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Abstract. Noetherian spaces are a topological concept that genesaliall quasi-
orderings. We explore applications to infinite-state veaifion problems, and
show how this stimulated the search for infinite procedureskéarp-Miller.

1 Introduction

The purpose of this paper is to given a gentle introductiotinéotheory of Noetherian
spaces, in the context of verification of infinite-state ays.

Now such a statement can be intimidating, all the more so athddan spaces
originate in algebraic geometry [20, chapitre 0]. Their tleere lies in the fact that the
Zariski topology of a Noetherian ring is Noetherian.

My purpose is to stress the fact that Noetherian spaces arelynee topological
generalization of the well-known conceptwéll quasi-orderingsa remark that | made
in [19] for the first time. Until now, this led me into two avessiof research.

The first avenue consists in adapting, in the most straightfal way, the theory of
well-structured transition systenf@/STS) [1, 4, 16, 21] to more general spaces. WSTS
include such important examples as Petri nets and extes)samal lossy channel sys-
tems. After some technical preliminaries in Section 2, | déscribe the basic theory of
Noetherian spaces in Section 3. This leads to a natural gkzegion of WSTS called
topological WSTSwhich | will describe in Section 4.

In [19], | described a few constructions that preserve Nexéimness. We shall give
a more complete catalog in Section’?, X* and in general every well-quasi-ordered
set, but several others as well, including some tlmahotarise from well-quasi-orders.

We apply this to the verification of two kinds of systems thag ot WSTS. We
do not mean these to be any more than toy applications, wlesidability occurs as
a natural byproduct of our constructions. | certainly do maan to prove any new,
sophisticated decidability result for some realistic &mtlon in verification, for which
we should probably exert some more effort. | only hope to cwe/the reader that the
theory of Noetherian spaces shows some potential.

The first applicationpblivious stack systemare k-stack pushdown automata in
which one cannot remember which letter was popped from &stae Section 5. The
second ongyolynomial gamess an extension of Seidl and Miller-Olm’s static analysis
of so-called polynomial programs [29] to games played betwisvo players that can
compute on real and complex numbers using addition, suliirgenultiplication, and
(dis)equality tests: see Section 6, where we also condigecdse of lossgoncurrent
polynomial games, i.e., networks of machines running pofyial programs and which
communicate through lossy signaling channels.



The second avenue of research has led Alain Finkel and migseffake signifi-
cant progress in designing extensions of the Karp-Millerecability algorithm to other
WSTS than just Petri nets or even counter machines. | willeshiy more in Section 7.
This line of research stemmed from the remarkable relatignisetween the concepts
of Noetherianness and of sobriety, which | will explain.dffair to say that the results
obtained with A. Finkel could be proved without any recoutséNoetherian spaces.
But the decisive ideas come from topology, and in partictiam the important role
played byirreducible closed sets in Noetherian spaces.

2 Technical Preliminaries

A well quasi-ordering\{qo) is a quasi-ordering (a reflexive and transitive relatidgratt

is not only well-founded, i.e., has no infinite descendingichbut also has no infinite
antichain (a set of incomparable elements). An alternatef@ition is: < is a wgo on

X iff every sequencéz,), . in X contains a pair of elements such that < z;,

i < j. Yet another equivalent definition i is wqo iff every sequencer,, ), . has a

non-decreasing subsequenge < z;, <...<uz; < ..., <i3 <...<ip<...

WSTS.One use of well quasi-orderings is in verifyimgell-structured transition sys-
temsa.k.aWST4d1, 4, 16, 21]. These are transition systems, usually irgistate, with
two ingredients. (For simplicity, we shall considgrongly monotoniavell-structured
transition systems only.)

First, there is awvell quasi-ordering< on the setX of T —<=> g/ 1)
states. Second, the transition relatibcommutes with _

<,i.e. ifz § yandx < 2/, then there is a statg such 0 Va

thatz’ ¢ ¢ andy < y/': Y o<y

Examples include Petri nets [34] and their extensionstftesesfer Petri nets for exam-
ple, in general all affine counter systems [15], the closeephof VASS [23], BVASS
[37,11], lossy channel systems [3], datanets [26], cefgeiness algebras [7]; and some
problems, such as those related to timed Petri nets [5] aglegant solutions by reduc-
tion to an underlying WSTS.

{x1=24=25=0; 2o =23 =1;}; [l init
start:

if (x3>1){x2——; z1++;90to start;} /la
| if (xza>1){x1——; z2+=2;g0to start;} //b
| {xs——; za++;90t0 start;} Ilc
| {2a——; z3++; x5 ++;goto start;} /1d

Fig. 1. A Petri Net



We illustrate the concept using Petri nets. | won't define wietri nets are exactly.
Look at Figure 1, left, for an example. This is a net witlplaceszy, ..., x5, each
containing a certain number abkens(shown as bullets): the initial state is shown,
with one token in places, andx3, and none anywhere else. Petri nets run by firing
transitions shown as black bars Doing so means, for each incoming arraw-»|,
remove one token from the source placeand for each outgoing arrojx»C, add one
token to the target place. This can only be done providecethez enough tokens in
the source places. E.g., transition a can only fire providedet is at least one token
in zo and at least one token iz (which is the case in the initial state shown in the
figure), will remove one fromx, and one fromes, then put back one intos and put
one intox;. The net effect of transition a is therefore mwveone token frome, to
x1, providedthere is at least one token iry. If we agree to use a variable to hold
the current number of tokens in plagg a C-like notation for this i$ f (x5 > 1) {
xo — —; x1 + +; }, as we have shown on the right-hand side of the figure.

In general, Petri nets are just another way of writtmyinter machines without zero
test i.e., programs that operate on finitely many variahles . .,z containing natural
numbers; the allowed operations are adding and subtractingtants from them, as
well as testing whether; > ¢ for some constants The general counter machines also
offer the possibility of testing whether; equald). Crucially, Petri nets do not allow for
such zero tests. This makes a difference, as reachabilitcaverability (see later) is
undecidable for general counter machines [28], but detédfalp Petri nets [34].

Let us check that Petri nets define WSTS. Consider a Petri itletiwplacesz,
..., 7. The states, also calledarkings are tuplesn = (ni,...,nx) € N¥, where
n; counts the number of tokens in placg The state space . Order this by the
canonical, pointwise orderingny,...,ng) < (nf,...,ng) iff ny < nf and... and
ny, < nj. This is wgo byDickson’'s Lemmawhose proof can be safely left to the reader
(reason componentwise, observing thas itself well-quasi-ordered).

The transitions are each given by a pair of constant veaiobs ¢ N*: we have
n 6 n'iff a < nandn’ = n—a+bfor one of the transitions. For example, transition a
in Figure 1 can be specified by taking= (0, 1,1,0,0) andb = (1,0, 1,0, 0). Itis easy
to see that Diagram (1) holds. Indeed, if some transitiorréble fromn, then it will
remain firable even if we add some tokens to some places, iggeéting it will produce
a new state with more tokens as well.

