
Noetherian Spaces in Verification

Jean Goubault-Larrecq∗,†

∗ Preuves, Programmes et Systèmes, UMR 7126, CNRS and University Paris Diderot
† LSV, ENS Cachan, CNRS, INRIA

Abstract. Noetherian spaces are a topological concept that generalizes well quasi-
orderings. We explore applications to infinite-state verification problems, and
show how this stimulated the search for infinite procedures àla Karp-Miller.

1 Introduction

The purpose of this paper is to given a gentle introduction tothe theory of Noetherian
spaces, in the context of verification of infinite-state systems.

Now such a statement can be intimidating, all the more so as Noetherian spaces
originate in algebraic geometry [20, chapitre 0]. Their usethere lies in the fact that the
Zariski topology of a Noetherian ring is Noetherian.

My purpose is to stress the fact that Noetherian spaces are merely a topological
generalization of the well-known concept ofwell quasi-orderings, a remark that I made
in [19] for the first time. Until now, this led me into two avenues of research.

The first avenue consists in adapting, in the most straightforward way, the theory of
well-structured transition systems(WSTS) [1, 4, 16, 21] to more general spaces. WSTS
include such important examples as Petri nets and extensions, and lossy channel sys-
tems. After some technical preliminaries in Section 2, I will describe the basic theory of
Noetherian spaces in Section 3. This leads to a natural generalization of WSTS called
topological WSTS, which I will describe in Section 4.

In [19], I described a few constructions that preserve Noetherianness. We shall give
a more complete catalog in Section 3:ℕk, �∗ and in general every well-quasi-ordered
set, but several others as well, including some thatdo notarise from well-quasi-orders.

We apply this to the verification of two kinds of systems that are not WSTS. We
do not mean these to be any more than toy applications, where decidability occurs as
a natural byproduct of our constructions. I certainly do notmean to prove any new,
sophisticated decidability result for some realistic application in verification, for which
we should probably exert some more effort. I only hope to convince the reader that the
theory of Noetherian spaces shows some potential.

The first application,oblivious stack systems, arek-stack pushdown automata in
which one cannot remember which letter was popped from a stack: see Section 5. The
second one,polynomial games, is an extension of Seidl and Müller-Olm’s static analysis
of so-called polynomial programs [29] to games played between two players that can
compute on real and complex numbers using addition, subtraction, multiplication, and
(dis)equality tests: see Section 6, where we also consider the case of lossyconcurrent
polynomial games, i.e., networks of machines running polynomial programs and which
communicate through lossy signaling channels.



The second avenue of research has led Alain Finkel and myselfto make signifi-
cant progress in designing extensions of the Karp-Miller coverability algorithm to other
WSTS than just Petri nets or even counter machines. I will saya bit more in Section 7.
This line of research stemmed from the remarkable relationship between the concepts
of Noetherianness and of sobriety, which I will explain. It is fair to say that the results
obtained with A. Finkel could be proved without any recourseto Noetherian spaces.
But the decisive ideas come from topology, and in particularfrom the important role
played byirreducibleclosed sets in Noetherian spaces.

2 Technical Preliminaries

A well quasi-ordering (wqo) is a quasi-ordering (a reflexive and transitive relation) that
is not only well-founded, i.e., has no infinite descending chain, but also has no infinite
antichain (a set of incomparable elements). An alternativedefinition is:≤ is a wqo on
X iff every sequence(xn)n∈ℕ

in X contains a pair of elements such thatxi ≤ xj ,
i < j. Yet another equivalent definition is:≤ is wqo iff every sequence(xn)n∈ℕ

has a
non-decreasing subsequencexi0 ≤ xi1 ≤ . . . ≤ xik ≤ . . ., i0 < i1 < . . . < ik < . . .

WSTS.One use of well quasi-orderings is in verifyingwell-structured transition sys-
tems, a.k.a.WSTS[1, 4, 16, 21]. These are transition systems, usually infinite-state, with
two ingredients. (For simplicity, we shall considerstrongly monotonicwell-structured
transition systems only.)

First, there is awell quasi-ordering≤ on the setX of
states. Second, the transition relation� commutes with
≤, i.e., if x � y andx ≤ x′, then there is a statey′ such
thatx′ � y′ andy ≤ y′:

x ≤

�

x′

�

y ≤ y′

(1)

Examples include Petri nets [34] and their extensions, reset/transfer Petri nets for exam-
ple, in general all affine counter systems [15], the close concept of VASS [23], BVASS
[37, 11], lossy channel systems [3], datanets [26], certainprocess algebras [7]; and some
problems, such as those related to timed Petri nets [5] admitelegant solutions by reduc-
tion to an underlying WSTS.

x1

∙

x2

∙

x3 x4 x5

a b

c

d

{ x1 = x4 = x5 = 0; x2 = x3 = 1; }; // init
start:
if (x3 ≥ 1) { x2 −−; x1 ++; goto start; } // a

[] if (x4 ≥ 1) { x1 −−; x2+ = 2; goto start; } // b
[] { x3 −−; x4 ++; goto start; } // c
[] { x4 −−; x3 ++; x5 ++; goto start; } // d

Fig. 1.A Petri Net



We illustrate the concept using Petri nets. I won’t define what Petri nets are exactly.
Look at Figure 1, left, for an example. This is a net with5 placesx1, . . . , x5, each
containing a certain number oftokens(shown as bullets): the initial state is shown,
with one token in placesx2 andx3, and none anywhere else. Petri nets run by firing
transitions, shown as black bars∣. Doing so means, for each incoming arrow#→∣,
remove one token from the source place#, and for each outgoing arrow∣→#, add one
token to the target place. This can only be done provided there are enough tokens in
the source places. E.g., transition a can only fire provided there is at least one token
in x2 and at least one token inx3 (which is the case in the initial state shown in the
figure), will remove one fromx2 and one fromx3, then put back one intox3 and put
one intox1. The net effect of transition a is therefore tomoveone token fromx2 to
x1, providedthere is at least one token inx3. If we agree to use a variablexi to hold
the current number of tokens in placexi, a C-like notation for this isif (x3 ≥ 1) {
x2 −−; x1 ++; }, as we have shown on the right-hand side of the figure.

In general, Petri nets are just another way of writingcounter machines without zero
test, i.e., programs that operate on finitely many variablesx1, . . . ,xk containing natural
numbers; the allowed operations are adding and subtractingconstants from them, as
well as testing whetherxi ≥ c for some constantsc. The general counter machines also
offer the possibility of testing whetherxi equals0. Crucially, Petri nets do not allow for
such zero tests. This makes a difference, as reachability and coverability (see later) is
undecidable for general counter machines [28], but decidable for Petri nets [34].

Let us check that Petri nets define WSTS. Consider a Petri net with k placesx1,
. . . , xk. The states, also calledmarkings, are tuplesn = (n1, . . . , nk) ∈ ℕk, where
ni counts the number of tokens in placexi. The state space isℕk. Order this by the
canonical, pointwise ordering:(n1, . . . , nk) ≤ (n′

1, . . . , nk) iff n1 ≤ n′
1 and . . . and

nk ≤ n′
k. This is wqo byDickson’s Lemma, whose proof can be safely left to the reader

(reason componentwise, observing thatℕ is itself well-quasi-ordered).
The transitions are each given by a pair of constant vectorsa, b ∈ ℕk: we have

n � n′ iff a ≤ n andn′ = n−a+b for one of the transitions. For example, transition a
in Figure 1 can be specified by takinga = (0, 1, 1, 0, 0) andb = (1, 0, 1, 0, 0). It is easy
to see that Diagram (1) holds. Indeed, if some transition is firable fromn, then it will
remain firable even if we add some tokens to some places, and triggering it will produce
a new state with more tokens as well.

The standard backward algorithm for WSTS [4, 16].Thecoverabilityproblem is: given
two statesx, y, can we reach some statez from x such thaty ≤ z? This is a form of
reachability, where we require, not to reachx exactly, but some state in the upward
closure↑x of x.

For any subsetA of X, let Pre∃�(A) be the preimage{x ∈ X ∣ ∃y ∈ A ⋅ x � y}.
The commutation property (1) of strongly monotonic systemsensures that the preimage
Pre∃�(V ) of any upward closed subsetV is again upward closed (V is upward closed
iff wheneverx ∈ V andx ≤ x′, thenx′ ∈ V ). One can then computePre∃∗�(V ),
the set of states inX from which we can reach some state inV in finitely many steps,
assuming that upward closed subsets are representable andPre∃(A) is computable from
any upward closed subsetA: Compute the setVi of states from which we can reach



some state inV in at mosti steps, backwards, byV0 = V , Vi+1 = Vi ∪Pre
∃�(Vi): this

stabilizes at some stagei, whereVi = Pre∃∗�(V ).
To decide coverability, then, computePre∃∗�(↑ y), and check whetherx is in it.
This is a very simple algorithm. The only subtle point has to do with termination.

