xn), whereX1, . . . ,Xn are pairwise distinct; such clauses are just tree automaton

transitions fromP1, . . . ,Pn to P .

One can generalize the notion of acceptance at a state to any satisfiable set of Horn

clauses: for each satisfiable setS of Horn clauses, and each predicate symbolP (i.e.,

each stateP), let LP (S) be the set of ground termst such thatP (t) is in the least

Herbrand model ofS. LP (S) is thelanguagerecognized atstateP . WhenS is a tree

automaton, this coincides with the usual definition of the set of terms recognized atP .

This connection between tree automata and Horn clauses was pioneered by Fr̈uhwirth

et al. [38]; there,LP (S) is called thesuccess setfor P . This connection was then used

in a number of papers: see the comprehensive textbook [25], in particular Section 7.6

on tree automata as sets of Horn clauses.

Tree automata clauses can be generalized right away to alternating tree automata

[25, Chapter 7]. Callǫ-block any finite set of atoms of the formP1(X), . . . , Pm(X)

31

(with the sameX, andm ≥ 0); it is non-emptyiff m ≥ 1. We abbreviateǫ-blocks as

B(X) to make the variableX explicit. We shall also writeB for the set{P1, . . . , Pm}.

Alternating automaton clausesare of the form:

P (f(X1, . . . , Xk)) ⇐ B1(X1), . . . , Bk(Xk) (25)

whereB1(X1), . . . ,Bk(Xk) areǫ-blocks, andX1, . . . ,Xk are pairwise distinct. It is

harder to find a graphical rendition of such clauses. One can think of them as giving the

additional power to computeintersections
⋂

P∈Bi
LP (S) of recognizable languages:

for a termf(t1, . . . , tk) to be recognized at stateP , one must find a clause (25) such

thatt1 is recognized atall the states inB1, and . . . , andtk is recognized at all the states

in Bk.

For technical reasons, we shall also consideruniversal clauses, of the formP (X).

These are meant to state that every term is recognized at stateP .

We definealternating tree automataas any finite setS of alternating automaton

clauses and universal clauses. (The standard definition [25] does not include universal

clauses; on a fixed first-order signatureΣ, a universal clauseP (X) may be replaced by

the clausesP (f(X1, . . . , Xk)) ⇐ P (X1), . . . , P (Xk), wheref ranges overΣ.) Tree

automata are the special case without universal clauses, and whereǫ-blocks contain at

most one atom.

Given any clause setS, h1 first applies a canonical abstraction [42, Proposition 3]

to get a clause setS′ in the decidable classH1 [68, 84], and such thatS is satisfiable

wheneverS′ is. Thenh1 saturatesS′ by ordered resolution with selection [42], getting

a saturated setS∞. The point is that the subsetSprod ⊆ S∞ of productive clauses that

h1 returns is always an alternating tree automaton [42, Proposition 9]. Determinizing

Sprod can be done by a standard powerset construction, and we have implemented this

in the toolpldet, also a part of theh1 tool suite [40]. The states of the determinized

automatonDet(Sprod) are sets of states ofSprod, i.e., sets of predicate symbols.

32

We shall assume that the following procedure is used to defineDet(Sprod), which

builds new states on demand. Initially, the setQ of states, and the set of transi-

tions of Det(Sprod), are empty. Then, while there is a function symbolf , say of

arity k, andk statesq1, . . . , qk already constructed inQ such that(†) q = {P |

(∃P (X) ∈ Sprod) or ∃(P (f(X1, . . . , Xk)) ⇐ B1(X1), . . . , Bk(Xk)) ∈ Sprod · ∀i ·

Bi ⊆ qi} is non-empty, addq to Q, and add the transitionq(f(X1, . . . , Xk)) ⇐

q1(X1), . . . , qk(Xk) to Det(Sprod). Call this the powerset construction. It is well-

known that the powerset construction has the property that the languageLq(Det(Sprod))

of the stateq = {P1, . . . , Pn} in Det(Sprod) is exactly the intersection
⋂

P∈q LP (Sprod)\
⋃

P 6∈q LP (Sprod). The fact that statesq are built on demand also implies thatLq(Det(Sprod)) 6=

∅ for all q.

The connection with finite models was done by Kozen [54], who observed that

complete deterministic tree automata were just finite models. (In fact, Kozendefined

them this way.) There is a transition from the tuple of states(q1, . . . , qm) to q labeledf ,

i.e., a clauseq(f(X1, . . . , Xm)) ⇐ q1(X1), . . . , qm(Xm) in the clausal representation

of the automaton, if and only if the semantics off maps the tuple ofvalues(q1, . . . , qm)

to q. That is, the states of a complete deterministic automaton are the values of the

corresponding finite model.

The example tree automaton of Figure 15 is deterministic, but not complete. One

gets an equivalent complete deterministic automaton by adding a new, catch-all state

−, and adding all missing transitions to−. This results in a rather messy drawing.

However, we can describe it as a finite model as indicated above:

0 : qeven

nil : qlist-even

s

qeven qodd

qodd qeven

qlist-even −

− −

cons qeven qodd qlist-even −

qeven − − qlist-even −

qodd − − − −

qlist-even − − − −

− − − − −

33

The powerset construction is easier to understand in this light. For everyf satisfy-

ing (†) above, instead of adding the transitionq(f(X1, . . . , Xk)) ⇐ q1(X1), . . . , qk(Xk)

to Det(Sprod), add thetable entryf(q1, . . . , qk) = q to the model. This requires one

to write q into the(q1, . . . , qk) entry of tablef , possibly after extending all tables with

entries for the valueq, in caseq is fresh. Additionally, tables for predicates are given

as truth-tables; for each predicateP , this is defined inDet(Sprod) so thatP holds of

stateq if and only if P ∈ q.

We can now explain how we estimated the size of models returned by h1 in Fig-

ure 10: we ranpldet, which buildsDet(Sprod), and we counted states (values) and

transitions (table entries).

Finally, while our model-checking technique will work on alternating tree automata,

it will in particular work on finite models encoded as alternating tree automata (which

will necessarily be deterministic); i.e., each entry in a table, stating thatf applied

to values(v1, . . . , vm) should yield valuev, will give rise to a tree automaton clause

is v(f(X1, . . . , Xm)) ⇐ is v1(X1), . . . , is vm(Xm), where there is oneis v pred-

icate for each valuev; the truth-table of each predicateP is encoded as the collection

of clausesP (X) ⇐ is v(X), wherev ranges over the values that satisfyP in the

model. While this won’t decrease the size of the descriptionof the model in Coq—still

proportional to #entries—, our model-checker will have theopportunity to find proofs

that are shorter than the #checks steps needed in enumeration proofs. E.g., our model-

checker will produce the obvious proof thatP (X) ⇐ P (X) holds (in any model),

without enumerating all possible values forX.

Finally, we loop the loop and observe that model-checking againstDet(Sprod) or

against our old friendlfpTSprod
are the same thing:

Lemma 6.1 Let Sprod be an alternating tree automaton. For any setS of first-order

clauses,Det(Sprod) |= S if and only iflfpTSprod
|= S.

Proof. Say that a valuev in a modelM is definableiff v is the denotation of some

34

ground term. A model isfully completeif and only if all its values are definable.

Clearly, lfpTSprod
is fully complete, as every value is its own denotation.Det(Sprod)

is also fully complete, since every value (state)q in Det(Sprod) is the denotation of

any ground term inLq(Det(Sprod)), and this is non-empty by construction.

For any ground termt, observe thatDet(Sprod) |= P (t) if and only if t is in
⋃

q/P∈q Lq(Det(Sprod)) =
⋃

q/P∈q

(⋂
P ′/P ′∈q LP ′(Sprod) \

⋃
P ′/P ′ 6∈q LP ′(Sprod)

)
=

LP (Sprod), where the latter equality is by standard set reasoning. That is,Det(Sprod) |=

P (t) if and only if lfpTSprod
|= P (t). It follows thatDet(Sprod) |= F if and only if

lfpTSprod
|= F for every universal closed formulaF : this is by structural induction on

F , using the easy fact that, wheneverM is fully complete,M |= ∀X · G(X) if and

only if M |= G(t) for every ground termt. Since every setS of first-order clauses

is a universal sentence (taking into the implicit universalquantifications over free vari-

ables), we conclude. �

7 Model-Checking Against Alternating Tree Automata

SinceDet(Sprod) can have exponential size in the size ofSprod, one may say that

alternating tree automata arecompact representationsof possibly large finite models.

We describe how to model-checkS againstM = Det(Sprod) efficiently in practice.

But compactness has its toll:

Proposition 7.1 Checking whetherM |= S, whereM = Det(Sprod) is compactly

represented by an alternating tree automatonSprod, andS is a set of Horn clauses, is

EXPTIME-complete. It isEXPTIME-hard already ifSprod is a (non-alternating)

automaton, andS only contains one positive, unit clause.

Proof. Let n be the number of predicates inSprod, S, k be the largest number

of variables in a clauseC of S, α the largest symbol arity. Note that we don’tre-

quire to computeDet(Sprod). However, computing it yields the desired upper bound:

35

q0 mod 2

0

q1 mod 3

q0 mod 3

q2 mod 3

0

q1 mod 2

q0 mod 6

q4 mod 6q2 mod 6

q1 mod 6
q5 mod 6

0

q3 mod 6

s (_)

s (_) s (_)

s (_)

s (_)s (_)

s (_)

s (_) s (_)

s (_)

s (_)

Figure 16: A tree automaton for numbers modulo2, 3, and6

Det(Sprod) can be computed in time exponential in the size ofSprod, producing a

model with at most2n states, and tables with at most2nα entries. We then enumerate

up to(2n)k = 2nk tuplesρ of values for variables. For each, we can check whetherC

holds underρ in exponential time on a Turing machine (we need exponentialtime to

travel along exponential-sized tables stored on the tapes).

Conversely, non-deterministic tree automaton universality isEXPTIME-complete

[25, Section 1.7, Theorem 14]. This is the problem of checking whether, given a (non-

alternating) tree automatonSprod and a stateP , LP (Sprod) is the set of all ground

terms. This is the same as checkinglfpTSprod
|= S, whereS only contains the clause

P (X), hence toDet(Sprod) |= S by Lemma 6.1. �

7.1 Model-Checking Against Automata, Step by Step

We first explain the idea of our model-checking algorithm on an example. We use the

tree automaton of Figure 16 as modelM. Note that this is no longer a deterministic

tree automaton, since0 is recognized at three distinct states. The names of states should

make the automaton self-explanatory; e.g.,q2 mod 6 recognizes exactly the numbers that

are equal to2 modulo6.

Imagine we would like to check thatM |= [q2 mod6(s(s(s(Z)))) ⇐ q0 mod2(s(Z)),

q1 mod3(s(s(Z)))], whereZ is implicitly universally quantified inq2 mod 6(s(s(s(Z)))) ⇐

36

q0 mod2(s(Z)), q1 mod3(s(s(Z))). Intuitively, this states that ifZ+1 is even (= 0 mod2)

andZ + 2 = 1 mod3, thenZ + 3 = 2 mod6.

We may first look at all the ways that the model can makeZ + 1 be even. There

is only one way to do so inM, i.e., there is only one way thats(Z) be recognized

at q0 mod2, namely by using the unique transition fromq1 mod 2 to q0 mod2; as an au-

tomaton clause, this isq0 mod 2(s(X)) ⇐ q1 mod 2(X). ThenZ must have been rec-

ognized atq1 mod2, i.e., Z must be odd. So we are left with checking thatM |=

[q2 mod6(s(s(s(Z)))) ⇐ q1 mod 2(Z), q1 mod 3(s(s(Z)))]. In general, to model-check

M |= [H ⇐ B, P (f(t1, . . . , tn))], whereB is any set of atoms, we shall look for all

alternating automaton clausesP (f(X1, . . . , Xn)) ⇐ B1(X1), . . . , Bn(Xn), with the

sameP andf , in the alternating tree automaton describing the modelM: replacing

X1 by t1, . . . , Xn by tn, this describes all the ways thatf(t1, . . . , tn) can be recog-

nized atP ; then it remains to check thatM |= [H ⇐ B, B1(t1), . . . , Bn(tn)] for all

such clauses. This will be formalized in the(−P, f Elim) rule below: see Figure 18.