The standard backward algorithm for WSTS [4, 1&hecoverabilityproblem is: given
two statesr, y, can we reach some statdrom x such thaty < z? This is a form of
reachability, where we require, not to reackexactly, but some state in the upward
closuret z of x.

For any subsetl of X, let Pre?3(A) be the preimagéz € X |3y € A-z 6 y}.
The commutation property (1) of strongly monotonic systemsures that the preimage
PreE(S(V) of any upward closed subsEtis again upward closed/is upward closed
iff wheneverz € V andz < 2/, thenz’ € V). One can then computere®§(V),
the set of states iX' from which we can reach some statelinin finitely many steps,
assuming that upward closed subsets are representabiRran(@d! ) is computable from
any upward closed subsdt Compute the seV; of states from which we can reach



some state iV in at most; steps, backwards, by, =V, V;1 1 = V; U Preaé(v,;): this
stabilizes at some stagewhereV; = Pre?§(V).

To decide coverability, then, compuee™*3(1 ), and check whether is in it.

This is a very simple algorithm. The only subtle point has ¢owdth termination.
One notices indeed thdy C V;, C ... C V; C ..., and that if the sequence ever
stabilizes at stagg we can detect it by testing wheth&r,; C V;. Now it must sta-
bilize, because< is wga Indeed, in a wqo every upward closed suligenust be the
upward closuret £ = {x € X | Jy € E -y < x} of some finite se&. (Proof: any
elementz € U is above a minimal element ii: start fromz and go down until you
cannot go further—which must eventually happen sifcis well-founded. The sel/
of all minimal elements of/ must then be finite since there is no infinite antichain.) In
particular,V,, = (J,cy Vi can be writtent{z1, ..., z,}. Eachz;, 1 < j < n, must be
in someV;, so they are all iV;, wherei = max(iy, ..., i,): it follows thatV,, = V;,
and we are done.

Noetherian spacesThe idea of [19] lies in replacing order theory by topologgtining
that the role of wqos will be played by Noetherian spaces.

Indeed, topologygeneralizesorder theory. (To do so, we shall require topologi-
cal spaces that are definitely non-Hausdorff, even higriience very far from metric
spaces or other topological spaces commonly used in mattesmainy topological
spaceX indeed carries a quasi-orderirgcalled thespecialization quasi-orderingf
X: xz < yiff every open neighborhoot of x also containg. It is fruitful, from a com-
puter science perspective, to understand opéastests thenx < y iff y simulatesr,
i.e., passes all the tests thapasses.

Note that in particular every opédhi is upward closed i<, and every closed sub-
set F' is downward closed. Similarly, continuous mgp: X — Y are in particular
monotonic (the converse fails).

In the opposite direction, there are several topologieXawith a given specializa-
tion quasi-ordering<. The finest one (with the most opens) is Kiexandroff topology
its opens are all the upward closed subsets. The coarseg¢tvithehe fewest opens)
is theupper topologyits closed subsets are all unions of subsets of the fofinthe
downward closure of?), E finite. In between, there are other interesting topologies
such as the Scott topology, of great use in domain theory [6].

3 The Basic Theory of Noetherian Spaces

A topological spaceX is Noetherianiff every open subset ok is compact. (l.e., one
can extract a finite subcover from any open cover.) Equitbien

Definition 1. X is Noetherian iff there is no infinite ascending ch&inC U; € ... C
U, € ...of opensinX.

The key fact, showing how Noetherian spaces generalize wsdke following [19,
Proposition 3.1]< is wqo on the seX iff X, equipped with the Alexandroff topology
of <, is Noetherian. This provides plenty of Noetherian spaces.



It turns out that there are also Noetherian spaces that darisat from wqos, thus
Noetherian spaces provide a strict generalization of wijbs.prime example iB(X),
the infinite powerset ok, with thelower Vietoris topologydefined as the coarsest that
makesOU = {{A € P(X) resp., € P*(X) | AnU # 0} open for every open subset
U of X. WhenX is a posetP(X) is quasi-ordered by theloare quasi-ordering<’:

A <" Biffforevery a € A, there is & € B such that < b. AssumingX wqo, P(X)

is not wqo in general, howeverig Noetherian in the lower Vietoris topology—which
turns out to be the upper topology ef [19, Corollary 7.4]. A related example, in fact
almost the same one, is thiare powerdomaift((.X ) of a spaceX: this is the space of
all non-empty (even infinite) closed subsétof X, with the lower Vietoris topology,
namely the upper topology of. This is one of the powerdomains used in domain
theory, and is a model of the so-calladgelicvariant of non-deterministic choice [6].
ThenXH(X) is Noetherian as soon & is [19, Theorem 7.2].

We don't have any practical applications BfX) or 3{(X) in verification today.
We shall give an application of Noetherian spaces in Se@&jomhere the underlying
space is Noetherian, but is not the Alexandroff topology wfcg. A simpler example
is given by X", the space of all finite words over a finite alphab&twith the upper
topology of the prefix orderingcP®’. We shall see below why this is Noetherian, and
shall use it in Section 5. Note that’"® is certainlynot wqo, as soon a& contains at
least two letters andb: b, ab, aab, ...,a"b, ..., is an infinite antichain.

The key insight in the theory of Noetherian spaces is how MNerénness interacts
with sobriety A topological spaceX is soberif and only if every irreducible closed
subset is the closure, x of a unique point: € X. The closure of a point is always
the downward closure z with respect to the specialization quasi-ordering. A abse
subsetC' is irreducibleiff C' # (), and wheneve€ ' is included in the union of two
closed subset, the@@ must be contained in one of them. For everng X, it is clear
that| « is irreducible. A sober space has no other irreducible clesiset.

Sober spaces are important in topology and domain theonaf&] are the corner-
stone of Stone duality. We refer the reader to [6, Sectionrp¢18, Chapter V] for
further information. We shall be content with the followiirguitions, which show that
sobriety is a form ofcompletenessA space isTy iff its specialization quasi-ordering
< is an ordering, i.e., any two distinct points y, can be separated by some ofén
(think of it as a test that one point passes but not the othe). @o a space 8 if it
hasenough opento separate points. A sober space ifyaspace that also hanough
points in the sense that any closed géthat looks like the closure of a point (in the
sense that it is irreducible) really is s6: = | x, where necessarily = max C. An-
other indication is that, ifX is sober, therX is adcpo[6, Proposition 7.2.13]: for every
directed family(z;),.;, in particular for every chain, themit sup,; z; exists. So a
sober space is complete also in this sense.

Any topological spaceX can be completed to obtain a sober spac¥ ), the so-
brification of X, which has the same lattice of open subsets (up to isomanphand
possibly more points. In a sense, we add all missing limit§ ; z; to X. §(X) is de-
fined as the collection of all irreducible closed subgetsf X, with the upper topology
of C. X is then embedded ifi(X), by equating each point € X with |z € $(X).