One notices indeed thatV0 ⊆ V1 ⊆ . . . ⊆ Vi ⊆ . . ., and that if the sequence ever
stabilizes at stagei, we can detect it by testing whetherVi+1 ⊆ Vi. Now it must sta-
bilize, because≤ is wqo. Indeed, in a wqo every upward closed subsetU must be the
upward closure↑E = {x ∈ X ∣ ∃y ∈ E ⋅ y ≤ x} of some finite setE. (Proof: any
elementx ∈ U is above a minimal element inU : start fromx and go down until you
cannot go further—which must eventually happen since≤ is well-founded. The setE
of all minimal elements ofU must then be finite since there is no infinite antichain.) In
particular,V! =

∪
i∈ℕ

Vi can be written↑{x1, . . . , xn}. Eachxj , 1 ≤ j ≤ n, must be
in someVij , so they are all inVi, wherei = max(i1, . . . , in): it follows thatV! = Vi,
and we are done.

Noetherian spaces.The idea of [19] lies in replacing order theory by topology, noticing
that the role of wqos will be played by Noetherian spaces.

Indeed, topologygeneralizesorder theory. (To do so, we shall require topologi-
cal spaces that are definitely non-Hausdorff, even non-T1, hence very far from metric
spaces or other topological spaces commonly used in mathematics.) Any topological
spaceX indeed carries a quasi-ordering≤ called thespecialization quasi-orderingof
X: x ≤ y iff every open neighborhoodU of x also containsy. It is fruitful, from a com-
puter science perspective, to understand opensU astests; thenx ≤ y iff y simulatesx,
i.e., passes all the tests thatx passes.

Note that in particular every openU is upward closed in≤, and every closed sub-
setF is downward closed. Similarly, continuous mapf : X → Y are in particular
monotonic (the converse fails).

In the opposite direction, there are several topologies onX with a given specializa-
tion quasi-ordering≤. The finest one (with the most opens) is theAlexandroff topology:
its opens are all the upward closed subsets. The coarsest one(with the fewest opens)
is theupper topology: its closed subsets are all unions of subsets of the form↓E (the
downward closure ofE), E finite. In between, there are other interesting topologies
such as the Scott topology, of great use in domain theory [6].

3 The Basic Theory of Noetherian Spaces

A topological spaceX is Noetherianiff every open subset ofX is compact. (I.e., one
can extract a finite subcover from any open cover.) Equivalently:

Definition 1. X is Noetherian iff there is no infinite ascending chainU0 ⊊ U1 ⊊ . . . ⊊
Un ⊊ . . . of opens inX.

The key fact, showing how Noetherian spaces generalize wqos, is the following [19,
Proposition 3.1]:≤ is wqo on the setX iff X, equipped with the Alexandroff topology
of ≤, is Noetherian. This provides plenty of Noetherian spaces.



It turns out that there are also Noetherian spaces that do notarise from wqos, thus
Noetherian spaces provide a strict generalization of wqos.The prime example isℙ(X),
the infinite powerset ofX, with thelower Vietoris topology, defined as the coarsest that
makes3U = {{A ∈ ℙ(X) resp., ∈ ℙ∗(X) ∣ A ∩ U ∕= ∅} open for every open subset
U of X. WhenX is a poset,ℙ(X) is quasi-ordered by theHoare quasi-ordering≤♭:
A ≤♭ B iff for every a ∈ A, there is ab ∈ B such thata ≤ b. AssumingX wqo,ℙ(X)
is not wqo in general, however itis Noetherian in the lower Vietoris topology—which
turns out to be the upper topology of≤♭ [19, Corollary 7.4]. A related example, in fact
almost the same one, is theHoare powerdomainℋ(X) of a spaceX: this is the space of
all non-empty (even infinite) closed subsetsF of X, with the lower Vietoris topology,
namely the upper topology of⊆. This is one of the powerdomains used in domain
theory, and is a model of the so-calledangelicvariant of non-deterministic choice [6].
Thenℋ(X) is Noetherian as soon asX is [19, Theorem 7.2].

We don’t have any practical applications ofℙ(X) or ℋ(X) in verification today.
We shall give an application of Noetherian spaces in Section6, where the underlying
space is Noetherian, but is not the Alexandroff topology of awqo. A simpler example
is given by�∗, the space of all finite words over a finite alphabet�, with the upper
topology of the prefix ordering≤pref. We shall see below why this is Noetherian, and
shall use it in Section 5. Note that≤pref is certainlynot wqo, as soon as� contains at
least two lettersa andb: b, ab, aab, . . . ,anb, . . . , is an infinite antichain.

The key insight in the theory of Noetherian spaces is how Noetherianness interacts
with sobriety. A topological spaceX is sober if and only if every irreducible closed
subsetC is the closure↓x of a unique pointx ∈ X. The closure of a pointx is always
the downward closure↓x with respect to the specialization quasi-ordering. A closed
subsetC is irreducible iff C ∕= ∅, and wheneverC is included in the union of two
closed subset, thenC must be contained in one of them. For everyx ∈ X, it is clear
that↓x is irreducible. A sober space has no other irreducible closed subset.

Sober spaces are important in topology and domain theory [6], and are the corner-
stone of Stone duality. We refer the reader to [6, Section 7] or to [18, Chapter V] for
further information. We shall be content with the followingintuitions, which show that
sobriety is a form ofcompleteness. A space isT0 iff its specialization quasi-ordering
≤ is an ordering, i.e., any two distinct pointsx, y, can be separated by some openU

(think of it as a test that one point passes but not the other one). So a space isT0 if it
hasenough opensto separate points. A sober space is aT0 space that also hasenough
points, in the sense that any closed setC that looks like the closure of a point (in the
sense that it is irreducible) really is so:C = ↓x, where necessarilyx = maxC. An-
other indication is that, ifX is sober, thenX is adcpo[6, Proposition 7.2.13]: for every
directed family(xi)i∈I , in particular for every chain, thelimit supi∈I xi exists. So a
sober space is complete also in this sense.

Any topological spaceX can be completed to obtain a sober spaceS(X), theso-
brification of X, which has the same lattice of open subsets (up to isomorphism), and
possibly more points. In a sense, we add all missing limitssupi∈I xi to X. S(X) is de-
fined as the collection of all irreducible closed subsetsC of X, with the upper topology
of ⊆. X is then embedded inS(X), by equating each pointx ∈ X with ↓x ∈ S(X).



The first key point about the interaction between sobriety and Noetherianness is that
for any spaceX, X is Noetherian iffS(X) is Noetherian [19, Proposition 6.2]. This is
obvious:X andS(X) have isomorphic lattices of open sets. Thus, to show thatX is
Noetherian, it is enough to show thatS(X) is. The following is the cornerstone of the
whole theory, and allows one to check that a sober space is Noetherian by checking
simple properties of its specialization quasi-ordering [19, Theorem 6.11]:

Theorem 1 (Fundamental Theorem of Sober Noetherian Spaces). The sober Noethe-
rian spaces are exactly the spaces whose topology is the upper topology of a well-
founded partial order≤ that has properties W and T.

We say thatX hasproperty W iff, for every x, y ∈ X, there is a finite subsetE of
maximal lower bounds ofx andy, such that every lower bound ofx andy is less than
or equal to some element ofE; i.e.,↓x ∩ ↓ y = ↓E. Similarly, it hasproperty Tiff the
spaceX itself is of the form↓E, E finite.

This allows us to prove that the product of two Noetherian spacesX, Y is again
Noetherian [19, Theorem 6.13]. The specialization quasi-ordering onS(X × Y ) ∼=
S(X) × S(Y ) is the product ordering, and it is easy to see that the productof two
well-founded orderings is again well-founded, and similarly for properties T and W.

Since every wqo is Noetherian, classical spaces such asℕk, or�∗ with the (Alexan-
droff topology of the) divisibility ordering (Higman’s Lemma [22]), or the set of all
ground first-order termsT(X) (a.k.a., vertex-labeled, finite rooted trees) with tree em-
bedding (Kruskal’s Theorem [25]), are Noetherian.

It is natural to ask ourselves whether there are topologicalversion of Higman’s
Lemma and Kruskal’s Theorem. There are indeed, and at least the former case was
alluded to in [13, Theorem 5.3].

Theorem 2 (Topological Higman Lemma).Let X be a topological space,X∗ the
space of all finite words on the alphabetX with thesubword topology, defined as the
coarsest one such thatX∗U1X

∗U2X
∗ . . .X∗UnX

∗ is open for every sequence of open
subsetsU1, U2, . . . ,Un ofX.

