Finite Models for Formal Security Proofs

Jean Goubault-Larrecq
goubaul t @ sv. ens-cachan. fr
LSV, ENS Cachan, CNRS, INRIA
61, avenue du f@sident Wilson 94230 Cachan, France
Tel: +33-147407568 Fax: +33-147407521

May 20, 2009

Abstract

First-order logic models of security for cryptographic foeols, based on vari-
ants of the Dolev-Yao model, are now well-established toGlisen that we have
checked a given security protocelusing a given first-order prover, how hard is it
to extract a formally checkable proof of it, as required ilg.ecommon criteria at
the highest evaluation level (EAL7)? We demonstrate thatisrsurprisingly hard
in the general case: the problem is non-recursive. Noneskelve show that we
can instead extract finite models! from a setS of clauses representing auto-
matically, and give two ways of doing so. We then define a matetker testing
M = S, and show how we can instrument it to output a formally chbikaroof,
e.g., in Coq. Experience on a number of protocols shows liits practical, and
that even complex (secure) protocols modulo equationakibe have small finite

models, making our approach suitable.

*Partially supported by project PFC (“plateforme de conféghqdle de comptitivite System@tic Paris-
région lle-de-France. Part of this work was done during RNTdjext EVA, 2000-2003.

Keywords:Dolev-Yao model, formal security proof, finite model, trag@mnaton,

‘H1, inductionless induction.

1 Introduction

So far, automated verification of cryptographic protocolmiodels in the style of Dolev
and Yao [36] has been considered under a variety of anglegdd€uaidability results
[37, 49], practical decision procedures [65, 84, 6], exi@mtn security properties other
than secrecy and authentication (e.g., [20]), to protodsiiring equational theories,
to soundness with respect to computational models (e &].f¢sthe latter two points),
in particular.

We consider yet another angle: producing formally cheakainbofs of security,
automatically. There is indeed a more and more pressingfne@dhe industrial com-
munity, as well as from national defense authorities, torgatjust Boolean answers
(secure/possibly insecure), but also formal proofs, witichld be checked by one of
the established tools, e.g., Isabelle [70] or Coq [12]. Tkisequired in Common
Criteria certification of computer products at the highesstumance level, EAL 7 [50],
a requirement that is becoming more and more common for ggquoducts. For
example, the PFC initiative (“trusted platform”) of the Roh Ple de comptitivité
System@tic will include a formal security model and formabgfs for its trusted
Linux-based PC platforms. Producing formal proofs for soslich as Isabelle or Coq
is also interesting because of their small trusted basegeafahse agencies such as the
French DGA would appreciate being able to extract formal @agfs from Blanchet’s
ProVerif tool [15].

It is certainly the case that hand-crafted formal proofg.(d17, 71]) provide such
formally checkable certificates. Isabelle’s high degreauwtbmation helps in this re-
spect, but can we hope for full automation as in ProVerif, hading formal proofs as

well? It is the purpose of this paper to give one possible answthat question.

One note of caution: We shall concentrate on the core of thiel@m, which, as we
shall see, is related to a model-checking problem on set®af Elauses representing
the protocol, the security assumptions, the intruder maated the security properties
to be proved. We consider such Horn clauses to be a sufficiboit rather low-level,
specification language for security protocols in this papeirs more comfortable to
specify protocols and properties in higher-level langsagiech as ProVerif’s calculus.
To extend our work to such calculi, we would need not only adtation from the cal-
culus to Horn clause sets (e.g., ProVerif already reliesra),dut also a way of lifting
proofs of security in the Horn clause model back to proofsegisity on protocols ex-
pressed in the calculus. While we don’t expect this lattéretdlifficult per se, we won't
consider the question in this paper. As a matter of facthallsdets of Horn clauses that
we shall give as examples were produced by hand. We hope botv&t our way of
specifying security protocols, assumptions, propertiasthe intruder model as Horn

clauses will be clear enough. This will be explained at langtSection 3 and later.

1.1 Outline

We explore related work in Section 2, then describe our sgamodel,a la Dolev-Yao,

in Section 3. We really start in Section 4, where we show tbapooblem reduces to a
form of model-checking, which is unfortunately undecidaisl general. To solve this,
we turn to finite models, expanding on Selinger’s pioneeitten [77]. We observe
that, although representing finite models explicitly isalupractical, it is sometimes
cumbersome, and that such models are sometimes hard to fimgristhgly, larger,

finite models in the form of alternating tree automata areetomes easier to find: we
examine such models in Section 6. We then show how we can rebéek clause sets
against both kinds of models in Section 7. Finally, we ardpa¢ the approach is equally
applicable to some security protocols that require equoatitheories in Section 8, and

we conclude in Section 9. Our claims are supported by sepesatical case studies.

2 Related Work

Many frameworks and techniques have been proposed to \s&dfyrity protocols in
models inspired from Dolev and Yao [36]. It would be too longcite them all. How-
ever, whether they are based on first-order proving [84, 8}, tlee automata [65], set
constraints [6], typing [1], or process algebra [4, 3], onaynfairly say that most of
these frameworks embed into first-order logic. It is welblum that tree automata are
subsumed by set constraints, and that set constraintsspomd to specific decidable
classes of first-order logic. This was first observed by Baaihr®anzinger, and Wald-
mann [9]. Some modern typing systems for secrecy are e@uit/td a first-order logic
presentation [2], while safety properties of cryptograptiotocols (weak secrecy, au-
thentication) presented as processes in a process algebraturally translated to
first-order logic [2], or even to decidable classes of finstey logic such ag{, [68].

In all cases, the fragments of first-order logic we need capriesented as sets
of Horn clauses. Fix a first-order signature, which we shedive implicit. Terms
are denoted, ¢, u, v, ..., predicate symbol®, @, ..., variablesX, Y, Z, ... We
assume there are finitely many predicate symbols. Horn etatisare of the form
H <« B where thehead H is either an atom orl, and thebody 5 is a finite set
Ay, ..., A, of atoms. IfBis empty ¢ = 0), thenC = H is afact For simplic-
ity, we assume that all predicate symbols are unary, so that@ns can be writ-
ten P(¢). This is innocuous, a-ary relationsP(ty,...,t;) can be faithfully en-
coded asP(c(t1,...,tx)) for somek-ary function symbolk; we shall occasionally
take the liberty of using somk-ary predicates, for convenience. We assume basic
familiarity with notions of free variables, substitutions unification, models, Her-
brand models, satisfiability and first-order resolution. [8] is well-known that sat-
isfiability of first-order formulae, and even of sets of Horauses, is undecidable.
We shall also use the fact that any satisfiable$ef Horn clauses has a least Her-

brand model. This can be defined as the least fixdéjirifs of the monotone operator

Ts(I) = {Aoc | A < Ay,...,A, € S;Acground Ayo € I,..., A0 € I}. If
1 € lipTgs, thenS is unsatisfiable. Otherwisé, is satisfiable, andfp T's is a set of
ground atoms, which happens to be the least Herbrand modgl of

We shall concentrate omreachability properties (i.e., weak secrecy) in this paper,
without equational theories for the most part. While thisyrsaem unambitious, re-
member that our goal is not teerify cryptographic protocols but to extrafcirmally
checkable proofautomatically, and one of our points is that this is subsipntharder
than mere verification. We shall deal with equational thesin Section 8, and claim
that producing formally checkable proofs is not much hatden in the non-equational
case. We will not deal with strong secrecy, although thisiced to reachability, up to
some abstraction [16]. Weak and strong secrecy are, ind&de notions under rea-
sonable assumptions [31].

We also concentrate on security proofdagical models, derived from the Dolev-
Yao model [36]. Proofs ircomputationalmodels would probably be more relevant.
E.g., naive Dolev-Yao models may be computationally unddéd]. However, some
recent results show that symbolic (Dolev-Yao) securitylisgpcomputational security
in a number of frameworks, usually provided there are no kgyles at least, and
modulo properly chosen equational theories on the symisitie. See e.g. [51], or
[79]. The latter is a rare example of a framework for devehggfiormal proofs (e.g., in
Coq or Isabelle) otomputational soundnesiseorems. The search for such theorems
is hardly automated for now; yet, we consider this to be ouhefscope of this paper,
and concentrate on Dolev-Yao-like models.

The starting point of this paper is Selinger’s fine paper “Misdor an Adversary-
Centric Protocol Logic” [77]. Selinger observes that séguproofs (in first-order
formulations of weak secrecy in Dolev-Yao-like models) aredels in the sense of
first-order logic. To be a bit more precise, a protogatncoded as a set of first-order

Horn clauses is secure if and only if is consistenti.e., there is no proof of falsé

from S. One may say this in a provocative way [41] by stating thatapof security
for 7 is theabsencef a proof for (the negation ofy. Extracting a formal Coq proof
from such an absence may then seem tricky. However, firgrdodic iscompleteso

if S is consistent, it must bsatisfiable that is, it must have a model. Selinger then
observed that you could provesecure by exhibiting a model f¢t, and demonstrated
this by building a small, finite model (5 elements) for the Nle@m-Schroeder-Lowe
public-key protocol [66, 59]. We shall demonstrate throggiveral case studies that
even complex protocols requiring rather elaborate eqoatitheories can be proved
secure using finite models with only few elements. However,shall observe that
even such models may be rather large, and harder than erpgeatbeck.

The idea of proving properties by showing the consisteneygi¥en formular’, i.e,
showing that-F' has no proof, is known gzoof by consistencip3], orinductionless
induction[58, 24]. Note that the formal Coq proofs we shall extractrirmodels of
S, using our toohlnt, are proofs of security forr that work by (explicit) induction
over term structure. The relationship between inductismknd explicit induction was
elicited by Comon and Nieuwenhuis [26], in the case of firsteo logic with equality
and induction along the recursive path ordering.

We shall use two approaches to extracting a formal proof ofisty from a finite
model. The first one is based on explicit enumeration. Thersdis an approach based
on model-checking certain classes of first-order formufaagainst certain classes of
finite models M, i.e., on testing whetheM | F. There is an extensive body of
literature pertaining to this topic, see e.g. the survey layBr [32]. One particular
(easy) result we shall recall is that model-checking firsteo formulae against finite
models, even of size, is PSPACE-complete. Many results in this domain have
focused on fixed-parameter tractability, and to be spedfiayhether model-checking
was hard with respect to the size of the model, given a fixechditat as parameter.

Even then, the parametrized model-checking probleAVE [«]-complete, and already

W k]-hard forII;, formulae. This will be of almost no concern to us, as our fdasu
F will grow in general faster than our models.

Since our presentation at CSF'08 [43], we learned that Mgtzi [62] had already
designed, in 1997, what is essentially our model-checkiggrghm of Section 7, re-
stricted to non-alternating automata, with an explicitéfided strategy for rule appli-
cation, a different presentation, none of the optimizatitimat are in fact required in
practice, and no report of an implementation.

None of the works cited above addresses the question ofctikigaa model from
a failed proof attempt. Tammet worked on this for resolutiwoofs [81]. The next
step, producing formally checked, inductive proofs fromdeis, seems new. In one
of our approaches, finite models will be presented in the fofrtree automata, and
formally checking models in this case essentially amountgdducing formal proofs
of computations on tree automata. This was pioneered byl Rivdithe author [74];

the procedure of Section 7 is several orders of magnitude mfficient.

3 A Simple Protocol Model,a la Dolev-Yao

Ouir first-order model for protocols is close to Blanchet'd][1o Selinger’'s [77], and
to a number of other works. While the actual model is not obpaunt importance
for now, we need one to illustrate our ideas. Also, modelfhadtyle presented here
will behave nicely in later sections.

Blanchet uses a single predicatet, so thatatt(M) if and only if M is known
to the Dolev-Yao attacker. We shall instead use a family efdjmatesatt;, where
i iIs aphase to be able to model key and nonce corruption (more below) fhets
that the Dolev-Yao attacker can encrypt, decrypt, buil)isead off any element from
a list, compute successors and predecessors are axiothhiizghe Horn clauses of
Figure 1. We take the usual Prolog convention that idemsifggarting with capital

letters such ad/, K, A, B, X, are variables, while uncapitalized identifiers such as

sym, crypt, att are constants, function or predicate symbols. Wetsipt (M, K)
denote the result of symmetric or asymmetric encryptidgwith key K, and write

it {M} g for convenience. The ke¥(sym, X) is the symmetric key used in session
X; the termsession; (A4, B, N,) will denote any session between principdlsind B
sharing the nonc#/,, while in phase; we shall also usg(sym, [A4, S]) to denote long-
term symmetric keys between agertsindS. The keyk(pub, X) denotes agent’s
long-term public key, whilé&(prv, X) is X's private key. Lists are built usingil and
cons; we use the ML notatiodM; :: M, for cons(M, Ms), and[My, M, ..., M,]
for My :: My :: ... :: M, :: nil. We usesuc to denote the successor function
An € N-n + 1, as used in our running example, the Needham-Schroeder striom

key protocol [66].

att;({M} k) < att;(M),att;(K) 1)
att;(M) < att; ({M }xpw,x)), atti(k(prv, X)) 2

att; (M) <= att; ({ M (e, x)), att: (k(pub, X)) 3)
att;(M) < att;({M }x(syn,x)), atti(k(sym, X)) ()]

att; (i1) (5)
att;(M; :: Ms) < att; (M), att; (M) (6)
att; (Ml) < att; (M :: Mo) (7
att;(Ms) < att;(M; :: Mo) (8)
att;(suc(M)) <= att; (M) 9)
att; (M) < att;(suc(M)) (10)

Figure 1: Intruder capabilities

This protocol, whose purpose is to establish a fresh, ssession keys,, between
two agents, Alice 4) and Bob (), using a trusted third partys(, is shown in Figure 2.
It has the convenient property that there is a well-knowadkttagainst it, so that the
key K, that Bob will end up having is possibly known to the attackérile the keys
K, thatS sent and that Alice received will remain secret. Note thighate keysk
may be different.

The protocol itself is modeled in a simple way, originallyspired from strand

A— S:A BN,

S — A: {NQ,B,Kab, {KabaA}Kbs}Kw
A— B: {K{LEHA}KbS

B— A: {Nb}Kab

A— B: {Nb+1}Kab

T o=

Figure 2: The Needham-Schroeder symmetric-key protocol

spaces [82], and similarly to Blanchet [14]. Each agents idmodeled as a sequence
of (receive, send) pairs. Given any such gdif;, Ms), we add a Horn clause of the
form att;(Ms) < att;(M;). This denotes the fact that the attacker may use the
agent’s role to his profit by sending a messagdgof a form that the agent will accept,
and learningM-, from the agent’s response. Accordingly, the protocol rdtasthe
Needham-Schroeder symmetric key protocol are shown inr€iguWe use Blanchet’s
trick of abstracting nonces by function symbols appliedh® free parameters of the
session, so thata,;(A, B) denotesN,,, depending on the identitie$ and B of Alice
and Bob respectively and the phas@ndnb; (K, A, B) denotesV,, depending on
the phase, the received key<,;, and identitiesd and B (all three being variables,
by our convention). In clause (15), representing the faat #ice receives Ny},
(message 4 of Figure 2) to sefily;, +1} ,, (message 5), we use an auxiliary predicate
alice_key, to recover Alice’s version of{,;, received in message 2. We also define
a predicatéob_key, in (17) to recover Bob’s version ot ,;, after message 5.

The fact that variables such ds B are used throughout for agent identities, instead
of actual agent identities (for which we reserve the cortstanb, s, andi for the
attacker), is due to the fact that we wish to model unboundetiny sessions of the
protocol in parallel. E.g., (11) states that any pair of agety B may initiate the
protocol and emit message 1 of Figure 2. We assume that tlggoosstible agents are
Alice (a), Bob (b), the trusted third-partys(), and the Dolev-Yao attacker Since we
only deal with secrecy, considering this many agents is@efft [27].

This way of modeling protocols has been standard at least 8fanchet’s seminal

att;([A, B,na;(A, B)]) < agent(A), agent(B) (11)
atti({[Na, B, kab, {[kab, Al}ky, brao)) <= atti([A, B, Na]) 12)
wherek,, = k(sym, session; (4, B, N,),
kvs = k(sym, [B, s]), kas = k(sym, [A, s])
att;(M) < att;({[na;(A, B), B, Kat, M| }x(syn,4,5))) (13)
att; ({nbi(Kav, A, B)} ;) <= atti({[Kab, Al be(syn,[B.5)) (14)
att;({suc(Ny)}k,,) < att;({No}k,,), alice key, (A, Kap) (15)
alice key, (A, Kap) < att;({[na;(4, B), B, Kap, M|} x(syn,(a,5))) (16)
bob_key, (B, Kap) < att; ({nb;(Ka, A, B) } k,;) (17)

Figure 3: Protocol rules

agent(a) agent(b) agent(i) agent(s)
Figure 4: Agents

work [14]. One should however note that this is only a saferadmation of the
protocol, not an exact description as in [27] for example péamticular, our encoding
forgets about the relative orderings of messages. In paaticif the intruder sends
some messag#/ to A, then A usesM to compute another messagé€ to B, then
our model will makeatt,(M’) true. This means that/’ will be known to the intruder
forever, so that replay attacks are accounted for. This tsntee taken to mean, as a
much stranger consequence, that we estimate that the éntwilli have known)M’ all
the time in the past as well, including at the times it was ariqy the first messag¥l .
Closer inspection reveals that what we are really modelemg s the fact that several
sessions of the same protocol can run in parallel, asynolsiy: the intruder sends
M to A in the first sessiond sends bacl®/’ to B in the first session, then the intruder
uses thisM’ to compute another messafyf, sent toA, who starts a second session
and sends\/] to B, and so on. For further discussion on the implications of iy
of modeling protocols, see Blanchet's paper, cited abodg Blanchet also discusses

why this is asafeapproximation (Section 2.5), i.e., is there is any attacaliatthen

10

atta(M) < atty (M) (18)

)
atto(k(sym, sessiony (A4, B, N,))) (19)
atts(k(sym,na; (A, B))) (20)
atto(k(sym,nb1 (Kap, A, B))) (21)

Figure 5: Phases

there will be a proof ofL from our clause set.