The first key point about the interaction between sobrietydoetherianness is that
for any spaceX, X is Noetherian iff$(X) is Noetherian [19, Proposition 6.2]. This is
obvious: X and§8(X) have isomorphic lattices of open sets. Thus, to show ¥
Noetherian, it is enough to show th&tX) is. The following is the cornerstone of the
whole theory, and allows one to check that a sober space ighiligen by checking
simple properties of its specialization quasi-ordering, [Theorem 6.11]:

Theorem 1 (Fundamental Theorem of Sober Noetherian Spacedjhe sober Noethe-
rian spaces are exactly the spaces whose topology is ther uppelogy of a well-
founded partial ordex that has properties W and T.

We say thatX hasproperty Wiff, for every z,y € X, there is a finite subsdt of
maximal lower bounds aof andy, such that every lower bound efandy is less than
or equal to some element &f; i.e.,| z N |y = | E. Similarly, it hasproperty Tiff the
spaceX itself is of the form| F, E finite.

This allows us to prove that the product of two Noetheriancep&’, Y is again
Noetherian [19, Theorem 6.13]. The specialization quadedng on8(X x V) &
S8(X) x 8(Y) is the product ordering, and it is easy to see that the prodiibivo
well-founded orderings is again well-founded, and sinhjl&or properties T and W.

Since every wqo is Noetherian, classical spaces sub¥i asr X* with the (Alexan-
droff topology of the) divisibility ordering (Higman’s Lema [22]), or the set of all
ground first-order term$(X) (a.k.a., vertex-labeled, finite rooted trees) with tree em-
bedding (Kruskal's Theorem [25]), are Noetherian.

It is natural to ask ourselves whether there are topologieasion of Higman's
Lemma and Kruskal's Theorem. There are indeed, and at Ikastotmer case was
alluded to in [13, Theorem 5.3].

Theorem 2 (Topological Higman Lemma).Let X be a topological spaceX* the
space of all finite words on the alphah&twith the subword topologydefined as the
coarsest one such thai*U; X*U, X* ... X*U,, X* is open for every sequence of open
subsetd/q, Us, ...,U, of X.
The specialization quasi-ordering &f* is the embedding quasi-orderirg‘, where
w <* w' iff one obtaingy’ fromw by increasing some letters and inserting some others.
If X is Noetherian, then so i&*.

One also observes thatXif is Alexandroff, then so is{*. One therefore obtains Hig-
man’s Lemma, thak* is wgo as soon as is wgo onX, as a consequence. Thinking
of opens as tests, a word passes theXedt; X *U, X* ... X*U, X* iff it has a length

n subword whose letters pass the tdsts. .., U,.

As a corollary, the spac&® of all multisetsof elements ofX, with thesub-multiset
topology, is Noetherian whenevef is. This is the coarsest one that makes open the
subsetsX® 0 U; ® U, ® ... U, of all multisets containing at least one element from
Uy, one fromU,, ..., one fromU,,, wherelUy, Us, ...,U, are open inX. This follows
from Theorem 2 becausg® is the image ofX * by theParikh mapping? : X* — X®
that sends each word to its multiset of letters, and becaluSeaasy result that the
continuous image of any Noetherian space is again Noetheria

The way | initially proved Theorem 2 [13, full version, awaile on the Web, The-
orem E.20] is interesting. One first characterizes the uredale closed subsets of *



exactly: they are thevord-productsP = ejes .. .e,, Where eacle; is anatomic ex-
pression either of the formF™* with I non-empty and closed i, or C” (denoting
sequences of at most one letter taken fi@mwhereC is irreducible closed itk. Note
how close this is from the definition of products and SREsIf2fact, the latter are the
special case one obtains when considetidinite, in which case irreducible closed
setsC' are single letters, and non-empty closed setsare just non-empty subsets of
X.

Properties T and W are easy, and one realizes that there isfinde descending
chain of word-product$’, 2 P, 2 ... 2 P, 2 ..., as soon a¥ is Noetherian. This
may seem surprising, however one can characterize inclugiovord-products in an
algorithmic way (see [13, Definition 5.1]), and from this eéfon it is clear that ifP? 2
P’,whereP = ejey...e,, andP’ = eje, ... e, then the multisefleq, ea, ..., enl}
is strictly larger tharje}, €5, . . ., e/, [} in the multiset extension™* of 1, defined by:
c’actiffC' D, P aFiff F'DF, P 0 CTiff F' D CandC” 7 Fr
When X is Noetherianp is well-founded, and we conclude by Theorem 1.

This argument is very similar to Murthy and Russell’s constive proof of Hig-
man’s Lemma [30], a paper | only discovered very recentlyr{ix3010).

Using a similar line of proof, we obtain an analogous resultfinite trees. We
equate finite trees oX with ground, unranked first-order terms with function synsbo
taken fromX, which we simply caltermson X.

Theorem 3 (Topological Kruskal Theorem).Let X be a topological spacé(X) be
the set of all terms oX, defined by the grammat ¢,... == f(t1,...,t,) (f € X,
n € N). Write t for the sequence, . . .t,,. Define thesimple tree expressiorsy the
grammarn = OU(my | ... | m,) (U openinX, n € N), and letOU (7 | ... | 7p)
denote the collection of all terms that have a subtgift) with ¢ in the word-product
T(X)*mT(X)*...T(X)*m, T(X)*. We equif (X ) with thetree topologydefined as
the coarsest one that makes every simple tree expressionmopéXx).

The specialization quasi-ordering ®f X ) is the usuatree embeddinquasi-ordering
<, defined inductively by = f(s) << t = g(t) iff either s << t; for somej,
< j <n(wheret =tty...t,),0r f < gands <% t.

If X is Noetherian, then so §(X). -

Simple tree expressions are best explained as tests. Aesitrgd expression ::=
SU(my | ... | mp) is, syntactically, just a finite tree whose root is labelédand
with subtreesry, ..., m,. Then a term¢ passes the test iff it has an embedded
term of the same shape asand whose symbol functiong are all in the openg/
labeling the corresponding nodes of E.g., wheneverf € U, a € V,b € W,
t = g(h(f(g(a,c,c),b),h(g(c))))isin SU(CV() | OW()), because it embeds the
term f(a,b),andf € U,a € V,b € W.

We have already dealt with trees, in the special caserdfedterms on dinite space
X in [13, Definition 4.3, Theorem 4.4]. However, these were @dwthe tree-products
defined there are irreducible, but not closed. The charizetéyn of irreducible closed
subsets off(X) is in fact significantly more complicated than for wordshaligh they
are still a form of regular expression. This will be publidhedsewhere.

By the way, | am, at the time | write this, discontent with theee proofs of The-
orem 2 and Theorem 3, as they are arguably long and compleavd found much

=
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simpler proofs, which escape the need for characteriziagrteducible closed subsets,
and are in fact closer to Nash-Williams celebrated mininaal fequence argument [31].
This, too, will be published elsewhere.

We have already mentioned that some Noetherian spaces tatise from wqos.
Theorem 1 makes it easy to show that with the upper topology of the prefix ordering
(whereX is finite, with the discrete topology) is Noetherian. Comsithdeed~*U{ T},
whereT is a new elements, and posit that<P®" T for everyw € ¥*. EquipX*U{T}
with the upper topology o&P™®'. The purpose of adding is to enforce property T.
Property W is obvious, as well as well-foundednessX3aJ { T} is sober Noetherian.
One now concludes using the easy result that any subspacéloétaerian space is
Noetherian.