The specialization quasi-ordering ofX∗ is the embedding quasi-ordering≤∗, where
w ≤∗ w′ iff one obtainsw′ fromw by increasing some letters and inserting some others.

If X is Noetherian, then so isX∗.

One also observes that ifX is Alexandroff, then so isX∗. One therefore obtains Hig-
man’s Lemma, that≤∗ is wqo as soon as≤ is wqo onX, as a consequence. Thinking
of opens as tests, a word passes the testX∗U1X

∗U2X
∗ . . .X∗UnX

∗ iff it has a length
n subword whose letters pass the testsU1, . . . ,Un.

As a corollary, the spaceX⊛ of all multisetsof elements ofX, with thesub-multiset
topology, is Noetherian wheneverX is. This is the coarsest one that makes open the
subsetsX⊛⊙U1⊙U2⊙ . . .⊙Un of all multisets containing at least one element from
U1, one fromU2, . . . , one fromUn, whereU1, U2, . . . ,Un are open inX. This follows
from Theorem 2 becauseX⊛ is the image ofX∗ by theParikh mapping	 : X∗ → X⊛

that sends each word to its multiset of letters, and because of the easy result that the
continuous image of any Noetherian space is again Noetherian.

The way I initially proved Theorem 2 [13, full version, available on the Web, The-
orem E.20] is interesting. One first characterizes the irreducible closed subsets ofX∗



exactly: they are theword-productsP = e1e2 . . . en, where eachei is anatomic ex-
pression, either of the formF ∗ with F non-empty and closed inX, or C? (denoting
sequences of at most one letter taken fromC), whereC is irreducible closed inX. Note
how close this is from the definition of products and SREs [2].In fact, the latter are the
special case one obtains when consideringX finite, in which case irreducible closed
setsC are single lettersa, and non-empty closed setsF are just non-empty subsets of
X.

Properties T and W are easy, and one realizes that there is no infinite descending
chain of word-productsP0 ⊋ P1 ⊋ . . . ⊋ Pk ⊋ . . ., as soon asX is Noetherian. This
may seem surprising, however one can characterize inclusion of word-products in an
algorithmic way (see [13, Definition 5.1]), and from this definition it is clear that ifP ⊋
P ′, whereP = e1e2 . . . em andP ′ = e′1e

′
2 . . . e

′
n, then the multiset{∣e1, e2, . . . , em∣}

is strictly larger than{∣e′1, e
′
2, . . . , e

′
n∣} in the multiset extension=mul of =, defined by:

C ′? = C? iff C ′ ⊋ C; F ′∗ = F ∗ iff F ′ ⊋ F ; F ′∗ = C? iff F ′ ⊇ C; andC ′? ∕= F ∗.
WhenX is Noetherian,⊋ is well-founded, and we conclude by Theorem 1.

This argument is very similar to Murthy and Russell’s constructive proof of Hig-
man’s Lemma [30], a paper I only discovered very recently (April 2010).

Using a similar line of proof, we obtain an analogous result on finite trees. We
equate finite trees onX with ground, unranked first-order terms with function symbols
taken fromX, which we simply calltermsonX.

Theorem 3 (Topological Kruskal Theorem).LetX be a topological space,T(X) be
the set of all terms onX, defined by the grammars, t, . . . ::= f(t1, . . . , tn) (f ∈ X,
n ∈ ℕ). Write t for the sequencet1 . . . tn. Define thesimple tree expressionsby the
grammar� ::= 3U(�1 ∣ . . . ∣ �n) (U open inX, n ∈ ℕ), and let3U(�1 ∣ . . . ∣ �n)
denote the collection of all terms that have a subtermf(t) with t in the word-product
T(X)∗�1T(X)∗ . . .T(X)∗�nT(X)∗. We equipT(X) with thetree topology, defined as
the coarsest one that makes every simple tree expression open in T(X).

The specialization quasi-ordering ofT(X) is the usualtree embeddingquasi-ordering
⪯≤, defined inductively bys = f(s) ⪯≤ t = g(t) iff either s ⪯≤ tj for somej,
1 ≤ j ≤ n (wheret = t1t2 . . . tn), or f ≤ g ands ⪯∗

≤ t.
If X is Noetherian, then so isT(X).

Simple tree expressions are best explained as tests. A simple tree expression� ::=
3U(�1 ∣ . . . ∣ �n) is, syntactically, just a finite tree whose root is labeledU and
with subtrees�1, . . . , �n. Then a termt passes the test� iff it has an embedded
term of the same shape as� and whose symbol functionsf are all in the opensU
labeling the corresponding nodes of�. E.g., wheneverf ∈ U , a ∈ V , b ∈ W ,
t = g(ℎ(f(g(a, c, c), b), ℎ(g(c)))) is in 3U(3V () ∣ 3W ()), because it embeds the
termf(a, b), andf ∈ U , a ∈ V , b ∈W .

We have already dealt with trees, in the special case ofrankedterms on afinitespace
X in [13, Definition 4.3, Theorem 4.4]. However, these were flawed: the tree-products
defined there are irreducible, but not closed. The characterization of irreducible closed
subsets ofT(X) is in fact significantly more complicated than for words, although they
are still a form of regular expression. This will be published elsewhere.

By the way, I am, at the time I write this, discontent with the above proofs of The-
orem 2 and Theorem 3, as they are arguably long and complex. I have found much



simpler proofs, which escape the need for characterizing the irreducible closed subsets,
and are in fact closer to Nash-Williams celebrated minimal bad sequence argument [31].
This, too, will be published elsewhere.

We have already mentioned that some Noetherian spaces did not arise from wqos.
Theorem 1 makes it easy to show that�∗ with the upper topology of the prefix ordering
(where� is finite, with the discrete topology) is Noetherian. Consider indeed�∗∪{⊤},
where⊤ is a new elements, and posit thatw ≤pref ⊤ for everyw ∈ �∗. Equip�∗∪{⊤}
with the upper topology of≤pref. The purpose of adding⊤ is to enforce property T.
Property W is obvious, as well as well-foundedness. So�∗ ∪ {⊤} is sober Noetherian.
One now concludes using the easy result that any subspace of aNoetherian space is
Noetherian.

One can generalize this to cases where we replace� by an arbitrary Noetherian
spaceX, defining an adequateprefix topologyon X∗. We omit this here. We write
X∗,pref the resulting space. We return to�∗,pref in Section 5.

Let us summarize these results by the grammar of Figure 2: every spaceD shown
there is Noetherian. We have not yet dealt with the case of polynomials; we shall touch
upon them in Section 6. The constructions marked with a star are those that have no
equivalent in the theory of well-quasi-orderings.

D ::= A (finite, Alexandroff topology of some quasi-ordering≤)
∣ ℕ (Alexandroff topology of the natural ordering≤)
∣ ℂk (with the Zariski topology, see Section 6) ∗
∣ Spec(R) (with the Zariski topology,R a Noetherian ring, Section 6)∗
∣ D1 ×D2 × . . .×Dn (with the product topology)
∣ D1 +D2 + . . .+Dn (disjoint union)
∣ D

∗ (with the subword topology, Theorem 2)
∣ D

⊛ (with the submultiset topology)
∣ T(D) (with the tree topology, Theorem 3)
∣ D

∗,pref (with the prefix topology) ∗
∣ ℋ(D) (with the upper topology of⊆) ∗
∣ ℙ(D) (with the lower Vietoris topology) ∗
∣ S(D) (with the lower Vietoris topology) ∗

Fig. 2.An algebra of Noetherian datatypes

4 Effective TopWSTS

It is easy to extend the notion of WSTS to the topological case. Say that atopological
WSTS(topWSTS) is a pair(X, �), whereX, thestate space, is Noetherian, and�, the
transition relation, is lower semi-continuous. The former is the topological analogue of
a wqo, and the latter generalizes strong monotonicity (1). Formally, � is lower semi-
continuousiff Pre∃�(V ) = {x ∈ X ∣ ∃y ∈ V ⋅ x � y} is open wheneverV is.



Modulo a few assumptions on effectiveness, one can then computePre∃∗�(V ) for
any openV : sinceX is Noetherian, the sequence of opensV0 = V , Vi+1 = Vi ∪
Pre∃�(Vi) eventually stabilizes. So we can decide, givenV andx ∈ X, whether some
element inV is reachable from the statex: just test whetherx ∈ Pre∃∗�(V ). This is a
general form of the standard backward algorithm for WSTS.

Let us make the effectiveness assumptions explicit. We needcodes for opens, and
ways of computingPre∃�. The following definition is inspired from Smyth [35] and
Taylor [36, Definition 1.15], taking into account simplifications due to Noetherianness.