This approximation is precise enough in most cases. Sorres e@lsere it is not
include protocols with timestamps (see Section 5), prdotitat combine two sub-
protocols, one where long-term keys are established, ardand one where these are
used to exchange short-term keys, and finally protocols eviaer assume that some
secrets can be corrupted over time. We model all three ginmby distinguishing two
phases = 1,2. More are possible. The phastabels theatt predicate, i.e., we have
two predicateatt; andatt, instead of just one predicas@tacker as in [14].

Let us deal with the case of secret corruption. Intuitivplyase 1 represents ses-
sions that are old enough that the old session kéygm, session; (A, B, Na)) may
have been guessed or discovered by the intruder. This imjesyaonservative approx-
imation: we estimate that all old secrets (in phasare compromised, although only
some or even none of them may have been actually compromizethe other hand,
no secret in phasgis compromised—unless the protocol itself leaks them. Tdeho
phases, we only need a few more clauses, shown in Figure b:stdi@s that the in-
truder has memory, and remembers all old messages from fihagpdase 2, while the
other clauses state that all old session keys, as well aklalbmces, are compromised.
This is similar, e.g., to Paulson’s Oops moves [71].

Figure 6 lists our security assumptions, i.e., what we esténthe attacker might
know initially: all agent identities are known, as well asmlblic keysk(pub, X), and
the attacker’s own private key(prv, i)—whatever the phase. Note that talking about

public and private keys in this protocol, which only uses eyairic keys, is overkill.

11

att;(X) < agent(X)
att;(k(pub, X)) att;(k(prv,1i))

Figure 6: The attacker’s initial knowledge

We include them to illustrate the fact that the model is nmiteéd to symmetric key
encryption, and public-key protocols would be encodeddsstasily.

Finally, Figure 7 lists our security goals, or rather thedégated forms. Note that
we are only concerned with the security of phase 2 data, gihase 1 is compromised
by nature. Negation comes from the fact that a forn@lless a consequence of a s&t
of clauses such as those listed above if and only, #G is inconsistent. E.g., (22) is
the negation o8N, - atty(k(sym, sessions(a, b, N,))), and corresponds to asking
whether the secret kel s, as generated by the trusted third-party in current session
can be inferred by the attacker. (23) asks whether thereéy &k, that would be both
known to the attacker, and is plausibly accepted by Alijea6 its new symmetric key;
we again use the auxiliary predicaieice _key,. Finally, (24) asks whether there is
a key K,;, as could be used in the final check of the protocol by Bob (ntesSaof

Figure 2), and that would be, in fact, compromised.

1 < atty(k(sym, sessiong(a, b, Ny))) (22)
1 < atty(Kap),alice key,(a, Kap) (23)
1 < atty(Kap), bob_key, (b, Kop) (24)

Figure 7: (Negated) security goals

Call, somewhat abusively, th@otocol 7 the collection comprised of the crypto-
graphic protocol itself, the (Dolev-Yao) security moddie tsecurity assumptions and
the security goals. Le&§,; be the corresponding clause set. The clausSggetenoting
the symmetric-key Needham-Schroeder protocol NS is themtiion of the clauses in

Figure 1 ¢ = 1,2), Figure 3 {(= 1,2), Figure 6 { = 1, 2), Figure 4, Figure 5, and

12

Figure 7.

Unsurprisingly, running a first-order prover agairists reveals a possible attack
against Bob. E.g., SPASS v2.0 [86] finds that the above sdtaokes is inconsistent,
with a small resolution proof, where only 309 clauses wengvdd, in 0.07 seconds
on a2.4 GHz Intel Centrino Duo class machine. Examining the proeéads that the
attack is actual. This is the well-known attack where thackr uses an old message 3
from a previous session (for whichi,; is now known), and replays it to Bob. The at-
tacker can then decrypt message 4, since he kidgysand Bob will accept message 5
as confirmation.

Removing the failing security goal (24) produces a conststet of cIauseS“l‘ifgfe:
so there is no attack on the other two security goals. Thimsde be out of reach
for SPASS (at least without any specific option): after 10 utes already, SPASS
is lost considering terms with 233 nested applications efgticcessor functiosuc;
we decided to stop SPASS after 4h 10 min, where this numbemtagased to 817.
However, our own tooh1, from theh1l tool suite [40], shows both that there is a
plausible attack against Bob and definitely no attack agéilise or the trusted third-
party, in0.68 s; h1 works by first applying a canonical abstraction to the giviause
set S [42, Proposition 3], producing an approximatiéh in the decidable clas’/;
[68, 84]; thenh1 decidesS’ by the terminating resolution algorithm of [42]. We refer

to this paper for details. We shall return to this approac8ewtion 6.

4 Undecidability

An intuitive idea to reach our goal, i.e., producing formabgfs from a security
proof discovered by a tool such as ProVerif, SPASShar is to instrument it so
as to return a trace of its proof activity, which we could theonvert to a formal
proof. However, this cannot be done. As illustrated Sﬁr{gf“’, the protocol, with-

out the security goal (24), is secure becausecaenotderive any fact of the form

13

atto(k(sym, sessiong(a,b,n,))) for any termn,, and there is no ternk,, such
that bothatts(k,,) andalice key,(a, kq) Would be derivable. In short, security
is demonstrated through tladsencef a proof.

It would certainly be pointless to instrument ProVerif, SF\orh1 so as to doc-
ument everything ididn’t do. However, these tools all work by saturating the input
clause sef representing the protocal to get a final clause sét,., using some form
of the resolution rule, and up to specific redundancy elitndmarules. To produce a
formally checkable security proof of the protocel—in case no contradiction is de-
rived from S—, what we can therefore safely assume is: 4) is consistent, (B
is entailed bysS, and (C)S is saturated up to redundancy (see [8]).

Bruno Blanchet kindly reminded me that point (C) could impiple be used to pro-
duce a formal proof that is secure. We have to: (a) prove formally that the saturation
procedure is complete, in the sense that whengyelis saturated up to redundancy,
and every clause i§ is redundant relative t8 ., thenS is consistent; and: (b) pro-
duce a formal proof that ., is indeed saturated up to redundancy. Task (b) is complex,
and complexity increases with the sophistication of tharsdibn strategy; realize that
even the mundane task of showing, in Isabelle or Coq, thatgiwen literals do not
unify requires some effort. Moreoves$, is in general rather large, and task (b) will
likely produce long proofs. Task (a) is rather formidabletself. However, a gifted
and dedicated researcher might be able achieve as muclggesssed to me by &lric
Fournet, while the effort in achieving (b) is likely to be cparable to the one we put
into our toolh1nt (Section 7).

We believe that the most serious drawback of this approaicHést non-maintain-
ability: (a) and (b) have to be redone for each different igditon procedure, i.e., for
different tools, or when these tools evolve to include negurelancy elimination rules
or variants of the original resolution rule.

This prompts us to use only points (A) and (B) above, not (Gjtunately, and this

14

is one of the points that Selinger makes [77], a clause sairisistent if and only if

it has amodel We may therefore look for models 6f as witnesses of security far.
While Selinger proposes this approach to check whethigisecure, it can certainly be
used to fulfill our purpose: assume that we know thi& consistent, typically because
ProVerif, SPASS oh1, has terminated on a clause $gt that is saturated under some
complete set of logical rules (forms of resolution in theediprovers) and which does
not contain the empty clause; then our tasks reduces to answering two questions:
(1) how can we extract a model from a saturated set of clafigesot containingl?

(2) given a modelM that acts as a certificate of satisfiability, hence as a aatdiof
security forr, how do we converiM to a formal Coq proof?

Question (2) is not too hard, at least in principle: produgeaf thatM satisfies
each clausé€' in S, by simply enumerating all possible values of each freeatdei in
C, and checking that this always yields “true”. For larger ralsd we shall see that
we can instead build a model-checking algorithm to checkthdreM satisfiesS (in
notation, M = S), and keep a trace of the computation of the model-checkeenT
we convert this trace into a formal proof. We shall see howaatds in Section 7.

Question (1) is easy, but ill-posed, because we did not impoy restriction on
the format the model should assume. (Note that we don’t knbetherM is finite,
in particular in the cases of SPASS and ProVerif.) The anssvératS. is itself a
perfectly valid description of a model, namely the uniquesteHerbrand modéfp 7’s__
of S (I owe this simple remark to Andreas Podelski, personal canioation, 1999).
What this model lacks, at least, is being effective: theia general no way of testing
whether a given ground atorh holds or not in this model. In our case, the important
result is the following, which shows that we cannot in gehevan test whetheM =

S, whereM = lfp Ts__, contradicting our goal (2).

Proposition 4.1 The following problem is undecidable: Given a satisfiabkeo$dirst-

order Horn clausesS,,, and a set of first-order Horn clause&$ check whether the

15

least Herbrand model of . satisfiesS. This holds even if contains just one ground

unit clause, and,, contains only three clauses.

Proof. By [34], the satisfiability problem for clause sef$ consisting of just three
clause(fact), p(left) < p(right), and L < p(goal) is undecidable. Taks, to
consist of the clauses fact), p(left) < p(right), andq(*) < p(goal), whereq is a
fresh predicate symbol anda fresh constant. Take to contain just the clausg).
Note thatS,,, as a set of definite clauses, is satisfiable. We claimS$had unsat-
isfiable if and only iflfp Ts_ satisfiesS. If S is unsatisfiable, thend. € lfpTs, =
Ts,(IfpTs,). By definition of Ts,, and sincel <« p(goal) is the only clause of
S; with head_ L, there is a ground instangggoal o) in lfpTs,. Now lfpTs, =
U,en T8, (0), since theT's, operator is Scott-continuous. By an easy inductiomon
(which, intuitively, is proof length), every atom of the fop(t) in T¢, () isinTg_(0).
Sop(goal o) isinlfp Ts__, whencey(x) is in the least Herbrand model 6%, i.e., the
latter satisfiesS. Conversely, ififp Ts_ satisfiesS, that is,q(x), by similar arguments
we show that it must satisfy some instanceoal o), which is then inlfp Ts,, so that

S1 is unsatisfiable. O

Despite the similarity, this theorem is not a direct consgape of Marcinkowski and
Pacholski's result [61], that the Horn clause implicationlgemC; = Cs is undecid-
able. Recall thaC; = Cy whenever every model af; satisfiesCs. Indeed, this is
not equivalent to (not entailed by, to be precise) the faat the least Herbrand model
of C, satisfies.

Replacing the ground unit claugéx) of S above byatt; (x) shows that:

Corollary 4.2 The following problem is undecidable: given a satisfiablecdirst-
order Horn clausesS,, check whethelfp T's__ is a model of a first-order formulation
of a cryptographic protocofr. This holds even ifr contains absolutely no message
exchange (i.e., the number of protocol steps is zero), hasare phase, the initial

knowledge of the intruder consists of just one ground messadlhe Dolev-Yao intruder

16

has no deduction capability at all (i.e., we don’t includeyaof the rules of Figure 1),

and the number of security goals is zero.

To mitigate this seemingly devastating result, recall 8BBASS and ProVerif use
variants of resolution, and the clause sgis produced by SPASS or ProVerif are sat-
urated up to redundancy. SPASS uses sophisticated formslefenl resolution with
selection and sorts, while ProVerif uses two restrictiohsesolution. “Saturated up
to redundancy” [8] means that every conclusion of the chassplution rule with
premises inS., is either already inS.,, or redundant with respect t§.., €.9., sub-
sumed by some clause K. It is well-known that, for all variants of resolution that
can be shown complete by Bachmair and Ganzinger’s forcicignigue [8], the mod-
els of a setS, that is saturated up to redundancy are exactly the modeledfubset
Sprod € S Of all the so-calledproductiveclauses ofS.,. In particular, for Horn
clauseslfp Sproq = lfp Sw. For example, the first phase of the ProVerif algorithm
uses a form of resolution with selection, where all litei@fishe formatt; (M) are se-
lected in clause bodies. The effect is that the clausé$,of, cannot contain any literal
of the formatt, (M) in their body. It is then a trivial observation that Propimsit4.1
still holds with S replaced byS,,,..q (just makep different fromatt;). However, this
first phase is not a complete procedure in itself. Orderedlution with selection [8],
as well as the kind of resolution used in SPASS [85] are cotaplgsing the former
for example,S,,,q consists of clauses where no atom is selected in any clawse bo
and the head is maximal with respect to the chosen stabléfauelded ordering-.

Even so, this does not help in general:

Proposition 4.3 Proposition 4.1 and Corollary 4.2 still hold #, is replaced by a set

Sproa Of productive clauses, again even of cardinafity

Proof. Modify the construction ofS., slightly, and take it to consist gf(c, fact),
p(£(X),left) < p(X,right), andq(x) < p(X, goal). Let - be defined by (M) >~
p(N) for every termsM and N, andp(M,N) = p(M’',N’) if and only if M’ is

17

a proper subterm of/. Select no atom in any clause body. Th&f,; = S is

a set of productive clauses. As in Proposition 451,is unsatisfiable if and only if

IfpTs,, ., E q(x). O

5 Explicit, Finite Models

There is a much simpler solution: directly fifidite modelsM of the setS of clauses
representing the protocal. This won't enable us to verify protocols that are secure
becauses is satisfiable, but not finitely satisfiable. But again Sedirgearly experi-
ments [77] suggest that this is perhaps not a problem inipeacto wit, remember that
there is a 5 element model for Selinger’s encoding of the NRagdSchroeder-Lowe
public-key protocol. In fact, our encoding of the 7-messidgedham-Schroeder-Lowe
protocol has a 4 element model, found by Koen Claessen’'s?addox. As for our
running example, our todi1 finds a 46 element model fdt%/ “ (see Section 3), but
there is also a 4 element model (see below).

There are certainly protocols which could only be shown seeasing techniques
requiring infinite models. In particular, this is likely fgrarametric verification ofe-
cursiveprotocols—where by parametric we mean that verificatioruthoonclude for
all values of an integer parametertypically the number of participants or the number
of rounds. Solving first-order clause sets representing puatocols was addressed by
Kusters and Truderung [57]. Examples of such protocols ateadd Otway'’s recur-
sive authentication protocol [18], or the IKA protocols [BINote however that both
are flawed [76, 73], so th&t would in fact be unsatisfiable in each case.

Finding finite models of first-order clause sets is a sportl iann particular ad-
dressed in the finite model category of the CASC competiti@naual CADE confer-
ences. Paradox [21] is one such model-finder, and won the etitiop in 2003, 2004,
2005, 2006. Paradox v2.3 finds a 4 element modeJS‘[ﬁgife (see Section 3), in.6 s.

Due to the algorithm used by Paradox, this also guarantegshére is no 3 element

18

crypt |1 12 13 4
11 111 14 n
12 12 11 14 4
13 3 4 14 4
14 13 12 12 12

Figure 8:crypt, in Paradox’s 4 element model

model. We have also tested other model finders, such as M&8gdrthe experimen-
tal tool Darwin [10]. None returned on any of the examples tatested them on, in
a time limit of two hours (and sometimes more).

Paradox represents finite models in the obvious way, asdableresenting the
semantics of functions, and truth-tables representindipates. Call thesexplicitly
presentednodels. The explicitly presented model found by ParadO)Sm’fe has4
elementl, 12, 3, and!4. All identities a, b, i, s have valuél; this is also the value of
nil, prv andpub, while the value okym is 2. Theatt; predicate holds of valud
only, whileatt, holds of!1 and!2 only. The table for encryption is shown in Figure 8:
thatcrypt applied to!2 and!1 yields!2 then means that encrypting a message learned
between phase 1 and phase 2 (with vakjewith a key that was already known in
phase 1 (with valuél) cannot be known in phase 1 but will have been learned by the
time we enter phase 2 (i.e., it has val@g It is also useful to think of these values as
pairwise disjointtypes messages of typd are those known in phase 1, messages of
type!2 are those known in phase 2 but unknown in phase 1. The othggv&r types)
are harder to interpret. Bott3 and!4 can be thought as types of messages that will
remain secret even after phase 2. The only difference betiesn is that encrypting
messages of typd with data of typd2 (known in phase 2 but not before) will produce
ciphertexts that are known in phase 2 (of typg while messages of tyd8 are safer,
in the sense that encrypting them with data of tifpgield ciphertexts of typé&4, which

remain unknown even in pha&e(but don’t encrypt them twice).

19

Model-checking clause sefsagainst such small modelgt, represented as tables,
i.e., checking whetheM = S, is straightforward, and works in polynomial time,
assuming the number of free variables in each clausg isf bounded: let be the
largest number of free variables in clausesSoh the number of elements i, then
for each claus€ in S, enumerate the at most tuplesp of values for the variables
of C, then check that’ underp is true. Call one such step of verification titaholds
underp acheck In the example of Section 3,= 4, there ares0 clauses with at most
5 free variables: a conservative estimate shows that we neadst50 x 4° = 51 200
checks. A precise computation shows that we ngdfl + 11.4' + 17.4% 4 8.43 +
4.4* 4+ 2.4% = 3 908 checks.

However, the assumption that the number of free variablbsuimded is important
in the latter paragraph. In general, using the same congtruthat the one showing
that model-checking first-order formulae against finite gledsPSPA CE-complete,

we obtain:

Lemma 5.1 Checking whethetM | S, where M is an explicitly presented finite
model andS is a set of Horn clauses, isoNP-complete, even wheM is restricted

to 2-element models anfl contains just one positive, unit clause.

Proof. We show that checkingt [~ S is NP-complete. Membership iINP is easy:
guess an unsatisfied clausein S and values for its free variables. Conversely, we
show that the problem BIP-hard already whem is the two-element moddD, 1},
with one predicaterue, which holds ofl but not of0. We also assume term constants
t (denotingl), £ (denotingD), and (denoting logical conjunctionpr (denoting logical
disjunction),not (denoting negation). We are now ready to reduce SAT: letripeti
be a setS, of propositional clauses on a vectdrof propositional variables, seen as
a conjunctionF (4). Build a first-order termi#*(A4), where now the variables id
are seen as term variables, by replacing andsbfy and, ors (/) by or, negations

-,

(—) by not, and so on, inF'(A). Let S consist of the unique positive unit clause

20

-,

true(not(F*(A))). ClearlyM = S if and only if Sy is not satisfiable. O

What this lemma illustrates, and what practice confirmshé it is not so much
the numbe# of elements of the model that counts, or even the number aksrin its
tables, but what we called the numbercbiecksneeded. Both the number of entries in
the tables and the number of checks can be exponentially.l&fgwever, the approach
is, as we shall see, practical.