One can generalize this to cases where we replad® an arbitrary Noetherian
spaceX, defining an adequaterefix topologyon X*. We omit this here. We write
X*Pref the resulting space. We return P in Section 5.

Let us summarize these results by the grammar of Figure 2y eypaceD shown
there is Noetherian. We have not yet dealt with the case ghopohials; we shall touch
upon them in Section 6. The constructions marked with a statheose that have no
equivalent in the theory of well-quasi-orderings.

D:=A (finite, Alexandroff topology of some quasi-orderirg
N (Alexandroff topology of the natural ordering)
C* (with the Zariski topology, see Section 6) *
Spec(R) (with the Zariski topologyR a Noetherian ring, Section &)

\
\
\
| Di x D2 x...x D, (with the product topology)

| D1+ D2+ ...+ D, (disjoint union)

| D* (with the subword topology, Theorem 2)
\

\

\

\

\

|

D® (with the submultiset topology)

T(D) (with the tree topology, Theorem 3)

Dpref (with the prefix topology) *
H(D) (with the upper topology of) *
P(D) (with the lower Vietoris topology) *
8(D) (with the lower Vietoris topology) *

Fig. 2. An algebra of Noetherian datatypes

4 Effective TopWSTS

It is easy to extend the notion of WSTS to the topological c8sg that &opological
WSTStopWSTS) is a paif X, ¢), whereX, thestate spaceis Noetherian, and, the
transition relation is lower semi-continuous. The former is the topologicallague of
a wqo, and the latter generalizes strong monotonicity (djntally, ¢ is lower semi-
continuousff Pre?§(V) = {z € X | 3y € V - 2 § y} is open wheneve¥ is.



Modulo a few assumptions on effectiveness, one can then airpe*3(V) for
any openV: since X is Noetherian, the sequence of opdns= V, V;;1 = V; U
Pre5(V;) eventually stabilizes. So we can decide, gi¥éandz € X, whether some
element inV is reachable from the state just test whethez: € Pre™ (V). This is a
general form of the standard backward algorithm for WSTS.

Let us make the effectiveness assumptions explicit. We nedds for opens, and
ways of computingPre”s. The following definition is inspired from Smyth [35] and
Taylor [36, Definition 1.15], taking into account simplifit@ns due to Noetherianness.

Definition 2 (Computably Noetherian Basis).Let X be a Noetherian space. &®m-
putably Noetherian bas(gesp.,subbasison X is atuple(N,0[_],0,1, +, <) (resp.,
(N,0[_],0,1,4,*, <)) where:

— N is arecursively enumerable set of so-caltaxtles

— 0[] : N — O(X) is a surjective mapO [0] = 0, O[1] = X, Ou+v] =
Ou] UO[v] @ndO [uxv] = O [u] N O [v] in the case of subbases);

— finally, < is a decidable relation satisfying: if < v thenO [u] C O [v] (sound-
nes$, and for any family(v; ), , of codes, there are finitely many elements. ., i), <
I such that; < v;, + ...+ v;, forall i € I (syntactic compactnels

If in addition u < v iff Ou] C O[v] for all codesu,v € N, then we say that
(N,0[_],0,1,+, <) is astrongly computably Noetheridrasis.

It is important to notice that such bases describe codesgden subsets, but that we
don't care to even represent points, i.e., states, themselv

The conditionu < v iff Ou] € O[v] for all codesu,v € N trivially entails
both soundness and syntactic compactness. The lattewfolimm the fact that the
openlJ,c; O [v;] is compact, sinceX is Noetherian. It is an easy exercise to show
thatall the spaces of Figure 2 have a strongly computably Noethéaars. E.g., for
N, the codes are, n € N, plus0; we takel = 0, On] = tn. If (N;,;0[],,
04, 1;, +4,%;, <;) are strongly computably Noetherian basesXpf 1 < i < n, then
(N, O'[],0,1,+,(¥,) <) defines one again fak; x ... x X,,, whereN’ =
Prin(N1 x ... x Nyp) andO' [u] = Uy, wnyew O[] x oo x O [un] 1 (N, O[],
0,1, +,*, <) is a strongly computably Noetherian basis for where N’ = Py (N*)
and for everyu’ € N/, O’ [«/] is the union, over each word = wjus ... u, in«, of
the basic open s&’ [w] = X*O [Jui] X*O Juz] X* ... X*O [u,] X*.

This also works for infinite constructions such BEX') or H(X): if (N,0[_],
0,1, +, <) is a strongly computably Noetherian basis forthen(N’, O’ [_] , 0,1/, 4/,
*', <) is a strongly computably Noetherian subbasisFoX ), where N’ = Py, (N),
and for everyu € N, O’ [u] = ,¢, €O [d] (this is X" itself whenu = ).

One sometimes also needee@resentation of poinisvhich we define as some sub-
setP of somer.e. set, withamay [_] : P — X, and a decidable relatianon P x N
such thatp ¢ w iff X [p] € O[u]. If X is Ty, there is always a surjective, canoni-
cal representation of points derived from a strongly coraplé Noetherian subbasis
(N,0[_],0,1,+, <): take P to be the subset of all codese N such thatO [u] is
the complement of some set of the fojm, then letX [u] = =. So we don’t formally
need another structure to represent points: any compubtdbitherian basis already



cares for that. But some other representations of pointseoaye in handy in specific
cases.

Definition 3 (Effective TopWSTS).An effective topWSTSs a tuple(X,d, N,O0[_],
0,1,+, <, R3), where(X, §) isatopWSTY,N, 0 [_],0, 1, +, <) is an effective basis
onX, Rs: N — N is computable, an®re5(0O [u]) = O [R3(u)] for everyu € N.

In other words, one may compute a codePoéa(S(U), given any code, of U, asR3(u).
The following is then clear.

Proposition 1. Let (X,d, N,O0[_],0,1,+, <, R3) be an effective topWSTS. One can

effectively compute a code Efea*é(U) from any given code of the open subsét.
Assume additionally a representatioR, X [_] , ¢) of points. Given any codefor

a pointz € X, and any code: for an open subsdl’ of X, one can decide whether

thereisatracer = x9 d 21 6 ... 6 x), such thatr, € U.

One can in fact go further and model-check some infinite tleygr games. We
consider anay player who will play along lower semi-continuous transition taas,
and amust playeywho will play along upper semi-continuous transition telas: J is
upper semi-continuoti§ Pre”§(F) is closedwheneverF is.