Definition 2 (Computably Noetherian Basis).LetX be a Noetherian space. Acom-
putably Noetherian basis(resp.,subbasis) onX is a tuple(N,O J_K , 0, 1,+,≺≺) (resp.,
(N,O J_K , 0, 1,+, ★,≺≺)) where:

– N is a recursively enumerable set of so-calledcodes,
– O J_K : N → O(X) is a surjective map,O J0K = ∅, O J1K = X, O Ju+ vK =
O JuK ∪ O JvK (andO Ju ★ vK = O JuK ∩ O JvK in the case of subbases);

– finally,≺≺ is a decidable relation satisfying: ifu ≺≺ v thenO JuK ⊆ O JvK (sound-
ness), and for any family(vi)i∈I of codes, there are finitely many elementsi1, . . . , ik ∈
I such thatvi ≺≺ vi1 + . . .+ vik for all i ∈ I (syntactic compactness).

If in addition u ≺≺ v iff O JuK ⊆ O JvK for all codesu, v ∈ N , then we say that
(N,O J_K , 0, 1,+,≺≺) is a strongly computably Noetherianbasis.

It is important to notice that such bases describe codes for open subsets, but that we
don’t care to even represent points, i.e., states, themselves.

The conditionu ≺≺ v iff O JuK ⊆ O JvK for all codesu, v ∈ N trivially entails
both soundness and syntactic compactness. The latter follows from the fact that the
open

∪
i∈I O JviK is compact, sinceX is Noetherian. It is an easy exercise to show

that all the spaces of Figure 2 have a strongly computably Noetherianbasis. E.g., for
ℕ, the codes aren, n ∈ ℕ, plus 0; we take1 = 0, O JnK = ↑n. If (Ni,O J_Ki ,
0i, 1i,+i, ★i,≺≺i) are strongly computably Noetherian bases ofXi, 1 ≤ i ≤ n, then
(N ′,O′ J_K , 0′, 1′,+′, (★′, ) ≺≺′) defines one again forX1 × . . . × Xn, whereN ′ =
ℙfin(N1 × . . .×Nn) andO′ JuK =

∪
(u1,...,un)∈u O Ju1K× . . .× O JunK. If (N,O J_K ,

0, 1,+, ★,≺≺) is a strongly computably Noetherian basis forX, whereN ′ = ℙfin(N
∗)

and for everyu′ ∈ N ′, O′ Ju′K is the union, over each wordw = u1u2 . . . un in u′, of
the basic open setO′ JwK = X∗

O Ju1KX
∗
O Ju2KX

∗ . . . X∗
O JunKX∗.

This also works for infinite constructions such asℙ(X) or ℋ(X): if (N,O J_K ,
0, 1,+,≺≺) is a strongly computably Noetherian basis forX, then(N ′,O′ J_K , 0′, 1′,+′,
★′,≺≺′) is a strongly computably Noetherian subbasis forℙ(X), whereN ′ = ℙfin(N),
and for everyu ∈ N ′, O′ JuK =

∩
a∈u 3O JaK (this isX ′ itself whenu = ∅).

One sometimes also needs arepresentation of points, which we define as some sub-
setP of some r.e. set, with a mapX J_K : P → X, and a decidable relation" onP ×N

such thatp " u iff X JpK ∈ O JuK. If X is T0, there is always a surjective, canoni-
cal representation of points derived from a strongly computable Noetherian subbasis
(N,O J_K , 0, 1,+,≺≺): takeP to be the subset of all codesu ∈ N such thatO JuK is
the complement of some set of the form↓x, then letX JuK = x. So we don’t formally
need another structure to represent points: any computablyNoetherian basis already



cares for that. But some other representations of points maycome in handy in specific
cases.

Definition 3 (Effective TopWSTS).An effective topWSTSis a tuple(X, �,N,O J_K ,
0, 1,+,≺≺, R∃), where(X, �) is a topWSTS,(N,O J_K , 0, 1,+,≺≺) is an effective basis
onX, R∃ : N → N is computable, andPre∃�(O JuK) = O JR∃(u)K for everyu ∈ N .

In other words, one may compute a code ofPre∃�(U), given any codeu of U , asR∃(u).
The following is then clear.

Proposition 1. Let (X, �,N,O J_K , 0, 1,+,≺≺, R∃) be an effective topWSTS. One can
effectively compute a code ofPre∃∗�(U) from any given codeu of the open subsetU .

Assume additionally a representation(P,X J_K , ") of points. Given any codep for
a pointx ∈ X, and any codeu for an open subsetU of X, one can decide whether
there is a tracex = x0 � x1 � . . . � xk such thatxk ∈ U .

One can in fact go further and model-check some infinite two-player games. We
consider amay player, who will play along lower semi-continuous transition relations,
and amust player, who will play along upper semi-continuous transition relations:� is
upper semi-continuousiff Pre∀�(F ) is closedwheneverF is.

Formally, one posits a finite setL = Lmust∪ Lmay of transition labels, taken as the
(not necessarily disjoint) union of two subsets ofmust labelsandmay labels, and calls
a topological Kripke structureany tupleI = (X, (�ℓ)ℓ∈L, (UA)A∈A

), whereX is a
topological space,�ℓ is a binary relation onX, which is lower semi-continuous when
ℓ ∈ Lmay and upper semi-continuous whenℓ ∈ Lmust, andUA is an open ofX for every
atomic formulaA. An environment� maps variables� to opens ofX, and serves to
interpret formulae in some modal logic. In [19, Section 3], we defined the logicL� as
follows. The formulaeF are inductively defined as atomic formulaeA, variables�, true
⊤, conjunctionF ∧ F ′, false⊥, disjunctionF ∨ F ′, must-modal formulae[ℓ]F , may-
modal formulae⟨ℓ⟩F , and least fixed points�� ⋅ F . The semantics ofL� is standard:
the setI JF K� � of statesx ∈ X such thatx satisfiesF is in particular defined so
that I J⟨ℓ⟩F K� � = Pre∃�ℓ(I JF K� �), I J[ℓ]F K� � = Pre∀�ℓ(I JF K� �) (where, ifF is
the complement ofV , Pre∀(V ) is the complement ofPre∃(F )), andI J�� ⋅ F K� � =∪+∞

i=0 Ui, whereU0 = ∅ andUi+1 = I JF K� (�[� := Ui]). WhenX is Noetherian,
the latter will in fact arise as afinite union

∪n
i=0 Ui. We define effective topological

Kripke structures in the obvious way, imitating Definition 3: just require computable
mapsR∃

ℓ : N → N representing�ℓ for eachℓ ∈ Lmay, R∀
ℓ : N → N representing�ℓ

for eachℓ ∈ Lmust, and codesuA of UA for each atomic formulaA. Computing (a code
for) I JF K� � by recursion onF yields the following decision result.

Proposition 2. Given an effective topological Kripke structure, any formula F of L�,
and any sequence of codesv�, one for each variable�, one can effectively compute a
code ofI JF K� �, where� is the environment mapping each� to O Jv�K.

Given any representation of points, and any code for a pointx ∈ X, one can decide
whetherx satisfiesF .



5 Oblivious Stack Systems

Let� be a finite alphabet. Reachability and coverability ink-stack pushdown automata
are undecidable as soon ask ≥ 2: encode each half of the tape of a Turing machine by
a stack. Here is relaxation of this model that will enjoy a decidable form of coverability.

Defineobliviousk-stack systems just as pushdown automata, except they cannot
check what letter is popped from any stack. Formally, they are automata on a finite
setQ of control states, and where transitions are labeled withk-tuples(�1, . . . , �k)
of actions. Each action�i is of the formpusha, for eacha ∈ � (pusha onto stack
numberi) pop (pop the top letter from stacki, if any, else block), andskip (leave stack
i unchanged), and all actions are performed in parallel.

This defines an effective topWSTS on the state spaceQ × (�∗,pref)
k
. As we have

seen, the latter is Noetherian, although its specialization ordering is certainly not wqo.
So the theory of WSTS, as is, does not bring much in solving obliviousk-stack systems.
However, Proposition 1 applies: one can decide whether we can reach a given open
setV from any state. One observes that one can specify an open set by a finite set
{p1, . . . , pn} of forbidden patterns. A forbidden patternp is a tuple(q, w1, . . . , wn)
whereq ∈ Q, and eachwi is either a word in�∗ or the special symbol⊤. Such a
pattern isviolatedin exactly those states(q, w′

1, . . . , w
′
n) such that for eachi such that

wi ∕= ⊤, w′
i is a prefix ofwi. It is satisfiedotherwise. Then{p1, . . . , pn} denotes the

open subset of all states that satisfy everypi, 1 ≤ i ≤ n. It follows:

Theorem 4. Given an obliviousk-stack system, any initial configuration and any fi-
nite set of forbidden patterns, one can decide whether thereis a configuration that is
reachable from the initial configuration and satisfies all forbidden patterns.