We have conducted an experiment on several secrecy pretoRekults are to be
found in Figure 10, and we shall comment on the protocolsthddost were found in
the Spore library [78]. The only exceptions are EKE and EARAAsee below). The
reader should be aware that the proportion of secrecy polstdlcat are in fact secure is
small, and, despite our trying to avoid vulnerable protscele actually lost some time
experimenting with some other protocols that eventualiped out not to be secure.
(E.g., although the Kao-Chow protocol [52] is well-knownlte vulnerable, the Kao
Chow Authentication v.3 protocol is not reported as vulidgan SPORE; however we
found out that it was subject to an attack.)

The NS row is our exampléss/¢, while the amended NS row is a corrected ver-
sion [67] that satisfies all required security propertiearadox always finds smallest
possible models, since it looks for models of sizfor increasing values df. On the
other handh1 is a resolution prover that decides the class all of whose satisfiable
formulae have finite models; the models extracted are iriquéat not minimal in any
way. We report figures found blgl so as to appreciate how even small models in
terms of number of elements (e.§7 for the amended NS protocol) are in fact large
in practice (e.g.188 724 entries—we actually report a number of transitions in a de-
terministic tree automaton describing the model, as erpthin Section 6, and this is
alower boundon the actual number of entries), and require many checls (@ore
than one billion).

The NSL7 row is the 7-message version of the Needham-Schiraenve protocol,

21

A— S:AB

S— A: {Kb,B}K:1
A— B:{N,, Ak,
B— S:B,A

S— B: {KG,A}K:1
B — A:{N,, Ny, B}k,
A— B: {Nb}Kb

N Ot W=

Figure 9: The 7-Message NSL Protocol

Protocol Paradox hi
Time #elts #entries #checkbime #elts #entries #checks

NS 1.62s 4 824 3908(0.70s 46 217 312 430 10°
amended NS [671]> 30 872s) (> 5) - —|1.71s 57188724 1.24510°
NSL7 [67, 59] 4.85s 4 2729 2208|8.03s over-approximated
Yahalom [72] 3190s 6 5480 38 864(4.82s > 57 > 2.46 10°
Kerberos [19] 17.87s 5 1767 5518|0.94s 57 7952 84.5 10°
X.509 [78] 3395s 4 142487 12670(0.44s > 29 > 228.5 10°
EAP-AKA [7] 54.3s 3 2447 1457(1.93s 72 22 550 7.74 10°
EKE [11] 0.44s 4 3697 4632|1.88s 48 16016 64.5 10°

Figure 10: Model sizes

checking that the secrecy of the exchanged messages isya@smstead of mutual
authentication. See Figure 9. Contrarily to the above ma this is an asymmetric
key protocol. The messages 1, 2, 4 and 5, which are usuallgl¢if models of this
protocol, are meant foA and B to get their peer’s respective public kel and K,
from the servetS. This is a rare example where the standard approximatianesty

of h1 fails (without added tricks), and1 does not conclude that the protocol is safe;
Paradox finds a 4 element model, showing it is indeed safe.

The Yahalom row is Paulson’s corrected version of the Yamapwotocol [72].
While itis found secure blal in 4.8 s, the model found (in implicit form, see Section 6)
is so big that we have been unable to convert it to an expkgtesentation in 2 GB
of main memory using our determinizet det . However, note thahl did find a
model—it is just too big to print in an explicit form. The saréng happened on the

X.509 row.

22

The Kerberos row is Burrows, Abadi and Needham'’s [19, Sactipsimplified
version (4 messages) of the Kerberos protocol. This is alewvk as the shared key
Denning-Sacco protocol [33], with Lowe’s modification [6@Jnd is a variant of NS
where nonces are replaced by timestamps. We model timestasivo constants;
andt,, wheret; is used by honest agents in phase 1&nih phase 2. In other words,
we use the safe approximation that all old timestamps arateduall current times-
tamps are equated, but we do draw a distinction between aldament timestamps.
We also add clausestt;(t;) for all 7, € {1,2}, meaning that all timestamps are
known to the intruder at all times.

The X.509 row is the so-called “BAN modified version of CCITT59 (3)", as
referenced in the SPORE database [78]. Several other warsitthe X.509 protocol
are vulnerable. This particular version is a 3-messageopobtthat uses nonces and
asymmetric cryptography, and no timestamp.

The EAP-AKA row is the extensible authentication protodehApP), with authenti-
cation and key agreement (AKA), from the AVISPA repository. [This is developed
from the UMTS AKA authentication and key agreement protpsek Figure 11. This
is meant for a serve$ and a so-called ped? to agree on a session key for encryption
CK = £3(SK, Ny), and a session key for integrity’ = £4(SK, N;), whereSK
is a long-term secret betweéhand P, N, is a nonce generated l#y at step 3, and
f3 andf, are key generation functions. We mod&k ask(sym, [S, P]). The proto-
col also uses request ids and response ids, which we modehatotsrequest_id
andrespond_id, a final signalsuccess, a network address identifie¥ Al for P,
modeled anai(P), another key generation functic, two so-called authentication
functionsf; andf,, a hash functiom, and a sequence numbg&gn, which we model
assession;(NAI, S, P) in phasei, thus merging all old sequence numbers, and all
current sequence numbers, keeping old and current seqonantgers distinct. We test

whetherP’s and S’s version of the two key€'K andI K are secret. Secrecy is not

23

1. S — P :request_id

P — S :respond_id, NAI

3. S— P:N;,, AT_AUTN
whereAT_AUTN = ({Sqn}ak,£1(SK,Sqn,Ns))

AK = £5(SK, Ns)

4. P— S: AT _RES, h(h(NAI,IK,CK), AT_RES)
whereAT_RES = £5(SK, Ns)

5. § — P :success

o

Figure 11: The EAP-AKA Protocol

guaranteed forP’s keys in this model, where several current sessions mag hHay
same sequence number. However, the keys afe definitely secret. This is what our
models for EAP-AKA establish.

Finally, the EKE row is an experiment on Bellovin and Meisittncrypted key

exchange protocol [11, Section 2.1], see Figure 12. The newedients here are as
follows. First,enc anddec denote encryption and decryption througkigher, i.e.,
we have not onlfec(enc(M, K), K) = M but alsoenc(dec(M, K), K) = M, the
latter means that every message can be thought of as thé¢ oéshé encryption of
some message. In particular, the clauses for EKE should derstood modulo an
equational theory, generated by the latter two equationis. However to precompile
these equations into the remaining clauses, so that only elauses without equations
remain, by computing all superpositions [8] in a preprogsesstep. It turns out that
for such an equational theory, this terminates. A similenktis used by Blanchet in
his tool ProVerif to compile his rules [14]. In message 1, phublic key K, and its
private keyK ! are generated fresh, at},, is a shared password betweérand B.
R is a fresh nonce in message 2, ad/isin message 3 and¥, in message 4. The final
shared key, which should be secretRisWe naturally assume that all passwords used
in phase 1 are known to the attacker in phase 2.

Although this protocol may seem short, this is the one thgtires the most

clauses:124, compared tol6 for X.509, 49 for EAP-AKA or Yahalom,50 for NS

24

A — B :enc(K,, Puy)

B — A:enc({R}k,, Pub)
A— B:{N,}r

B — A:{N,,Ny}r
A— B :{Ny}r

Cu o

Figure 12: The EKE protocol

or NSL7,51 for Kerberos, and5 for amended NS. The reason is another peculiarity
of this protocol: we need to model the fact ti#3} is aweak secret.e., one whose val-
ues we can feasibly enumerate. Modeling resistance aghatistnary attacks, as done
by Corinet al. [28], is out of reach of our simple style of models. Instead,model
the weaker, but in fact adequate enough, propertsesistance against time-memory
trade-off attacks The latter [46] are the most effective form of dictionarjeaks. We
model the resistance of a weak sedreto these attacks by checking that there are no
two messaged/;, M- that aretestableand such thai/; = enc(M;, P). A mes-
sage is testable if and only if, intuitively, some part oftitif not necessarily all of it)
is knowable by the intruder. The idea is that time-memorgeraffs will enumerate
all (known) message&/; and test whether encryption with yields any recognizable
pattern; or enumerate all knowvi, and test whether decryption with yields any rec-
ognizable pattern. Intuitively, the difference with geslaesistance against dictionary
attacks [28] is that we only allow tests ¢hof the formClenc (M, P)] orC[dec(M, P)]
for some public contex@ and some public termV/; in particular, P only occurs once
in these tests.

We model testability through theestable; predicate (in phasé defined in Fig-
ure 13. Note that any known message is testable, that a@as(M, M-) is testable
if and only if one of M, M5 is (such a pair is known if and only Both M; and M,
are). All other clauses model testability using encryptmil decryption.

While this is probably the seemingly most complex problemowfset, it is in fact

25

testable; (M)
testable;(cons(My, Ms))
testable;(cons(My, Ms))

testable;(suc(M))

testable; (M)

testable;(crypt(M, k(pub, K)))
testable;(crypt(M, k(prv, K)))
testable;(crypt(M,k(sym, K)))
testable; (M)

testable;(k(prv, K))
testable;(k(pub, K))
testable;(k(sym, K))
testable,;(X)

testable;(enc(M, K))
testable; (M)

testable; (M)
testable;(dec(M, K))

testable;(X)
testable;(X)

testable,(X)
testable;(X)

Figure 13:

() (NN ¥ (L

)

1

att;(M)

testable; (M)

testable; (M)

testable; (M)

testable;(suc(M))

Testing by decrypting with a known key:
testable;(M), att;(k(prv, K))

testable; (M), att;(k(pub, K))

testable; (M), att;(k(sym, K))

Testing by encrypting with a known key:
testable;(crypt(M, K)), att;(K)

Testing key by decrypting known message:
testable; (M), att;(crypt(M, k(pub, K)))
testable; (M), att;(crypt(M, k(prv, K)))
testable; (M), att;(crypt(M, k(sym, K)))
Testing key by encrypting known message:
testable;(crypt(M, X)), att;(M)

Testing by cipher decryption:

testable; (M), att;(K)

testable;(dec(M, K)),att;(K)

Testing by cipher encryption:
testable;(enc(M, K)), att;(K)

testable; (M), att;(K)

Testing key by cipher-encrypting known message:
testable;(enc(M, X)), att;(M)
testable; (M), att;(dec(M, X))

Testing key by cipher-decrypting known message:
testable;(dec(M, X)), att;(M)
testable; (M), att;(enc(M, X))

Testability

26

one of the easiest to solve: see Figure 10.

Note that whileh1 returns exact answers in a matter of seconds, except for NSL7
on which it thinks there may be some attacks, Paradox findemdulit usually takes
much more time. An extreme example is Yahalom, where therGeé¢ model is found
in 53 min, or X.509, with56 min, or amended NS, where we ran out of patience after
hours1/4 (the only thing we know is that the least model contains atlg@lements
here).

From an explicitly presented finite modét, as returned by Paradox, it is in easy
to extract a formally checkable proof. In Coq, we declareratuctive type of values
of M, e.g.,.Inductive M : Set := vl : M |v2: M |v3: M |vd: Mfora
4 element model. Then, define all function and predicate syeriy their semantics.

E.g.,crypt (Figure 8) would be described by:

Definition crypt(m : M)(k: M) : M :=
match m, k with
vi,vl=vl |vl,v2=vl |vl,v3=v4 |v],vd= vl
| v2,vl = v2 |v2,v2 = vl |v2,v3 = v4 |v2,vd = v4
| v3,vl = v3 |v3,v2=v4 |v3,v3 = v4 | v3,vd = v4
| vd,vl = v3 | v4,v2 = v2 | v4,v3 = v2 | v4,vd = v2

end.
andatt, would be described by:

Definition atty(m : M) : Prop :=

match m with vl = True | v2 = True | . = False end.

The sizeof such a description is proportional to what we called thenher of
entries above. Proofs of clausésfrom the clause se$ are then very short: it
containsk free variables, we write its proof in Coq’s tactic language a

intro x;;case x1;...intro x;; case ry;simpl; tauto.

27

Protocol Checking Time #lines
NS 3.29s 1038
NSL7 1.76s 4415
Yahalom 36.6s 14 646
Kerberos 2.57s 2 584
X.509 11.01s 35472
EAP-AKA 4.42s 3763
EKE 1.99s 5023

Figure 14: Checking Explicit Models with Coq

The effect of this command line is to enumeratergilassignments of values to vari-
ables. This not only takes time proportional to the numbeclwcks (the #checks
columns in Figure 10), but also produces a proof term of sippqrtional to it.

We conclude that the explicitly presented models approagiractical, however
only for small models. While this approach is applicabletfa 3 to 6 element models
that Paradox found in Figure 10, it is completely unrealistr the models found by
h1, whether representable explicitly (NS, amended NS) or Wah&lom). Note that
the MACE algorithm underlying Paradox is doubly expondntiathe numbern of
elements of the model. In practice, the largest models we dimcovered with Paradox

contained 7 elements. However, when this works, this worddg wespite Lemma 5.1.

6 Large Models, and Tree Automata

There are several reasons why we would like to find a more effianethod for pro-
ducing formally checkable proofs. This will be solved in B&ae 7. As it stands, the
strategy of Section 5 does not scale up. That is, it does rpby &p security proofs that
would require finite models larger than 6 elements. And tlageca few reasons why
we would like some larger finite models.

The first one is that Dolev-Yasecrecyproperties are in fact simple to prove. Re-
member that the 4 element model that Paradox founcﬂl‘t{éf‘z mapped each intruder

identity to the same valué]. No such model can ever be used to prove authentica-

28

tion properties, where we need to make a distinction betweentities. This phe-
nomenon is already illustrated on Paulson’s correctedaesf the Yahalom protocol
[72], whose security depends on checking the identity ofgenaincluded in a mes-
sage.

A second reason is that thetyle of protocol specification that we used in Sec-
tion 3 makes it more likely that secure protocols have smaliiets, but we may need
other styles in other applications. One may describe ole stystatelessagents only
remember past values, not because we have modeled a laeatstaaining all val-
ues of their internal variables, but because they are giaak lbo them in received
messages. For example, look at message 2 of Figure 2: Alkeves{N,, B, K.,
{Kab, A}k, } k.. from the trusted third party. The corresponding clause 8 (%ee
Figure 3), where Alice expects a message of the ffitma; (A, B), B, Kap, M]}x(syn,[4,s))-
While freshness is checked by verifying that the nonce paris of the formna,(. . .),
Blanchet’s clever trick of parametrizing,; by some free parameters forces this term to
match only if A was indeed the intended recipient (viz. the occurrencé of the key
k(sym, [4, s])), and to remember whom wanted to talk to (viz. the two occurrences
of B must match). Other, more precise, protocol verificationgamploy stateful
models, whereby each agent maintains a state vector dogsedtits local program
counter, and all values of its variables (see [17] for anyeexample). This is needed
in verifying protocols where sessions must be sequentigl, ®r the Otway-Rees pro-
tocol [69], which is secure if sessions are sequential,isédure if sessions can be run
in parallel [22]. We have played with such a model, and foursaiisfiable both with
h1 (with a 54 element model, ih.1 s) and with Paradox (with a 4 element model, in
227 s). However, the fact that state vectors have high arity) entails that, while
function tables only requiré43 entries—for the 4 element model-predicateentries
require706 716.

We can only expect to need even larger models when consifdeomposition of

29

i
\\

s () ni |

0 \ () Qist-even
cons (_, u
07’
s (1)

%dd®
Figure 15: A tree automaton for lists of even numbers

protocols, or Web services [13], or cryptographic APIs [30]order of increased com-
plexity. However, note that the number of elements in the ehaifairly independent
of thesizeof the protocol.

Our model-checking technigue will be able to check the langedels found byl
(see Figure 10). Some of it rests on intuitions on how we dekigdby resolution [42],
and the relationship to tree automata.

Tree automaton are best explained as graph-like structomee precisely as cer-
tain hypergraphs. Figure 15 displays one tree automatashnlue take as example.
We take0 to denote zeros(t) to denote the successor®oi N, i.e.,t + 1 (so that the
numbern is encoded as(...(s(0))), with n copies ofs), nil to denote the empty
list, andcons to be the binary list constructor (so that the Ij}2, 4] is encoded as
cons(1, cons(2, cons(4,nil)))). The states of this tree automaton as&n gods, and
qist-even The transitions are hyperedges frenstatesy,, .. ., ¢, to another state, la-
beled by am-ary function symbolf. Graphically, we represent this as an arrow going
from f(_,...,.) to ¢, and lines from each statg to the corresponding underscare
in the label. The idea is that if; is a ground term recognized &f, and ..., and,,
is a ground term recognized at, then f (¢4, ..., t,) should be recognized gt For
example, in the tree automaton aboés recognized afie en (this is the case = 0,

where there are in fact no source state)s80) is recognized afjoqq, s(s(1)) is rec-

30

ognized atgevenr We usually define the set of termscognized at stateg as those
obtained by finitely many applications of such transition& let the reader check that,
in the example aboveyen recognizes the even natural numbeggg the odd natural
numbers, andjisteventhe lists of even numbers.

The Horn clause format allows one to express the semantite®fautomata di-
rectly. Turn each statginto a unary predicate symbol, and redd) as ‘¢ is recognized
at¢”. Then the semantics of each transition is expressed as ia ¢lause. In the ex-

ample above, write the following:

(]even(O) (]even(S(X)) ~ c]odd(-Xv) QOdd(S(X)) ~ Qeven(X)

C]Iist—even(conS(Xy Y)) = Qeven(X)a QIist—ever(Y) QIist—even(nil)

Then observe that this does not just give the semantics dfeéleeautomaton, but in
fact completely describes it. Accordingly, definer@e automatoms a finite set ofree
automaton clauseslefined as being of the forR(f(X1,...,X,)) < Pi(X1),...,
P,(X,), whereXy, ..., X, are pairwise distinct; such clauses are just tree automaton
transitions frompP, ..., P, to P.