The (−P, f Elim) works on more complex judgments, for reasons we shall explain

shortly. Also, the above discussion assumed that there was no universal clauseP (X)

in M; otherwise, we shall also use another rule(−Univ) (Figure 17), which simplifies

the problem of checkingM |= [H ⇐ B, P (f(t1, . . . , tn))] to M |= [H ⇐ B]: in this

case indeed,everyterm is recognized atP .

Returning to our example, we again apply(−P, f Elim) to reduce the verifi-

cation ofM |= [q2 mod6(s(s(s(Z)))) ⇐ q1 mod 2(Z), q1 mod3(s(s(Z)))] to M |=

[q2 mod6(s(s(s(Z)))) ⇐ q1 mod 2(Z), q0 mod 3(s(Z))] (if Z + 2 = 1 mod 3, then

Z + 1 = 0 mod 3), then toM |= [q2 mod6(s(s(s(Z)))) ⇐ q1 mod 2(Z), q2 mod3(Z)]

(. . . andZ = 2 mod 3). We have simplified the body of the clause as much as we

could in this way.

Now look at the head,q2 mod6(s(s(s(Z)))) (“Z + 3 = 2 mod 6”). In a similar

way, we realize thatZ + 3 can only be equal to2 modulo6 if Z + 2 = 1 mod 6,

37

so we are left with checkingM |= [q1 mod 6(s(s(Z))) ⇐ q1 mod2(Z), q2 mod3(Z)]. In

general, and assuming as above that there is no universal clauseP (X) in M (oth-

erwise we shall prefer to use rule(+Univ) of Figure 17), to model-checkM |=

[P (f(t1, . . . , tn)) ⇐ B], we shall look for all alternating automaton clauses inM

whose head starts withP (f(. . .)). LetPi(f(X1, . . . , Xn)) ⇐ Bi1(X1), . . . , Bin(Xn)

be these clauses,1 ≤ i ≤ p. Now P (f(t1, . . . , tn)) holds inM if and only if the dis-

junction
∨p

i=1(Bi1(t1)∧ . . .∧Bin(tn)) holds inM. This is the familiarClark comple-

tion from logic programming [23]. It then remains to check thatM |= [
∨p

i=1(Bi1(t1)∧

. . . ∧ Bin(tn)) ⇐ B]. However, the latter is far from being a clause in general. So, in

Figure 18 below, we shall first convert the formula
∨p

i=1(Bi1(t1)∧ . . .∧Bin(tn)) ⇐ B

into a conjunction of clauses. This will be our rule(+P, f Elim).

This is also the rule that forces us to consider not just Horn clauses, but general

clauses. Imagine that, in our example, there had been two clauses with head of the

form q2 mod 6(s(. . .)): the clauseq2 mod6(s(X)) ⇐ q1 mod6(X) we used above, plus

another one, sayq2 mod 6(s(X)) ⇐ P (X). Then using(+P, f Elim) would reduce

checkingM |= [q2 mod 6(s(s(s(Z)))) ⇐ q1 mod2(Z), q2 mod3(Z)] to checkingM |=

[q1 mod6(s(s(Z)))∨P (s(s(Z))) ⇐ q1 mod2(Z), q2 mod 3(Z)]. The latter formula is not

Horn, and we shall therefore need to define our model-checking procedures so that it

takes general, possibly non-Horn clausesC as input, and checks whetherM |= C.

(We shall in fact need a bit more again, in the form of historiesΓ, see below.)

Let us return to our, unmodified, example. We must check whether it holds that

M |= [q1 mod6(s(s(Z))) ⇐ q1 mod2(Z), q2 mod 3(Z)]. Using(+P, f Elim) twice, we

reduce this to the problem of checkingM |= [q5 mod 6(Z) ⇐ q1 mod2(Z), q2 mod3(Z)].

Now this clause is something we shall call anǫ-clause below, i.e., one without a func-

tion symbol: on these, we cannot apply either(−P, f Elim) or (+P, f Elim). How-

ever, any ground term that we may plug in forZ must be of the form0 or s(t) for

some ground termt. So we only have to check the two clauses obtained by replacing Z

38

by 0 and bys(Z1) respectively, namelyM |= [q5 mod6(0) ⇐ q1 mod2(0), q2 mod3(0)]

andM |= [q5 mod 6(s(Z1)) ⇐ q1 mod2(s(Z1)), q2 mod3(s(Z1))]. This is what rule

(−P Elim) does in Figure 18, with a few added twists (in particular, it only applies

when there is an atom in the body of the clause to model-check,and uses this as a

guide as to which shapes ofZ should actually be considered, looking at the modelM.)

The first clause is easy to check: a single application of(−P, f Elim) reduces it to

no clause at all (in informal terms,0 6= 1 mod 2, so the body of the clause is false,

hence the clause itself is vacuously true). Applying(−P, f Elim) and(+P, f Elim)

for as long as we can on the second one eventually leads us to checking theǫ-clause

M |= [q4 mod 6(Z1) ⇐ q0 mod 2(Z1), q1 mod3(Z1)]. Repeating the process, we are led

to consider model-checking the following clauses, of whichwe have kept only the

ǫ-clauses:

M |= [q5 mod6(Z) ⇐ q1 mod 2(Z), q2 mod3(Z)]

M |= [q4 mod6(Z1) ⇐ q0 mod 2(Z1), q1 mod3(Z1)] (which we have just arrived at)

M |= [q3 mod6(Z2) ⇐ q1 mod 2(Z2), q0 mod3(Z2)]

M |= [q2 mod6(Z3) ⇐ q0 mod 2(Z3), q2 mod3(Z3)]

M |= [q1 mod6(Z4) ⇐ q1 mod 2(Z4), q1 mod3(Z4)]

M |= [q0 mod6(Z5) ⇐ q0 mod 2(Z5), q0 mod3(Z5)]

M |= [q5 mod6(Z6) ⇐ q1 mod 2(Z6), q2 mod3(Z6)]

...

Note that this is looping, as the lastǫ-clause shown is the same as the first one, up

to renaming (which is implicit, since all clauses are implicitly universally quantified).

When this happens, we stop, and conclude that the lastǫ-clause thus obtainedholds

in M. One may get an intuition of why this must be so as follows. In the sequence

of ǫ-clauses above,Z1 is obtained by assuming thatZ denotes a ground term of the

39

Γ ⊢ C (P universal)
(−Univ)

Γ ⊢ C ∨ ¬P (t)

(Loop)
Γ, C ⊢ C

(P universal)
(+Univ)

Γ ⊢ C ∨ P (t)

Figure 17: Basic model-checking rules

form s(Z1) (see above). Similarly,Z1 = s(Z2), Z2 = s(Z3), . . . ,Z5 = s(Z6), so that

the term thatZ6 denotes is a proper subterm of that denoted byZ. It follows that, if

there were a ground termt for Z that made the first clause,q5 mod6(Z) ⇐ q1 mod2(Z),

q2 mod3(Z), false inM, then there would be a proper subterm oft for Z6 that would

make the last clause false; i.e., there would be a proper subterm of t for Z that would

also make the first clause false. By a classical argument ofdescente infinie, since the

subterm ordering is well-founded, this is impossible.

Descente infinie is, at least in classical logic, equivalentto induction. So the Coq

proofs we shall produce from this looping argument will be proofs by induction, on the

structure of terms.

To formalize this, we keep ahistoryΓ of all ǫ-clauses that we have encountered so

far. Loop-checking is performed by checking whether the current clause is inΓ (see

rule (Loop) in Figure 17). Because loop-checking is induction in disguise, one can

also seeΓ as a collection of induction hypotheses that may be freely applied.

The pair of the clauseC to check and the historyΓ will be kept in a judgment

Γ ⊢ C, and we shall define our model-checking procedure so thatM |= C holds in

historyΓ if and only if we can derive the judgmentΓ ⊢ C in the system of Figure 17

and Figure 18. In particular, model-checking proceeds by applying rules from the goal,

and must therefore be read from conclusions, below, to premises, above.

40

7.2 The Model-Checking Algorithm, Formalized

The actual definition of our model-checking procedure (Figure 17, Figure 18) is made

more concise by relying on a few definitions. LetSprod be an alternating tree automa-

ton. Call a predicateP universal in Sprod if and only if Sprod contains the clause

P (X). JudgmentsΓ ⊢ C are composed of a clauseC and ahistory Γ, which is

a finite set ofǫ-clauses. Anǫ-clause, E(X) is a disjunction of literals of the form

P (X) or ¬P (X), with the same variableX; ǫ-blocks are the special case with no

negation. All clauses in a judgment are implicitly universally quantified, and do not

share variables. Here it is convenient that clauses may be non-Horn, and are written

as disjunctionsL1 ∨ L2 ∨ . . . ∨ Lk. We letSprod/P be the the set of clauses of the

form P (f(X1, . . . , Xn)) ⇐ B in Sprod for some bodyB and some function symbol

f ; Sprod/P, f is the set of clauses of the same form, this time with given function

f . We write~t for t1, . . . , tn, and ~X similarly in the name of brevity;[~t/ ~X] is the

substitution[t1/X1, . . . , tn/Xn]. The notationE(f(~X)), used in rule(−P Elim),

stands forE(X)[f(~X)/X]; this rule is the only one that adds a clause to the historyΓ,

preparing for an argument by induction. The brace notation used above the premises

of this rule means that there are as many premises as there areclausesP (f(~X)) ∨ D

in Sprod/P ; similarly for (−P, f Elim). In rule (+P, f Elim), we enumerate the

clausesP (f(~X)) ⇐ B of Sprod/P, f ;
∧
B denotes the conjunction of all atoms in the

bodyB. By cnf, we mean a conjunctive normal form, obtained by distributing ands

over ors. The(Split) rule is the only non-deterministic rule, and picks one subclause

Ci of C1 ∨ . . . ∨ Cn, provided the latter isblock-decomposed, i.e.,C1, . . . ,Cn are all

non-empty and share no free variable. The rules in Figure 18 apply only if no rule from

Figure 17 applies. This implies that no universal predicateoccurs on the right of⊢.

To produce a Coq proof thatDet(Sprod) |= S, we check that⊢ C for each clause

C in S. Our toolh1mc, also part of theh1 tool suite [40], looks for a proof̟ of

⊢ C by applying the model-checking rules from the bottom up. Theimportant result

41

(P (f(~X))∨D)∈Sprod/P,f

z }| {

Γ ⊢ C ∨ D[~t/ ~X]
(−P, f Elim)

Γ ⊢ C ∨ ¬P (f(~t))

(P (f(~X))∨D)∈Sprod/P

z }| {

Γ,∀X · E(X) ∨ ¬P (X) ⊢ E(f(~X)) ∨ D
(−P Elim)

Γ ⊢ E(X) ∨ ¬P (X)

Γ ⊢ C1 . . . Γ ⊢ Ck

(+P, f Elim)
Γ ⊢ C ∨ P (f(~t))

where
Vk

i=1 Ci is a cnf for
C ∨

W

(P (f(~X))⇐B)∈Sprod/P,f

V
B[~t/ ~X]

Γ ⊢ Ci (1 ≤ i ≤ n, n ≥ 2)
(Split)

Γ ⊢ C1 ∨ . . . ∨ Cn

whereC1 ∨ . . . ∨ Cn is block-decomposed

Figure 18: Model-checking rules, end

here is the following soundness theorem. This is proved by induction on a derivation

̟ of ⊢ C; apart from this outer induction, the rest of the proof is theskeleton of the

Coq proof thath1mc extracts from̟ . Let≻ denote the proper subterm ordering, and

observe this is well-founded. Let� be defined bys � t if and only if s ≻ t or s = t.