In particular,control-state reachability, which asks whether one can reach some state
(q, w1, . . . , wn), for some fixedq, and arbitraryw1, . . . ,wn, is decidable for oblivious
k-stack systems: take all forbidden patterns of the form(q′,⊤, . . . ,⊤), q′ ∈ Q ∖ {q}.
This much, however, was decidable by WSTS techniques: as S. Schmitz rightly ob-
served, one can reduce this to Petri net control-state reachability by keeping only the
lengths of stacks. Theorem 4 is more general, as it allows oneto test the contents of the
stacks, and comes for free from the theory of topWSTS.

The reader may see a similarity betweenk-stack pushdown automata and the con-
current pushdown systems of Qadeer and Rehof [32]. However,the latter must push and
pop on one stack at a time only. Pushdown automata may requireone tosynchronize
push transitions taken on two or more stacks. I.e., if the only transitions available from
control stateq are labeled(pusha, pusha, skip, . . . , skip) and(pushb, pushb, skip,
. . . , skip), then this forces one to push the same letter,a or b, onto the first two stacks
when exitingq.

6 Polynomial Games

Let ℂ be the field of complex numbers, andk ∈ ℕ. Let R be the ringℚ[X1, . . . , Xk]
of all polynomials onk variables with coefficients inℚ. TheZariski topologyonℂk is
the one whose opens areOI = {x ∈ ℂk ∣ P (x) ∕= 0 for someP ∈ I}, whereI ranges



over the ideals ofR. I.e., its closed subsets are thealgebraic varietiesFI = {x ∈ ℂk ∣
P (x) = 0 for everyP ∈ I}. This is a much coarser topology that the usual metric
topology onℂk, and is always Noetherian.

There is an obvious computably Noetherian subbasis (not strongly so) from com-
putable algebraic geometry. The setN of codes is the collection ofGröbner bases[9,
Section 11], which are finite sets of polynomialsu = {P1, . . . , Pn} overℚ, normalized
with respect to a form of completion procedure due to Buchberger. Given a so-called
admissible ordering of monomials, i.e., a total well-founded ordering≥ on monomials
such thatm1 ≥ m2 implies thatmm1 ≥ mm2 for all monomialsm, every non-zero
polynomialP can be written asam + P ′, wherea ∈ K, m is the largest monomial
of P in ≥, andP ′ only involves smaller monomials.P can then be interpreted as a
rewrite rulem → − 1

a
P ′ on polynomials, E.g., ifP = X2Y − 4X + Y 2, with X2Y

as leading monomial, one can rewriteX5Y 2 (= X2Y.X3Y ) to 4X4Y − X3Y 3; the
latter (= X2Y.(4X2)−X3Y 3) again rewrites, usingP , to−X3Y 3+16X3−4X2Y 2,
then to−4X2Y 2 +XY 4 +16X3− 4X2Y 2 = 16X3− 8X2Y 2 +XY 4, and finally to
16X3− 32XY +XY 4 +8Y 3. Notice that, evaluated on any zero ofP , all the polyno-
mials in the rewrite sequence have the same value; e.g.,0 whenX = Y = 0, or 9−

√
17

2

whenX = 1, Y = −1+
√
17

2 .

A Gröbner basis for an idealI is a finite familyw of polynomials such thatI = (w)
and that is confluent (and necessarily terminating) when interpreted as a rewrite system.
Buchberger’s algorithm converts any finite setv of polynomials to a Gröbner basisw
of (v).

Let thenO JuK = O(u), where(u) = (P1, . . . , Pn) is the ideal of all linear com-
binations ofP1, . . . , Pn with coefficients inR. One can always compute a Gröbner
base for an idealI = (P1, . . . , Pn), givenP1, . . . ,Pn, by Buchberger’s algorithm. The
code0 is then{0}, 1 is defined as{1}, u + v is a Gröbner base foru ∪ v. One can
also defineu ★ v to be a code forO JuK ∩ O JvK, and compute it in at least two ways
[27, Section 4.3]. The simplest algorithm [8, Proposition 4.3.9] consists in computing a
Gröbner basis ofI = (Y P1, Y P2, . . . , Y Pm, (1−Y )Q1, (1−Y )Q2, . . . , (1−Y )Qn),
whereu = {P1, P2, . . . , Pm} andv = {Q1, Q2, . . . , Qn} andY is a fresh variable,
and to defineu ★ v as a Gröbner basis for theelimination ideal∃Y ⋅ I, defined as those
polynomials inI whereY does not occur [8, Theorem 4.3.6]. Given any polynomialP

and any Gröbner basisu, one can test whetherP ∈ (u) by a process akin to rewriting:
each polynomial inu works as a rewrite rule, andP ∈ (u) iff the (unique) normal
form of P with respect to this rewrite system is0. One can then test whetheru ≺≺ v by
checking whether, for eachP ∈ u, P is in (v). It turns out thatu ≺≺ v is not equivalent
to O JuK ⊆ O JvK: takeu = {X}, v = {X2}, thenu ∕∈ (v), althoughO JuK = O JvK.
But soundness is obvious, and syntactic compactness (Definition 2) follows sinceR
is a Noetherian ring. We mention in passing that there is alsoa stronglycomputably
Noetherian subbasis, whereu ≺≺ v iff (u) is included in the radical of(v), and this can
be decided using theRabinowitch trick[33].

As a representation of points, we take thoseu such that(u) is a prime ideal. This is
in fact the canonical representation. It contains at least all rational points(q1, . . . , qk) ∈
ℚk, represented as the Gröbner basis(X1 − q1, . . . , Xk − qk), but also many more.



One gets natural topWSTS frompolynomial programs. These are finite automata,
on some finite setQ of control states, where transitions are labeled with guards and
assignments onk complex-valued variables. The guardsg are finite sets{P1, . . . , Pm}
of polynomials inR, interpreted as disjunctions of disequalitiesP1 ∕= 0∨ . . .∨Pm ∕= 0.
If the guard is satisfied, then the transition can be taken, and the action is triggered. The
allowed actionsa are parallel assignmentsx := P1(x), . . . , Pk(x), wherex is the
vector of allk variables, and with the obvious semantics. EachPi is either a polynomial
in R, or the special symbol?, meaning any element ofℂ.

This defines a transition relation� on Q × ℂk, which happens to be lower semi-
continuous, and in fact computably so. As setN ′ of codes for opens of the state space
Q × ℂk, we useℙfin(Q × N), and defineO′ Ju′K =

∪
(q,u)∈N ′{q} × O JuK. Then,

Pre∃�(O′ Ju′K) =
∪

(q′,u)∈u′

q
g,a−→q′

{q}×O Jg ★ {P [Xi := Pi]i∈Iact
∣ P ∈ ∀Xi1 , . . . , Xim ⋅ u}K,

wherea is x := P1(x), . . . , Pk(x), andi1, . . . , im are those indicesi wherePi is ?,
andIact are the others.P [Xi := Pi]i∈Iact

is parallel substitution ofPi for Xi in P for
all i ∈ Iact. The∀ operator is defined, and shown to be computable, in [29, Lemma4].

The polynomial programs above are exactly those of Müller-Olm and Seidl [29].
Proposition 1 then immediately applies. In particular, onecan decide whether one can
reach some configuration(q′,x) such thatP1(x) ∕= 0 or . . . orPm(x) ∕= 0 for some
stateq′ and polynomialsP1, . . . ,Pm, from a given configuration, in a given polynomial
program. This is a bit more than the polynomial constants problem of [29]. For example,
we may want to check whether atq′ we always haveY = X2 + 2 andX2 + Y 2 = Z2,
and for this we letP1 = Y − X2 − 2, P2 = Z2 − X2 − Y 2, m = 2. Figure 3 is
a rendition of an example by Müller-Olm and Seidl, in C-like syntax. The conditions
(shown as ‘?’) at lines 1 and 3 are abstracted away:if andwhile statements are to
be read as non-deterministic choices. One may check that it is always the case thatx is
0 at line 4. This is a polynomial program with control states 1 through 4, the variables
areX1 = x, X2 = y, all the guards are trivial (i.e., the empty set of polynomials), and
the actions should be clear; e.g., the only action from state2 to state 3 is the pair of
polynomials(X1X2 − 6, 0).