Formally, one posits a finite sét = LmyustJ Lmay Of transition labels taken as the
(not necessarily disjoint) union of two subsetswist labelsandmay labelsand calls
atopological Kripke structureany tuplel = (X, (6¢)ycy, (Ua) 4c0), WhereX is a
topological spacej, is a binary relation onX, which is lower semi-continuous when
¢ € Lmayand upper semi-continuous whér Lmys;, andU 4 is an open ofX for every
atomic formulaA. An environmentp maps variableg to opens ofX, and serves to
interpret formulae in some modal logic. In [19, Section 3§ defined the logid.,, as
follows. The formulaeF’ are inductively defined as atomic formuldevariablest, true
T, conjunctionF’ A F’, false L, disjunctionF v F’, must-modal formula¢/] F', may-
modal formulae(¢) ', and least fixed pointg¢ - F'. The semantics of,,, is standard:
the setl [F]; p of statesz € X such thatr satisfiesF’ is in particular defined so
that I [(¢)F]; p = Pre6,(I [Flsp), I [[()F]sp = Pre’d,(I [F]sp) (where, if F is
the complement of/, Pre” (V) is the complement oPre™(F)), and [ué - Fl;p =

XU, whereUy = 0 andU;y1 = I [F]; (p¢ := Ui]). WhenX is Noetherian,
the latter will in fact arise as &nite unionJ;"_, U;. We define effective topological
Kripke structures in the obvious way, imitating Definitionj@st require computable
mapsR; : N — N representing, for each? € Lmay, R} : N — N representing,
for each? € Lnus, and codes 4 of U4 for each atomic formulad. Computing (a code
for) I [F] p by recursion or¥" yields the following decision resullt.

Proposition 2. Given an effective topological Kripke structure, any fotan#' of L,,,
and any sequence of codes one for each variablg, one can effectively compute a
code of! [F] p, wherep is the environment mapping eagho O [v¢].

Given any representation of points, and any code for a poiatX, one can decide
whetherz satisfiest'.



5 Oblivious Stack Systems

Let X be afinite alphabet. Reachability and coverabilityiatack pushdown automata
are undecidable as soon/as> 2: encode each half of the tape of a Turing machine by
a stack. Here is relaxation of this model that will enjoy aidable form of coverability.

Define oblivious k-stack systems just as pushdown automata, except theytcanno
check what letter is popped from any stack. Formally, they astomata on a finite
set( of control states, and where transitions are labeled withples(as, ..., ax)
of actions. Each action; is of the formpush,, for eacha € X' (pusha onto stack
number;) pop (pop the top letter from stack if any, else block), andkip (leave stack
i unchanged), and all actions are performed in parallel.

This defines an effective topWSTS on the state sp@oe(z*vp"*f)k. As we have
seen, the latter is Noetherian, although its specialiratimlering is certainly not wqo.
So the theory of WSTS, as is, does not bring much in solviniyialis k-stack systems.
However, Proposition 1 applies: one can decide whether wereach a given open
setV from any state. One observes that one can specify an opery sefibite set
{p1,...,pn} of forbidden patternsA forbidden patterrp is a tuple(q, w1, ..., wy,)
whereq € @, and eachw; is either a word in¥* or the special symbol'. Such a
pattern isviolatedin exactly those statdg, w1, . . ., w’,) such that for eachsuch that
w; # T, wj is a prefix ofw;. It is satisfiedotherwise. Ther{ps, ..., p,} denotes the
open subset of all states that satisfy everyl < i < n. It follows:

Theorem 4. Given an obliviousk-stack system, any initial configuration and any fi-
nite set of forbidden patterns, one can decide whether tiseaeconfiguration that is
reachable from the initial configuration and satisfies alifinlden patterns.

In particular,control-state reachabilitywhich asks whether one can reach some state
(q,ws,...,wy), for some fixed;, and arbitrarywy, ..., w,, is decidable for oblivious
k-stack systems: take all forbidden patterns of the fégmT,..., T), ¢ € Q \ {¢}.
This much, however, was decidable by WSTS techniques: asl8ni& rightly ob-
served, one can reduce this to Petri net control-state adulil by keeping only the
lengths of stacks. Theorem 4 is more general, as it allowsmtest the contents of the
stacks, and comes for free from the theory of topWSTS.

The reader may see a similarity betwédestack pushdown automata and the con-
current pushdown systems of Qadeer and Rehof [32]. Howeaeelatter must push and
pop on one stack at a time only. Pushdown automata may reguné@eosynchronize
push transitions taken on two or more stacks. l.e., if thg tnansitions available from
control state; are labeledpush,, push,, skip, ..., skip) and(push,, push;, skip,
..., skip), then this forces one to push the same letten b, onto the first two stacks
when exitingg.

6 Polynomial Games

Let C be the field of complex numbers, akde N. Let R be the ringQ[ X7, ..., Xi]
of all polynomials onk variables with coefficients if). The Zariski topologyon C* is
the one whose opens afy = {x € C* | P(x) # 0 for someP € I}, wherel ranges



over the ideals oR. |.e., its closed subsets are thigebraic varietied’; = {x € C* |
P(x) = 0foreveryP € I}. This is a much coarser topology that the usual metric
topology onC*, and is always Noetherian.

There is an obvious computably Noetherian subbasi$ gtrongly so) from com-
putable algebraic geometry. The 9étof codes is the collection dérobner base$9,
Section 11], which are finite sets of polynomials= { P, ..., P,,} overQ, normalized
with respect to a form of completion procedure due to BuchberGiven a so-called
admissible ordering of monomials, i.e., a total well-foeddrdering> on monomials
such thatm, > mo implies thatmm, > mms for all monomialsm, every non-zero
polynomial P can be written agam + P’, wherea € K, m is the largest monomial
of P in >, and P’ only involves smaller monomials? can then be interpreted as a
rewrite rulem — —éP’ on polynomials, E.g., i = X?Y —4X + Y2, with X?Y
as leading monomial, one can rewril®Y? (= X2Y.X3Y) to 4X*Y — X3Y3; the
latter (= X?Y.(4X?) — X3Y3) again rewrites, using’, to —X3Y3 + 16 X3 —4X?Y?2,
then to—4X2Y2 4+ XY* +16X3 —4X2Y? = 16X3 - 8X2Y? + XY*, and finally to
16X3 —32XY + XY 4+ 8Y3. Notice that, evaluated on any zero®fall the polyno-
mials in the rewrite sequence have the same value;evghenX =Y = 0, or 9—2_ﬁ
whenX =1,Y = ”%m

A Grobner basis for an idedlis a finite familyw of polynomials such that = (w)
and that is confluent (and necessarily terminating) whearpméted as a rewrite system.
Buchberger’s algorithm converts any finite setf polynomials to a Grébner basis
of (v).

