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Abstract. We propose axiomatizing some stochastic games, in a continuous state
space setting, using continuous belief functions, resp. plausibilities, instead of
measures. Then, stochastic games are just variations on continuous Markov chains.
We argue that drawing at random along a belief function is thesame as letting the
probabilistic playerP play first, then letting the non-deterministic playerC play
demonically. The same holds for an angelicC, using plausibilities instead. We
then define a simple modal logic, and characterize simulation in terms of for-
mulae of this logic. Finally, we show that (discounted) payoffs are defined and
unique, where in the demonic case,P maximizes payoff, whileC minimizes it.

1 Introduction

Consider Markov chains: these are transition systems, which evolve from statex ∈ X
by drawing the next statey in the state spaceX according to some probability distribu-
tion θ(x). One may enrich this model to take into account decisions made by aplayer
P, which can take actionsℓ in some setL. In statex ∈ X, P chooses an actionℓ ∈ L,
and draws the next statey according to a probability distributionθℓ(x) depending on
ℓ ∈ L: these arelabeled Markov processes(LMPs) [8]. Adding rewardsrℓ(x) on taking
actionℓ from statex yieldsMarkov decision processes[11]. The main topic there is to
evaluate strategies that maximize the expected payoff, possibly discounted.

These notions have been generalized in many directions. Consider stochastic games,
where there is not one but several players, with different goals. In security protocols,
notably, it is meaningful to assume that the honest agents collectively define a playerP
as above, who may play probabilistically, and that attackers define a second playerC,
who playsnon-deterministically. Instead of drawing the next state at random,C delib-
erately chooses its next state, typically to minimizeP’s expected payoff or to maximize
the probability that a bad state is reached—this isdemonicnon-determinism.

A nice idea of F. Laviolette and J. Desharnais (private comm., 2003), which we
develop, is that the theory of these games could be simplifiedby relaxing the require-
ments of Markov chains: ifν = θℓ(x) is not required to be a measure, but the additivity
requirement is relaxed to sub-additivity (i.e.,ν(A)+ν(B) ≤ ν(A∪B) for disjoint mea-
surable setsA, B), then such “preprobabilities” include both ordinary probabilities and
the following funny-lookingunanimity gameuA, which represents the demonic non-
deterministic choice of an element from the setA: the preprobabilityuA(B) of drawing
an element inB is 1 if A ⊆ B, 0 otherwise. The intuition is as follows. Assume that,
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starting from statex, you would like the next statey to be inB. A demonic adversary
C will then strive to picky outsideB. Now if C’s moves are given byδℓ(x) = uA, then
eitherA 6⊆ B, then it isC’s interest to picky from A \B, so that the preprobability that
y be inB is 0; or A ⊆ B, thenC is forced to playy ∈ B, and the preprobability is1.

However, sub-additive set functions are not quite the rightnotion; and second (which
does not detract from F. Laviolette and J. Desharnais’ greatintuition), the right notions
had been invented by economists in the 1950s under the name of“cooperative game
with transferable utility” [22] and by statisticians in the1960s under the names of be-
lief functions and plausibilities, while capacities and Choquet integration are even more
ancient [4]. A nice survey is [13]. These notions are well-known in discrete state spaces.
Our generalization to topological spaces is new, and non-trivial. The spaces we consider
include finite spaces as well as infinite ones such asRn, but also cpos and domains.

Outline. We introduce necessary mathematical notions in Section 2. We then de-
velop the theory of continuous games, and continuous belieffunctions in particular in
Section 3, showing in a precise sense how the latter model both probabilistic and de-
monic non-deterministic choice. We then recall the Choquetintegral in Section 4, and
show how taking averages reflects the fact thatC aims at minimizingP’s gains. We
briefly touch the dual notion of plausibilities (angelic non-determinism) in passing. Fi-
nally, we define ludic transition systems, the analogue of Markov chains, except using
continuous games, in Section 5, and define a notion of simulation topologies. We show
that the coarsest simulation topology is exactly that defined by a simple modal logic, à
la Larsen-Skou [19]. This illustrates how continuous gamesallow us to think of certain
stochastic games as really being just LMPs, only with a relaxed notion of probability.

This work is a summary of most of Chapters 1-9 of [14], in whichall proofs, and
many more results can be found.

Related Work. Many models of Markov chains or processes, or stochastic games
are discrete or even finite-state. Desharnaiset al. [8] consider LMPs overanalytic
spaces, a class of topological spaces that includes not onlyfinite spaces but also spaces
such asRn. They show an extension of Larsen and Skou’s Theorem [19]: two states
are probabilistically bisimilar iff they satisfy the same formulae of the logic whose for-
mulae areF ::= ⊤|F ∧ F |[ℓ]>rF , where[ℓ]>rF is true at those statesx where the
probabilityθℓ(x)(JF Kθ) of going to some state satisfyingF by doing actionℓ is greater
thanr. This is extended to any measurable space throughevent bisimulationsin [5].