1. if (?) { x = 2; y = 3; } else { x = 3; y = 2; }
2. x = x ∗ y− 6; y = 0;
3. while (?) { x = x+ 1; y = y− 1; };
3’. x = x^2+ x ∗ y;
4. return;

Fig. 3.Müller-Olm and Seidl’s example

Polynomial Games.We can again go further. Definepolynomial gamesas a topological
Kripke structure where, for each may transitionℓ ∈ Lmay, �ℓ is specified by guards and
actions as above. For each must transitionℓ ∈ Lmust, we specify�ℓ by giving ourselves
a finite setAℓ of triples (q, q′, �) ∈ Q × Q × ℚ[X1, . . . , Xk, X

′
1, . . . , X

′
k], and defin-



ing (q,x) �ℓ(q
′,x′) iff there is a triple(q, q′, �) ∈ Aℓ such that�(x,x′) = 0. So the

must player can, in particular, compute polynomial expressions ofx, test polynomials
against0, and solve polynomial equations. It is easy to see that�ℓ is then upper semi-
continuous, asPre∃�ℓ({q′}×F(u)) =

∪
(q,q′,�)∈Aℓ

{q}×F∃X′

1
⋅...⋅∃X′

k
⋅(�∪{P [Xi:=X′

i
]k
i=1

∣P∈u}).
By Proposition 2:

Theorem 5. The model-checking problem forℒ� formulas on polynomial games is
decidable.

We do not know whether the added expressive power of polynomial games, com-
pared to the simpler polynomial programs, will be of any use in verification, however
the theorem stands.

Lossy Concurrent Polynomial Programs.All the above can be done without any re-
course to topology, and requires one only to work with polynomial ideals. However,
the topological approach is modular. If one should someday need to decide games that
would involve state spaces such asℕm×ℂk, orℙ(ℂk), the theory of Noetherian spaces
would apply right out of the box. Here is a trivial case.

Consider a network of polynomial programs communicating through specific FIFO
channels. We shall call such networksconcurrent polynomial programs. We shall as-
sume these channels to belossy, i.e., messages may disappear from the channels, non-
deterministically, at any time. We shall also assume that the messages are taken from
some fixed finite set�, i.e., the channels are only used for signaling, not for transmit-
ting any actual value. This imitates the behavior of lossy channel systems [3], which are
a special case (with no variable fromℂ) of our lossy concurrent polynomial programs.
Lossiness is interesting, if only because the non-lossy variants are undecidable [10].

For simplicity, we shall only consider two programsA andB communicating through
one FIFO channel fromA to B. Dealing with more programs and more channels
presents no difficulty, other than notational.

The messages sent over the channel are control signals from�. So the data type
of the possible contents of the channel is�∗, with the subword topology (alterna-
tively, the Alexandroff topology of the usual embedding quasi-ordering≤∗, where≤
is equality on�). Let QA be the finite set of control states ofA, QB that ofB. Let
X = X1, . . . , Xm be the vector of the numerical variables ofA, Y = Y1, . . . , Yn

those ofB. The configurations are tuples(qA,X, qB,Y , w), where(qA,X) is a con-
figuration of the polynomial programA, (qB,Y ) is a configuration ofB, andw ∈ �∗

is the contents of the channel. Compared to the non-concurrent case, the guards and the
actions ofA (resp.,B) can only deal with variables fromX (resp.,Y ), except for two
new families of actionsrecva (for B) andsenda (for A), wherea is a constant in�.

Formally, given anyA-transition fromqA to q′A with guardg and actionsenda,
a ∈ � + ℂk, we define� so that(qA,X, qB,Y , w) � (q′A,X, qB,Y , aw) providedg
is satisfied (adda in front of w), while the semantics of arecva action,a ∈ �, from
qB to q′B with guardg, is given by(qA,X, qB,Y , w1aw) � (qA,X, q′B,Y , w) if g is
satisfied (i.e., drop enough letters from the FIFO channel until we reach ana, and pop
it). It is an easy exercise to show that this is lower semi-continuous, and computably so.
(We could also add transitions that drop letters from the channel, as in lossy channel
systems, but this is not needed for the rest of our treatment.)



The opens are finite unions of sets of the form{(qA,x, qB,x, w) ∣ (x,y) ∈
OI , w ∈ �∗a1�∗ . . . �∗aq�∗}, whereqA, qB are fixed control states,I = (p1, . . . , pℓ)
is a fixed polynomial ideal overℚ[X,Y ], anda1, . . . ,aq are fixed letters from�. In
other words, such an open subset is specified by aforbidden pattern: a state satisfies the
forbidden pattern iff itsA is in control stateqA, B is in control stateqB , pi(x,y) ∕= 0
for somei, 1 ≤ i ≤ ℓ, anda1a2 . . . aq is a subword of the contentsw of the channel.

Theorem 6. Given a lossy concurrent polynomial program, an initial configuration
where the values of the variables are given as rational numbers, and a finite set of
forbidden patterns, one can decide whether there is a configuration reachable from the
initial configuration and that satisfies all forbidden patterns.

In particular, control-state reachability (can one reach aconfiguration whereA would
be in stateqA andB in stateqB?) is decidable.

Algebraic geometry.To end this section, we only mention thatℂk is considered as a
special case in algebraic geometry. It turns out that the sobrification S(ℂk) coincides
with Spec(ℚ[X1, X2, . . . , Xk]), thespectrumof the (Noetherian) ringℚ[X1, X2, . . . ,

Xk]. The spectrumSpec(R) of a ringR is the set of all prime ideals ofR, and comes
with the Zariski topology, whose closed subsets areFI = {p ∈ Spec(R) ∣ I ⊆ p},
whereI ranges over the ideals ofR. It is well-known thatSpec(R) is a Noetherian
space wheneverR is a Noetherian ring, see [20, chapitre premier, Section 1.1]. This
provides yet another construction of Noetherian spaces, although we currently have no
application in computer science that would require the added generality.

7 Completions, and Complete WSTS

The algorithm of Proposition 1 works backwards, by computing iterated sets of pre-
decessors. The Karp-Miller algorithm [24] worksforwardsinstead, but only applies to
Petri nets. Forward procedures are useful, e.g., to decide boundedness, see [14].

d

(0, 2, 1, 0, 1)

b d

(0, 2, 0, 1, 0) (1, 0, 1, 0, !)

(0, 1, 1, 0, 0)

(0, 1, 0, 1, 0)

ca

(1, 0, 1, 0, 0)

b d

c

(1, 0, 0, 1, 0)

(0, 2, 0, 1, 0) (1, 0, 1, 0, 1)

d

(0, 1, 1, 0, 1)

(0, 1, 1, 0, 0)

(0, 1, 0, 1, 0)

ca

(1, 0, 1, 0, 0)
c

(1, 0, 0, 1, 0)

d

(0, 1, 1, 0, !)

d

(0, !, 1, 0, !)

a c

(!,!, 0, 1, !)(!,!, 1, 0, !)

(0, 1, 1, 0, 0)

(0, 1, 0, 1, 0)

ca

(1, 0, 1, 0, 0)

b d

c

(1, 0, 0, 1, 0)

(0, 2, 0, 1, 0)

d

(0, 1, 1, 0, !)

(1, 0, 1, 0, !)

d

(0, !, 1, 0, !)

a c

(0, !, 0, 1, !)(1, !, 1, 0, !)

(a) Unfolding (beginning) (b) Taking some shortcuts (c) Finishing some branches

Fig. 4. Running the Karp-Miller procedure on Figure 1



Consider for example the Petri net of Figure 1, and consider it as a transition system
over ℕ5. The initial state is(0, 1, 1, 0, 0), and there are four transitions a, b, c, and
d. One can then unfold all possible runs of the net in a tree (see Figure 4,(a)). Here,
from the initial state, one can trigger transitions a or c, leading to states(1, 0, 1, 0, 0) and
(0, 1, 0, 1, 0) respectively. From the latter we can only trigger d, leadingto (0, 1, 1, 0, 1),
and so on. Doing so would yield an infinite tree.

The Karp-Miller construction builds a finite tree by taking some shortcuts, and ab-
stracting away the values of components of the states that may become unbounded.
E.g., in Figure 1, we realize that firing c then d leads to a state (0, 1, 1, 0, 1) where the
first four components are the same as in the initial state(0, 1, 1, 0, 0), but the fifth is
larger. Iterating this c-d sequence would lead to a state(0, 1, 1, 0, N) with N arbitrary
large, and we abstract this away byreplacing the state(0, 1, 1, 0, 1) by (0, 1, 1, 0, !),
where! denotes any, arbitrarily large, number. This also happens along the other two
branches shown in Figure 4,(a). The dotted arrows going up in Figure 4,(b), indicate
which state we can go back to in order to perform such iterations.