Theorem 7.2 (Soundness)LetΓ = ∀X·E1(X), . . . ,∀X·Em(X), andC = C(X1, . . . , Xk)

be a clause with free variables inX1, . . . ,Xk. If Γ ⊢ C is derivable using the model-

checking rules, then the following formula holds inlfpTSprod
, where all variables

range over ground terms:

∀X1, . . . , Xk ·
∧

1≤i≤k
1≤j≤m

(∀X � Xi · Ej(X)) ⇒ C(X1, . . . , Xk)

Proof. By induction over a derivation̟ of the judgment. We look at the last rule. The

cases of(−Univ) and(+Univ) are clear. For(Loop), we observe thatC must be of

the formEj(Xi) for somei, j, and we conclude by the antecedent∀X � Xi · Ej(X).

42

For (−P Elim), let X1, . . . , Xk contain at least the variableX free in E(X) ∨

¬P (X). Without loss of generality, letX beX1. We prove∀X1, . . . , Xk·
∧

1≤i≤k
1≤j≤m

(∀X �

Xi ·Ej(X)) ⇒ C(X1, . . . , Xk) ⇒ E(X1)∨¬P (X1) by an auxiliary induction onX1,

well-ordered by≻. (In Coq, we use thefix tactic to do this.) Our new induction hypoth-

esis is(∗) ∀X ≺ X1 ·E(X)∨¬P (X). We must then show thatE(X1)∨¬P (X1) holds

in lfpTSprod
. AssumeP (X1) holds: we must showE(X1). But the only way thatP (t)

can hold inlfpTSprod
, for any ground termt, is thatt is of the formf(~t), and that there

is a clause with headP (f(~X)), sayP (f(~X)) ⇒ B, in Sprod/P , where
∧
B[~t/ ~X]

holds in lfpTSprod
. (In Coq, we usecase and inversion.) We may also write this

clause asP (f(~X)) ∨ D, whereD is equivalent to the negation of
∧
B. Let ~X be

Xk+1, . . . , Xk+p, and letEm+1(X) beE(X)∨¬P (X). By the outer induction on̟ ,

we have a proof of∀X2, . . . , Xk, Xk+1, . . . , Xk+p ·
∧

2≤i≤k+p
1≤j≤m+1

(∀X � Xi ·Ej(X)) ⇒

E(f(~X)) ∨D. ForX1 = f(Xk+1, . . . , Xk+p), we have that everyX � Xk+i is such

thatX ≺ X1, so we may apply(∗). Simple logic then shows thatE(X2) holds. So

∀X1, . . . , Xk ·
∧

1≤i≤k
1≤j≤m

(∀X � Xi ·Ej(X)) ⇒ C(X1, . . . , Xk) ⇒ E(X1)∨¬P (X1)

holds inlfpTSprod
.

Rule (−P, f Elim) is justified by the same case analysis, using Coq’scase and

inversion tactics, but does not require to introduce any new inductionhypothesis

into the history. The correctness of(Split) is obvious. Finally, for(+P, f Elim),

propositional reasoning (using Coq’stauto tactic) shows that
∧k

i=1 Ck impliesC ∨
∨

(P (f(~X))⇐B)∈Sprod/P,f

∧
B[~t/ ~X]. Using the fact that, for any clauseP (f(~X)) ⇐ B

in Sprod/P, f ,
∧
B[~t/ ~X] impliesP (f(~t)) in lfpTSprod

, we infer thatC∨P (f(~t)) must

also hold inlfpTSprod
�

Using Theorem 7.2 and Lemma 6.1, we then obtain:

Corollary 7.3 If ⊢ C is derivable using the model-checking rules for everyC ∈ S,

thenDet(Sprod) |= S.

For the sake of efficiency,h1mc actually uses a number of extra rules that act as

43

shortcuts in common cases, and which we describe later. As defined in Figure 17 and

Figure 18 above, and provided the extra rule(+Elim) of Section 7.4 below is added,

these would essentially define Matzinger’s procedure [62].The fact that we do not need

the costly rule(+Elim) is already an optimization over Matzinger’s procedure, which

depends on a subtlety related to the kind of models thath1 finds: see Section 7.4.

However, even this is not enough to make this model-checkingalgorithm efficient in

practice. We shall describe the required optimizations in Sections 7.5 and later.

7.3 Producing Coq Proofs

As we have said above,h1mc produces Coq proofs by mimicking the proof of The-

orem 7.2, and output corresponding Coq proof arguments. While we have given the

bare Coq ingredients in the proof of Theorem 7.2, we illustrate this through the exam-

ple of Section 7.1. While this is not an example from security, it will be sufficient to

explain howh1mc generates Coq proofs. Moreover, it will be clear that the resulting

Coq proofs are in any case unreadable—the real security argument lies in the model,

not in the proof that it is a model.

For basics on Coq, we refer the reader to the Coq’Art [12]. We take some liberties

with actual Coq syntax, for readability purposes [83]. While we believe our model-

checking algorithm can be made to produce proofs in most standard proof assistants,

the actual details presented in this section definitely relyon Coq’s specific ways, and

particularly as far as induction proofs are concerned.

First,h1mc outputs a definition of all possible ground terms:

Inductive term : Set := s : term → term | 0 : term

and of all clauses in the model, as an inductively defined collection of predicates, taking

44

terms (of typeterm above) and returning formulae (of typeProp):

Inductive q0 mod2 : term → Prop :=

trans q0 mod2 s1 : ∀X1 : term · q1 mod 2(X1) ⇒ q0 mod2(s(X1))

| trans q0 mod2 01 : q0 mod 2(0)

with q1 mod 2 : term → Prop :=

trans q1 mod2 s1 : ∀X1 : term · q0 mod 2(X1) ⇒ q1 mod2(s(X1))

We omit similar definitions for the other predicatesqi mod3 (i ∈ {0, 1, 2}) andqi mod 6

(0 ≤ i ≤ 5). This definesq0 mod2 as the least predicate satisfying clausestrans q0 mod 2 s1

andtrans q0 mod 2 01, simultaneously definingq1 mod2 as the least predicate satisfy-

ing clausetrans q1 mod2 s1. Note that these clauses are Coq incarnations of the cor-

responding alternating automaton clauses of the model.

Our goal in Section 7.1 was to prove the clauseq2 mod6(s(s(s(Z)))) ⇐ q0 mod 2(s(Z)),

q1 mod3(s(s(Z))) in this model. Accordingly,h1mc will output a proof of the follow-

ing remark:

Remark rem76 : ∀X1 : term·q0 mod2(s(X1)) ⇒ q1 mod 3(s(s(X1))) ⇒ q2 mod6(s(s(s(X1)))).

(The funny number “76” results from the numbering scheme that h1mc uses, and is

not indicative of anything per se. Also,h1mc will use the ancillary remarkrem76 to

produce a trivial proof of the actual lemma we are interestedin, which only differs by

names of variables and order of atoms.)

The remarkrem76 is proved by using rule(−P, f Elim) to examine all the ways

that one can deriveq0 mod 2(s(X1)) in the model. Although one could directly use

the inversion tactic here, it is more convenient in an automatically derived proof

to generate an auxiliary lemma that embodies this instance of inversion. The gen-

eral form of such a lemma will prove∀X1, . . . , Xn : term · P (f(X1, . . . , Xn)) ⇒

orp(B1, . . . ,Bp), whereB1, . . . ,Bp are the bodies of the clausesP (f(X1, . . . , Xn)) ⇐

45

Bi, 1 ≤ i ≤ p, of Sprod/P, f in the usual clause notation, andorp is p-ary disjunc-

tion. The latter is defined byh1mc as a type withp constructorsorpintroi : Hi ⇒

orp(H1, . . . , Hi, . . . , Hp), 1 ≤ i ≤ p, whereH1, . . . , Hp are parameter formulae, of

typeProp. Instead oforp(B1, . . . ,Bp), it would seem simpler to use the semantically

equivalentB1 ∨ . . . ∨ Bp. However, to do a case analysis on the latter, we would have

to use theelim tacticp − 1 times, whereas theorp trick allows use to useelim just

once, and get all cases of the disjunctions in one step.

In our example,h1mc produced the following inversion lemma:

Remark rem22 : ∀X1 : term · q0 mod 2(s(X1)) ⇒ or1(q1 mod 2(X1)).

Proof . intros. inversion H. intros. apply or1intro1; tauto. Qed.

The proof ofrem76 then reads:

Proof . intros X1. intro H. intros. elim rem22(X1, H); intros.

apply rem75(X1); tauto. Qed.

The firstintro andintros tactics introduceX1 : term, the assumptionH : q0 mod 2(s(X1)),

and various other assumptions we don’t care about. The goal is now to proveq2 mod6(s(s(s(X1)))).

To this end, we apply theelim tactic on the inversion lemmarem22 applied toX1 and

H (so thatrem22(X1, H) is a proof ofor1(q1 mod 2(X1))). In general, if our current

proof goal is some formulaF , callingelim on a proof oforp(H1, . . . , Hp) will sub-

divide the proof task inp sub-goals. For eachi, 1 ≤ i ≤ p, the ith subgoal will

still be F , only with Hi as added assumption. Herep = 1, a seemingly trivial case,

where however this mechanism allows us to assert thatq1 mod 2(X1)) holds, as an extra

assumption. To complete the proof ofrem76, it only remains to prove the correspond-

ing premise of the(−P, f Elim) rule, namelyq2 mod6(s(s(s(Z)))) ⇐ q1 mod2(Z),

q0 mod3(s(Z)), and to apply it to the case whereZ is X1. Theh1mc tool completes

the proof of the latter clause by a recursive call, producingsome other lemma named

46

rem75, and uses it as shown above, by invoking theapply tactic onrem75(X1); we

then let Coq find the trivial proofs of the assumptions left unproved by doing some

elementary propositional reasoning usingtauto. Accordingly,rem75 is declared as

follows.

Remark rem75 : ∀X1 : term·q1 mod2(X1) ⇒ q1 mod 3(s(s(X1))) ⇒ q2 mod6(s(s(s(X1)))).

and is proved in a similar way, using(−P, f Elim) and other auxiliary sub-remarks

with lower numbers.

After a series of applications of(−P, f Elim), h1mc will arrive at the following

clause, which it will have to prove by using(+P, f Elim) instead:

Remark rem72 : ∀X1 : term·q1 mod2(X1) ⇒ q2 mod 3(X1) ⇒ q2 mod6(s(s(s(X1)))).

Our example is too degenerate to actually show what will happen in this case, and

the general case produces hairy proofs. So let’s explain themain technical diffi-

culty instead. We useintro andintros to separate the variablesX1, . . . , Xm of the

clause, and its assumptionsH1 : A1, . . . , Hℓ : Aℓ, from the head of the clause, here

q2 mod6(s(s(s(X1)))). In the general case, this head will beP (f(t1, . . . , tn)) ∨ D,

for some disjunctionD of atoms. Look at all the clausesP (f(X1, . . . , Xn)) ⇐ Bj ,

1 ≤ j ≤ q, in Sprod/P, f . Thenh1mc will, by using(+P, f Elim), obtain proofs̟ i

of the formulae∀X1, . . . , Xm · A1 ⇒ . . . ⇒ Aℓ ⇒ Ci ∨ D, for eachi, 1 ≤ i ≤ k,

where
∧k

i=1 Ci is a cnf for
∨q

j=1

∧
Bj . So ̟i(X1, . . . , Xm, H1, . . . , Hℓ) will be a

proof of Ci ∨ D for eachi. Nowh1mc produces a proof̟ Distr of C1 ∧ . . . ∧ Ck ⇒

B1 ∨ . . . ∨ Bq, and uses it to derive a proof ofB1 ∨ . . . ∨ Bq ∨ D (under assumptions

X1 : term, . . . , Xm : term, H1 : A1, . . . , Hℓ : Aℓ). An inversion lemma as used

above allowsh1mc to deduce the desired headP (f(t1, . . . , tn)) ∨ D from the latter.

The main difficulty is to generate̟ Distr. First, we know thatC1 ∧ . . . ∧ Ck is

47

equivalent toB1 ∨ . . . ∨ Bq in classical logic, however Coq is based onintuitionis-

tic logic. (While we could import theClassical module that implements classical

reasoning in Coq, we do not wish to do so.) It turns out that, since none of these propo-

sitional formulae involve negation, these two formulae must also be intuitionistically

equivalent—something that is obvious from the Kripke semantics of propositional in-

tuitionistic logic.