Mixing probabilistic (playerP) and non-deterministic (C) behavior has also re-
ceived some attention. This is notably at the heart of theprobabilistic I/O automataof
Segala and Lynch [25]. The latter can be seen as labeled Markov processes with discrete
probability distributionsθℓ(x) (i.e., linear combinations of Dirac masses), where the set
L of actions is partitioned into internal (hidden) actions and external actions. While
P controls the latter, the former represent non-deterministic transitions, i.e., under the
control ofC. Our model of stochastic games is closer to the strictly alternating variant of
probabilistic automata, where at each state, a non-deterministic choice is made among
several distributions, then the next state is drawn at random according to the chosen
distribution. I.e.,C plays, thenP, and there is no intermediate state whereC would have
played but notP. This is similar to the model by Misloveet al. [21], who consider state
spaces that are continuous cpos. In our model, this is the other way around: in each state,



P draws at random a possible choice set forC, who then picks non-deterministically
from it. Additionally, our model accommodates state spacesthat are discrete, or contin-
uous cpos, or topological spaces such asRn, without any change to be made. Misloveet
al. [21] consider a model where non-determinism is chaotic, i.e., based on a variant of
Plotkin’s powerdomain. We concentrate on demonic non-determinism, which is based
on the Smyth powerdomain instead. For angelic non-determinism, see [14, chapitre 6],
and [14, chapitre 7] for chaotic non-determinism.

Bisimulations have been studied in the above models. There are many variants on
probabilistic automata [26, 16, 23]. Misloveet al. [21] show that (bi)simulation in their
model is characterized by a logic similar to [8], with an added disjunction operator. Our
result is similar, for a smaller logic, with one less modality. Segala and Turrini [27]
compare various notions of bisimulations in these contexts.

We have already mentioned cooperative games and belief functions. See the abun-
dant literature [6, 7, 28, 13, 24, 2]. We view belief functions as generalized probabilities;
the competing view as a basis for a theory of evidence is incompatible [15].

An obvious approach to studying probabilistic phenomena isto turn to measure
theory and measurable spaces, see e.g. [3]. However, we hopeto demonstrate that the
theory of cooperative games in the case of infinite state spacesX is considerably more
comfortable whenX is a topological space, and we only measure opens instead of
Borel subsets. This is in line with the theory of continuous valuations [17], which has
had considerable success in semantics.

We use Choquet integration to integrate along capacitiesν [4]. This is exactly the
notion that Tix [30] used more recently, too, and coincides with the Jones integral [17]
for integration along continuous valuations. Finally, we should also note that V. Danos
and M. Escardo have also come up (private comm.) with a notionof integration that gen-
eralizes Choquet integration, at least when integrating with respect to a convex game.

Acknowledgments. Thanks to F. Laviolette, J. Desharnais, V. Danos, P. Panan-
gaden, Ph. Scott, M. Escardo, and the many others who expressed their support. Thanks
to the anonymous referees for their helpful comments.

2 Preliminaries

Our state spacesX are topological spaces. We assume the reader to be familiar with
(point-set) topology, in particular topology ofT0 but not necessarily Hausdorff spaces.
See [12, 1, 20] for background. Letint(A) denote the interior ofA, cl(A) its closure.

TheScott topologyon a posetX, with ordering≤, has as opens the upward-closed
subsetsU (i.e., x ∈ U andx ≤ y imply y ∈ U ) such that for every directed family
(xi)i∈I having a least upper boundsupi∈I xi insideU , somexi is already inU . The
way-belowrelation≪ is defined byx ≪ y iff for any directed family(zi)i∈I with a
least upper boundz such thaty ≤ z, thenx ≤ zi for somei ∈ I. A poset iscontinuous
iff ↓↓y = {x ∈ X|x ≪ y} is directed, and hasx as least upper bound. Then every open
U can be written

⋃

x∈U ↑↑x, where↑↑x = {y ∈ X|x ≪ y}.
Every topological spaceX has a specialization quasi-ordering≤, defined by:x ≤ y

iff every open that containsx containsy. X is T0 iff ≤ is a (partial) ordering. That of
the Scott topology of a quasi-ordering≤ is≤ itself. A subsetA ⊆ X is saturatediff A



is the intersection of all opens that contain it; alternatively, iff A is upward-closed in≤.
Every open is upward-closed. Let↑ A denote the upward-closure ofA under a quasi-
ordering≤, ↓ A its downward-closure. AT0 space issoberiff every irreducible closed
subset is the closurecl{x} =↓ x of a (unique) pointx. The Hofmann-Mislove Theorem
implies that every sober space iswell-filtered [18], i.e., given any filtered family of
saturated compacts(Qi)i∈I in X, and any openU ,

⋂

i∈I Qi ⊆ U iff Qi ⊆ U for some
i ∈ I. In particular,

⋂

i∈I Qi is saturated compact.X is locally compactiff whenever
x ∈ U (U open) there is a saturated compactQ such thatx ∈ int(Q) ⊆ Q ⊆ U . Every
continuous cpo is sober and locally compact in its Scott topology. We shall consider the
spaceR of all reals with the Scott topology of its natural ordering≤. Its opens are∅, R,
and the intervals(t, +∞), t ∈ R. R is a stably locally compact, continuous cpo. Since
we equipR with the Scott topology, ourcontinuousfunctionsf : X → R are those
usually calledlower semi-continuousin the mathematical literature.