Let thenO [u] = O, where(u) = (Pi,..., P,) is the ideal of all linear com-
binations of P, ..., P, with coefficients inR. One can always compute a Grébner
base for anideal = (P, ..., P,), givenP, ..., P,, by Buchberger's algorithm. The
code0 is then{0}, 1 is defined a1}, u + v is a Grobner base fox U v. One can
also defineu x v to be a code fo® [u] N O [v], and compute it in at least two ways
[27, Section 4.3]. The simplest algorithm [8, PropositioB.4] consists in computing a
Grobnerbasisof = (YP,YPs,...,.YP,,(1-Y)Q1,(1-Y)Q2,...,(1-Y)Q,),
whereu = {Py, Ps,..., Py} andv = {Q1,Q2,...,Q,} andY is a fresh variable,
and to define, x v as a Grobner basis for tlimination ideadY - I, defined as those
polynomials in/ whereY does not occur [8, Theorem 4.3.6]. Given any polynonial
and any Grobner basis one can test whethd? € (u) by a process akin to rewriting:
each polynomial inu works as a rewrite rule, an& < (u) iff the (unique) normal
form of P with respect to this rewrite system(s One can then test whether< v by
checking whether, for each € u, P isin (v). It turns out that: < v is notequivalent
to O [u] C O [v]: takeu = {X}, v = {X?}, thenu ¢ (v), althoughO [u] = O [v].
But soundness is obvious, and syntactic compactness (Dafiidl) follows sinceR
is a Noetherian ring. We mention in passing that there is alstsongly computably
Noetherian subbasis, whete< v iff () is included in the radical ofv), and this can
be decided using thRabinowitch trick{33].

As a representation of points, we take thassuch tha{u) is a prime ideal. This is
in fact the canonical representation. It contains at ldhstt#onal points(qs, . .., ¢x) €
QF, represented as the Grébner basis — qi, . .., X — qx), but also many more.



One gets natural topWSTS fropolynomial programsThese are finite automata,
on some finite se@ of control states, where transitions are labeled with gsiand
assignments oh complex-valued variables. The guargare finite set{ Py, ..., P, }
of polynomials inR, interpreted as disjunctions of disequalities# 0V ...V P, # 0.

If the guard is satisfied, then the transition can be takethla@action is triggered. The
allowed actions: are parallel assignments := P;(x),..., Py(x), wherez is the
vector of allk variables, and with the obvious semantics. E&gls either a polynomial
in R, or the special symbdl, meaning any element &f.

This defines a transition relatiohon @ x C*, which happens to be lower semi-
continuous, and in fact computably so. As 38&tof codes for opens of the state space
Q x C*, we usePin(Q x N), and defined’ [u'] = U, ,yen{a} x O[u]. Then,
Pre 6(0' [w']) = Uiy wyew {0} X0 [9 % {P[Xi := Plict,., | P €YXi,, ..., X;,, - ul],

ﬂ) ’
wherea is ¢ = Pl(;), .?.,Pk(:c), andiq, ...,1,, are those indices whereP; is ?,
andl,. are the othersP[X; := P;];cs,., is parallel substitution of’; for X; in P for
alli € 1,.,. TheV operator is defined, and shown to be computable, in [29, Ledima

The polynomial programs above are exactly those of Mullen@nd Seidl [29].
Proposition 1 then immediately applies. In particular, caa decide whether one can
reach some configuratiof@’, ) such thatP; () # 0 or ... or P, (x) # 0 for some
stateg’ and polynomialdy, ..., P,,, from a given configuration, in a given polynomial
program. This is a bit more than the polynomial constantblero of [29]. For example,
we may want to check whether gtwe always havd” = X2 +2andX? +Y? = 72,
and for thiswe letP, =Y — X2 -2, P, = Z2 — X? —Y?, m = 2. Figure 3 is
a rendition of an example by Muller-Olm and Seidl, in C-likgngax. The conditions
(shown as?’) at lines 1 and 3 are abstracted away: andwhi | e statements are to
be read as non-deterministic choices. One may check tlsaakviays the case thatis
0 at line 4. This is a polynomial program with control state®btigh 4, the variables
areX; = x, Xo =y, all the guards are trivial (i.e., the empty set of polyndsjisand
the actions should be clear; e.g., the only action from Sdie state 3 is the pair of
polynomials(X; X5 — 6,0).

if(MD{x=2,y=3;}else{x=3,y=2;}
x=x*xy—6;y=0;
while(?{x=x+14y=y—-1;}

L x=x"2+4x*y;
return;

N

Fig. 3. Miller-Olm and Seidl's example

Polynomial GamesWe can again go further. Defimlynomial gameas a topological
Kripke structure where, for each may transitios Lmay, d¢ is specified by guards and
actions as above. For each must transiian Lny,s;, We specifyd, by giving ourselves
a finite setd, of triples (¢, ¢’, ) € Q@ x Q x Q[X1,..., X, X1,..., X}], and defin-



ing (¢, x) 6,(q', ) iff there is a triple(q, ¢’, @) € A, such thatu(z,z’) = 0. So the
must player can, in particular, compute polynomial exgmssofx, test polynomials
against0, and solve polynomial equations. It is easy to see dhad then upper semi-

COﬂtIHUOUS, aﬁ)rea&e({q/}xF(u)) = U(q,q’,a)eAe {q}XFHX{EXL((XU{P[XL:X,:],?::[‘PEU})
By Proposition 2:

Theorem 5. The model-checking problem fdr,, formulas on polynomial games is
decidable.

We do not know whether the added expressive power of polyalogaimes, com-
pared to the simpler polynomial programs, will be of any useerification, however
the theorem stands.

Lossy Concurrent Polynomial Program#ll the above can be done without any re-
course to topology, and requires one only to work with polyied ideals. However,
the topological approach is modular. If one should somedsyrio decide games that
would involve state spaces suchig x C*, or P(C¥), the theory of Noetherian spaces
would apply right out of the box. Here is a trivial case.

Consider a network of polynomial programs communicatirgulyh specific FIFO
channels. We shall call such networtsncurrent polynomial program&Ve shall as-
sume these channels to lossy i.e., messages may disappear from the channels, non-
deterministically, at any time. We shall also assume thattlessages are taken from
some fixed finite sel, i.e., the channels are only used for signaling, not forgnait
ting any actual value. This imitates the behavior of lossyrotel systems [3], which are
a special case (with no variable fra@¥) of our lossy concurrent polynomial programs.
Lossiness is interesting, if only because the non-lossants are undecidable [10].

For simplicity, we shall only consider two programsand B communicating through
one FIFO channel fromd to B. Dealing with more programs and more channels
presents no difficulty, other than notational.

The messages sent over the channel are control signalsXro8o the data type
of the possible contents of the channel}¥, with the subword topology (alterna-
tively, the Alexandroff topology of the usual embedding sjeardering<*, where<
is equality onX)). Let Q 4 be the finite set of control states df, @5 that of B. Let
X = Xi,...,X,, be the vector of the numerical variables 4f Y = Yi,....Y,
those ofB. The configurations are tupléss, X, ¢p,Y ,w), where(q4, X) is a con-
figuration of the polynomial program, (¢5,Y') is a configuration o3, andw € X*
is the contents of the channel. Compared to the non-contwase, the guards and the
actions ofA (resp.,B) can only deal with variables fronX (resp.,Y’), except for two
new families of actiongecv, (for B) andsend, (for A), wherea is a constant irt.