The second difficulty is complexity-theoretic. We illustrate it through an example

that an early version ofh1mc actually produced in 2003. This example hasq = 13,

B1 throughB5 are conjunctions of just2 atoms, whileB6, . . . ,B13 each contain just

one atom. Distributing ands over ors yields a cnf with25 = 32 clausesC1, . . . , C25 ,

each with13 atoms. It is tempting to let Coq proveC1 ∧ . . . C25 ⇒ B1 ∨ . . . ∨ B13 by

invoking tauto, however this is hopeless. This is becausetauto, just like any other

reasonable tableaux prover for propositional formulae, will attempt to use the invertible

rules of its calculus eagerly. Concretely, this means thattauto will do a case analysis

over the13 atoms ofC1; then a case analysis on the13 atoms ofC2, and similarly

on C3, . . . , C25 . Eventually, the resulting1325

clauses are trivial to prove. But no

prover we know, includingtauto, is able to deal with that many clauses. In general,

the problem is that, while a cnfC1 ∧ . . . ∧ Ck for B1 ∨ . . . ∨ Bq is of exponential size

already inq, checking this by distributing back the ors over the ands, asall tableaux

provers we know do, is of complexitydoubly exponentialin q.

To solve this, it would in principle be best to keep a trace of the operations used to

obtainC1 ∧ . . . ∧ Ck from B1 ∨ . . . ∨ Bq, and using this trace to guide a Coq proof

that would not rely ontauto but would use the elementary tacticselim, split, left,

andright on∧ and∨, explicitly. We haven’t done so inh1mc, as the optimizations

presented in Section 7.5 and later, plus a few tricks that eliminate tautological clauses

and subsumed clauses amongC1, . . . ,Ck, happen to suffice in practice.

Let us turn to induction. Eventually,h1mc needs to prove theǫ-clauseq5 mod 6(Z) ⇐

48

q1 mod2(Z), q2 mod3(Z). To this end,h1mc produces:

Remark rem66 : ∀X1 : term · q1 mod 2(X1) ⇒ q2 mod3(X1) ⇒ q5 mod 6(X1).

Proof . fix Hind 1. introX. case X.

intros X1; exact rem65(Hind, X1).

introH. elim rem35(H). Qed.

The key here is thefix tactic:fix Hind 1 simply adds the whole goal to prove as a new

assumptionHind : ∀X1 : term · q1 mod2(X1) ⇒ q2 mod3(X1) ⇒ q5 mod 6(X1). This

serves as induction hypothesis. We can then apply it to any proper subtermX2 of X1

by invoking Hind(X2). The extra number “1” informs Coq that subterms should be

extracted from first quantified term, hereX1.

Thefix tactic is rarely used in man-made proofs, because it is error-prone: only

when typing the finalQed will Coq check that all calls to the induction hypothesis

Hind were really applied to proper subterms, and are therefore valid. However, using

more standard induction tactics such asinduction would require us to specify in

advance the actual subterm ofX1 that we shall apply our induction hypothesis on;fix

relieves us from the difficulty.

Once this is done,introX and case X rip the formula of its initial universal

quantification, renamesX1 asX : term, and does a case analysis on the shape ofX.

The second line of the proof, which invokesrem65, deals with the case whereX is of

the forms(X1) for someX1 : term, the third line deals with the case whereX = 0.

A curious thing in the proof ofrem66 shown above is that, although it introduces

the induction hypothesisHind, it never uses it directly. Instead, it passes it on to the

auxiliary sub-remarks that need it. This is whyrem65 is invoked with bothX1 and

Hind as arguments, so that it can use the latter at all. Accordingly, rem65 is declared

49

as:

Remark rem65 : (∀X : term · q1 mod2(X) ⇒ q2 mod3(X) ⇒ q5 mod6(X)) ⇒

∀X1 : term · q1 mod2(s(X1)) ⇒ q2 mod 3(s(X1)) ⇒ q5 mod6(s(X1)).

where the second line, quantified overX1, is the actual formula we want to prove, and

the formula∀X : term · q1 mod 2(X) ⇒ q2 mod 3(X) ⇒ q5 mod 6(X) on the first line is

the induction hypothesis thatrem65 can use.

In general, whenh1mc has managed to derive a sequent of the formΓ ⊢ C, where

Γ consists of theǫ-clausesC1, . . . , Ck, it will output a Coq proof ofC1 ⇒ . . . ⇒

Ck ⇒ C. More precisely, it will output a proof ofC1 ⇒ . . . ⇒ Ck ⇒ C, where

C1, . . . ,Ck are therelevantinduction hypotheses fromΓ, i.e., the ones that have really

been used in an instance of(Loop) in the given derivation ofΓ ⊢ C. This way, instead

of carrying up to6 induction hypotheses as at the end of Section 7.1,h1mc will only

need one for each of the sub-remarks leading torem66:

Remark rem60 : (∀X : term · q1 mod2(X) ⇒ q2 mod3(X) ⇒ q5 mod6(X)) ⇒

∀X1 : term · q0 mod2(X1) ⇒ q1 mod 3(X1) ⇒ q4 mod6(X1). [. . .]

Remark rem53 : (∀X : term · q1 mod2(X) ⇒ q2 mod3(X) ⇒ q5 mod6(X)) ⇒

∀X1 : term · q1 mod2(X1) ⇒ q0 mod 3(X1) ⇒ q3 mod6(X1). [. . .]

Remark rem45 : (∀X : term · q1 mod2(X) ⇒ q2 mod3(X) ⇒ q5 mod6(X)) ⇒

∀X1 : term · q0 mod2(X1) ⇒ q2 mod 3(X1) ⇒ q2 mod6(X1). [. . .]

Remark rem36 : (∀X : term · q1 mod2(X) ⇒ q2 mod3(X) ⇒ q5 mod6(X)) ⇒

∀X1 : term · q1 mod2(X1) ⇒ q1 mod 3(X1) ⇒ q1 mod6(X1). [. . .]

Remark rem26 : (∀X : term · q1 mod2(X) ⇒ q2 mod3(X) ⇒ q5 mod6(X)) ⇒

∀X1 : term · q0 mod2(X1) ⇒ q0 mod 3(X1) ⇒ q0 mod6(X1).

As above,rem26 requires an inductive argument onX1. This eventually leads to the

following sub-remarkrem15, obtained by using(Loop), i.e., by invoking the induction

50

hypothesis. (We have slightly edited its proof, which contained some useless steps.)

Remark rem15 : (∀X : term · q1 mod2(X) ⇒ q2 mod3(X) ⇒ q5 mod6(X)) ⇒

∀X1 : term · q1 mod2(X1) ⇒ q2 mod 3(X1) ⇒ q5 mod6(X1).

Proof . intro Hind. intros X1. exact Hind(X1). Defined.

We finish with a subtle point. While all our proofs were terminated byQed until

now, the proofs of all sub-remarks that require at least one induction hypothesis, among

which not onlyrem15, but alsorem26, rem36, . . . ,rem60 andrem65 above, are ended

with the Defined keyword. This is required to make their proofstransparent, as

needed by Coq to be able to check that all uses of induction hypothesis indeed apply

to propersubterms, as discussed above. This check involves traversing the proof terms

generated by Coq, along all possible paths from the root of the proof to variables such

asHind: to check the proof term we have given forrem66, Coq will have to traverse all

remarks used in its definition, includingrem65, rem60, . . . ,rem36, rem26, andrem15,

where the induction hypothesis is finally used.

It is algorithmically practical to produce suchdelocalizedinduction proofs, where

induction hypotheses are introduced in one lemma (rem66) but used in another (rem15).

However, we must admit that such proofs are not the most readable kind.

7.4 Completeness

The model-checking procedure is also complete, in a subtle sense. We now need to

quantify over all signaturesΣ that contain all the symbols ofSprod and S. While

lfpTSprod
is a set of ground atoms that is independent of the signatureΣ, as a model,

it is a subset of the set of all ground atoms, whichdoesdepend onΣ. To make the

dependency onΣ explicit, write this modellfpΣ TSprod
.

The model-checking procedure now only has the following weak completeness

property: iflfpΣ TSprod
|= C for everyΣ, then there is a derivation of⊢ C. It is easy to

51

see thath1, as a resolution algorithm, produces a setSprod satisfying this stronger as-

sumption. This is because resolution algorithms do not depend on the chosen signature,

only on the clauses that they work on.

The difference between checkinglfpΣ TSprod
|= C for everyΣ, or checkinglfpΣ TSprod

|=

C just for a givenΣ = Σ0 can be illustrated by considering the caseSprod = {p(a)}

andS = {p(X)}: we certainly havelfpΣ TSprod
|= S if Σ only containsa, but this fails

otherwise. Note that the soundness Theorem 7.2 is in fact true whatever the signature

Σ. This being, hopefully, clarified, we obtain:

Proposition 7.4 (Completeness)If lfpΣ TSprod
|= S for every signatureΣ containing

all the symbols ofSprod andS, then one may find a derivation of⊢ C for everyC ∈ S,

in an effective way.

Proof. We first claim that, ifC1 holds inlfpΣ TSprod
for all Σ, then for any history

Γ, some rule applies that hasΓ ⊢ C1 as its conclusion. This is obvious ifC1 con-

tains a universal predicate, in which case(−Univ) or (+Univ) applies. Otherwise,

the key observation is that the only way that an atom of the form P (f(~t)) can hold in

lfpΣ TSprod
is that there is a clauseP (f(~X)) ⇐ B in Sprod/P, f such that

∧
B[~t/~x]

holds inSprod. In other words,P (f(~t)) is equivalent to
∨

(P (f(~X))⇐B)∈Sprod/P,f

∧
B[~t/ ~X]

in lfpΣ TSprod
. This is Clark completion [23]. This directly justifies using (+P, f Elim)

in caseC1 contains a positive atom with non-variable argument, i.e.,C1 is of the form

C ∨ P (f(~t)). In caseC1 can be writtenC ∨ ¬P (f(~t)), then Clark completion and

Boolean reasoning show that all the premisesC ∨D[~t/ ~X] of rule (−P, f Elim) must

hold in lfpTSprod
.

In all other cases,C1 is of the formE1(X1)∨. . .∨Ek(Xk). If k ≥ 2, we may apply

(Split). If k = 0, thenC1 would be false, so the case does not happen. Otherwise, ifC1

contains a negative atom with variable argument, i.e.,C1 = E(X)∨¬P (X), a variant

of Clark completion (above), using the fact thatP is not universal, shows thatP (X)

is equivalent to
∨

(P (f(~X))⇐B)∈Sprod/P

∧
B[f(~t)/X] in lfpΣ TSprod

, justifying using

52

(−P Elim). In the remaining case,C1 is a disjunctionP1(X)∨. . .∨Pn(X) of positive

atoms with variable arguments; however, forΣ large enough, i.e., containing some

constanta not in Sprod, we observe thatP1(a), . . . ,Pn(a) are all false inlfpΣ TSprod
,

contradicting thatC1 is true: so this case does not happen.

Second, we observe that applying(Split) and(Loop) eagerly forces proof search

to terminate. This rests on the fact that there can only be finitely manyǫ-clauses, hence

also finitely many possible historiesΓ, in particular. The missing, easy details are left

to the reader. �

We have observed thath1 produces proofs that are independent onΣ, hence sat-

isfy the assumption of Proposition 7.4. Models produced by Paradox only satisfy

lfpΣ TSprod
|= S for Σ equal to—no larger than–the signatureΣ0 defined byS. To

regain completeness under this weaker assumption, we need an additional rule:

f∈Σ0︷ ︸︸ ︷
Γ, ∀X · E(X) ⊢ E(f(~X))

(+Elim)
Γ ⊢ E(X)

wheneverE(X) is an ǫ-block consisting only of positive atoms+P (X), and there

is one premise for each function symbolf in the given signatureΣ0. This is costly:

the only rule that can be applied to derive the premise is(+P, f Elim), which we

had better avoid. We have experimentedh1mc with the (+Elim) rule on (i.e., using

its so-called-exact-sig option), and found this not to be competitive relative to

the simple-minded approach of Section 5 on models found by Paradox, despite extra

algorithmic optimizations inh1mc in this case. This seems to be due to the fact that

tables are dense, and thath1mc still has to enumerate them in some way. (E.g., we

have witnessedh1mc generate 510 premises in one instance of(−P Elim).)