One can see a tuple inℕ5
! (whereℕ! = ℕ⊎{!}) such as(0, 1, 1, 0, !) as meaning,

in particular, that there are infinitely many tokens in placex5. While this is not quite
correct, it certainly gives some further intuitions. In particular, one can continue to
simulate the execution of the Petri net from such extended states. The result, apart from
some irrelevant parts, is shown in Figure 4,(c). This is thecoverability treeof the Petri
net. (The dotted arrows are not part of this—the coverability graphwould include them.
We also glossed over a few details, notably that the Karp-Miller construction does not
proceed to simulate the execution of the Petri net from an extended state that is identical
to a state further up the same branching.)

The reason why the resulting tree is twofold. First,ℕk
! is wqo. This implies that,

along any infinite branch, we must eventually find an extendedstate that is compo-
nentwise larger than another one higher in the tree, giving us an opportunity to take a
shortcut. We call this aprogressproperty: in any infinite run, we will eventually take a
shortcut, subsuming infinitely many iterations.

Second, taking a shortcut adds an! component to a tuple, and! components never
disappear further down the branch: so any branch must in factbe finite. It follows from
König’s Lemma that the tree itself is finite, and is built in finite time.

The Karp-Miller construction gives more information aboutthe Petri net than the
standard backward algorithm. LettingA ⊆ ℕk

! be the set of all extended states labeling
the nodes of the tree, one sees thatℕk ∩ ↓A is exactly thecoverof the Petri net, i.e.,
the downward closure↓Post∗�(x) of the setPost∗�(x) of statesy that are reachable
from the initial statex by the transition relation�. In particular, one can decide cover-
ability, by checking whethery ∈ ↓Post∗�(x). One can also decideboundedness, i.e.,
test whetherPost∗�(x)? is finite (check whether any! component occur anywhere in
the coverability tree), andplace-boundedness, i.e., test whether there is a bound on the
number of tokens that can be in any given place. In the exampleabove, and after sim-
plification, the cover isℕ5 ∩ ↓{(!, !, 0, 1, !), (!, !, 1, 0, !)}: the bounded places are
x3 andx4.

The Karp-Miller construction is fine, but only works on Petrinets. There cannot be
any similar, terminating procedure for general WSTS, sincethis would decide bound-



edness again. But boundedness is already undecidable on lossy channel systems [10]
and on reset Petri nets [12].

Even if we drop the requirement for termination, finding a procedure that would
compute the cover of a general WSTS (when it terminates) remained elusive for some
time. Some important special cases could be handled in the literature, e.g., a large class
of affine counter systems generalizing reset/transfer Petri nets [15], or lossy channel
systems [2], but a general theory of covers, and of forward procedures à la Karp-Miller
for general WSTS was missing. This is what we solved, with A. Finkel, in two recent
papers [13, 14].

This involved two tasks:(i) first, much as we needed extended states inℕk
! in

the Karp-Miller procedure, we should work in an adequatecompletionX̂ of the state
spaceX; (ii) then, we should understand what a Karp-Miller-like procedure actually
computes. We actually cheated here, since we have already given an answer to(ii): the
Karp-Miller procedure computes (among other things) the cover of the Petri net.

Completions.In (i), by adequate we mean thatX should embed intôX, in such a way
that every closed subsetD of X should be representable by afinite subset ofX̂. (In
[13], we wanted to this for every downward closed, not just closed,D. However, ifX
has the Alexandroff topology of a wqo, this is the same thing.) Formally,D should be
the set of those points inX that are below finitely many points in̂X: D = X ∩ ↓ bX E,

E finite. We write↓ bX to stress the fact that the downward closure is to be taken inX̂,

i.e.,E is a subset of̂X, notX. Typically, if X = ℕk, thenX̂ should beℕk
!, and for

example,D = {(m,n, p) ∈ ℕ3 ∣ m + n ≤ 3} is representable asℕ3 ∩ ↓cℕ3
{(0, 3, !),

(1, 2, !), (2, 1, !), (3, 0, !)}. It turns out that the sobrificationS(X) is exactly what we
need here, as advocated in [13, Proposition 4.2]:

Proposition 3. Let X be a Noetherian space. Every closed subsetF of X is a finite
union of irreducible closed subsetsC1, . . . , Cm.

So let the completion̂X beS(X). Proposition 3 states that, modulo the canonical iden-
tification ofx ∈ X with ↓x ∈ S(X), F isX ∩ ↓ bX{C1, . . . , Cm}. We have stressed the
subcase whereX was wqo (and equipped with its Alexandroff topology) in [13], and
this handles 7 of the 13 constructions in Figure 2. We would like to note that Noethe-
rian spacesX allow us to consider more kinds of state spaces, while ensuring that each
closed subset ofX is finitely representable, in a canonical way. Moreover, these repre-
sentations are effective, too.

One might wonder whether there would be other adequate completionsX̂. There
are, indeed, howeverS(X) is canonical in a sense. Adapting Geeraertset al. slightly
[17], call weak adequate domain of limits, or WADL, over the Noetherian spaceX any
spaceX̂ in which X embeds, and such that the closed (downward closed whenX is
wqo) subsets ofX are exactly the subsets representable asX ∩ ↓ bX E for some finite

subsetE of X̂. It is an easy consequence of Theorem 1 thatS(X) is thesmallestWADL,
andℋ(X) is thelargestWADL: up to isomorphism, any WADLX̂ must be such that
S(X) ⊆ X̂ ⊆ ℋ(X).

It is then natural to ask whether̂X = S(X) is effectively presented, in the sense
that we have codes for all elements ofS(X) and that the ordering (i.e.,⊆) on S(X)



is decidable. It turns out that the answer is positive forall the datatypes of Figure 2.
E.g., given codes for elements of̂X1, X̂2, the codes for elements of̂X1 ×X2 are just
pairs of codes(x1, x2) for elements ofX̂1, X̂2. Given codes for elements of̂X, the
codes for elements of̂X∗ are the word-products we mentioned in Section 3. It might
seem surprising that we could do this even for the infinite powersetℙ(X). Notice that

ℙ̂(X) = ℋ(X), up to isomorphism, and that every element ofℋ(X) can be written as
C1 ∪ . . .∪Cn for finitely many elementsC1, . . . ,Cn of X̂ by Proposition 3. So take as

codes for elements of̂ℙ(X) thefinitesetsE of codes of elementsC1, . . . ,Cn of X̂.

Clovers. Point(ii) was clarified, among other things, in [14]: Karp-Miller-like proce-
dures compute thecloverof a statex ∈ X in a WSTSX, and this is a finite represen-
tative{C1, . . . , Cm}, as defined above, of the topologicalclosure(in X̂) of the set of
points reachable fromx. The cloveralwaysexists, by Proposition 3. It may fail to be
computable: if it were, it would allow us to decide boundedness for reset Petri nets or
for lossy channel systems, which are undecidable.

While we investigated this for WSTS, it actually works for any topologicalWSTS.
We only need to extend the transition relation� ⊆ X ×X to one,S�, on X̂ × X̂. The
canonical candidate is such thatC S� C ′ iff C ′ is included in the closure ofPost�(C) =
{y ∈ X ∣ ∃x ∈ C ⋅ x � y}; and this is representable as afinitely branching(because of
Proposition 3 again) relation̂�. E.g., the minimal such relation is such thatC �̂ C ′ iff
C ′ is maximal such thatC S� C ′. We then get a completed topWSTŜX.

To do anything with this, we must assume that�̂ is effective, and in fact more. We
explored this in [14], in the case wherêX is wqo, andX̂ is functional (i.e.,C �̂ C ′

iff C ′ = gi(C) for somei, 1 ≤ i ≤ n, whereg1, . . . , gn is a fixed collection of
partial continuous maps from̂X to X̂) and∞-effective (see below), and obtained a
simple procedureClover that computes the clover of any stateC ∈ X̂ (in particular,
anyx ∈ X) whenever it terminates.

The role of the completion̂X is again manifest in thatClover needs tolub-accelerate
some infinite sequences of states obtained in a regular fashion asC0 < g(C0) ≤

g2(C0) ≤ . . . ≤ gn(C0) ≤ . . . by applying one functional transitiong : X̂ → X̂,
replacing the sequence by its least upper boundg∞(C0) (which exists: recall that every
sober space is a dcpo in its specialization quasi-ordering). This is what we called taking
shortcuts until now. IfC0 ∕< g(C0), then defineg∞(C0) as justg(C0). X̂ is∞-effective
iff g∞ is computable.
Here is the procedure.MaxA denotes
the set of all maximal elements ofA ∈
ℙfin(X̂). The procedure takes an initial
extended states0 ∈ X̂, and, if it ter-
minates, returns a finite setMaxA (the
cloverof s0) such that↓ bX MaxA is the
closure of the cover of the WSTS.