One can generalize the notion of acceptance at a state t@tsifjable set of Horn
clauses: for each satisfiable $ebf Horn clauses, and each predicate symBdi.e.,
each stateP), let Lp(.S) be the set of ground termtssuch thatP () is in the least
Herbrand model of. Lp(S) is thelanguagerecognized astate P. WhenS is a tree
automaton, this coincides with the usual definition of theo$éerms recognized a®.

This connection between tree automata and Horn clausesaraessped by Rihwirth
et al.[38]; there,Lp(S) is called thesuccess sdbr P. This connection was then used
in a number of papers: see the comprehensive textbook j2pfiticular Section 7.6
on tree automata as sets of Horn clauses.

Tree automata clauses can be generalized right away toatlieg tree automata

[25, Chapter 7]. Calk-block any finite set of atoms of the form®, (X),. .., P, (X)

31

(with the sameX, andm > 0); it is non-emptyiff m > 1. We abbreviate-blocks as
B(X) to make the variabl& explicit. We shall also write3 for the set{ P, ..., P, }.

Alternating automaton clausese of the form:

P(f(X1,...,Xr)) < Bi(X1),...,Br(Xk) (25)

whereB;(X1), ..., Bkx(X}y) aree-blocks, andX;, ..., X are pairwise distinct. Itis
harder to find a graphical rendition of such clauses. Oneldak bf them as giving the
additional power to computiatersectiony . 5. Lr(S5) of recognizable languages:
foratermf(ty,...,t;) to be recognized at stafe, one must find a clause (25) such
thatt, is recognized adll the states i3y, and .. ., andy is recognized at all the states
in By.

For technical reasons, we shall also consigléversal clausef the formP(X).
These are meant to state that every term is recognized at/3tat

We definealternating tree automatas any finite sef5 of alternating automaton
clauses and universal clauses. (The standard definitigrdf#5 not include universal
clauses; on a fixed first-order signatiiea universal claus€(X) may be replaced by
the clause®(f(Xy,..., X)) < P(X1),..., P(Xk), wheref ranges ovek..) Tree
automata are the special case without universal clausdsybarec-blocks contain at
most one atom.

Given any clause s, h1 first applies a canonical abstraction [42, Proposition 3]
to get a clause s&f’ in the decidable clask; [68, 84], and such tha$ is satisfiable
wheneverS’ is. Thenhl saturatess” by ordered resolution with selection [42], getting
a saturated sef,. The point is that the subsg},..q C S of productive clauses that
h1 returns is always an alternating tree automaton [42, Pitpn®]. Determinizing
Sproa CaN be done by a standard powerset construction, and wealenmented this
in the toolpl det , also a part of thé1 tool suite [40]. The states of the determinized

automatonDet(S,,0q) are sets of states 6f,,..q, i.€., sets of predicate symbols.

32

We shall assume that the following procedure is used to défitéS,,, ..), which
builds new states on demand. Initially, the sgtof states, and the set of transi-
tions of Det(Spr0q), are empty. Then, while there is a function symiolsay of
arity k, andk statesq, ..., ¢ already constructed i) such that(}) ¢ = {P |
(3P(X) € Sproq) O IP(f(X1,...,X1)) < Bi(X1),..., Be(X1)) € Sproq - Vi -
B; C ¢;} is non-empty, add to @, and add the transition(f(X1,..., X)) <
¢1(X1), ..., q(Xy) to Det(Spr0q). Call thisthe powerset constructionlt is well-
known that the powerset construction has the property tigdbinguagé.,(Det(Sprod))
ofthe statey = {P1, ..., P, } in Det(Syr0q) is exactly the intersectio(n]Peq Lp(Sproa)\
Upgq Lp(Sproq). The fact that stategare built on demand also implies thiat(Det(Spro4)) #
¢ for all g.

The connection with finite models was done by Kozen [54], wheeoved that
complete deterministic tree automata were just finite madg@h fact, Kozerdefined
them this way.) There is a transition from the tuple of sté#gs. . ., ¢,,) to ¢ labeledf,
i.e.,aclause(f(X1,...,Xm)) <= q1(X1),...,¢n(X,) inthe clausal representation
of the automaton, if and only if the semanticsfahaps the tuple ofalues(qs, . . ., ¢m)
to ¢. That is, the states of a complete deterministic automateritee values of the
corresponding finite model.

The example tree automaton of Figure 15 is deterministitnbticomplete. One
gets an equivalent complete deterministic automaton byngda new, catch-all state
—, and adding all missing transitions te. This results in a rather messy drawing.

However, we can describe it as a finite model as indicatedeabov

S cons | Qeven Yodd Ylist-even

0 : Geven Geven Godd Geven - — Qiist-even
Godd Geven qodd - - - -
nil : Gist-even Qlist-even | — Qlist-even | — - - -

33

The powerset construction is easier to understand in tjiig. liFor everyf satisfy-
ing (1) above, instead of adding the transitigif (X1, ..., Xx)) < ¢1(X1), - -+, qx (X&)
to Det(Spr0q), add thetable entryf(q1, ..., qx) = ¢ to the model. This requires one
to write ¢ into the(qy, . . ., gx) entry of tablef, possibly after extending all tables with
entries for the value, in caseyg is fresh. Additionally, tables for predicates are given
as truth-tables; for each predicafe this is defined inDet(S,,.4) SO thatP holds of
stateq if and only if P € q.

We can now explain how we estimated the size of models redubyd1 in Fig-
ure 10: we rarpl det , which buildsDet(S,,.q), and we counted states (values) and
transitions (table entries).

Finally, while our model-checking technique will work onexhating tree automata,
it will in particular work on finite models encoded as altding tree automata (which
will necessarily be deterministic); i.e., each entry in bléa stating thatf applied
to values(vy, ..., v,,) should yield valuey, will give rise to a tree automaton clause
isw(f(X1,...,Xm)) < is1(Xy),. .., is.vn (X,), Wwhere there is ones_v pred-
icate for each value; the truth-table of each predicafeis encoded as the collection
of clausesP(X) < is_v(X), wherev ranges over the values that satigfyin the
model. While this won't decrease the size of the descrippicihe model in Cog—still
proportional to #entries—, our model-checker will have tipportunity to find proofs
that are shorter than the #checks steps needed in enumepatiofs. E.g., our model-
checker will produce the obvious proof th&(X) < P(X) holds (in any model),
without enumerating all possible values f&r

Finally, we loop the loop and observe that model-checkirjrey Det(S,,.0q) Of

against our old friendfp T’s,, ,, are the same thing:

Lemma 6.1 Let S,,.q be an alternating tree automaton. For any seof first-order

clausesDet(Sy,0q) = S ifand only ififp Ts . = S.

Proof. Say that a value in a model M is definableiff v is the denotation of some

34

ground term. A model idully completeif and only if all its values are definable.
Clearly,Ifp Ts,,, is fully complete, as every value is its own denotatidret (.S,,oq)

is also fully complete, since every value (stagep Det(S,,.q) is the denotation of
any ground term irL, (Det(Syr04)), @and this is non-empty by construction.

For any ground termt, observe thaDet(S,,.q) = P(t) if and only if ¢ is in
Uaspeq LaDet(Spmot)) = Uy/peq (Mer/preg Lo (Sprot) \Ups gy L (Surod)) =
Lp(Sproa), Where the latter equality is by standard set reasoningt ihBet(Syr0a) =
P(t)ifand only ifIfpTs,, ., = P(t). It follows that Det(S,,0q) = F' if and only if
IfpTs,,,, = F for every universal closed formul@: this is by structural induction on
F, using the easy fact that, whenevet is fully complete M = VX - G(X) if and
only if M = G(t) for every ground ternt. Since every sef$ of first-order clauses
is a universal sentence (taking into the implicit univergahntifications over free vari-

ables), we conclude. O

7 Model-Checking Against Alternating Tree Automata

Since Det(Spr0q) Can have exponential size in the size%f..q, one may say that
alternating tree automata atempact representatioref possibly large finite models.
We describe how to model-checkagainstM = Det(S,,.q) efficiently in practice.

But compactness has its toll:

Proposition 7.1 Checking whetheM = S, whereM = Det(Sy0q4) is compactly
represented by an alternating tree automafts)n,q, and.sS is a set of Horn clauses, is
EXPTIME-complete. ItiEEXPTIME-hard already ifS,,.q is a (non-alternating)

automaton, and' only contains one positive, unit clause.

Proof. Let n be the number of predicates #),,,4, S, k£ be the largest number
of variables in a claus€' of S, a the largest symbol arity. Note that we domn&-

quireto computeDet(S,,.q). However, computing it yields the desired upper bound:

35

mod 3

Figure 16: A tree automaton for numbers modg)@, and6

Det(Sproa) can be computed in time exponential in the sizeSpf,q, producing a
model with at mosp™ states, and tables with at m@&t* entries. We then enumerate
up to (2”)k = 2"F tuplesp of values for variables. For each, we can check whether
holds under in exponential time on a Turing machine (we need exponetitied to
travel along exponential-sized tables stored on the tapes)

Conversely, non-deterministic tree automaton univessiEX P TIME-complete
[25, Section 1.7, Theorem 14]. This is the problem of chegkimether, given a (non-
alternating) tree automata$i,.,q and a stateP, Lp(S,,.q) is the set of all ground
terms. This is the same as checkifig7s,,,, = S, whereS only contains the clause

P(X), hence taDet(Spr0q) = S by Lemma 6.1. O

7.1 Model-Checking Against Automata, Step by Step

We first explain the idea of our model-checking algorithm areaample. We use the
tree automaton of Figure 16 as model. Note that this is no longer a deterministic
tree automaton, sindkis recognized at three distinct states. The names of stavedds
make the automaton self-explanatory; 99 mod ¢ recognizes exactly the numbers that
are equal t@ modulo6.

Imagine we would like to check tha! = [g2 mods(s(5(s(Z)))) < go mod2(s(2)),

q1 mod3(s(s(2)))], whereZ is implicitly universally quantified igz mods(s(s(s(2)))) <

36

qo mod2(8(2)), 1 mod3(s(s(Z))). Intuitively, this states that i +1 is even & 0 mod 2)
andZ 4+ 2 =1 mod3, thenZ + 3 = 2 mod6.

We may first look at all the ways that the model can make 1 be even. There
is only one way to do so itM, i.e., there is only one way that{Z) be recognized
at go mod2, Namely by using the unique transition froMmeg2 t0 ¢o mog2; @S an au-
tomaton clause, this ig mod2(s(X)) < ¢1 mod2(X). ThenZ must have been rec-
ognized atq; mod2, i.€., Z must be odd. So we are left with checking thet =
[92 mod6(8(s(5(2)))) < q1 mod2(Z), ¢1 mod3(s(s(Z)))]. In general, to model-check
M = [H < B,P(f(t1,...,tn))], whereB is any set of atoms, we shall look for all
alternating automaton clausé¥ f (X1, ..., X,)) < B1(X1),..., B.(X,), with the
sameP and f, in the alternating tree automaton describing the madel replacing
X1 by tq, ..., X, by t,, this describes all the ways th#tt,, ..., t,) can be recog-
nized atP; then it remains to check thav! = [H < B, B1(t1), ..., By(t,)] for all
such clauses. This will be formalized in the P, f Elim) rule below: see Figure 18.
The (—P, f Elim) works on more complex judgments, for reasons we shall explai
shortly. Also, the above discussion assumed that there wamiwersal clausé’(X)
in M; otherwise, we shall also use another ridd/ niv) (Figure 17), which simplifies
the problem of checking |= [H < B, P(f(t1,...,t,))]to M = [H < B]: in this
case indeedgveryterm is recognized aP.

Returning to our example, we again apghyP, f Elim) to reduce the verifi-
cation of M = [g2 mods(5(5(5(2))) < a1 mod2(Z), 41 moas(s(s(2)))] to M =
[92 mod6(5(s(s(2)))) <= q1mod2(Z), qomod3(s(Z2))] (if Z 4+ 2 = 1 mod 3, then
Z +1 =0 mod 3), then toM = [g2 mod6(s5(s(s(Z)))) < ¢1 mod2(Z), g2 mod3(Z)]
(... andZ = 2 mod 3). We have simplified the body of the clause as much as we
could in this way.

Now look at the headgs mods(s(s(s(2)))) (“Z + 3 = 2 mod 6”). In a similar

way, we realize thaZ + 3 can only be equal t& modulo6 if Z + 2 = 1 mod 6,

37

so we are left with checking! = [¢1 mod6($(s(Z2))) < ¢1 mod2(Z), @2 mod3(Z)]. In
general, and assuming as above that there is no universsed®(X) in M (oth-
erwise we shall prefer to use rulerUniv) of Figure 17), to model-checkM |=
[P(f(t1,...,tn)) < B], we shall look for all alternating automaton clauses\ifi
whose head starts witR(f(...)). Let P,(f(X1,..., X»)) < Bi(X1),. .., Bin(Xy)
be these clause$,< i < p. Now P(f(¢1,...,t,)) holds in M if and only if the dis-
junction\/?_, (Bi1(t1) A...A By (ty,)) holds inM. This is the familiaClark comple-
tion from logic programming [23]. It then remains to check thadt= [\/*_, (Bi1(t1)A
... A Bin(tn)) < B]. However, the latter is far from being a clause in general.iso
Figure 18 below, we shall first convert the formy{&_, (B;1(t1) A.. .ABjn(tn)) < B
into a conjunction of clauses. This will be our ryle P, f Elim).

This is also the rule that forces us to consider not just Héamses, but general
clauses. Imagine that, in our example, there had been twsetawith head of the
form g2 mods(s(...)): the clauses mods(s(X)) < ¢1 mods(X) We used above, plus
another one, says mods(s(X)) < P(X). Then using(+P, f Elim) would reduce
checkingM = [g2 mods (5(5(5(2)))) < 1 mod2(Z), 42 moa3(Z)] to checkingM =
[91 mod6(5(s(Z2)))V P(s(s(Z))) <= g1 mod2(Z), g2 mod3(Z)]. The latter formula is not
Horn, and we shall therefore need to define our model-chggiincedures so that it
takes general, possibly non-Horn claugéss input, and checks whethan = C.
(We shall in fact need a bit more again, in the form of histefiesee below.)

Let us return to our, unmodified, example. We must check wdrattholds that
M E g1 mods(5(s(2))) < q1 mod2(Z), g2 moa3(Z)]. Using(+P, f Elim) twice, we
reduce this to the problem of checking = [¢5 mod6(Z) < ¢1 mod2(Z), 42 mod3(Z)].
Now this clause is something we shall callaolause below, i.e., one without a func-
tion symbol: on these, we cannot apply either?, f Elim) or (+P, f Elim). How-
ever, any ground term that we may plug in f8rmust be of the forrmd or s(¢) for

some ground term So we only have to check the two clauses obtained by reglatin

38

by 0 and bys(Z,) respectively, namely = [g5 mod6(0) <= ¢1 mod2(0), 2 mod3(0)]
and M E [g5 mod6(5(Z1)) <= @1 mod2(5(Z1)), @2 mod3(s(Z1))]. This is what rule
(=P Elim) does in Figure 18, with a few added twists (in particular,nityoapplies
when there is an atom in the body of the clause to model-cheutt,uses this as a
guide as to which shapes #fshould actually be considered, looking at the motie)
The first clause is easy to check: a single applicatio-aP, f Elim) reduces it to
no clause at all (in informal term$, # 1 mod 2, so the body of the clause is false,
hence the clause itself is vacuously true). Apply{rgP, f Elim) and(+P, f Elim)

for as long as we can on the second one eventually leads ustkiog thee-clause
M E [q4mod6(Z1) < qomod2(Z1), 91 mod3(Z1)]. Repeating the process, we are led

to consider model-checking the following clauses, of whioh have kept only the

e-clauses:

M E (g5 mods(Z) <= q1mod2(Z); g2 mod3(Z)]

M E [¢amods(Z1) <= qomod2(Z1), ¢1 mod3(Z1)] (which we have just arrived at)
M E [g3mode(Z2) < q1 mod2(Z2), 90 mod3(Z2)]

M = [g2mod6(Z3) < qomod2(Z3), g2 mod3(Z3)]

M E (g1 mode(Z1) < 1 mod2(Z4), q1 mod3(Z4)]

M E [g0mode(Z5) <= qomod2(Z5), 90 mod3(Z5)]

M E g5 mode(Z6) < 41 mod2(Z6), 42 mod3(Ze))

Note that this is looping, as the lastlause shown is the same as the first one, up
to renaming (which is implicit, since all clauses are imiplyjcuniversally quantified).
When this happens, we stop, and conclude that the-{alstuse thus obtainelolds

in M. One may get an intuition of why this must be so as follows. hie $equence

of e-clauses above?; is obtained by assuming that denotes a ground term of the

39

' C (P universa)
'k CV-P(t)

(=Univ)

P universa)
(Loop) 710VErSS) (+Univ)
rocrco T'+CVP(t)

Figure 17: Basic model-checking rules

form s(Z,) (see above). SimilarlyZ, = s(Zs), Zo = s(Z3), ..., Zs = s(Zg), so that
the term thatZg denotes is a proper subterm of that denotedZbyit follows that, if
there were a ground tertrfor Z that made the first clauses mods(Z) < ¢1 mod2(Z),

g2 mod3(Z), false in M, then there would be a proper subterm:dér Zg that would
make the last clause false; i.e., there would be a propeesuhift for Z that would
also make the first clause false. By a classical argumedéséente infiniesince the
subterm ordering is well-founded, this is impossible.

Descente infinie is, at least in classical logic, equivaterihduction. So the Coq
proofs we shall produce from this looping argument will begds by induction, on the
structure of terms.