On the other hand, the approach of Figure 17 and Figure 18, i.e., without the

(+Elim) rule, is effective in all cases where we can find a model usingh1. We

believe this is due to the fact that transitions in alternating tree automata found byh1

53

Det(Sprod) Coq proof
Protocol #elts #entries #checks size #lines time
NS 46 217 312 430 106 0.66 Mb 15 560 0.53+10.73s
amended NS 57 188 724 1.245 109 1.40 Mb 31 640 1.90+25.67s
Yahalom ≥ 57 ≥ 2.46 109 3.50 Mb 60 938 7.34+53.77s
Kerberos 57 7 952 84.5 106 1.48 Mb 30 326 2.02+23.97s
X.509 ≥ 29 ≥ 228.5 106 0.97 Mb 20 471 0.95+23.33s
EAP-AKA 72 22 550 7.74 109 1.90 Mb 32 229 0.88+43.30s
EKE 48 16 016 64.5 106 3.20 Mb 73 683 3.18+89.94s

Figure 19: Coq proofs

are very sparse, so that, in particular, instances of(−P Elim) have very few premises

in general. The role of optimizations (see below) is crucial, too.

Figure 19 gives an indication of the size of Coq proofs produced byh1mc on

the models found byh1. We have copied back the #elts, #entries and #checks from

Figure 10 for easy reference. Times (rightmost column) are reported ast1 + t2, where

t1 is the time taken byh1mc, andt2 is the time taken by Coq to check the proof. Note

that producing and checking a formal Coq proof of the amendedNS protocol, even on

the 57 element model found byh1, is practical, even though there is probably a smaller

model—which we didn’t find. It is also rather remarkable thatwhile we haven’t been

able to determinizeSprod in the Yahalom case and in the X.509 case,h1mc manages

to find a proof in a reasonable amount of time.

7.5 Optimization I: Simulation Testing

A very effective shortcut is as follows. ProvingΓ ⊢ P (X) ⇐ Q(X), i.e., proving

that LQ(Sprod) ⊆ LP (Sprod), can be done in many cases by exhibiting a form of

simulation relation between automaton states such thatQ simulatesP .

First, letNE(S) be the smallest set of predicate symbols such that, for everyclause

of the form (25) inS, if B1 ⊆ NE(S) and . . . andBk ⊆ NE(S), thenP ∈ NE(S).

Clearly, if LP (S) 6= ∅, thenP ∈ NE(S). In fact, if S is a non-deterministic au-

tomaton, this yields a decision procedure for non-emptiness: if P ∈ NE(S) then

54

LP (S) 6= ∅. This is not so for alternating automata, for which non-emptiness is

EXPTIME-complete [25, Theorem 55, Section 7.5].NE(S) can be computed in

polynomial time by a marking algorithm.

We say thatR is asimulationon the states ofSprod if and only if for every clause:

P (f(X1, . . . , Xk)) ⇐ B1(X1), . . . , Bk(Xk) (26)

with P ∈ NE(Sprod), for every stateP ′ with P R P ′, there is a clause:

P ′(f(X1, . . . , Xk)) ⇐ B′
1(X1), . . . , B

′
k(Xk) (27)

in Sprod with Bi R♯ B′
i for every i, 1 ≤ i ≤ k—we letB R♯ B′ if and only if for

everyQ′ ∈ B′, there is aQ ∈ B with Q R Q′.

There is always a largest simulation, which is computable inpolynomial time, by a

largest fixpoint computation on the set of pairs(P, P ′) of predicates.

The next two results are probably folklore, at least for non-deterministic automata.

Lemma 7.5 For any two simulationsR andR′, (R; R′), defined byP (R; R) P ′′ if

and only ifP R P ′ andP ′ R′ P ′′ for someP ′ ∈ P, is a simulation.

Proof. First, we claim that:(∗) if P R P ′, whereR is a simulation, andP ∈

NE(Sprod), thenP ′ ∈ NE(Sprod). This is by structural induction on a proof that

P ∈ NE(Sprod). SinceP ∈ NE(Sprod) there must be a clause (26) withB1 ⊆

NE(Sprod), . . . , Bk ⊆ NE(Sprod). By definition of a simulation, and sinceP ∈

NE(Sprod), there must be a clause (27) such thatBi R♯ B′
i for everyi, 1 ≤ i ≤ k.

For everyQ′ ∈ B′
i, there is aQ ∈ Bi such thatQ R Q′. By induction hypothesis,

sinceQ ∈ Bi ⊆ NE(Sprod), Q′ ∈ NE(Sprod). SoB′
i ⊆ NE(Sprod) for every i,

1 ≤ i ≤ k. WhenceP ′ ∈ NE(Sprod).

Let R andR′ be as in the Lemma. LetP (R; R′) P ′′, sayP R P ′ R ′P ′′. If

P 6∈ NE(Sprod), then we are done, so assumeP ∈ NE(Sprod). For every clause (26)

55

in Sprod there is a clause (27) inSprod with Bi R♯ B′
i for everyi, 1 ≤ i ≤ k. By (∗),

P ′ ∈ NE(Sprod), so there is a clauseP ′′(f(X1, . . . , Xk)) ⇐ B′′
1 (X1), . . . , B

′′
k (Xk)

in Sprod such thatB′
i R′♯ B′′

i for everyi, 1 ≤ i ≤ k. It follows thatBi (R; R′)♯ B′′
i

for everyi, showing that(R; R′) is a simulation. �

Proposition 7.6 Let R be the largest simulation. ThenR is a quasi-ordering. IfE ⊇

E′ thenE R♯ E′. If E R♯ E′ thenLE(Sprod) ⊆ LE′(Sprod).

Proof. First,R is reflexive, because the equality relation is a simulation.To show that

R is transitive, we realize that(R; R) is a simulation, by Lemma 7.5, so by maximality

(R; R) ⊆ R: soR is transitive. ThatE ⊇ E′ impliesE R♯ E′ is by the definition of

R♯ and the fact thatR is reflexive. The last claim is shown by proving that whenever

R is a simulation, then for every ground termt ∈ LE(Sprod), wheneverE �♯ E′

thent ∈ LE′(Sprod). This is proved by structural induction ont = f(t1, . . . , tk). Let

E′ = {P ′
1, . . . , P

′
m}. SinceE �♯ E′, for everyj, 1 ≤ j ≤ m, there is aPj ∈ E such

thatPj � P ′
j . Sincet ∈ LE(Sprod), t ∈ LPj

(Sprod) for everyj, so there is a clause:

Pj(f(X1, . . . , Xk)) ⇐ Bj1(X1), . . . , Bjk(Xk)

in Sprod such thatti ∈ LBji
(Sprod) for every i, 1 ≤ i ≤ k. Sincet ∈ LPj

(Sprod),

LPj
(Sprod) 6= ∅, soPj ∈ NE(Sprod), and becausePj R P ′

j , by definition there must

be a clause:

P ′
j(f(X1, . . . , Xk)) ⇐ B′

j1(X1), . . . , B
′
jk(Xk)

such thatBji R♯ B′
ji for every i, 1 ≤ i ≤ k. By induction hypothesis, sinceti ∈

LBji
(Sprod), ti ∈ LB′

ji
(Sprod). So, using the clause above,t ∈ LP ′

j
(Sprod). As j is

arbitrary between1 andm, t ∈ LE′(Sprod). �

It follows that, if there is a simulationR with Q R P , thenLQ(Sprod) ⊆ LP (Sprod).

This again compiles into a Coq proof usingfix, case andinversion.

56

7.6 Optimization II: Checking the Abstracted Clauses, not the Orig-

inal Set

Anotherh1-specific optimization is the following. Remember thath1 first abstracts

the initial clause setS into another clause setS′ that falls into the classH1. Instead

of model-checkingS directly againstDet(Sprod), we model-checkS′ instead, then

produce a Coq proof thatS′ impliesS. SinceS′ is obtained fromS by some reversed

form of resolution, showing thatS′ impliesS is particularly easy.

7.7 Optimization III: Memoization

The final important optimization is thath1mc memoizesproof attempts. That is, when

attempting to deriveΓ ⊢ C, it first checks whether it has already derivedΓ′ ⊢ C ′ for

someΓ′ ⊆ Γ and some clauseC ′ that subsumesC, i.e., such thatC = C ′σ ∨ D for

some substitutionσ and some subclauseD. If so, it reuses the proof ofΓ′ ⊢ C ′ to infer

Γ ⊢ C directly.

Our toolh1mc also rests on less important optimizations, which we therefore omit.

See the appendices of the full version of the paper [43], available from the author’s

Web page.

8 Equational Theories

More and more protocols in the literature can only be modeledusing equational theo-

ries, to represent e.g. bitwise exclusive-or (xor) or modular exponentiation [29]. Our

tool h1 really cannot deal with such equational theories, unless the equations can be

eliminated, as we have suggested in the case of EKE in Section5. This trick generalizes

Blanchet’s rule compilation trick [14].

However, xor and modular exponentiation are two examples oftheories that cannot

be dealt with in such a way. Whileh1 cannot deal with them, this is in principle easy

57

to Paradox: just add the needed equations as unit clauses. For example, Figure 22

lists axioms for modular exponentiation as used in Diffie-Hellman key agreement [35],

where exponents obey an Abelian group law∗; g(M) is meant to denotegM for a fixed

generatorg. (Following an established tradition in automated deduction, we use≈ for

the equality symbol, to distinguish it visually from actualequality.)

It is easy to extend the approach of Section 5 to the equational case. Indeed, to

model-check the clause setS against the finite modelM, modulo the equational theory

E, we only need to model-checkS∪E, under the interpretation that≈ is equality. One

might let a finite model finder find a model forS ∪ E ∪ Eq, whereEq is the theory of

equality (see below) to this end, however this is not needed:any model found by a

finite model finder such as Paradox will interpret≈ as equality, so we only have to

checkS ∪ E.

Generating Coq proofs from an explicit finite modelM of S ∪ E, where≈ is

equality overM, is done as in Section 5. The only difference has to do with equality.

Indeed,≈ cannot be interpreted as Coq’s default equality. We illustrate this on a small

example. Remember the definitionInductive term : Set := s : term → term | 0 :

term that we used that we used in Section 7.3, and imagine we want tointerpret natural

numbers (of typeterm) modulo the equations(s(X)) = X; i.e., modulo2. Then one

can prove in Coq thats(s(X)) 6= X for all X, so Coq equality= cannot be used

for our equality modulo2. (Beginners in Coq should be warned not to attempt to use

Axiom eqn1 : ∀X : term ·s(s(X)) = X to this end. This is a gross misinterpretation

of what axioms are, and results in an inconsistency.)

In fact, one should define another type of “terms modulo2”. (Admittedly, in this

simple example, one could also cheat and observe that this isjust the finite type of bits.)

The standard way of doing so in Coq is to use a so-calledsetoid type, i.e., a record

type whose first field is the carrier type (e.g.,term), the second one is an equivalence

relation over the carrier type, and the remaining field is a proof that this is indeed

58

an equivalence relation. Several proposals to include so-calledquotient typesin type

theories have been considered [48, 47]. Whether they are based on defining actual,

new quotient types, or on using setoids, their mere definition requires one to produce

proofs of reflexivity, symmetry, and transitivity. Similarly, one also has to show that

every function symbolf and every predicate symbol is defined on equivalence classes,

independently of their representatives. Moreover, since our intended equality is not

Coq’s built-in equality, we will have to use a distinct predicateequal for our equality.

Accordingly, to check the finite modelM found by Paradox, we have to produce

Coq proofs ofS ∪ Ẽ ∪ Eq, whereẼ is the set of clausesequal(M, N) whenM ≈ N

ranges over the equations ofE, andEq is the theory of equality: for each function sym-

bol f of arity k, a clauseequal(f(X1, . . . , Xk), f(Y1, . . . , Yk)) ⇐ equal(X1, Y1),

. . . , equal(Xk, Yk), for each predicate symbolP , a clauseP (X) ⇐ P (Y), equal(X,

Y), and finally the clausesequal(X, X), equal(X, Y) ⇐ equal(Y, X) and finally

equal(X, Z) ⇐ equal(X, Y), equal(Y, Z).