Formally, given anyA-transition fromgy4 to ¢/, with guardg and actionsend,,

a € X + C*, we defines so that(qa, X, q5,Y,w) 6 (¢4, X,qp,Y ,aw) providedg
is satisfied (add. in front of w), while the semantics of secv, action,a € X, from
qp t0 ¢z with guardy, is given by(qa, X, qp, Y, wiaw) 6 (g4, X,q%, Y, w) if gis
satisfied (i.e., drop enough letters from the FIFO channtl we reach am, and pop
it). It is an easy exercise to show that this is lower semitiooous, and computably so.
(We could also add transitions that drop letters from thenaled as in lossy channel
systems, but this is not needed for the rest of our treatinent.



The opens are finite unions of sets of the fofity, z, g5, z,w) | (z,y) €
Or,we X*a1 X* ... X*a, X"}, wheregy, g are fixed control stateg,= (p1, ..., pe)
is a fixed polynomial ideal ove®[X, Y], anday, ..., q, are fixed letters from¥. In
other words, such an open subset is specifiedfoytadden patterna state satisfies the
forbidden pattern iff itsA is in control statej4, B is in control state;z, p;(x,y) # 0
for somei, 1 <i < /¢, anda;as ... a4 is a subword of the contents of the channel.

Theorem 6. Given a lossy concurrent polynomial program, an initial igaration
where the values of the variables are given as rational numlend a finite set of
forbidden patterns, one can decide whether there is a conafligin reachable from the
initial configuration and that satisfies all forbidden patts.

In particular, control-state reachability (can one reaawoafiguration whered would
be in statey4 and B in stategp?) is decidable.

Algebraic geometry.To end this section, we only mention thaf is considered as a
special case in algebraic geometry. It turns out that theifszdgion §(C*) coincides
with Spec(Q[X1, Xo, ..., Xi]), thespectrunof the (Noetherian) rin@[ X, X, ...,
X]. The spectrun®pec(R) of a ring R is the set of all prime ideals d, and comes
with the Zariski topology, whose closed subsets Bye= {p € Spec(R) | I C p},
where I ranges over the ideals dt. It is well-known thatSpec(R) is a Noetherian
space wheneveR is a Noetherian ring, see [20, chapitre premier, Sectiof THis
provides yet another construction of Noetherian spacésadh we currently have no
application in computer science that would require the ddgnerality.

7 Completions, and Complete WSTS

The algorithm of Proposition 1 works backwards, by compyiiterated sets of pre-
decessors. The Karp-Miller algorithm [24] work@wardsinstead, but only applies to
Petri nets. Forward procedures are useful, e.g., to deddededness, see [14].

(0,1,1,0,0) = (0,1,1,0,0) < . >(0,1,1,0,0) =
(1,0,1,0,0) (0,1,0,1,0) ;  (1,0,1,Q,0) (0,1,0,1,0) S (1,0,1,0,0) (0,1,0,1,0)
¢c ¢d ; ¢c d B : ¢c d
(1,0,0,1,0) (0,1,1,0,1): (1,0,0,1,0) : (0,1,1,0,w) ! (1,0,0,1,0) (0,1,1,0,w)
(0,2,0,1,0) (1,0, 1,0, 1) (0,2,0,1,0) (1,0, 1,0,w) (0,2,0,1,0) (1,0,1,0, w)
e E A
(0,2,1,0,1) (0,w,1,0,w) (0,w,1,0,w)
2 4
> (1,w,1,0,w)(0,w, 0,1, w)
a
(W, w, 1,0, wlw, w, 0,1,%)
(a) Unfolding (beginning) (b) Taking some shortcuts (¢) Finishing some branches

Fig. 4. Running the Karp-Miller procedure on Figure 1



Consider for example the Petri net of Figure 1, and constdes & transition system
over N°. The initial state is(0,1,1,0,0), and there are four transitions a, b, c, and
d. One can then unfold all possible runs of the net in a tree ESgure 4,(a)). Here,
from the initial state, one can trigger transitions a or adiag to statesl, 0, 1,0, 0) and
(0,1,0,1,0) respectively. From the latter we can only trigger d, leadon@, 1, 1,0, 1),
and so on. Doing so would yield an infinite tree.

The Karp-Miller construction builds a finite tree by takingnse shortcuts, and ab-
stracting away the values of components of the states thgtbh@eome unbounded.
E.g., in Figure 1, we realize that firing c then d leads to eegf@tl1, 1,0, 1) where the
first four components are the same as in the initial state, 1, 0,0), but the fifth is
larger. Iterating this c-d sequence would lead to a dt@&te, 1,0, N) with N arbitrary
large, and we abstract this away placingthe state(0,1,1,0,1) by (0,1,1,0,w),
wherew denotes any, arbitrarily large, number. This also happé&érgahe other two
branches shown in Figure 4;). The dotted arrows going up in Figure @), indicate
which state we can go back to in order to perform such itematio

One can see a tuple M, (whereN,, = Nu {w}) such ag0, 1, 1,0, w) as meaning,
in particular, that there are infinitely many tokens in plage While this is not quite
correct, it certainly gives some further intuitions. In feular, one can continue to
simulate the execution of the Petri net from such extendedstThe result, apart from
some irrelevant parts, is shown in Figurg(d). This is thecoverability treeof the Petri
net. (The dotted arrows are not part of this—the coveraftiliaphwould include them.
We also glossed over a few details, notably that the Karpekdonstruction does not
proceed to simulate the execution of the Petri net from a@relad state that is identical
to a state further up the same branching.)

The reason why the resulting tree is twofold. FifSf, is wgo. This implies that,
along any infinite branch, we must eventually find an extenstate that is compo-
nentwise larger than another one higher in the tree, giveigruopportunity to take a
shortcut. We call this arogressproperty: in any infinite run, we will eventually take a
shortcut, subsuming infinitely many iterations.

Second, taking a shortcut addscagomponent to a tuple, angdcomponents never
disappear further down the branch: so any branch must irb&énite. It follows from
Konig’'s Lemma that the tree itself is finite, and is built inifentime.

The Karp-Miller construction gives more information abdlo¢ Petri net than the
standard backward algorithm. LettingC N* be the set of all extended states labeling
the nodes of the tree, one sees th&tN | A is exactly thecoverof the Petri net, i.e.,
the downward closuré Post*d(z) of the setPost*d(x) of statesy that are reachable
from the initial stater by the transition relatiod. In particular, one can decide cover-
ability, by checking whethey € | Post*d(x). One can also decideoundedness.e.,
test whetheiPost™d(x)? is finite (check whether any component occur anywhere in
the coverability tree), andlace-boundednesse., test whether there is a bound on the
number of tokens that can be in any given place. In the exaaipiee, and after sim-
plification, the cover ifN° N | {(w,w,0,1,w), (w,w, 1,0,w)}: the bounded places are
r3 andxzy.

The Karp-Miller construction is fine, but only works on Petéts. There cannot be
any similar, terminating procedure for general WSTS, sitii® would decide bound-



edness again. But boundedness is already undecidable syndbannel systems [10]
and on reset Petri nets [12].