To formalize this, we keep kistoryT" of all e-clauses that we have encountered so
far. Loop-checking is performed by checking whether theenirclause is ii* (see
rule (Loop) in Figure 17). Because loop-checking is induction in disguione can
also sed" as a collection of induction hypotheses that may be fregbjiag.

The pair of the claus€’ to check and the history/ will be kept in a judgment
I' + C, and we shall define our model-checking procedure soAra= C' holds in
history I if and only if we can derive the judgmentt C' in the system of Figure 17
and Figure 18. In particular, model-checking proceeds Iphapg rules from the goal,

and must therefore be read from conclusions, below, to mesnabove.

40

7.2 The Model-Checking Algorithm, Formalized

The actual definition of our model-checking procedure (Fégli7, Figure 18) is made
more concise by relying on a few definitions. L%J,,4 be an alternating tree automa-
ton. Call a predicateé” universalin S,,.q if and only if S,,..q contains the clause
P(X). Judgmentd - C are composed of a clausg and ahistory I, which is
a finite set ofe-clauses. Are-clause E(X) is a disjunction of literals of the form
P(X) or =P(X), with the same variablé(; e-blocks are the special case with no
negation. All clauses in a judgment are implicitly univékgguantified, and do not
share variables. Here it is convenient that clauses may beHoon, and are written
as disjunctions; V Ly V ...V L. We letS,,.q/P be the the set of clauses of the
form P(f(X1,...,X,)) < Bin Sp0q for some body5 and some function symbol
£ Sprod/ P, f is the set of clauses of the same form, this time with giverction
f. We writei'for ¢y,...,t,, and X similarly in the name of brevity{7/X] is the
substitution[t /X1, . .., t,/Xn]. The notationE(f(X)), used in rule(—P Elim),
stands forF(X)[f(X)/X]; this rule is the only one that adds a clause to the hisfory
preparing for an argument by induction. The brace notateeduabove the premises
of this rule means that there are as many premises as thectaasesP(f(X)) v D
in Sproq/P; similarly for (—P, f Elim). In rule (+P, f Elim), we enumerate the
clausesP(f(X)) < B of Sprod/ P, f;)\ B denotes the conjunction of all atoms in the
body 5. By cnf, we mean a conjunctive normal form, obtained by isting ands
over ors. ThegSplit) rule is the only non-deterministic rule, and picks one sabsé
C;of Cy v ...V C,, provided the latter iblock-decomposede.,C1, ...,C, are all
non-empty and share no free variable. The rules in Figurepp8anly if no rule from
Figure 17 applies. This implies that no universal predicaieurs on the right of.

To produce a Coq proof thdlet(S,-.q) = S, we check that C for each clause
C in S. Our toolhlnt, also part of thenl tool suite [40], looks for a prooto of
F C by applying the model-checking rules from the bottom up. Fhportant result

41

(P(f(X))VD)€ESproa/P,f
—_—
'+ C Vv D[t/X]

'+ CV=P(f(D)

(=P, f Elim)

(P(f(X))VD)€ESproa/P

VX - E(X)V-P(X)+F E(f(X)) VD
'+ E(X)V-P(X)

(=P Elim)

I'EC, ...TFCk

(
I'HCV P(f(t))
where A¥_, C; is a cnf for

CVV (p(s(x))=B)e8yr0a/ s NBIE/X]

+P, f Elim)

r-cC; (1<i<n,n>2)

'ECiv...vC,
whereC, Vv ...V C, is block-decomposed

(Split)

Figure 18: Model-checking rules, end

here is the following soundness theorem. This is proved Hydtion on a derivation
w of - C'; apart from this outer induction, the rest of the proof is gheleton of the
Coq proof thah1nt extracts fromw. Let - denote the proper subterm ordering, and

observe this is well-founded. Let be defined by > tif and only if s > ¢ or s = ¢.

Theorem 7.2 (Soundness) etl’ = VX -F (X),...,VX-E,(X),andC = C(Xy,..., Xk)
be a clause with free variables i, ..., X;. If I' - C' is derivable using the model-
checking rules, then the following formula holdslip 7s, ,,, where all variables

range over ground terms:

VX1, X N\ (VX 2 X EBi(X)) = C(Xy, ..., Xy)

1<i<k
1< <m

Proof. By induction over a derivatiog of the judgment. We look at the last rule. The
cases of —Univ) and(+Univ) are clear. Fo(Loop), we observe thaf’ must be of

the formE; (X;) for somei, j, and we conclude by the antecedeiif < X, - F;(X).

42

For (=P Elim), let X1, ..., X} contain at least the variabl¥ free in £(X) Vv
—P(X). Without loss of generality, IeX be X;. We provev.Xy, ..., XA 1<i<k (VX =
X Ej(X)) = C(Xy,...,Xk) = E(X1)V-P(X;1) by an auxiliary indugijciytl)d(l,
well-ordered by-. (In Coq, we use thfix tactic to do this.) Our new induction hypoth-
esisis(x) VX < X;-E(X)V-P(X). We must then show th#(X;)Vv-P(X;) holds

inlfp T’s AssumeP(X) holds: we must show (X). But the only way thaP(t)

prod”

can hold inlfp Ts for any ground term, is thatt is of the form (%), and that there

prod?

is a clause with head(f (X)), say P(f(X)) = B, in Sp0q/P, Where A\ B[/ X]

holds inlfp T’s (In Coq, we usecase andinversion.) We may also write this

prod”
clause asP(f(X)) v D, whereD is equivalent to the negation ¢f B. Let X be
Xbt1, - Xptp, and letE,, 11 (X) be E(X) v —P(X). By the outer induction o,
we have a proof of Xs, ..., X, Xpt1,. .., Xpgp- A 2<i<hk+p VX < X;-E;(X)) =
E(f(X))VD.ForX, = f(Xps1,. -, Xrip), We h;/?tﬁ;tleveryf < Xj4s is such
that X < X5, so we may apply*). Simple logic then shows thdt(X5) holds. So
VX1, Xk Ni<ick (VX = X;-Ej(X)) = C(X1,. .., Xp) = E(X1) V-P(X))

1<j<m
holds inlfp T’s

prod*
Rule (—P, f Elim) is justified by the same case analysis, using Cegis: and
inversion tactics, but does not require to introduce any new inducktigpothesis
into the history. The correctness (fplit) is obvious. Finally, for(+P, f Elim),
propositional reasoning (using Co¢auto tactic) shows tha}!\f:1 C} impliesC v
V(P(f()?))ﬁB)eSmd/P,f A\ B[i/X]. Using the fact that, for any claug®(f(X)) < B
in Syroa/ P, £, \ Blt/X] implies P(f(#)) inlfp Ts,, ., we infer thatC'v P(f(£}) must
also hold inlfp 75, _, O

Using Theorem 7.2 and Lemma 6.1, we then obtain:

Corollary 7.3 If - C is derivable using the model-checking rules for ev€rge S,
thenDet(Sproq) = S.

For the sake of efficiencyy1nt actually uses a number of extra rules that act as

43

shortcuts in common cases, and which we describe later. #gedein Figure 17 and
Figure 18 above, and provided the extra r(HeElim) of Section 7.4 below is added,
these would essentially define Matzinger’s procedure [6Bg fact that we do not need
the costly rule(+Elim) is already an optimization over Matzinger's procedure,ckihi
depends on a subtlety related to the kind of models lHafinds: see Section 7.4.
However, even this is not enough to make this model-checkiggrithm efficient in

practice. We shall describe the required optimizationsaati®ns 7.5 and later.

7.3 Producing Coq Proofs

As we have said abové1nt produces Coq proofs by mimicking the proof of The-
orem 7.2, and output corresponding Coq proof arguments.léNbe have given the
bare Coq ingredients in the proof of Theorem 7.2, we illustthis through the exam-
ple of Section 7.1. While this is not an example from secuiitwill be sufficient to
explain howh1nt generates Coq proofs. Moreover, it will be clear that theltesy
Coq proofs are in any case unreadable—the real securityreagulies in the model,
not in the proof that it is a model.

For basics on Coq, we refer the reader to the Coq'Art [12]. s¥@tsome liberties
with actual Coq syntax, for readability purposes [83]. VEhile believe our model-
checking algorithm can be made to produce proofs in mostatanproof assistants,
the actual details presented in this section definitely oglyCoq’s specific ways, and
particularly as far as induction proofs are concerned.

First,h1nt outputs a definition of all possible ground terms:

Inductive term: Set := s : term — term | 0 : term

and of all clauses in the model, as an inductively defineecttin of predicates, taking

44

terms (of typeterm above) and returning formulae (of tyfiRrop):

Inductive gy mog2 : term — Prop =
trans_go mod2-S1 : VX1 : term- q1 mod2(X1) = qomod2(s(X1))
| trans_qgo mod2-01 : o mod2(0)
with ¢1 mod2 : term — Prop :=

trans_gi mod2-51 : VX1 : term- go mod2(X1) = q1 mod2(s(X1))

We omit similar definitions for the other predicaigsnods (¢ € {0, 1,2}) andg; mods
(0 <4 < 5). This definegg mog2 as the least predicate satisfying clausesns_qg mod2-S1
andtrans_qgg modg2-01, Simultaneously defining; mog2 as the least predicate satisfy-
ing clausetrans_q; mod2-s1. Note that these clauses are Coq incarnations of the cor-
responding alternating automaton clauses of the model.

Our goal in Section 7.1 was to prove the clagsgiods(s(s(s(2)))) < qo mod2(s(2)),
¢1 mod3(s(s(Z))) in this model. Accordinglyh1lnt will output a proof of the follow-

ing remark:

Remark remzg : VX5 : term-go mod2(s(X1)) = ¢1 mod3(s(5(X1))) = ¢2 mods(s(s(s(X1)))).

(The funny number “76” results from the numbering scheme kHarc uses, and is
not indicative of anything per se. Alsblnt will use the ancillary remarkem7g to
produce a trivial proof of the actual lemma we are interestedvhich only differs by
names of variables and order of atoms.)

The remarkremy¢ is proved by using rulé— P, f Elim) to examine all the ways
that one can deriveg mog2(s(X1)) in the model. Although one could directly use
the inversion tactic here, it is more convenient in an automatically deiyproof
to generate an auxiliary lemma that embodies this instafiéeversion. The gen-
eral form of such a lemma will provéXy,..., X, : term - P(f(Xq,..., X)) =

or,(Bi1,...,By), whereBy, ..., B, are the bodies of the clausB$ f (X1, ..., X,,)) <

45

Bi, 1 < i < p,of S,0q/P, f in the usual clause notation, and, is p-ary disjunc-
tion. The latter is defined bglnt as a type withp constructorssr,intro; : H; =
or,(H1,...,H;,...,Hy),1 < i< p, whereHq,..., H, are parameter formulae, of
typeProp. Instead obr, (B, ..., B,), it would seem simpler to use the semantically
equivalent3; v ...V B,. However, to do a case analysis on the latter, we would have
to use theelim tacticp — 1 times, whereas ther, trick allows use to uselim just
once, and get all cases of the disjunctions in one step.

In our exampleh1nt produced the following inversion lemma:

Remark remgs : VX7 : term- go mod2(s(X1)) = or1(¢1 mod2(X1)).

Proof. intros. inversion H. intros. apply or;intro;;tauto. Qed.

The proof ofrem;¢ then reads:

Proof. intros X;. intro H. intros. elim remgs (X7, H); intros.

apply rems5(X;); tauto. Qed.

The firstintro andintros tactics introduceX; : term, the assumptiofl : go mod2(s(X1)),
and various other assumptions we don’t care about. The goalv to proveys mods(s(s(s(X1)))).
To this end, we apply thelim tactic on the inversion lemmeem,, applied toX; and

H (so thatremgq (X1, H) is a proof ofor; (¢1 mea2(X1))). In general, if our current
proof goal is some formul&’, calling elim on a proof ofor, (H1, ..., H,) will sub-
divide the proof task irp sub-goals. For each 1 < i < p, theith subgoal will

still be F', only with H; as added assumption. Here= 1, a seemingly trivial case,
where however this mechanism allows us to asserighada2(X1)) holds, as an extra
assumption. To complete the proofdm-¢, it only remains to prove the correspond-
ing premise of th&—P, f Elim) rule, namelygs mods(s(s(s(Z)))) <= ¢1 mod2(Z),

do mod3(s(Z)), and to apply it to the case whefis X;. Thehlnt tool completes

the proof of the latter clause by a recursive call, producome other lemma named

46

remrs, and uses it as shown above, by invoking #pply tactic onrem;5(X;); we
then let Coq find the trivial proofs of the assumptions lefpraved by doing some
elementary propositional reasoning usiteuto. Accordingly, remzs is declared as

follows.
Remark remys : VX : term-qr mod2(X1) = ¢1 mod3(s(s(X1))) = ¢2 mods(s(s(s(X1)))).

and is proved in a similar way, using-P, f Elim) and other auxiliary sub-remarks
with lower numbers.
After a series of applications ¢f- P, f Elim), hlnt will arrive at the following

clause, which it will have to prove by usifg-P, f Elim) instead:
Remark remz; : VX : term-¢i mod2(X1) = ¢2 mod3(X1) = ¢2 mods(s(s(s(X1)))).

Our example is too degenerate to actually show what will bapip this case, and
the general case produces hairy proofs. So let's explainnthi technical diffi-
culty instead. We usimtro andintros to separate the variables,, . .., X,, of the
clause, and its assumptiong : Ay, ..., Hy : Ay, from the head of the clause, here
g2 mod6(s(s(s(X1)))). In the general case, this head will B¥ f(¢1,...,t,)) vV D,
for some disjunctiorD of atoms. Look at all the claus€3(f(Xy,...,X,)) < B;,
1<j <q,inSy0q/P, f. Thenhlme will, by using (+P, f Elim), obtain proofsw;
of the formulaevX,,...,. X,, - A1 = ... = A, = C; Vv D, foreachi, 1 < i < k,
where A¥_, C; is a cnf for\/9_; ABj. Sow;(X1,..., Xpm, H,...,Hy) will be a
proof of C; v D for eachi. Now hlnt produces a proofop;si- of C1 A ... A Cy =
Bi V...V By and uses it to derive a proof & v ...V B, V D (under assumptions
Xy : term,..., X, : term, Hy : Ay,...,Hy : Ay). An inversion lemma as used
above allows1int to deduce the desired he&df(t1,...,t,)) V D from the latter.

The main difficulty is to generaterp;s,-. First, we know thatC; A ... A Cy is

47

equivalent to3; Vv ... Vv B, in classical logic, however Coq is based intuitionis-
tic logic. (While we could import th€l assi cal module that implements classical
reasoning in Coq, we do not wish to do so.) It turns out thateshone of these propo-
sitional formulae involve negation, these two formulae tralso be intuitionistically
equivalent—something that is obvious from the Kripke seticarof propositional in-
tuitionistic logic.

The second difficulty is complexity-theoretic. We illugrat through an example
that an early version diilnt actually produced in 2003. This example has- 13,
B, throughBs; are conjunctions of jus? atoms, whileBg, ..., B3 each contain just
one atom. Distributing ands over ors yields a cnf with= 32 clausex], ..., Cys,
each with13 atoms. It is tempting to let Coq prové, A ...Cys = By V...V Bis by
invoking tauto, however this is hopeless. This is becataato, just like any other
reasonable tableaux prover for propositional formulad,atiempt to use the invertible
rules of its calculus eagerly. Concretely, this means thatto will do a case analysis
over thel3 atoms ofC; then a case analysis on th& atoms ofCs, and similarly
onCjs, ..., Css. Eventually, the resulting?)25 clauses are trivial to prove. But no
prover we know, includingauto, is able to deal with that many clauses. In general,
the problem is that, while a crif; A ... A Cy for By V...V B, is of exponential size
already ing, checking this by distributing back the ors over the andslbambleaux
provers we know do, is of complexityoubly exponentiah q.

To solve this, it would in principle be best to keep a tracehaf dperations used to
obtainCy A ... A Cy from By V... vV By, and using this trace to guide a Coq proof
that would not rely ortauto but would use the elementary tactiedm, split, left,
andright on A andv, explicitly. We haven't done so ihlnt, as the optimizations
presented in Section 7.5 and later, plus a few tricks thatieéite tautological clauses
and subsumed clauses amdrig ..., C%, happen to suffice in practice.

Let us turn to induction. Eventuallizlnt needs to prove theclauseys mogs(Z) <

48

q1 mod2(Z), g2 mod3(Z). To this endhlnt produces:

Remark remgs : VX1 : term- ¢y mod2(X1) = ¢2 mod3(X1) = ¢5 mode(X1)-
Proof. fix H;,4 1. introX. case X.
intros X1;exact remgs(H;png, X1)-

introH. elim rems;(H). Qed.

The key here is théx tactic: fix H;,4 1 simply adds the whole goal to prove as a new
assumption;,,4 : VX5 : term - ¢1 mod2(X1) = ¢2 mod3(X1) = ¢5 mods(X1). This
serves as induction hypothesis. We can then apply it to amyegprsubtermXs of X,

by invoking H;,4(X>). The extra number “1” informs Coq that subterms should be
extracted from first quantified term, helg .

The fix tactic is rarely used in man-made proofs, because it is-@name: only
when typing the finaQed will Coq check that all calls to the induction hypothesis
H;,q were really applied to proper subterms, and are therefdid. vidowever, using
more standard induction tactics suchiasluction would require us to specify in
advance the actual subterm &f that we shall apply our induction hypothesis éix
relieves us from the difficulty.

Once this is doneintroX andcase X rip the formula of its initial universal
quantification, rename&; asX : term, and does a case analysis on the shap¥ .of
The second line of the proof, which invokeemgs, deals with the case wherg is of
the forms(X;) for someX; : term, the third line deals with the case wheXe= 0.