This is easily achieved, using the approach of Section 5. Note that this contrasts

with handling equality in automated theorem proving, whichcan make proof search

harder (e.g.,H1 plus equality is undecidable [42, Theorem 11]). But checking them

against a finite model is no harder than in the non-equationalcase, and producing Coq

proofs induces no extra difficulty.

We were happily surprised to see that this approach worked fine. Paradox runs

slowly, but finds models with few elements on all the secure protocols we have found

in the literature again.

8.1 Diffie-Hellman Key Exchange

We start with the small Diffie-Hellman protocol (A → B : gNa , B → A : gNb , fol-

lowed by some message exchangeA → B : {1}gNa∗Nb), again with old compromised

sessions, and more recent sessions.

59

atti(g(nai(A, B))) ⇐ agent(A), agent(B)

atti(g(nbi(A, B))) ⇐ agent(A), agent(B)

atti({one}g(nai(A,B)∗Nb) ⇐ atti(g(Nb))

att2(M) ⇐ att1(M)

att2(na1(A, B)) att2(nb1(A, B))

att2(g(na1(A, B) ∗ nb1(A, B)))

⊥⇐ att2(na2(a, b) ∗ nb2(a, b))

Figure 20: Diffie-Hellman protocol rules, phases, and security goal

atti(zero) atti(one)

atti(g(X)) ⇐ atti(X)

atti(g(X ∗ Y)) ⇐ atti(g(X)), atti(Y)

atti(X ∗ Y) ⇐ atti(X), atti(Y)

atti(inv(X)) ⇐ atti(X)

Figure 21: Diffie-Hellman extra intruder deduction rules

Precisely, we model the Diffie-Hellman protocol by the clauses in Figure 1 (i =

1, 2), Figure 21 (i = 1, 2), Figure 20 (i = 1, 2), Figure 22 and Figure 4.

The first three clauses of Figure 20 model the protocol itself, both in old and cur-

rent sessions (i = 1, 2). The next clause is just (18). The next three clauses model

corruption of old values ofNa = na1(A, B) andNb = nb1(A, B), together with the

old session keysgNa∗Nb = g(na1(A, B) ∗ nb1(A, B)). Finally, the last clause states

that we would like the keygNa∗Nb = na2(a, b) ∗ nb2(a, b) shared between Alice (a)

and Bob (b) in current sessions to be secret.

Figure 21 shows the additional deduction rules we require. While most of them

are standard, one should note the clauseatti(g(X ∗ Y)) ⇐ atti(g(X)), atti(Y),

which states that one can getgX∗Y from gX andY —by computing(gX)
Y

. We could

have modeled this by adding an equation such as(gX)
Y
≈ gX∗Y to Figure 22, but this

would have complicated the theory, and would have required us to replace the unary

operationg() by binary exponentiation. The approach we take was used in [45].

60

X ∗ one ≈ X X ∗ Y ≈ Y ∗ X X ∗ (Y ∗ Z) ≈ (X ∗ Y) ∗ Z
X ∗ inv(X) ≈ one g(zero) ≈ one

Figure 22: Diffie-Hellman equations

Paradox finds that the common keygNa∗Nb of current sessions is unknown to the

intruder in0.34 s, producing a3 element model (namelyZ/3Z) with 100 entries. Us-

ing the approach of Section 5, we obtain a641 line Coq proof of the Diffie-Hellman

protocol, which is checked in0.74s.

8.2 The EKE Protocol, Take 2

While we have already used the EKE protocol as example in Section 5, we somehow

cheated. Indeed, we removed equations by superposition as apreprocessing step. How-

ever, we did not prove that any model of the preprocessed clause set could be converted

to one of the original clause set.

We now run Paradox again, this time without preprocessing, and with the equations

dec(enc(X, Y), Y) = X andenc(dec(X, Y), Y) = X. Paradox finds a 4-element

model in0.40s (not the same as the one reported in Section 5, though), and the approach

of Section 5 yields a5 465 line Coq proof, which is checked in2.90s.

8.3 The SKEME Protocol

The SKEME protocol [55] allows two agents to exchange a secret key, and uses Diffie-

Hellman exponentiation, plus message authentication codes (macs). Although it is

meant to run in several separate phases calledSHARE, EXCH, andAUTH, which are meant

to be playable independently, so as to avert denial of service attacks, such phases have

nothing to do with our phases. We shall call them thesub-protocolsof SKEME. In

particular, we consider that any message exchange from any of the SHARE, EXCH, and

AUTH sub-protocols can be played, and even interleaved, during one of the two phases

61

we consider, although some session of bothSHARE andEXCH should have been played

beforeAUTH can proceed. The noncesNa, Nb, and the Diffie-Hellman secretsXa,

Xb that are created fresh in each phase. As before, we consider that these values, as

created in phase 1, have been possibly disclosed in phase 2. That the protocol is secure

shows that, as claimed, SKEME has perfect forward secrecy ofthe final shared key

K0 = h(Na, Nb).

As additional symbols, we use a two-place hash functionsh, with the Dolev-Yao

intruder axiomatti(h(X, Y)) ⇐ atti(X), atti(Y), and a one-place mac function

mac, with the axiomatti(mac(X, Y)) ⇐ atti(X), atti(Y).

The three sub-protocols of the SKEME protocol are shown in Figure 23.

SHARE :
1. A −→ B : {A, Na}Kb

2. B −→ A : {Nb}Ka

EXCH :
1. A −→ B : gXa

2. B −→ A : gXb

AUTH :
1. A −→ B : mac([gXb , gXa , A, B], h(Na, Nb))
2. B −→ A : mac([gXa , gXb , B, A], h(Na, Nb))

Figure 23: The SKEME Protocol

Paradox finds a 6 element model in2 218s (37 minutes), and the approach of

Section 5 produces a7 352 line Coq proof, which is checked in76s.

8.4 The Just-Fast-Keying Protocol, with Responder Security

The penultimate protocol involving an equational theory that we have tested in the JFKr

protocol [5]. This one uses the Diffie-Hellman equational theory, plus asymmetric key

signaturessign(M, A) (of messageM , usingA’s private key). Although signatures

are assumed without message recovery, the security of JFKr does not depend on sig-

natures hiding the signed message. So, we include a clause stating that the Dolev-Yao

62

intruder may actually be able to recover the message from itssigned version.

1. A −→ B : h(Na), gXa

2. B −→ A : h(Na), Nb, g
Xb , grpinfoR, mac([gXb , Nb, h(Na), ip], Hkb)

3. A −→ B : Na, Nb, g
Xa , gXb , mac([gXb , Nb, h(Na), ip], Hkb), M, mac([tagI, M], Ka)

whereM = {A, B, sa, sign([h(Na), Nb, g
Xa , gXb , grpinfoR], A)}Ke

Ke = mac([h(Na), Nb, one], g
Xa∗Xb)

Ka = mac([h(Na), Nb, two], g
Xa∗Xb)

4. B −→ A : M ′, mac([tagR, M ′], Ka)
whereM ′ = {B, sa, sign([gXb , Nb, g

Xa , h(Na)], B)}Ke

Figure 24: The JFKr Protocol

The protocol is displayed in Figure 24, whereh is a (unary) hash function and

mac is a binary mac function, axiomatized as in Section 8.3. The constantsgrpinfoR

andip abstract away some relatively unimportant details of the protocol: grpinfoR

is a record containing information as to the group used in Diffie-Hellman exponen-

tiation, and allows one to check, for example, thatg is indeed a primitive element

of this group, and that this group has sufficiently high order; sa is the so-called se-

curity association record; the constantip abstracts away the IP addresses ofA and

B, which are easy to spoof, and cannot be trusted—so we merge all these addresses

into just one constant. Other constants such astagI, tagR, zero, one, two, are

tags and should typically remain distinct; they are well-known to the Dolev-Yao in-

truder. The keyHkb is a long term secret, known toB only. The final, secret key is

Kab = mac([h(Na), Nb, zero], g
Xa∗Xb).

Paradox finds a3-element model in524s (8 minutes44), and the approach of Sec-

tion 5 produces a6 335 line Coq proof, which is checked in47.6s.

8.5 Spore’s Version of Gong’s Protocol

For a final, even more complicated example, we modeled Gong’sprotocol [39], or

rather the variant from the SPORE repository [78]. This is shown in Figure 25, and

63

1. A −→ B : A, B, Na

2. B −→ S : A, B, Na, Nb

3. S −→ B : Ns,
f1(Ns, Nb, A, Pb) ⊕ f1(Ns, Na, B, Pa)

| {z }

K

,

f2(Ns, Nb, A, Pb) ⊕ f2(Ns, Na, B, Pa)
| {z }

Ha

,

f3(Ns, Nb, A, Pb) ⊕ f3(Ns, Na, B, Pa)
| {z }

Hb

,

g(K, Ha, Hb, Pb)
4. B −→ A : Ns, Hb

5. A −→ B : Ha

Figure 25: Gong’s protocol, from SPORE

uses an operator⊕ (exclusive-or) that is associative, commutative, has a unit 0 and

is nilpotent (M ⊕ M ≈ 0). Heref1, f2, f3, g are one-way functions,Pa is a long-

term secret shared betweenA andS, and similarly forPb. We omit the clauses, which

again include two phases separated by an Oops move revealingall session keys from

the first phase. Using Paradox, we have been able to verify that the session keyK =

f1(Ns, Na, B, Pa) remained secret in current sessions, from the point of view of Alice,

Bob and the trusted third-party: Paradox finds a 4 element model in two hours, with

1 774 table entries.

Gong’s protocol is based on the equational theory of bitwiseexclusive or, shown in

Figure 27.

We also need extra intruder deduction rules, shown in Figure28.

The protocol rules are given in Figure 26. The first five clauses correspond to the

five messages of Figure 25, the last two clauses define the keysK that Alice (A) and

Bob (B) get, respectively. In Bob’s case, note that we obtainK from message 3, and

we check the value ofHa using message 5. The latter just means checking whether

atti(Ha) holds in our model.

Handling phases is done by slight variants of the rules of Figure 5, shown in Fig-

ure 29. We now assume the old keysf1(ns1(A, B, Na, Nb), Na, B, p(A)) are known

64

atti([A, B, nai(A, B)]) ⇐ agent(A), agent(B)
atti([A, B, Na, nbi(A, B, Na)]) ⇐ atti([A, B, Na])
atti([nsi(A, B, Na, Nb),

f1(nsi(A, B, Na, Nb), Nb, A, p(B)) ⊕ f1(nsi(A, B, Na, Nb), Na, B, p(A)),
f2(nsi(A, B, Na, Nb), Nb, A, p(B)) ⊕ f2(nsi(A, B, Na, Nb), Na, B, p(A)),
f3(nsi(A, B, Na, Nb), Nb, A, p(B)) ⊕ f3(nsi(A, B, Na, Nb), Na, B, p(A)),
g(f1(nsi(A, B, Na, Nb), Na, B, p(A)),

f2(nsi(A, B, Na, Nb), Na, B, p(A)),
f3(nsi(A, B, Na, Nb), Na, B, p(A)),
p(B))

]) ⇐ atti([A, B, Na, Nb])
atti([Ns, Hb]) ⇐ atti([Ns,

f1(Ns, nbi(A, B, Na), A, p(B)) ⊕ K),
f2(Ns, nbi(A, B, Na), A, p(B)) ⊕ Ha,
f3(Ns, nbi(A, B, Na), A, p(B)) ⊕ Hb,
g(K, Ha, Hb, p(B))])

atti(f2(Ns, nai(A, B), B, p(A))) ⇐ atti([Ns, f3(Ns, nai(A, B), B, p(A))])
alice keyi(A, f1(Ns, nai(A, B), B, p(A))) ⇐ atti([Ns, f3(Ns, nai(A, B), B, p(A))])

bob keyi(B, K) ⇐ atti([Ns,
f1(Ns, nbi(A, B, Na), A, p(B)) ⊕ K),
f2(Ns, nbi(A, B, Na), A, p(B)) ⊕ Ha,
f3(Ns, nbi(A, B, Na), A, p(B)) ⊕ Hb,
g(K, Ha, Hb, p(B))]),

atti(Ha)

Figure 26: Gong protocol rules

(X ⊕ Y) ⊕ Z ≈ X ⊕ (Y ⊕ Z) X ⊕ Y ≈ Y ⊕ X
X ⊕ zero ≈ X X ⊕ X ≈ zero

Figure 27: Axiomatizing xor

atti(zero) atti(X ⊕ Y) ⇐ atti(X), atti(Y)

Figure 28: Gong extra intruder deduction rules

65

att2(M) ⇐ att1(M)

att2(f1(ns1(A, B, Na, Nb), Na, B, p(A)))

att2(na1(A, B))

att2(nb1(A, B, Na))

att2(ns1(A, B, Na, Nb))

Figure 29: Phases in Gong’s protocol

in phase2, as well as all old nonces.