Procedure Clover(s0) :
1.A← {s0};
2. while Post(S�)(A) ∕≤♭ A do

(a) Choose fairly(g, C) ∈ {g1, . . . , gn}
∗ ×A

such thatC ∈ dom g;
(b) A← A ∪ {g∞(a)};

3. return MaxA;
The elementsg chosen at line (a) are chosen from{g1, . . . , gn}∗, the set of composi-
tionsgi1 ∘ gi2 ∘ . . . ∘ gik of functions from{g1, . . . , gn}. A typical implementation of
Clover would build a tree, as in the Karp-Miller construction. In fact, a tree is a simple



way to ensure that the choice of(g, C) at line (a) isfair, i.e., no pair is ignored infinitely
long on any infinite branch. Concretely, we would build a treeextending downwards. At
each step,A is given by the set of extended states written at the nodes of the current tree.
One picks(g, C) as in line (a) by picking a transitiongi to apply from a yet unexplored
stateC ′ (at a leaf), and considering all statesC higher in the branch (the path fromC
toC ′ being given by transitions, say,gik , gik−1

, . . . ,gi2), lettingg = gi ∘ gi2 ∘ . . . ∘ gik .
The Clover procedure extends straightforwardly to topological WSTS,provided

they are functional (here, eachgi needs to be continuous). It is however unclear how
to dispense with the requirement that it be functional. Moreover, the nice character-
ization thatClover terminates exactly on those systems that areclover-flattable[14,
Theorem 3] seems to require the fact thatX is !2-wqo, not even just wqo, for deep
reasons.

References

1. P. A. Abdulla, K.Čer̄ans, B. Jonsson, and T. Yih-Kuen. Algorithmic analysis of programs
with well quasi-ordered domains.Information and Computation, 160(1/2):109–127, 2000.

2. P. A. Abdulla, A. Collomb-Annichini, A. Bouajjani, and B.Jonsson. Using forward reacha-
bility analysis for verification of lossy channel systems.Formal Methods in System Design,
25(1):39–65, 2004.

3. P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. InProc. 8th
IEEE Int. Symp. Logic in Computer Science (LICS’93), pages 160–170, 1993.

4. P. A. Abdulla and B. Jonsson. Ensuring completeness of symbolic verification methods for
infinite-state systems.Theoretical Computer Science, 256(1–2):145–167, 2001.

5. P. A. Abdulla and A. Nylén. Timed Petri nets and bqos. InProc. 22nd Int. Conf. Application
and Theory of Petri Nets (ICATPN’01), pages 53–70. Springer Verlag LNCS 2075, 2001.

6. S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. M. Gabbay, and T. S. E.
Maibaum, editors,Handbook of Logic in Computer Science, volume 3, pages 1–168. Oxford
University Press, 1994.

7. L. Acciai and M. Boreale. Deciding safety properties in infinite-state pi-calculus via be-
havioural types. In S. Albers, A. Marchetti-Spaccamela, Y.Matias, S. E. Nikoletseas, and
W. Thomas, editors,Proc. ICALP’09, pages 31–42. Springer Verlag LNCS 5556, 2009.

8. W. W. Adams and P. Loustaunau.An introduction to Gröbner bases, volume 3 ofGraduate
Studies in Mathematics. American Mathematical Society, 1994. 289 pages.

9. B. Buchberger and R. Loos. Algebraic simplification. In B.Buchberger, G. E. Collins,
R. Loos, and R. Albrecht, editors,Computer Algebra, Symbolic and Algebraic Computation.
Springer Verlag, 1982-1983.

10. G. Cécé, A. Finkel, and S. Purushothaman Iyer. Unreliable channels are easier to verify than
perfect channels.Information and Computation, 124(1):20–31, Jan. 1996.

11. P. de Groote, B. Guillaume, and S. Salvati. Vector addition tree automata. InProc. 19th
IEEE Int. Symp. Logics in Computer Science, pages 64–73, 2004.

12. C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset nets between decidability and undecid-
ability. In ICALP’98, pages 103–115. Springer Verlag LNCS 1443, 1998.

13. A. Finkel and J. Goubault-Larrecq. Forward analysis forWSTS, part I: Completions. In
S. Albers and J.-Y. Marion, editors,Proc. STACS’09, pages 433–444, Freiburg, Germany,
2009.

14. A. Finkel and J. Goubault-Larrecq. Forward analysis forWSTS, part II: Complete WSTS.
In S. Albers, A. Marchetti-Spaccamela, Y. Matias, and W. Thomas, editors,Proc. ICALP’09,
pages 188–199, Rhodes, Greece, 2009. Springer Verlag LNCS 5556.



15. A. Finkel, P. McKenzie, and C. Picaronny. A well-structured framework for analysing Petri
net extensions.Information and Computation, 195(1-2):1–29, 2004.

16. A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere!Theoretical
Computer Science, 256(1–2):63–92, 2001.

17. G. Geeraerts, J.-F. Raskin, and L. Van Begin. Expand, enlarge and check: New algorithms
for the coverability problem of WSTS.J. Comp. Sys. Sciences, 72(1):180–203, 2006.

18. G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott. Continuous
lattices and domains. InEncyclopedia of Mathematics and its Applications, volume 93.
Cambridge University Press, 2003.

19. J. Goubault-Larrecq. On Noetherian spaces. InProc. 22nd IEEE Int. Symp. Logic in Com-
puter Science (LICS’07), pages 453–462, Wrocław, Poland, 2007.

20. A. Grothendieck.Éléments de géométrie algébrique (rédigés avec la collaboration de Jean
Dieudonné): I. Le langage des schémas, volume 4. Publications mathématiques de l’I.H.É.S.,
1960. pages 5–228.

21. T. A. Henzinger, R. Majumdar, and J.-F. Raskin. A classification of symbolic transition
systems.ACM Trans. Computational Logic, 6(1):1–32, 2005.

22. G. Higman. Ordering by divisibility in abstract algebras. Proceedings of the London Math-
ematical Society, 2(7):326–336, 1952.

23. J. Hopcroft and J. J. Pansiot. On the reachability problem for 5-dimensional vector addition
systems.Theoretical Computer Science, 8:135–159, 1979.

24. R. M. Karp and R. E. Miller. Parallel program schemata.Journal of Computer and System
Sciences, 3(2):147–195, 1969.

25. J. B. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture.Transac-
tions of the American Mathematical Society, 95(2):210–225, 1960.

26. R. Lazǐc, T. Newcomb, J. Ouaknine, A. W. Roscoe, and J. Worrell. Netswith tokens which
carry data.Fundamenta Informaticae, 88(3):251–274, 2008.

27. H. Lombardi and H. Perdry. The Buchberger algorithm as a tool for ideal theory of poly-
nomial rings in constructive mathematics. InGröbner Bases and Applications (Proc. of
the Conference 33 Years of Gröbner Bases), volume 251 ofLondon Mathematical Society
Lecture Notes, pages 393–407. Cambridge University Press, 1998.

28. M. L. Minsky. Recursive unsolvability of Post’s problemof “tag” and other topics in the
theory of Turing machines.Annals of Mathematics, Second Series, 74(3):437–455, 1961.

29. M. Müller-Olm and H. Seidl. Polynomial constants are decidable. In M. V. Hermenegildo
and G. Puebla, editors,Proc. 9th International Symposium on Static Analysis (SAS’02), pages
4–19. Springer-Verlag LNCS 2477, 2002.

30. C. R. Murthy and J. R. Russell. A constructive proof of Higman’s lemma. InProc. 5th IEEE
Symposium on Logic in Computer Science (LICS’90), pages 257–267, 1990.

31. C. S.-J. A. Nash-Williams. On better-quasi-ordering transfinite sequences.Proc. Cambridge
Philosophical Society, 64:273–290, 1968.

32. S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software. In
N. Halbwachs and L. Zuck, editors,Proc. 11th Intl. Symp. Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’05), pages 93–107. Springer Verlag LNCS
3440, 2005.

33. S. Rabinowitch. Zum Hilbertschen Nullstellensatz.Mathematische Annalen, 102:520, 1929.
34. C. Reutenauer.Aspects Mathématiques des Réseaux de Petri. Masson, 1993.
35. M. Smyth. Effectively given domains.Theoretical Computer Science, 5:257-274, 1977.
36. P. Taylor. Computably based locally compact spaces.Logical Methods in Computer Science,

2(1), 2006.
37. K. N. Verma and J. Goubault-Larrecq. Karp-Miller trees for a branching extension of VASS.

Discrete Mathematics & Theoretical Computer Science, 7(1):217–230, 2005.