A curious thing in the proof otemgg shown above is that, although it introduces
the induction hypothesi#/;,,4, it never uses it directly. Instead, it passes it on to the
auxiliary sub-remarks that need it. This is whygmgs is invoked with bothX; and

H;,q as arguments, so that it can use the latter at all. Accorglimghgs is declared

49

as:

Remark remgs : (VX : term- ¢1 mod2(X) = g2 mod3(X) = ¢5 mods(X)) =

VX1 :term- ¢ mod2(5(X1)) = g2 mod3(5(X1)) = @5 mode(s(X1)).

where the second line, quantified o\, is the actual formula we want to prove, and
the formulavX : term- ¢1 mod2(X) = ¢2 mod3(X) = g5 mods(X) On the first line is
the induction hypothesis thatmgs can use.

In general, whet1nt has managed to derive a sequent of the fortn C, where
I" consists of the-clauses(y, ..., Cy, it will output a Coq proof ofC; = ... =
Cr = C. More precisely, it will output a proof of; = ... = C;, = C, where
C1, ...,Cy are therelevantinduction hypotheses frot, i.e., the ones that have really
been used in an instance dfoop) in the given derivation of - C. This way, instead
of carrying up to6 induction hypotheses as at the end of Section T will only

need one for each of the sub-remarks leadingetoyg:

Remark remg : (VX : term- ¢1 mod2(X) = ¢2 mods(X)
VX5 :term- gomod2(X1) = ¢1 mod3(X1) = ¢4 mode(X1). -]

Remark remss : (VX : term- ¢1 mod2(X) = g2 mod3(X) = ¢5 mods(X)) =
VX1 :term - g1 mod2(X1) = ¢omod3(X1) = g3 mode(X1). [.]

Remark remys : (VX : term- ¢1 mod2(X) = g2 mod3(X) = ¢5 mods(X)) =
VX5 :term- gomod2(X1) = @2 mod3(X1) = ¢2 mods(X1). []

Remark remgg : (VX : term- ¢1 mod2(X) = g2 mod3(X) = ¢5 mods(X)) =
VX5 :term- g1 mod2(X1) = @1 mod3(X1) = ¢1 mods(X1). []

)

(

Remark remyg : (VX : term- ¢1 mod2(X) = g2 mod3(X) = ¢5 mods(X)) =

VX1 :term - gomod2(X1) = ¢o mod3(X1) = g0 mode(X1).

As above remyg requires an inductive argument ofy. This eventually leads to the

following sub-remarkrem; 5, obtained by usingLoop), i.e., by invoking the induction

50

hypothesis. (We have slightly edited its proof, which camed some useless steps.)

Remark rem;s : (VX : term- ¢1 mod2(X) = g2 mod3(X) = ¢5 mods(X)) =
VX :term- ¢ mod2(X1) = ¢2 mod3(X1) = @5 mode(X1)-
Proof. intro H;,4. intros X;. exact H;,q(X1). Defined.

We finish with a subtle point. While all our proofs were teratied byQed until
now, the proofs of all sub-remarks that require at least ndadtion hypothesis, among
which not onlyrem; 5, but alsoremyg, remsg, ..., remgg andremgs above, are ended
with the Defined keyword. This is required to make their prodfensparent as
needed by Coq to be able to check that all uses of inductionthggis indeed apply
to propersubterms, as discussed above. This check involves tragefs proof terms
generated by Coq, along all possible paths from the rooteptbof to variables such
asH,;,q: to check the proof term we have given figsmgg, Coq will have to traverse all
remarks used in its definition, includingmgs, remgy, ..., remsg, remsg, andrem;s,
where the induction hypothesis is finally used.

It is algorithmically practical to produce sudkelocalizednduction proofs, where
induction hypotheses are introduced in one lemmeafg) but used in anothetém; ;).

However, we must admit that such proofs are not the most bbadtéand.

7.4 Completeness

The model-checking procedure is also complete, in a subtises We now need to
quantify over all signature& that contain all the symbols &§,,.,q and S. While

IfpTs is a set of ground atoms that is independent of the signatuses a model,

prod
it is a subset of the set of all ground atoms, whitdesdepend on:. To make the
dependency ok explicit, write this modelfpy, T, -

The model-checking procedure now only has the following kveampleteness

property: iflfpy, T, ., = C for everyy, then there is a derivation 6f C. Itis easy to

51

see thahl, as a resolution algorithm, produces a Sgt,; satisfying this stronger as-
sumption. This is because resolution algorithms do not g pea the chosen signature,
only on the clauses that they work on.

The difference between checkitfgy, Ts, ,, = C for everyX, or checkingfpy, Ts,, ., =
C just for a givenX = X, can be illustrated by considering the cabg.q = {p(a)}
andS = {p(X)}: we certainly havéfpy, T’s, ., = S'if ¥ only contains:, but this fails
otherwise. Note that the soundness Theorem 7.2 is in faetthatever the signature

3. This being, hopefully, clarified, we obtain:

Proposition 7.4 (Completeness)f Ifpy, Ts, ., = S for every signaturé containing
all the symbols ob,,,.,q and .S, then one may find a derivationlefC' for everyC € S,

in an effective way.

Proof. We first claim that, ifC', holds inlfpy, T's

prod

for all 3, then for any history
I', some rule applies that hdsF C; as its conclusion. This is obvious @; con-
tains a universal predicate, in which caselUniv) or (+Univ) applies. Otherwise,
the key observation is that the only way that an atom of thenfB f()) can hold in

Ifpy; T, is that there is a clausB(f(X)) < B in S,..a/P, f such that/\ B[t/]

prod
holds inS,,.q4. In other wordsP(f(#)) is equivalent 0V (p((%)) B)es,on/ps Blt/X]
inlfpy Ts,,,,. Thisis Clark completion [23]. This directly justifies ugit+P, f Elim)
in caseC’; contains a positive atom with non-variable argument, €g.is of the form
C Vv P(f(t)). In caseC; can be writtenC' v ~P(f(#)), then Clark completion and
Boolean reasoning show that all the premiées D[i/X] of rule (— P, f Elim) must
hold inlfpTs,,,,-
In all other cases is of the formE; (X;)V...VEy(Xy). If E > 2, we may apply
(Split). If k = 0, thenC; would be false, so the case does not happen. OtherwiSe, if
contains a negative atom with variable argument, Cg.= E(X) v -P(X), a variant
of Clark completion (above), using the fact thfatis not universal, shows thdt(X)

is equivalent to\/(P(f(X))¢B)€Sprnd/P AB[f(#)/X] in lfpg Ts, ., justifying using

52

(=P Elim). Inthe remaining casé€}; is a disjunction”; (X)V. ..V P, (X) of positive
atoms with variable arguments; however, forlarge enough, i.e., containing some
constant: not in Sy,.,q4, We observe thab; (a), ..., P,(a) are all false infpy, Ts, .,
contradicting that”; is true: so this case does not happen.

Second, we observe that applyifgiplit) and(Loop) eagerly forces proof search
to terminate. This rests on the fact that there can only beefjnmanye-clauses, hence
also finitely many possible historids in particular. The missing, easy details are left

to the reader. 0

We have observed thatl produces proofs that are independentigrhence sat-
isfy the assumption of Proposition 7.4. Models produced byafox only satisfy
Ifpy. Ts,,., = S for ¥ equal to—no larger than-the signatuig defined byS. To

regain completeness under this weaker assumption, we megddétional rule:

feXo
I\VX - E(X)F E(f(X))
I'F E(X)

(+Elim)

wheneverE(X) is ane-block consisting only of positive atoms P(X), and there
is one premise for each function symbhpin the given signatur&,. This is costly:
the only rule that can be applied to derive the premiset®, f Elim), which we
had better avoid. We have experimentetht with the (+Elim) rule on (i.e., using
its so-called- exact - si g option), and found this not to be competitive relative to
the simple-minded approach of Section 5 on models found bgdea, despite extra
algorithmic optimizations ih1nt in this case. This seems to be due to the fact that
tables are dense, and thatnt still has to enumerate them in some way. (E.g., we
have witnessetl1nt generate 510 premises in one instancé-eP Elim).)

On the other hand, the approach of Figure 17 and Figure 18,wiéhout the
(+Elim) rule, is effective in all cases where we can find a model udidg We

believe this is due to the fact that transitions in altermgtree automata found byl

53

Det(Sproa) Coq proof

Protocol #elts #entries #checks size #lines time

NS 46 217 312 430 10° [0.66 Mb 15560 0.53+10.73s
amended NS 57 188 724 1.24510° | 1.40Mb 31 640 1.90+25.67s
Yahalom > 57 > 2.46 10° | 3.50 Mb 60 938 7.34+53.77s
Kerberos 57 7 952 84.510° | 1.48 Mb 30326 2.02+23.97s
X.509 > 29 >228.510° | 0.97Mb 20471 0.95+23.33s
EAP-AKA 72 22550 7.7410° | 1.00Mb 32229 0.88+43.30s
EKE 48 16016 64.510° | 3.20Mb 73 683 3.18+89.94s

Figure 19: Coq proofs

are very sparse, so that, in particular, instances-d? Elim) have very few premises
in general. The role of optimizations (see below) is crydiao.

Figure 19 gives an indication of the size of Coq proofs predliby h1nt on
the models found byl. We have copied back the #elts, #entries and #checks from
Figure 10 for easy reference. Times (rightmost column) eperted ag; + to, where
t, is the time taken by lnt, andts is the time taken by Coq to check the proof. Note
that producing and checking a formal Coq proof of the amemdggrotocol, even on
the 57 element model found I, is practical, even though there is probably a smaller
model—which we didn't find. It is also rather remarkable thétile we haven't been
able to determinize,,..q in the Yahalom case and in the X.509 cds&nt manages

to find a proof in a reasonable amount of time.

7.5 Optimization I: Simulation Testing

A very effective shortcut is as follows. Providg - P(X) < Q(X), i.e., proving
that Lg (Sprod) € Lp(Sproa), €an be done in many cases by exhibiting a form of
simulation relation between automaton states such@@rsitnulatesP.

First, letN E(S) be the smallest set of predicate symbols such that, for elange
of the form (25) inS, if By C NE(S) and ... andB, C NE(S), thenP € NE(S).
Clearly, if Lp(S) # 0, thenP € NE(S). In fact, if S is a non-deterministic au-

tomaton, this yields a decision procedure for non-empsnés P € NE(S) then

54

Lp(S) # 0. This is not so for alternating automata, for which non-engss is
EXPTIME-complete [25, Theorem 55, Section 7.5Y.E(S) can be computed in
polynomial time by a marking algorithm.

We say thatR is asimulationon the states 0§, if and only if for every clause:

P(f(Xl,...7Xk)) = Bl(Xl),...,Bk(Xk) (26)

with P € NE(S,r04), for every state?’ with P R P’, there is a clause:

P(f(X1,...,Xx) < Bi(X1),...,Bp(Xy) (27)

in Sproq With B; R* B! for everyi, 1 < i < k—we let B R* B’ if and only if for
everyQ' € B, thereisa) € BwithQ R Q'.

There is always a largest simulation, which is computabfilynomial time, by a
largest fixpoint computation on the set of paif3 P’) of predicates.

The next two results are probably folklore, at least for migterministic automata.

Lemma 7.5 For any two simulations? and R, (R; R’), defined byP (R; R) P" if
andonly ifP R P’ and P’ R’ P" for someP’ € P, is a simulation.

Proof. First, we claim that:(x) if P R P’, whereR is a simulation, and® €
NE(Sprod), thenP" € NE(S,.0q4). This is by structural induction on a proof that
P € NE(Sproa). SinceP € NE(S,..q) there must be a clause (26) wify C
NE(Sprod)s --+» B € NE(Spr0qa). By definition of a simulation, and sincB <
NE(Sproa), there must be a clause (27) such thatR* B for everyi, 1 < i < k.
For every@Q' € Bj, there is &) € B; such thaty) R @Q’. By induction hypothesis,
since@Q € B; € NE(Sprod), Q@ € NE(Sprod). SOB; C NE(Spr0q) for everys,
1 <i < k. WhenceP’ € NE(Sproa)-

Let R and R’ be as in the Lemma. Le®P (R;R’) P”, sayP R P’ R'P". If

P & NE(Spr0q), then we are done, so assuiies NE(S,,.q). For every clause (26)

55

in Sp0q there is a clause (27) if,.0q With B; R* B! for everyi, 1 <i < k. By (%),
P’ € NE(Spr04), SO there is a clausB” (f(Xy,...,Xx)) « B (X1),..., Bl (Xk)
in Sproq Such thatB, R'* B for everyi, 1 < i < k. It follows thatB; (R; R')" B

for everyi, showing that R; R') is a simulation. O

Proposition 7.6 Let R be the largest simulation. Ther is a quasi-ordering. £ O

E'thenE R* E'. If E R* E' thenLg(Sproda) € Le/ (Sprod)-

Proof. First, R is reflexive, because the equality relation is a simulati@nshow that

R is transitive, we realize thai?; R) is a simulation, by Lemma 7.5, so by maximality
(R; R) C R: soRis transitive. That? D E’ implies E R* E' is by the definition of
R* and the fact thaR is reflexive. The last claim is shown by proving that whenever
R is a simulation, then for every ground temme Lg(Sproq), WheneverE <t g’
thent € L/ (Sproq). This is proved by structural induction @n= f(t1,...,t;). Let
E'={P{,...,P.}. SinceE <* E', for everyj, 1 < j < m, there is aP; € F such

that P; < P;. Sincet € Lg(Sproa), t € Lp,(Sproa) for everyj, so there is a clause:
Pi(f(X1,...,Xk)) <= Bji(Xy),..., Bjp(Xy)

in Sproq SUCh thatt; € L, (Sproq) for everyi, 1 < i < k. Sincet € Lp,(Sprod),
Lp,(Sprod) # 0, SOP; € NE(Spr0q), and becaus®; R P}, by definition there must
be a clause:

Pif(X1, ... Xp)) < Biy(X1), ..., Bly(Xy)

such thatBj; R? B;i for everyi, 1 < i < k. By induction hypothesis, sindg €
Lp;,(Sprod), ti € LBgi(Sp,,Od). So, using the clause aboveg¢ Lp;(Spmd). Asjis
arbitrary between andm, t € L/ (Sprod)- O
It follows that, if there is a simulatio® with @ R P, thenLg(Sproa) € Lp(Sprod)-

This again compiles into a Coq proof usifig, case andinversion.

56

7.6 Optimization II: Checking the Abstracted Clauses, not he Orig-

inal Set

Anotherh1-specific optimization is the following. Remember thmit first abstracts
the initial clause sef into another clause sé&t’ that falls into the clas${,. Instead

of model-checkingS directly againstDet(.S,,.q), we model-checkS” instead, then
produce a Coq proof that’ implies.S. SinceS’ is obtained fromS by some reversed

form of resolution, showing thai’ implies S is particularly easy.

7.7 Optimization Ill: Memoization

The final important optimization is thatlmrc memoizegroof attempts. That is, when
attempting to deriv& + C, it first checks whether it has already deriviéd- C’ for
somel” C I" and some claus€’ that subsume€¢’, i.e., such thal = C’c VvV D for
some substitutioa and some subclaude. If so, it reuses the proof d’ - C” to infer
'+ C directly.

Our toolh1nt also rests on less important optimizations, which we tloeesdmit.
See the appendices of the full version of the paper [43],lab@ from the author's

Web page.

8 Equational Theories

More and more protocols in the literature can only be modeakidg equational theo-
ries, to represent e.g. bitwise exclusive-or (xor) or mad@xponentiation [29]. Our
tool hl really cannot deal with such equational theories, unles®tjuations can be
eliminated, as we have suggested in the case of EKE in Sectibimis trick generalizes
Blanchet'’s rule compilation trick [14].

However, xor and modular exponentiation are two exampléisesfries that cannot

be dealt with in such a way. Whilel cannot deal with them, this is in principle easy

57

to Paradox: just add the needed equations as unit clausesex&mple, Figure 22
lists axioms for modular exponentiation as used in Diffidhidan key agreement [35],
where exponents obey an Abelian group law (M) is meant to denotg for a fixed
generatog. (Following an established tradition in automated deduxtive usex for
the equality symbol, to distinguish it visually from actesjuality.)

It is easy to extend the approach of Section 5 to the equat@as®. Indeed, to
model-check the clause sgtagainst the finite mode\1, modulo the equational theory
E, we only need to model-chedU E, under the interpretation thatis equality. One
might let a finite model finder find a model fétU E U £q, where&q is the theory of
equality (see below) to this end, however this is not needery. model found by a
finite model finder such as Paradox will interpretas equality, so we only have to
checkS U E.

Generating Coq proofs from an explicit finite mod#&t of S U F, where= is
equality overM, is done as in Section 5. The only difference has to do witrakiyu
Indeed,~ cannot be interpreted as Coq’s default equality. We ilatstthis on a small
example. Remember the definitibnductive term : Set := s : term — term | 0 :
term that we used that we used in Section 7.3, and imagine we wanrietpret natural
numbers (of typeerm) modulo the equation(s(X)) = X; i.e., modulo2. Then one
can prove in Coq that(s(X)) # X for all X, so Coqg equality= cannot be used
for our equality modul@®. (Beginners in Coq should be warned not to attempt to use
Axiom eqny : VX : term-s(s(X)) = X to this end. This is a gross misinterpretation
of what axioms are, and results in an inconsistency.)

In fact, one should define another type of “terms modtilo(Admittedly, in this
simple example, one could also cheat and observe that just ithe finite type of bits.)
The standard way of doing so in Coq is to use a so-calktdid typei.e., a record
type whose first field is the carrier type (e.germ), the second one is an equivalence

relation over the carrier type, and the remaining field is aopithat this is indeed

58

an equivalence relation. Several proposals to includeadieebquotient typesn type
theories have been considered [48, 47]. Whether they amdbas defining actual,
new quotient types, or on using setoids, their mere defimitéguires one to produce
proofs of reflexivity, symmetry, and transitivity. Similgr one also has to show that
every function symbof and every predicate symbol is defined on equivalence classes
independently of their representatives. Moreover, singeiotended equality is not
Coq’s built-in equality, we will have to use a distinct prealieequal for our equality.