Even if we drop the requirement for termination, finding agedure that would
compute the cover of a general WSTS (when it terminates) iredaelusive for some
time. Some important special cases could be handled intdratlire, e.g., a large class
of affine counter systems generalizing reset/transferi Rets [15], or lossy channel
systems [2], but a general theory of covers, and of forwact@dures a la Karp-Miller
for general WSTS was missing. This is what we solved, with iRkEl, in two recent
papers [13, 14].

This involved two tasks(i) first, much as we needed extended state®inin
the Karp-Miller procedure, we should work in an adequaimpletionX of the state
spaceX; (i7) then, we should understand what a Karp-Miller-like progedactually
computes. We actually cheated here, since we have alreagly gh answer t¢ii): the
Karp-Miller procedure computes (among other things) theecof the Petri net.

Completions.In (3), by adequate we mean th&tshould embed intd, in such a way
that every closed subs@ of X should be representable byfiaite subset ofX. (In
[13], we wanted to this for every downward closed, not jussed,D. However, if X
has the Alexandroff topology of a wqo, this is the same thikgrmally, D should be
the set of those points i that are below finitely many points iN: D = X N | ¢ F,

E finite. We write| ¢ to stress the fact that the downward closure is to be takef,in

i.e., E is a subset of{, not X. Typically, if X = N*, thenX should beN*, and for
example,D = {(m,n,p) € N* | m +n < 3} is representable &’ N | {(0,3,w),
(1,2,w),(2,1,w), (3,0,w)}. It turns out that the sobrificatio$i X) is exactly what we
need here, as advocated in [13, Proposition 4.2]:

Proposition 3. Let X be a Noetherian space. Every closed sulisetf X is a finite
union of irreducible closed subsets, ..., C,,.

So let the completiorX be8(X). Proposition 3 states that, modulo the canonical iden-
tification ofz € X with |z € §(X), Fis X N | ¢{C1,...,Cpn}. We have stressed the
subcase wher& was wqo (and equipped with its Alexandroff topology) in [1&8hd
this handles 7 of the 13 constructions in Figure 2. We wouldd td note that Noethe-
rian spacesX allow us to consider more kinds of state spaces, while emgtinat each
closed subset aX is finitely representable, in a canonical way. Moreoverséhepre-
sentations are effective, too. N

One might wonder whether there would be other adequate atiops X. There
are, indeed, howevef(X) is canonical in a sense. Adapting Geeraettsl. slightly
[17], callweak adequate domain of limitsr WADL, over the Noetherian spacé any
spaceX in which X embeds, and such that the closed (downward closed &hen
wqo) subsets o are exactly the subsets representabléXas | ; £ for some finite

subset? of X. Itis an easy consequence of Theorem 184af) is thesmallestWADL,
andH (X) is thelargestWADL: up to isomorphism, any WADLX must be such that
8(X) C X C H(X).

It is then natural to ask whethef = 8(X) is effectively presented, in the sense
that we have codes for all elements&{fX) and that the ordering (i.e<) on 8(X)



is decidable. It turns out that the answer is positivedibrthe datatypes of Figure 2.
E.g., given codes for elements ﬁfl, )?gktheAcodes for elements dsf1/>_<\Xg are just
pairs of codegz1, z2) for elements ofX;, X5. Given codes for elements df, the
codes for elements ok * are the word-products we mentioned in Section 3. It might
seem surprising that we could do this even for the infinite groetP(X). Notice that

P(X) = H(X), up to isomorphism, and that every elemenffX') can be written as
ChU...UC, forfinitely many elementg’,, . ..,C,, of X by Proposition 3. So take as
codes for elements @f(X) thefinite setsE of codes of elements, ...,C,, of X.

Clovers. Point (i) was clarified, among other things, in [14]: Karp-Millerilproce-
dures compute theloverof a stater € X in a WSTSX, and this is a finite represen-
tative {C4,...,C), }, as defined above, of the topologicdbsure(in X) of the set of
points reachable from. The cloveralwaysexists, by Proposition 3. It may fail to be
computable: if it were, it would allow us to decide boundesiior reset Petri nets or
for lossy channel systems, which are undecidable.

While we investigated this for WSTS, it actually works foryaopological WSTS.
We only need to extend the transition relatibi X x X to one, 85, on X x X. The
canonical candidate is such tlasé C” iff C” is included in the closure dfostd(C') =
{y € X | 3z € C -z 0 y}; and this is representable afiritely branchlng(because of
Proposition 3 again) relatiof E. g., the minimal such relation is such th@ats ¢ iff
(" is maximal such tha® 85 C’. We then get a completed topWSTS

To do anything with this, we must assume thas effective, and in fact more. We
explored this in [14], in the case wheP¢ is wqo, andX is functional (i.e.,C 5
iff ¢’ = ¢;(C) for somei, 1 < ¢ < n, wheregy, ..., g, is a fixed collection of
partial continuous maps frolX to )A() and co-effective (see below), and obtained a
simple proceduré&€lover that computes the clover of any statec X (in particular,
anyx € X) whenever it terminates.

The role of the completiof( is again manifest in th&lover needs tdub-accelerate
some infinite sequences of states obtained in a regularolasdsCy < ¢(Cy) <
g*(Cy) < ... < g"(Cy) < ... by applying one functional transition : X - X,
replacing the sequence by its least upper bayidCy) (which exists: recall that every
sober space is a dcpo in its specialization quasi-orderirtg} is what we called taking
shortcuts until now. Iy £ g(Cy), then defing/>(Cy) as justg(Cy). X is oo-effective
iff g°° is computable.

Here is the proceduréiax A denotesProcedure Clover(sy) :

the set of all maximal elements df € 1. A<+ {so};

Pin(X). The procedure takes an initial while Post(85)(A) £” A do

extended state, € X, and, if it ter- (&) Choose fairly(g,C) € {g1,...,gn}* x A
minates, returns a finite skfax A (the such thatC' € dom g;

cloverof sp) such that, ; Max Aisthe  (0) A« AU{g>(a)};

closure of the cover of the WSTS.  3.return Max 4;

The elementg chosen at line (a) are chosen frdm, ..., g, }*, the set of composi-
tionsg;, o g, o ... o g;, of functions from{g,,...,g,}. A typical implementation of
Clover would build a tree, as in the Karp-Miller construction. Icfza tree is a simple



way to ensure that the choice (@f, C) at line (a) isfair, i.e., no pair is ignored infinitely
long on any infinite branch. Concretely, we would build a #ggending downwards. At
each stepd is given by the set of extended states written at the nodémafurrent tree.
One picks(g, C') as in line (a) by picking a transitiog to apply from a yet unexplored
stateC” (at a leaf), and considering all stat€shigher in the branch (the path frofi
to C’ being given by transitions, say;, , gi,_, - --,9i,), lettingg = g;0gi, 0... 0 g, .

The Clover procedure extends straightforwardly to topological WSp&vided
they are functional (here, eagh needs to be continuous). It is however unclear how
to dispense with the requirement that it be functional. Meeg, the nice character-
ization thatClover terminates exactly on those systems that@dower-flattable[14,
Theorem 3] seems to require the fact tiatis w?-wqo, not even just wqo, for deep
reasons.
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