Our security goals are again, that all session keys, as generated by the server, and

as received by Alice and Bob, are unknown to the intruder, seeFigure 30.

⊥⇐ att2(f1(ns2(a, b, Na, Nb)))

⊥⇐ att2(Kab), alice key2(a, Kab)

⊥⇐ att2(Kab), bob key2(b, Kab)

Figure 30: (Negated) security goals for Gong’s protocol

Finally, Gong’s protocol as a whole is defined by the rules in Figures 6, 4, 27, 1,

28, 26, and 30.

Using the approach of Section 5, we have produced a2 555 line Coq proof of

Gong’s protocol, which is checked in1 204 s (20 minutes).

9 Conclusion

We hope to have demonstrated, first, that producing formallycheckable proofs from

first-order formulationsS of security goalsπ was difficult, and sometimes more diffi-

cult than verification itself.

On the other hand, we hope to have shown that formal Coq proofsof security could

be extracted and checked efficiently from a model (in the explicit model approach of

Section 5), or from a model-checking process (in the automata-theoretic approach of

66

Finding the model Coq proofs
Protocol Time #elts #entries #checks #lines time

Without equality:
NS [66] (Paradox) 1.62s 4 824 3 908 1 038 0+3.29s

(h1) 0.70s 46 217 312 430 106 15 560 0.53+10.73s
amended (Paradox) – – – – – –
NS [67] (h1) 1.71s 57 188 724 1.245 109 31 640 1.90+25.67s
NSL7 (Paradox) 4.85s 4 2 729 2 208 4 415 0+1.76s
[67, 59] (h1) 8.03s over-approximated – –
Yahalom (Paradox) 3 190s 6 5 480 38 864 14 646 0+36.6s
[72] (h1) 4.82s ≥ 57 ≥ 2.46 109 60 938 7.34+53.77s
Kerberos (Paradox) 17.87s 5 1 767 5 518 2 584 0+2.57s
[19] (h1) 0.94s 57 7 952 84.5 106 30 326 2.02+23.97s
X.509 [78] (Paradox) 3 395s 4 142 487 12 670 35 472 0+11.01s

(h1) 0.44s ≥ 29 ≥ 228.5 106 20 471 0.95+23.33s
EAP-AKA (Paradox) 54.3s 3 2 447 1 457 3 763 0+4.42s
[7] (h1) 1.93s 72 22 550 7.74 109 32 229 0.88+43.30s
EKE [11] (Paradox) 0.44s 4 3 697 4 632 5 023 0+1.99s

(h1) 1.88s 48 16 016 64.5 106 73 683 3.18+89.94s

Requiring an equational theory (using Paradox):
Diffie-Hellman [35] 0.34s 3 229 1 191 641 0+0.74s
EKE [11] 0.40s 4 1 055 9 939 5 465 0+2.90s
SKEME [55] 2 218s 6 1 968 125 753 7 352 0+76s
JFKr [5] 524s 3 577 13 028 6 335 0+47.6s
Gong [78] 7 161s 4 4 066 471 145 2 555 0+1 204s

Figure 31: Summary of practical results

67

Section 7). A summary of our results can be found in Figure 31.

This endeavor is a first step towards formally verifying fullsecurity protocols, and

many things remain to be done. For one, complementing this work with formally

checkable proofs of computational soundness of the Dolev-Yao model, when it is in-

deed sound [51, 79], would be desirable. There is a growing interest from industrial

firms and defense agencies towards formally checked proofs of security models, and

we believe our work solves an important part of it.

Another necessary step is to find techniques that would scaleup better. While Para-

dox and the explicit model approach of Section 5 work fine whenthere is a model of

at most, say, 6 elements, the automata-theoretic approach of Section 7 handles much

larger models, but cannot cope with equational theories yet. However, note that the

number of elements of a model is a very bad measure of its size:function and predi-

cate tables are much larger than what the number of elements suggests. We have also

observed that the size of the model is independent of the sizeof the protocol to be

proved secure. Rather, the size of the model seems to be correlated to its logical com-

plexity. In particular, we have observed, reproducing an experiment by Koen Claessen,

that some safe C implementations of roles in the Needham-Schroeder asymmetric key

protocol [44] only required models with 3 elements.

It remains to be examined whether scaling up is necessary, oris in fact a non-

problem. The experiments we conducted show, for example, that Paradox, although

generally slower thanh1 on non-equational problems (or equational problems that can

be converted to non-equational problems), tends to find models with very few elements

almost all the time. Further research might help in finding models with possibly more

elements, but faster, and which would be easier to check, usingh1mc for example.

68

9.1 Acknowledgments

We presented early findings at JFLA [41]: we thank the organizers and all the people

who were there. David Lubicz, Bruno Blanchet, and Steve Kremer provided support

by showing interest in this research. Thanks also to Koen Claessen, who suggested the

use of Paradox to me. Finally, thanks to Ankit Gupta, to Stéphanie Delaune, to Ćedric

Fournet, and to the anonymous reviewers.

References

[1] M. Abadi. Secrecy by typing in security protocols.Journal of the ACM,

46(5):749–786, 1999.

[2] M. Abadi and B. Blanchet. Analyzing security protocols with secrecy types and

logic programs.Journal of the ACM, 52(1):102–146, Jan. 2005.

[3] M. Abadi and C. Fournet. Mobile values, new names, and secure communication.

SIGPLAN Notices, 36(3):104–115, 2001.

[4] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols.Information

and Computation, 148(1):1–70, Jan. 1999.

[5] W. Aiello, S. M. Bellovin, M. Blaze, R. Canetti, J. Ioannidis, A. D. Keromytis,

and O. Reingold. Just fast keying: Key agreement in a hostileInternet. ACM

Transactions on Information and System Security, 7(2):1–30, May 2004.

[6] R. Amadio and W. Charatonik. On name generation and set-based analysis in

the Dolev-Yao model. InProc. 13th International Conference on Concurrency

Theory (CONCUR’02), pages 499–514. Springer-Verlag LNCS 2421, 2002.

[7] AVISPA—automated validation of Internet security protocols and applications.

Web site, 2006.http://avispa-project.org/.

69

[8] L. Bachmair and H. Ganzinger. Resolution theorem proving. In Robinson and

Voronkov [75], chapter 2, pages 19–99.

[9] L. Bachmair, H. Ganzinger, and U. Waldmann. Set constraints are the monadic

class. InProc. 8th Annual IEEE Symposium on Logic in Computer Science

(LICS’93), pages 75–83. IEEE Computer Society Press, 1993.

[10] P. Baumgartner, A. Fuchs, H. de Nivelle, and C. Tinelli.Computing finite models

by reduction to function-free clause logic.Journal of Applied Logic, 7(1):58–74,

Mar. 2009.

[11] S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based pro-

tocols secure against dictionary attacks. InProc. 13th IEEE Symp. Research in

Security and Privacy (S&P’93), pages 72–84, Oakland, CA, May 1992. IEEE

Computer Society Press.

[12] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Develop-

ment Coq’Art: The Calculus of Inductive Constructions, volume XXV of Texts

in Theoretical Computer Science. An EATCS Series. Springer Verlag, 2004. 469

pages.

[13] K. Bhargavan, C. Fournet, A. D. Gordon, and A. R. Pucella. Tulafale: A security

tool for Web services. InProc. 2nd International Symposium on Formal Methods

for Components and Objects (FMCO’03), pages 197–222. Springer Verlag LNCS

3188, 2004.

[14] B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules.

In Proc. 14th IEEE Computer Security Foundations Workshop (CSFW’01), pages

82–96. IEEE Computer Society Press, 2001.

[15] B. Blanchet. An automatic security protocol verifier based on resolution theorem

proving (invited tutorial). In R. Nieuwenhuis, editor,Proc. 20th International

70

Conference on Automated Deduction (CADE-20), Tallinn, Estonia, July 2005.

Springer Verlag LNAI 3632.

[16] B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equiv-

alences for security protocols.Journal of Logic and Algebraic Programming,

75(1):3–51, Feb.–Mar. 2008.

[17] D. Bolignano. An approach to the formal verification of cryptographic proto-

cols. InProc. 3rd ACM Conference on Computer and Communications Security

(CCS’96), New Delhi, India, Mar. 1996. ACM Press.

[18] J. Bull and D. J. Otway. The authentication protocol. Technical Report

DRA/CIS3/PROJ/CORBA/SC/1/CSM/436-04/03, Defence Research Agency,

Malvern, UK, 1997.

[19] M. Burrows, M. Abadi, and R. Needham. A logic of authentication.Proceedings

of the Royal Society, 426(1871):233–271, Dec. 1989.

[20] R. Chadha, S. Kremer, and A. Scedrov. Formal analysis ofmulti-party contract

signing.Journal of Automated Reasoning, 36(1-2):39–83, Jan. 2006.

[21] K. Claessen and N. S̈orensson. New techniques that improve MACE-style finite

model building. In P. Baumgartner, editor,Proc. CADE-19 Workshop W4, Miami,

Florida, July 2003.

[22] J. A. Clark and J. L. Jacob. A survey of authentication protocol literature, v1.0.

http://citeseer.ist.psu.edu/clark97survey.html, 1997.

[23] K. L. Clark. Negation as failure. In M. L. Ginsberg, editor, Readings in Non-

monotonic Reasoning, pages 311–325, San Francisco, California, 1987. Morgan

Kaufmann Publishers.

[24] H. Comon. Inductionless induction. In Robinson and Voronkov [75], chapter 14,

pages 913–962.

71

[25] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and

M. Tommasi. Tree automata techniques and applications.www.grappa.

univ-lille3.fr/tata, 1997. Version of Sep. 6, 2005.

[26] H. Comon and R. Nieuwenhuis. Induction=i-axiomatization+first-order consis-

tency. Information and Computation, 159(1–2):151–186, 2000.

[27] H. Comon-Lundh and V. Cortier. Security properties: Two agents are sufficient.

Science of Computer Programming, 50(1–3):51–71, 2004.

[28] R. Corin, S. Malladi, J. Alves-Foss, and S. Etalle. Guess what? Here is a new

tool that finds some new guessing attacks. In R. Gorrieri and R. Lucchi, editors,

Proc. IFIP WG 1.7, ACM SIGPLAN and GI FoMSESS Workshop on Issues in the

Theory of Security (WITS’03), pages 62–71, Warsaw, Poland, Apr. 2003.

[29] V. Cortier, S. Delaune, and P. Lafourcade. A survey of algebraic properties used

in cryptographic protocols.Journal of Computer Security, 14(1):1–43, 2006.

[30] V. Cortier, S. Delaune, and G. Steel. A formal theory of key conjuring. InProc.

20th IEEE Computer Security Foundations Symposium (CSF’07), pages 79–93,

Venice, Italy, July 2007. IEEE Computer Society Press.

[31] V. Cortier, M. Rusinowitch, and E. Z̆alinescu. Relating two standard notions

of secrecy.Logical Methods in Computer Science, 3(3:2):1–29, 2007.http:

//arxiv.org/pdf/0706.0502.