Accordingly, to check the finite mode\1 found by Paradox, we have to produce
Coq proofs ofS U E U £q, whereE is the set of clausesqual (M, N) whenM ~ N
ranges over the equations Bf and€q is the theory of equality: for each function sym-
bol f of arity k, a clauseequal(f(X1,..., Xx), f(Y1,...,Yr)) < equal(Xy,Yr),
...,equal(Xy,Y}), for each predicate symb#él, a clause”?(X) < P(Y), equal(X,
Y’), and finally the clausesqual(X, X), equal(X,Y) < equal(Y, X) and finally
equal(X,Z) < equal(X,Y),equal(Y, 2).

This is easily achieved, using the approach of Section 5e Nt this contrasts
with handling equality in automated theorem proving, whigtm make proof search
harder (e.g.H; plus equality is undecidable [42, Theorem 11]). But cheghkimem
against a finite model is no harder than in the non-equaticase, and producing Coq
proofs induces no extra difficulty.

We were happily surprised to see that this approach worked flParadox runs
slowly, but finds models with few elements on all the secum#quols we have found

in the literature again.

8.1 Diffie-Hellman Key Exchange

We start with the small Diffie-Hellman protocali(— B : g™Ve, B — A : ¢™, fol-
lowed by some message exchanfe- B : {1}gNa*Nb), again with old compromised

sessions, and more recent sessions.

59

att;(g(na;(A, B))) < agent(A), agent(B)
att;(g(nbi(A, B))) < agent(A), agent(B)
att;({one}s(ma; (4,B)xNb) < atti(g(Nb))
atta (M) < atty (M)
attz(nai(A, B)) atta(nbi(A, B))
atta(g(nai (A, B) *nb1 (A, B)))
1 < atta(naz(a, b) * nba(a,b))

Figure 20: Diffie-Hellman protocol rules, phases, and sgcgpoal

att;(zero) att;(one)
atti(g ()) < atti(X)
atti(g(X xY)) <« att;(g(X)),att;(Y)
attl(X* Y) < atti(X), att(Y)
att;(inv(X)) <« att;(X)

Figure 21: Diffie-Hellman extra intruder deduction rules

Precisely, we model the Diffie-Hellman protocol by the clsu Figure 1{ =
1,2), Figure 21 { = 1, 2), Figure 20 { = 1, 2), Figure 22 and Figure 4.

The first three clauses of Figure 20 model the protocol itdrith in old and cur-
rent sessionsi(= 1,2). The next clause is just (18). The next three clauses model
corruption of old values ofV, = na; (A, B) andN, = nb; (A, B), together with the
old session keyg"V«*Nv = g(na; (A, B) * nby (A, B)). Finally, the last clause states
that we would like the key™¥«*V¢ = na,(a,b) * nbs(a, b) shared between Alicea}
and Bob) in current sessions to be secret.

Figure 21 shows the additional deduction rules we requiréil&\most of them
are standard, one should note the claase;(g(X *Y)) < att;(g(X)),att;(Y),
which states that one can get*¥ from ¢* andY—by computing(gX)Y. We could
have modeled this by adding an equation suc(yég g**Y to Figure 22, but this
would have complicated the theory, and would have requisetbueplace the unary

operationg(-) by binary exponentiation. The approach we take was usedin [4

60

X*onerm X XxYaY*xX Xx(YVxZ)m(XxY)xZ
X % inv(X) ~ one g(zero) ~ one

Figure 22: Diffie-Hellman equations

Paradox finds that the common kg$=*¢ of current sessions is unknown to the
intruder in0.34 s, producing & element model (namel{/3Z) with 100 entries. Us-
ing the approach of Section 5, we obtaiti4l line Coq proof of the Diffie-Hellman

protocol, which is checked i0.74s.

8.2 The EKE Protocol, Take 2

While we have already used the EKE protocol as example in@ebt we somehow
cheated. Indeed, we removed equations by superpositioprapacessing step. How-
ever, we did not prove that any model of the preprocessedelset could be converted
to one of the original clause set.

We now run Paradox again, this time without preprocessingd véth the equations
dec(enc(X,Y),Y) = X andenc(dec(X,Y),Y) = X. Paradox finds a 4-element
model in0.40s (not the same as the one reported in Section 5, though)harmrghproach

of Section 5 yields & 465 line Coq proof, which is checked h90s.

8.3 The SKEME Protocol

The SKEME protocol [55] allows two agents to exchange a $&ese and uses Diffie-
Hellman exponentiation, plus message authenticationscéaacs). Although it is
meant to run in several separate phases c8l@dE, EXCH, andAUTH, which are meant
to be playable independently, so as to avert denial of seafitacks, such phases have
nothing to do with our phases. We shall call them sd-protocolsof SKEME. In
particular, we consider that any message exchange from faimg SHARE, EXCH, and

AUTH sub-protocols can be played, and even interleaved, duriegobthe two phases

61

we consider, although some session of IRHARE andEXCH should have been played
before AUTH can proceed. The nonce$,, NV, and the Diffie-Hellman secret¥,,
X, that are created fresh in each phase. As before, we conbigethiese values, as
created in phase 1, have been possibly disclosed in phag&fthe protocol is secure
shows that, as claimed, SKEME has perfect forward secredheofinal shared key
Ky =h(Ng, Nyp).

As additional symbols, we use a two-place hash functignsith the Dolev-Yao
intruder axiomatt;(h(X,Y)) < att;(X),att;(Y), and a one-place mac function
mac, with the axiomatt,(mac(X,Y)) < att;(X), att;(Y).

The three sub-protocols of the SKEME protocol are shown gufé 23.

SHARE :
1. A— B:{A,N,}xk,
2. B— A: {Nb}KQ

1. A— B:g%e
2. B— A:g%

1. A— B:mac([g", g%, A, B],h(N,, Ny))
2. B — A:mac([g¥e, 9%, B, A],h(Ny, Ny))

Figure 23: The SKEME Protocol

Paradox finds a 6 element model 2n218s (37 minutes), and the approach of

Section 5 producesa352 line Coq proof, which is checked ir6s.

8.4 The Just-Fast-Keying Protocol, with Responder Securt

The penultimate protocol involving an equational theogt thie have tested in the JFKr
protocol [5]. This one uses the Diffie-Hellman equationaldty, plus asymmetric key
signaturesign(M, A) (of messagé\/, using A’s private key). Although signatures
are assumed without message recovery, the security of J&é¢g dot depend on sig-

natures hiding the signed message. So, we include a clatgggghat the Dolev-Yao

62

intruder may actually be able to recover the message frosigtsed version.

1. A— B:h(N,),g%
. B— A:h(N,), Nb, g~ grpinfoR,mac([g**, Ny, h(N,), ip], Hky)
3. A— B: Ny Ny, g%, g% mac([gX*, Ny, h(N,), ip], Hky), M, mac([tagI, M], K,)
whereM = {4, B, sa, sign([h(N,), Ny, g%+, g%, grpinfoR], A)} k.
K = mac([h(N,), Ny, one], gXa*Xt)
K, = mac([h(Ny), Ny, two], gXa*Xv)
4. B— A: M’ ,mac([tagR, M'], K,)
whereM'’ = {B, sa, sign([g*", Ny, g%, h(N,)], B)} i

e

Figure 24: The JFKr Protocol

The protocol is displayed in Figure 24, wheids a (unary) hash function and
mac is a binary mac function, axiomatized as in Section 8.3. TdrestantgrpinfoR
andip abstract away some relatively unimportant details of tretqmol: grpinfoR
is a record containing information as to the group used iri®Hellman exponen-
tiation, and allows one to check, for example, thais indeed a primitive element
of this group, and that this group has sufficiently high order is the so-called se-
curity association record; the constaint abstracts away the IP addresses4oénd
B, which are easy to spoof, and cannot be trusted—so we mdrffeeaké addresses
into just one constant. Other constants sucht&sl, tagR, zero, one, two, are
tags and should typically remain distinct; they are welb¥m to the Dolev-Yao in-
truder. The keyHk;, is a long term secret, known t8 only. The final, secret key is
Kap = mac([h(N,), Ny, zero], g¥e*Xv),

Paradox finds 8-element model ir524s (8 minutes44), and the approach of Sec-

tion 5 produces & 335 line Coq proof, which is checked i7.6s.

8.5 Spore’s Version of Gong’s Protocol

For a final, even more complicated example, we modeled Gagmg®col [39], or

rather the variant from the SPORE repository [78]. This ieveh in Figure 25, and

63

1. A—>B A,B,Na
B— S: A,B,Na,Nb
3. S—B: NS7
f1(NS,Nb,A,Pb)@fl(N57NavBaPa)7
—

N

K
f2(N97Nb7A7 Pb) @ f2(N37Na7B7Pa)7
—_— —

Hg
f3(NSaNb7Aan)Gaf?’(NS?Na?BaPa)?
N— —
Hy
g(KaHﬂaHlNPb)
4. B— A: N, H,
5 A— B: H,

Figure 25: Gong’s protocol, from SPORE

uses an operatap (exclusive-or) that is associative, commutative, has & @ind
is nilpotent M & M =~ 0). Herefy, fo, £3, g are one-way functions?, is a long-
term secret shared betwednand.S, and similarly forP,. We omit the clauses, which
again include two phases separated by an Oops move revedilisgssion keys from
the first phase. Using Paradox, we have been able to verifyfibasession keyx =
£1(Ns, No, B, P,) remained secret in current sessions, from the point of vieftioe,
Bob and the trusted third-party: Paradox finds a 4 elementaiadwo hours, with
1 774 table entries.

Gong’s protocol is based on the equational theory of bitwisgusive or, shown in
Figure 27.

We also need extra intruder deduction rules, shown in Fig8re

The protocol rules are given in Figure 26. The first five clauserrespond to the
five messages of Figure 25, the last two clauses define theiKepat Alice (4) and
Bob (B) get, respectively. In Bob’s case, note that we obfdifrom message 3, and
we check the value off, using message 5. The latter just means checking whether
att;(H,) holds in our model.

Handling phases is done by slight variants of the rules ofifeip, shown in Fig-
ure 29. We now assume the old kefygns; (A, B, N,, Ny), No, B, p(4)) are known

64

»
(a4
ot

=
-~
)
B
&
=
-~
u]
=
==
»
[0)°}
o
B
ot
iy
N
=
©
[0)°}
[0}
B
N— ‘-f
g
o]
=

att;([A, B, Na,nb;(A, B, N,)|) < att;([A4, B, Nq
att;([ns;(A, B, No, Np),
f1(nsi(A, B, No, Nb), Np, A, p(B)) & £1(ns;(A, B, Na, Np), Na, B,p(A)),
fg(nsi(A, B, Ng, Nb), Ny, A, p(B)) (&%) fz(nSZ(A, B, N,, Nb), N,, B, p(A)),
f3(nsi(A7 B, Na,]\71,)7]Vb7 A,p(B)) @ fg(ns,‘(A, B7 Na, Nb), Na, B,p(A)),
g(£1(ns;(A, B, Na, Np), Nq, B,p(A)),
f2(nsi(A, B, Noy Nb), Na, B,p(4)),
f3(nsi(A7B,Na,Nb)JVa,B,p(A)L
p(B)
D < att;([A4, B, Na, Ny))
att;([NVs, Hp]) < att; ([Ns,
fl(Ns,nbi(A,B,Na),A,p(B)) () K),
fQ(Ns,an‘(A, B, Na),A,p(B)) ® Hg,
£3(Ns,nb;(A, B, Na), A,p(B)) ® H,
g(K, Ha, Hy,p(B))]
att;(f2(Ns,na; (A, B), B,p(A))) < att;([Vs, £3(Ns, na; (4, B), B,p(4))])
alice_key, (A, £1(Ns,na;(A, B), B,p(A))) < att;([Ns, £3(Ns,na; (A, B), B,p(A))])
bob_key, (B, K) < att;([Ns,
£1(Ns,nb;(A, B, Na), A,p(B)) ® K),
f2(Ns,nb; (A, B, Na), A,p(B)) ® H,,
fg(Ns,nbi(A,B,Na),A,p(B)) (&) Hby
g(K7 Hﬂvavp())])

att;(Hg)

Figure 26: Gong protocol rules

(XeY)oZ=Xa(Y®Z) XoY~YdX
X®zerox X X & X =~ zero

Figure 27: Axiomatizing xor

att;(zero) att; (X @Y) < att;(X),att; (V)

Figure 28: Gong extra intruder deduction rules

65

atte(M) < atty (M)

atts(£1(ns1(A, B, Na, Ny), Na, B, p(A))
atts(nai(A4, B)

atta(nb1 (A, B, N,)

atta(nsi (A, B, Na, Ny)

)
)
)
)
)

Figure 29: Phases in Gong’s protocol

in phase2, as well as all old nonces.
Our security goals are again, that all session keys, as gekby the server, and

as received by Alice and Bob, are unknown to the intruderfsgere 30.

1« attg(f1(nsz(a, b, Na, Nb)))
1 < atty(Kap),alice key,(a, Kap)
1 < atta(Kap), bob_key, (b, Kop)

Figure 30: (Negated) security goals for Gong’s protocol

Finally, Gong'’s protocol as a whole is defined by the rulesigukes 6, 4, 27, 1,
28, 26, and 30.
Using the approach of Section 5, we have produced &5 line Coq proof of

Gong's protocol, which is checked in204 s (20 minutes).

9 Conclusion

We hope to have demonstrated, first, that producing fornwigckable proofs from
first-order formulationsS of security goalsr was difficult, and sometimes more diffi-
cult than verification itself.

On the other hand, we hope to have shown that formal Coq padakscurity could
be extracted and checked efficiently from a model (in theiekphodel approach of

Section 5), or from a model-checking process (in the autarttetoretic approach of

66

Finding the model Coq proofs
Protocol Time #elts #entries #checks #lines time
Without equality:

NS [66] (Paradox)| 1.62s 4 824 3908 1038 0+3.29s

(h1) 0.70s 46 217 312 430 10° | 15560 0.53+10.73s
amended (Paradox - - - - - -
NS [67] (h1) 1.71s 57 188724 1.24510° | 31640 1.90+25.67s
NSL7 (Paradox)| 4.85s 4 2729 2 208 4415 0+1.76s
[67,59] (h1) 8.03s over-approximated - -
Yahalom (Paradox) 3 190s 6 5 480 38 864 | 14 646 0+36.6s
[72] (h1) 4.82s > 57 >2.46 10° | 60938 7.34+53.77s
Kerberos (Paradox) 17.87s 5 1767 5518 2 584 0+2.57s
[19] (h1) 0.94s 57 7952 84.510° | 30326 2.02+23.97s
X.509[78] (Paradox)| 3 395s 4 142 487 12 670 | 35472 0+11.01s

(h1) 0.44s >29 >228.510° | 20471 0.95+23.33s
EAP-AKA (Paradox)| 54.3s 3 2447 1457 | 3763 0+4.42s
[7] (h1) 1.93s 72 22 550 7.7410° | 32229 0.88+43.30s
EKE [11] (Paradox)| 0.44s 4 3 697 4632 5023 0+1.99s

(h1) 1.88s 48 16 016 64.5 10° | 73683 3.18+89.94s

Requiring an equational theory (using Paradox):

Diffie-Hellman [35] 0.34s 3 229 1191 641 0+0.74s
EKE [11] 0.40s 4 1 055 9 939 5 465 0+2.90s
SKEME [55] 2 218s 6 1 968 125 753 7 352 0+76s
JFKr [5] 524s 3 577 13028 | 6335 0+47.6s
Gong [78] 7 161s 4 4 066 471145 | 2555 0+1 204s

Figure 31: Summary of practical results

67

Section 7). A summary of our results can be found in Figure 31.

This endeavor is a first step towards formally verifying fedicurity protocols, and
many things remain to be done. For one, complementing thik wdth formally
checkable proofs of computational soundness of the Dobav+¥iodel, when it is in-
deed sound [51, 79], would be desirable. There is a growiteyest from industrial
firms and defense agencies towards formally checked prdafsaurity models, and
we believe our work solves an important part of it.

Another necessary step is to find techniques that would sgabetter. While Para-
dox and the explicit model approach of Section 5 work fine wieme is a model of
at most, say, 6 elements, the automata-theoretic apprda®bcation 7 handles much
larger models, but cannot cope with equational theories ietwever, note that the
number of elements of a model is a very bad measure of its &ipetion and predi-
cate tables are much larger than what the number of elemegtgsts. We have also
observed that the size of the model is independent of thedSitiee protocol to be
proved secure. Rather, the size of the model seems to bdateddo its logical com-
plexity. In particular, we have observed, reproducing gmeexnent by Koen Claessen,
that some safe C implementations of roles in the Needhams&dhr asymmetric key
protocol [44] only required models with 3 elements.

It remains to be examined whether scaling up is necessarg iorfact a non-
problem. The experiments we conducted show, for exampét,Raradox, although
generally slower thah1 on non-equational problems (or equational problems that ca
be converted to non-equational problems), tends to find teadéh very few elements
almost all the time. Further research might help in findingleie with possibly more

elements, but faster, and which would be easier to checkgtidint for example.

68

9.1 Acknowledgments

We presented early findings at JFLA [41]: we thank the organsiand all the people
who were there. David Lubicz, Bruno Blanchet, and Steve kxeprovided support
by showing interest in this research. Thanks also to Koers3ken, who suggested the
use of Paradox to me. Finally, thanks to Ankit Gupta, teBtanie Delaune, toé&iric

Fournet, and to the anonymous reviewers.

References

[1] M. Abadi. Secrecy by typing in security protocolsJournal of the ACM
46(5):749-786, 1999.

[2] M. Abadi and B. Blanchet. Analyzing security protocolghwsecrecy types and
logic programs.Journal of the ACM52(1):102-146, Jan. 2005.

[3] M. Abadi and C. Fournet. Mobile values, new names, andigecommunication.

SIGPLAN Notices36(3):104-115, 2001.

[4] M. Abadi and A. D. Gordon. A calculus for cryptographicpocols.Information
and Computation148(1):1-70, Jan. 1999.

[5] W. Aiello, S. M. Bellovin, M. Blaze, R. Canetti, J. loarths, A. D. Keromytis,
and O. Reingold. Just fast keying: Key agreement in a holstilanet. ACM

Transactions on Information and System Secufri{g):1-30, May 2004.

[6] R. Amadio and W. Charatonik. On name generation and asét) analysis in
the Dolev-Yao model. IfProc. 13th International Conference on Concurrency

Theory (CONCUR’02)pages 499-514. Springer-Verlag LNCS 2421, 2002.

[7] AVISPA—automated validation of Internet security pyobls and applications.

Web site, 2006ht t p: / / avi spa- proj ect. org/.

69

[8] L. Bachmair and H. Ganzinger. Resolution theorem prgvitn Robinson and

Voronkov [75], chapter 2, pages 19-99.

[9] L. Bachmair, H. Ganzinger, and U. Waldmann. Set constsaare the monadic
class. InProc. 8th Annual IEEE Symposium on Logic in Computer Science

(LICS’93), pages 75-83. IEEE Computer Society Press, 1993.

[10] P. Baumgartner, A. Fuchs, H. de Nivelle, and C. Tin€lloamputing finite models
by reduction to function-free clause logigournal of Applied Logic7(1):58-74,
Mar. 2009.

[11] S. M. Bellovin and M. Merritt. Encrypted key exchangeasBword-based pro-
tocols secure against dictionary attacks.Pitoc. 13th IEEE Symp. Research in
Security and Privacy (S&P’93)pages 72—-84, Oakland, CA, May 1992. IEEE

Computer Society Press.

[12] Y. Bertot and P. Caétan. Interactive Theorem Proving and Program Develop-
ment Coq’Art: The Calculus of Inductive Constructiprslume XXV of Texts
in Theoretical Computer Science. An EATCS Seiggsinger Verlag, 2004. 469

pages.

[13] K. Bhargavan, C. Fournet, A. D. Gordon, and A. R. Pucellalafale: A security
tool for Web services. IProc. 2nd International Symposium on Formal Methods
for Components and Objects (FMCO’Q®pges 197-222. Springer Verlag LNCS
3188, 2004.

[14] B. Blanchet. An efficient cryptographic protocol vegifibased on Prolog rules.
In Proc. 14th IEEE Computer Security Foundations Workshog-{€91), pages
82-96. IEEE Computer Society Press, 2001.

[15] B. Blanchet. An automatic security protocol verifieisied on resolution theorem

proving (invited tutorial). In R. Nieuwenhuis, editd?Proc. 20th International

70

Conference on Automated Deduction (CADE;ZBillinn, Estonia, July 2005.
Springer Verlag LNAI 3632.

[16] B. Blanchet, M. Abadi, and C. Fournet. Automated vesifion of selected equiv-
alences for security protocolsJournal of Logic and Algebraic Programming

75(1):3-51, Feb.—Mar. 2008.

[17] D. Bolignano. An approach to the formal verification af/ptographic proto-
cols. InProc. 3rd ACM Conference on Computer and Communicationsrigc

(CCS’96) New Delhi, India, Mar. 1996. ACM Press.

[18] J. Bull and D. J. Otway. The authentication protocol. chigical Report
DRA/CIS3/PROJ/CORBA/SC/1/CSM/436-04/03, Defence Refealgency,
Malvern, UK, 1997.

[19] M. Burrows, M. Abadi, and R. Needham. A logic of autheation. Proceedings
of the Royal Society126(1871):233-271, Dec. 1989.

[20] R. Chadha, S. Kremer, and A. Scedrov. Formal analysiswfi-party contract
signing. Journal of Automated Reasonirn@p(1-2):39-83, Jan. 2006.

[21] K. Claessen and N.@&ensson. New techniques that improve MACE-style finite
model building. In P. Baumgartner, edit®roc. CADE-19 Workshop W#liami,
Florida, July 2003.

[22] J. A. Clark and J. L. Jacob. A survey of authenticatiootpcol literature, v1.0.

http://citeseer.ist.psu.edu/clark97survey. htm , 1997.

[23] K. L. Clark. Negation as failure. In M. L. Ginsberg, eafit Readings in Non-
monotonic Reasoningages 311-325, San Francisco, California, 1987. Morgan

Kaufmann Publishers.

[24] H. Comon. Inductionless induction. In Robinson anddvidwov [75], chapter 14,
pages 913-962.

71

(25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D.ieagS. Tison, and
M. Tommasi. Tree automata techniques and applicatiomsw. gr appa.

univ-lille3.fr/tata,1997. Version of Sep. 6, 2005.

H. Comon and R. Nieuwenhuis. Induction=i-axiomati@atfirst-order consis-

tency. Information and Computatigri59(1-2):151-186, 2000.

H. Comon-Lundh and V. Cortier. Security properties:olagents are sufficient.

Science of Computer Programmiri)(1-3):51-71, 2004.

R. Corin, S. Malladi, J. Alves-Foss, and S. Etalle. Guetat? Here is a new
tool that finds some new guessing attacks. In R. Gorrieri anduRchi, editors,
Proc. IFIP WG 1.7, ACM SIGPLAN and Gl FOMSESS Workshop oressisuthe
Theory of Security (WITS'03pages 62—71, Warsaw, Poland, Apr. 2003.

V. Cortier, S. Delaune, and P. Lafourcade. A survey gkaraic properties used

in cryptographic protocolsJournal of Computer Security4(1):1-43, 2006.

V. Cortier, S. Delaune, and G. Steel. A formal theory eylconjuring. InProc.
20th IEEE Computer Security Foundations Symposium (C3Fiaiges 79-93,

Venice, Italy, July 2007. IEEE Computer Society Press.

V. Cortier, M. Rusinowitch, and E. @inescu. Relating two standard notions
of secrecy. Logical Methods in Computer Scienc(3:2):1-29, 2007.ht t p:
/] arxiv.org/pdf/0706. 0502.

A. Dawar. Model-checking first-order logic: Automatadhlocality. In J. Duparc
and T. A. Henzinger, editor®roc. 21st International Workshop on Computer Sci-
ence Logic, 16th Annual Conference of the EACSL (CSLj@age 6, Lausanne,
Switzerland, Sept. 2007. Springer Verlag LNCS 4646.

D. E. Denning and G. M. Sacco. Timestamps in key distriisuprotocols.Com-

munications of the ACM24(8):533-536, Aug. 1981.

72

(34]

(35]

(36]

[37]

(38]

(39]

[40]

[41]

[42]

P. Devienne, P. Letgue, A. Parrain, J.-C. Routier, and JUZ. Smallest Horn

clause programslournal of Logic Programming27(3):227—267, 1994.

W. Diffie and M. E. Hellman. New directions in cryptogtap IEEE Transactions
on Information Theoryl T-22(6):644—654, Nov. 1976.

D. Dolev and A. C. Yao. On the security of public key protts. IEEE Transac-
tions on Information TheoryT-29(2):198—-208, 1983.

N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Ura@ability of bounded se-
curity protocols. In N. Heintze and E. Clarke, editdPsgc. Workshop on Formal
Methods and Security Protocols (FMSP’'9%)ento, Italy, July 1999.

T. Fruhwirth, E. Shapiro, M. Y. Vardi, and E. Yardeni. Logic pragns as types
for logic programs. InProc. 6th Annual IEEE Symposium Logic in Computer

Science (LICS'9])pages 300-309. IEEE Computer Society Press, 1991.

L. Gong. Using one-way functions for authenticati@omputer Communication

Review 19(5):8-11, Oct. 1989.

J. Goubault-Larrecq.The h1l Tool Suite LSV, ENS Cachan, CNRS, INRIA
projet SECSI, 2003 ht t p: / / ww. | sv. ens- cachan. fr/ ~goubaul t/
H1. di st/ dhli ndex. htm .

J. Goubault-Larrecq. Une fois qu’on n’a pas tréwe preuve, comment le faire
comprendrex un assistant de preuve ? In Vékissier-Morain, editotActes des
15emes Jour@es Francophones sur les Langages Applicatifs (JFLA'P4yes

1-40, Sainte-Marie-de&R France, Jan. 2004. INRIA. Invited paper.

J. Goubault-Larrecq. Decidirif;, by resolution.nformation Processing Letters

95(3):401-408, Aug. 2005.

73

[43]

[44]

[45]

[46]

[47]

[48]

[49]

J. Goubault-Larrecq. Towards producing formally dkedale security proofs,
automatically. InProc. 21st IEEE Computer Security Foundations Symposium

(CSF'08) pages 224-238. IEEE Computer Society Press, June 2008.

J. Goubault-Larrecq and F. Parrennes. Cryptographotopol analysis on real

C code. In R. Cousot, editoRroc. j6th International Conference on Verifica-
tion, Model Checking and Abstract Interpretation (VMCA)Qvolume 3385 of
Lecture Notes in Computer Sciengmges 363-379, Paris, France, Jan. 2005.

Springer.

J. Goubault-Larrecq, M. Roger, and K. N. Verma. Abdti@at and resolution
modulo AC: How to verify Diffie-Hellman-like protocols autmtically. Journal

of Logic and Algebraic Programmin®4(2):219-251, Aug. 2005.

M. Hellman. A cryptanalytic time-memory tradeoffEEE Transactions on In-

formation Theory26:401-406, 1980.

M. Hofmann. A simple model for quotient types. In M. Der&iancaglini and

G. D. Plotkin, editorsProc. 2nd Intl. Conf. Typed Lambda Calculi and Appli-
cations (TLCA '95)pages 216—234, Edinburgh, UK, Apr. 1995. Springer Verlag
LNCS 902.

P. V. Homeier. Quotient types. In R. J. Boulton and P.&:k3on, editorsSup-
plemental Proceedings, 14th International Conference bacfem Proving in
Higher Order Logics (TPHOLs'01)pages 191-206, Sept. 2001. Number EDI-
INF-RR-0046 in Informatics Report Series, Division of Infeatics, University
of Edinburgh,ht t p: / / ww. i nf . ed. ac. uk/ publ i cati ons/report/
0046. ht m .

A. Huima. Efficient infinite-state analysis of securfiyotocols. InProc. Work-
shop on Formal Methods and Security Protocols (FMSP'd®gnto, Italy, July
1999.

74

[50] Information technology — security techniques — evtbracriteria for IT security.
ISO/IEC 15408 Standard, 2005. Parts 8t p: / / st andards. i so. or g/
ittf/PubliclyAvail abl eStandards/i ndex. htm .

[51] R. Janvier, Y. Lakhnech, and L. Mazar Relating the symbolic and computa-
tional models of security protocols using hashes. In P. DegR. Kusters, L. Vi-
gard, and S. Zdancewic, editorByoc. Joint Workshop on Foundations of Com-
puter Security and Automated Reasoning for Security Pobtdoalysis (FCS-
ARSPA'06) pages 67-89, Seattle, Washington, USA, Aug. 2006. Infopra
ceedings athtt p://ww. easychair. org/ FLoC- 06/ f cs- ar spa06.
pdf .

[52] I. L. K. Kao and R. Chow. An efficient and secure authetian protocol using

uncertified keysOperating Systems Revig29(3):14-21, 1995.

[53] D. Kapurand D. R. Musser. Proof by consistenaitificial Intelligence 31:125—
157, 1987.

[54] D. C. Kozen. Automata and ComputabilityUndergraduate Texts in Computer

Science. Springer, 1997. 400 pages.

[55] H. Krawczyk. SKEME: A versatile secure key exchange haaism for Internet.
In Proc. 4th Internet Society Symposium on Network and Digieith Systems
Security (SNDSS’96pages 114-127. IEEE Computer Society Press, Feb. 1996.

[56] S. Kremer. Computational soundness of equational ribgqtutorial). In
G. Barthe and C. Fournet, editoRroc. 3rd Symposium on Trustworthy Global
Computing (TGC'07)pages 363—382, Sophia-Antipolis, France, 2008. Springer
Verlag LNCS 4912.

[57] R. Kusters and T. Trudering. On the automatic analysis of réeisecurity

protocols with XOR. In W. Thomas and P. Weil, editdPsoc. 24th Symposium on

75

Theoretical Aspects of Computer Science (STACS 208d@¥s 646—-657. Springer
Verlag LNCS 4393, 2007.

[58] D. S. Lankford. A simple explanation of inductionlessluction. Technical Re-

port MTP-14, Math. Dept., Louisiana State University, 1981

[59] G. Lowe. An attack on the Needham-Schroeder publicdaentication proto-
col. Information Processing Letter§6(3):131-133, 1996.

[60] G. Lowe. A family of attacks upon authentication prattsc Technical Report
1997/5, Dept. Mathematics and Computer Science, U. Leicek297.

[61] J. Marcinkowski and L. Pacholski. Undecidability okthlorn clause implication
problem. InProc. 33rd Annual Symposium on Foundations of ComputenSeie
(FOCS'92) pages 354-362, Pittsburgh, Pennsylvania, 1992. IEEE Gtn§o-

ciety Press.

[62] R. Matzinger. Computational representations of Hanok models using gram-
mars. Technical Report TR-WB-Mat-96-2, Technische Ursitat Wien, Feb.
1997. version 4.0.

[63] W. McCune. Mace4 reference manual and guide. TechReglort ANL/MCS-

TM-264, Argonne National Laboratory, 2003.

[64] D. Micciancio and B. Warinschi. Soundness of formalrgption in the presence
of active adversaries. In M. Naor, editétroc. 1st IACR Theory of Cryptography
Conference (TCC'04)pages 133-151, Cambridge, Massachussetts, Feb. 2004.
Springer Verlag LNCS 2951.

[65] D. Monniaux. Abstracting cryptographic protocols vitee automata. IRrox.
6th International Static Analysis Symposium (SAS’'#apes 149-163. Springer
Verlag LNCS 1694, Sept. 1999.

76

[66] R. M. Needham and M. D. Schroeder. Using encryption fathantication in
large networks of computer€ommunications of the ACN1(12):993-999, Dec.
1978.

[67] R. M. Needham and M. D. Schroeder. Authentication lieais ACM SIGOPS
Operating Systems Revigi (1):7, Jan. 1987.

[68] F. Nielson, H. R. Nielson, and H. Seidl. Normalizablerrlolauses, strongly rec-
ognizable relations and Spi. Rroc. 9th International Static Analysis Symposium

(SAS’02) pages 20-35. Springer Verlag LNCS 2477, Sept. 2002.

[69] D. Otway and O. Rees. Efficient and timely mutual autleation. ACM SIGOPS
Operating Systems Revigd (1):8-10, Jan. 1987.

[70] L. C. Paulson. Isabelle: The next 700 theorem provensP.1Odifreddi, editor,
Logic and Computer Sciencgolume 31 ofThe APIC Serigspages 361-386.
Academic Press, 1990.

[71] L. C. Paulson. Proving properties of security protacby induction. InProc.
10th IEEE Computer Security Foundations Workshop (CSF)Vigages 70-83,
Rockport, Massachussetts, 1997. IEEE Computer SociegsPre

[72] L. C. Paulson. Relations between secrets: Two formalyaes of the Yahalom

protocol. Journal of Computer Securit®(3):197-216, Jan. 2001.

[73] O. Pereiraand J.-J. Quisquater. A security analysib@tliques protocols suites.
In Proc. 14th IEEE Computer Security Foundations Workshog-{€91), pages
73-81. IEEE Computer Society Press, June 2001.

[74] X. Rival and J. Goubault-Larrecq. Experiments withtiniree automata in Coq.
In R. J. Boulton and P. B. Jackson, editdPsoc. 14th International Conference
on Theorem Proving in Higher Order Logics (TPHOLs'Ofiages 362—-377, Ed-
inburgh, Scotland, UK, Sept. 2001. Springer Verlag LNCS2215

77

[75]

[76]

[77]

(78]

[79]

(80]

(81]

(82]

(83]

J. A. Robinson and A. Voronkov, editorddandbook of Automated Reasoning

North-Holland, 2001.

P. Y. A. Ryan and S. A. Schneider. An attack on a recuraivthentication proto-

col: A cautionary talelnformation Processing Letter65(1):7—-10, 1998.

P. Selinger. Models for an adversary-centric protdogic. Electronic Notes in
Theoretical Computer Sciencg5(1):73-87, July 2001. Proc. 1st Workshop on

Logical Aspects of Cryptographic Protocol Verification (CRV’01).

Spore—security protocols open repository. http://ww. | sv.

ens- cachan. fr/ spor e/, 2005.

C. Sprenger, M. Backes, D. Basin, B. Pfitzmann, and M.diaii. Cryptograph-
ically sound theorem proving. IRroc. 19th IEEE Computer Security Founda-
tions Symposium Workshop (CSFW'(igges 153—-166. IEEE Computer Society
Press, Washington, DC, USA, 2006.

M. Steiner, G. Tsudik, and M. Waidner. Key agreementyinaimic peer groups.
IEEE Transactions on Parallel and Distributed Systefiri{8):769—780, 2000.

T. Tammet.Resolution Methods for Decision Problems and Finite-Mdgigld-

ing. PhD thesis, @Gteborg University, 1992.

F. J. Thayer Bbrega, J. C. Herzog, and J. D. Guttman. Strand spaces:nBrovi
security protocols correctJournal of Computer Security(2-3):191-230, Jan.

1999.

Writing for the TPHOLs community. Part of the Guide fouthors of TPHOL
conferences (Theorem Proving in Higher-Order Logics) sih899, seét t p:

[ww*+ sop.inria.fr/croap/ TPHOLs99/ aut hors. ht ni , 1999.

78

[84] C. Weidenbach. Towards an automatic analysis of sgcuymiotocols. In
H. Ganzinger, editoProc. 16th International Conference on Automated Deduc-
tion (CADE-16) pages 378-382, Trento, Italy, July 1999. Springer-Veklsgl
1632.

[85] C. Weidenbach. Combining superposition, sorts anitsyg. In Robinson and
Voronkov [75], chapter 27, pages 1965-2013.

[86] C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen, C.dltedd, and D. Top.
SPASS version 2.0. In A. Voronkov, editdtroc. 18th International Conference

on Automated Deduction (CADE’'QZpringer-Verlag LNAI 2392, July 2002.

79