[32] A. Dawar. Model-checking first-order logic: Automata and locality. In J. Duparc

and T. A. Henzinger, editors,Proc. 21st International Workshop on Computer Sci-

ence Logic, 16th Annual Conference of the EACSL (CSL’07), page 6, Lausanne,

Switzerland, Sept. 2007. Springer Verlag LNCS 4646.

[33] D. E. Denning and G. M. Sacco. Timestamps in key distribution protocols.Com-

munications of the ACM, 24(8):533–536, Aug. 1981.

72

[34] P. Devienne, P. Leb̀egue, A. Parrain, J.-C. Routier, and J. Würtz. Smallest Horn

clause programs.Journal of Logic Programming, 27(3):227–267, 1994.

[35] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions

on Information Theory, IT-22(6):644–654, Nov. 1976.

[36] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transac-

tions on Information Theory, IT-29(2):198–208, 1983.

[37] N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of bounded se-

curity protocols. In N. Heintze and E. Clarke, editors,Proc. Workshop on Formal

Methods and Security Protocols (FMSP’99), Trento, Italy, July 1999.

[38] T. Frühwirth, E. Shapiro, M. Y. Vardi, and E. Yardeni. Logic programs as types

for logic programs. InProc. 6th Annual IEEE Symposium Logic in Computer

Science (LICS’91), pages 300–309. IEEE Computer Society Press, 1991.

[39] L. Gong. Using one-way functions for authentication.Computer Communication

Review, 19(5):8–11, Oct. 1989.

[40] J. Goubault-Larrecq.Theh1 Tool Suite. LSV, ENS Cachan, CNRS, INRIA

projet SECSI, 2003.http://www.lsv.ens-cachan.fr/∼goubault/

H1.dist/dh1index.html.

[41] J. Goubault-Larrecq. Une fois qu’on n’a pas trouvé de preuve, comment le faire

comprendrèa un assistant de preuve ? In V. Ménissier-Morain, editor,Actes des

15èmes Jourńees Francophones sur les Langages Applicatifs (JFLA’04), pages

1–40, Sainte-Marie-de-Ŕe, France, Jan. 2004. INRIA. Invited paper.

[42] J. Goubault-Larrecq. DecidingH1 by resolution.Information Processing Letters,

95(3):401–408, Aug. 2005.

73

[43] J. Goubault-Larrecq. Towards producing formally checkable security proofs,

automatically. InProc. 21st IEEE Computer Security Foundations Symposium

(CSF’08), pages 224–238. IEEE Computer Society Press, June 2008.

[44] J. Goubault-Larrecq and F. Parrennes. Cryptographic protocol analysis on real

C code. In R. Cousot, editor,Proc. ¡6th International Conference on Verifica-

tion, Model Checking and Abstract Interpretation (VMCAI’05), volume 3385 of

Lecture Notes in Computer Science, pages 363–379, Paris, France, Jan. 2005.

Springer.

[45] J. Goubault-Larrecq, M. Roger, and K. N. Verma. Abstraction and resolution

modulo AC: How to verify Diffie-Hellman-like protocols automatically. Journal

of Logic and Algebraic Programming, 64(2):219–251, Aug. 2005.

[46] M. Hellman. A cryptanalytic time-memory tradeoff.IEEE Transactions on In-

formation Theory, 26:401–406, 1980.

[47] M. Hofmann. A simple model for quotient types. In M. Dezani-Ciancaglini and

G. D. Plotkin, editors,Proc. 2nd Intl. Conf. Typed Lambda Calculi and Appli-

cations (TLCA ’95), pages 216–234, Edinburgh, UK, Apr. 1995. Springer Verlag

LNCS 902.

[48] P. V. Homeier. Quotient types. In R. J. Boulton and P. B. Jackson, editors,Sup-

plemental Proceedings, 14th International Conference on Theorem Proving in

Higher Order Logics (TPHOLs’01), pages 191–206, Sept. 2001. Number EDI-

INF-RR-0046 in Informatics Report Series, Division of Informatics, University

of Edinburgh,http://www.inf.ed.ac.uk/publications/report/

0046.html.

[49] A. Huima. Efficient infinite-state analysis of securityprotocols. InProc. Work-

shop on Formal Methods and Security Protocols (FMSP’99), Trento, Italy, July

1999.

74

[50] Information technology – security techniques – evaluation criteria for IT security.

ISO/IEC 15408 Standard, 2005. Parts 1-3,http://standards.iso.org/

ittf/PubliclyAvailableStandards/index.html.

[51] R. Janvier, Y. Lakhnech, and L. Mazaré. Relating the symbolic and computa-

tional models of security protocols using hashes. In P. Degano, R. Küsters, L. Vi-

gaǹo, and S. Zdancewic, editors,Proc. Joint Workshop on Foundations of Com-

puter Security and Automated Reasoning for Security Protocol Analysis (FCS-

ARSPA’06), pages 67–89, Seattle, Washington, USA, Aug. 2006. Informal pro-

ceedings athttp://www.easychair.org/FLoC-06/fcs-arspa06.

pdf.

[52] I. L. K. Kao and R. Chow. An efficient and secure authentication protocol using

uncertified keys.Operating Systems Review, 29(3):14–21, 1995.

[53] D. Kapur and D. R. Musser. Proof by consistency.Artificial Intelligence, 31:125–

157, 1987.

[54] D. C. Kozen. Automata and Computability. Undergraduate Texts in Computer

Science. Springer, 1997. 400 pages.

[55] H. Krawczyk. SKEME: A versatile secure key exchange mechanism for Internet.

In Proc. 4th Internet Society Symposium on Network and Distributed Systems

Security (SNDSS’96), pages 114–127. IEEE Computer Society Press, Feb. 1996.

[56] S. Kremer. Computational soundness of equational theories (tutorial). In

G. Barthe and C. Fournet, editors,Proc. 3rd Symposium on Trustworthy Global

Computing (TGC’07), pages 363–382, Sophia-Antipolis, France, 2008. Springer

Verlag LNCS 4912.

[57] R. Küsters and T. Trudering. On the automatic analysis of recursive security

protocols with XOR. In W. Thomas and P. Weil, editors,Proc. 24th Symposium on

75

Theoretical Aspects of Computer Science (STACS 2007), pages 646–657. Springer

Verlag LNCS 4393, 2007.

[58] D. S. Lankford. A simple explanation of inductionless induction. Technical Re-

port MTP-14, Math. Dept., Louisiana State University, 1981.

[59] G. Lowe. An attack on the Needham-Schroeder public-keyauthentication proto-

col. Information Processing Letters, 56(3):131–133, 1996.

[60] G. Lowe. A family of attacks upon authentication protocols. Technical Report

1997/5, Dept. Mathematics and Computer Science, U. Leicester, 1997.

[61] J. Marcinkowski and L. Pacholski. Undecidability of the Horn clause implication

problem. InProc. 33rd Annual Symposium on Foundations of Computer Science

(FOCS’92), pages 354–362, Pittsburgh, Pennsylvania, 1992. IEEE Computer So-

ciety Press.

[62] R. Matzinger. Computational representations of Herbrand models using gram-

mars. Technical Report TR-WB-Mat-96-2, Technische Universität Wien, Feb.

1997. version 4.0.

[63] W. McCune. Mace4 reference manual and guide. TechnicalReport ANL/MCS-

TM-264, Argonne National Laboratory, 2003.

[64] D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence

of active adversaries. In M. Naor, editor,Proc. 1st IACR Theory of Cryptography

Conference (TCC’04), pages 133–151, Cambridge, Massachussetts, Feb. 2004.

Springer Verlag LNCS 2951.

[65] D. Monniaux. Abstracting cryptographic protocols with tree automata. InProx.

6th International Static Analysis Symposium (SAS’99), pages 149–163. Springer

Verlag LNCS 1694, Sept. 1999.

76

[66] R. M. Needham and M. D. Schroeder. Using encryption for authentication in

large networks of computers.Communications of the ACM, 21(12):993–999, Dec.

1978.

[67] R. M. Needham and M. D. Schroeder. Authentication revisited. ACM SIGOPS

Operating Systems Review, 21(1):7, Jan. 1987.

[68] F. Nielson, H. R. Nielson, and H. Seidl. Normalizable Horn clauses, strongly rec-

ognizable relations and Spi. InProc. 9th International Static Analysis Symposium

(SAS’02), pages 20–35. Springer Verlag LNCS 2477, Sept. 2002.

[69] D. Otway and O. Rees. Efficient and timely mutual authentication.ACM SIGOPS

Operating Systems Review, 21(1):8–10, Jan. 1987.

[70] L. C. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi, editor,

Logic and Computer Science, volume 31 ofThe APIC Series, pages 361–386.

Academic Press, 1990.

[71] L. C. Paulson. Proving properties of security protocols by induction. InProc.

10th IEEE Computer Security Foundations Workshop (CSFW’97), pages 70–83,

Rockport, Massachussetts, 1997. IEEE Computer Society Press.

[72] L. C. Paulson. Relations between secrets: Two formal analyses of the Yahalom

protocol.Journal of Computer Security, 9(3):197–216, Jan. 2001.

[73] O. Pereira and J.-J. Quisquater. A security analysis ofthe cliques protocols suites.

In Proc. 14th IEEE Computer Security Foundations Workshop (CSFW’01), pages

73–81. IEEE Computer Society Press, June 2001.

[74] X. Rival and J. Goubault-Larrecq. Experiments with finite tree automata in Coq.

In R. J. Boulton and P. B. Jackson, editors,Proc. 14th International Conference

on Theorem Proving in Higher Order Logics (TPHOLs’01), pages 362–377, Ed-

inburgh, Scotland, UK, Sept. 2001. Springer Verlag LNCS 2152.

77

[75] J. A. Robinson and A. Voronkov, editors.Handbook of Automated Reasoning.

North-Holland, 2001.

[76] P. Y. A. Ryan and S. A. Schneider. An attack on a recursiveauthentication proto-

col: A cautionary tale.Information Processing Letters, 65(1):7–10, 1998.

[77] P. Selinger. Models for an adversary-centric protocollogic. Electronic Notes in

Theoretical Computer Science, 55(1):73–87, July 2001. Proc. 1st Workshop on

Logical Aspects of Cryptographic Protocol Verification (LACPV’01).

[78] Spore—security protocols open repository. http://www.lsv.

ens-cachan.fr/spore/, 2005.

[79] C. Sprenger, M. Backes, D. Basin, B. Pfitzmann, and M. Waidner. Cryptograph-

ically sound theorem proving. InProc. 19th IEEE Computer Security Founda-

tions Symposium Workshop (CSFW’06), pages 153–166. IEEE Computer Society

Press, Washington, DC, USA, 2006.

[80] M. Steiner, G. Tsudik, and M. Waidner. Key agreement in dynamic peer groups.

IEEE Transactions on Parallel and Distributed Systems, 11(8):769–780, 2000.

[81] T. Tammet.Resolution Methods for Decision Problems and Finite-ModelBuild-

ing. PhD thesis, G̈oteborg University, 1992.

[82] F. J. Thayer F́abrega, J. C. Herzog, and J. D. Guttman. Strand spaces: Proving

security protocols correct.Journal of Computer Security, 7(2-3):191–230, Jan.

1999.

[83] Writing for the TPHOLs community. Part of the Guide for Authors of TPHOL

conferences (Theorem Proving in Higher-Order Logics) since 1999, seehttp:

//www-sop.inria.fr/croap/TPHOLs99/authors.html, 1999.

78

[84] C. Weidenbach. Towards an automatic analysis of security protocols. In

H. Ganzinger, editor,Proc. 16th International Conference on Automated Deduc-

tion (CADE-16), pages 378–382, Trento, Italy, July 1999. Springer-VerlagLNAI

1632.

[85] C. Weidenbach. Combining superposition, sorts and splitting. In Robinson and

Voronkov [75], chapter 27, pages 1965–2013.

[86] C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen, C. Theobald, and D. Topíc.

SPASS version 2.0. In A. Voronkov, editor,Proc. 18th International Conference

on Automated Deduction (CADE’02). Springer-Verlag LNAI 2392, July 2002.

79