We call capacityon X any functionν from O(X), the set of all opens ofX, to
R+, such thatν(∅) = 0 (a.k.a., aset function.) A gameν is a monotonic capacity,
i.e., U ⊆ V implies ν(U) ≤ ν(V ). (The name “game” is unfortunate, as there is no
obvious relationship between this and games as they are usually defined in computer
science, in particular with stochastic games. The name stems from cooperative games
in economics, whereX is the set of players, not states.) Avaluationis amodulargame
ν, i.e., one such thatν(U ∪ V ) + ν(U ∩ V ) = ν(U) ∩ ν(V ) for every opensU, V . A
game iscontinuousiff ν(

⋃

i∈I Ui) = supi∈I ν(Ui) for every directed family(Ui)i∈I of
opens. Continuous valuations have a convenient theory thatfits topology well [17, 18].

The Dirac valuationδx at x ∈ X is the continuous valuation mapping each open
U to 1 if x ∈ U , to 0 otherwise. (Note thatδx = u{x}, by the way.) A finite linear
combination

∑n
i=1 aiδxi

, ai ∈ R+, is a simple valuation. All simple valuations are
continuous. Conversely, Jones’ Theorem [17, Theorem 5.2] states that, ifX is a con-
tinuous cpo, then every continuous valuationν is the least upper boundsupi∈I νi of a
directed family(νi)i∈I of simple valuations way-belowν. Continuous valuations are
canonically ordered byν ≤ ν′ iff ν(U) ≤ ν′(U) for every openU of X.

3 Continuous Games, and Belief Functions

Defining the “preprobabilities” alluded to in the introduction is best done by strength-
ening super-additivity. A gameν on X on X is convexiff ν(U ∪ V ) + ν(U ∩ V ) ≥
ν(U)+ν(V ) for every opensU, V . It is concaveif the opposite inequality holds. Convex
games are a cornerstone of economic theory. E.g., Shapley’sTheorem states that (on a
finite space) the core{p valuation onX|ν ≤ p, ν(X) = p(X)} of any convex gameν
is non-empty, which implies the existence of economic equilibria [13, 22]. But this has
only been studied on discrete spaces (finiteness is implicitin [13], notably). Finite, and
more generally discrete spaces are setsX, equipped with the discrete topology, so one
may see our topological approach as a generalization of previous approaches.

Recall that the unanimity gameuA is defined byuA(U) = 1 if A ⊆ U , uA(U) =
0 otherwise. Clearly,uA is convex. It is in fact more. Call a gameν totally convex
(the standard name, whenX is discrete, i.e., whenUi is an arbitrary subset ofX, is
“totally monotonic”; we changed the name so as to name total concavity the dual of



total monotonicity) iff:

ν

(

n
⋃

i=1

Ui

)

≥
∑

I⊆{1,...,n},I 6=∅

(−1)|I|+1ν

(

⋂

i∈I

Ui

)

(1)

for every finite family(Ui)
n
i=1 of opens (n ≥ 1), where|I| denotes the cardinality ofI.

A belief functionis a totally convex game. The dual notion oftotal concavityis obtained
by replacing

⋃

by
⋂

and conversely in (1), and turning≥ into ≤. A plausibility is
a totally concave game. If≥ is replaced by= in (1), then we retrieve the familiar
inclusion-exclusion principle from statistics. In particular any (continuous) valuation
is a (continuous) belief function. Clearly, any belief function is a convex game. The
converses of both statements fail: OnX = {1, 2, 3} with the discrete topology,u{1,2}

is a belief function but not a valuation, and12 (u{1,2} + u{1,3} + u{2,3} − u{1,2,3}) is a
convex game but not a belief function.

WhenX is finite, it is well-known [13] that any capacityν can be written
∑

A 6=∅,A⊆X

αAuA for some coefficientsαA ∈ R, in a unique way. Also,ν is a belief function iff all
coefficients are non-negative. An interpretation of this formula is thatν is essentially a
probabilistic choice of some non-empty subsetA, with probabilityαA, from whichC

can choose an elementy ∈ A non-deterministically.
Our first result is to show that this result transfers, in someform, to the general

topological case. LetQ(X) be theSmyth powerdomainof X, i.e., the space of all non-
empty compact saturated subsetsQ of X, ordered by reverse inclusion⊇. Q(X) is
equipped with its Scott topology, and is known to provide an adequate model of de-
monic non-determinism in semantics [1]. WhenX is well-filtered and locally com-
pact,Q(X) is a continuous cpo. Its Scott topology is generated by the basic open sets
2U = {Q ∈ Q(X)|Q ⊆ U}, U open inX.

The relevance ofQ(X) here can be obtained by realizing that a finite linear com-
bination

∑n
i=1 aiuAi

with positive coefficients is acontinuousbelief function iff every
subsetAi is compact; and thatuAi

= u↑Ai
. Any such linear combination that is con-

tinuous is therefore of the form
∑n

i=1 aiuQi
, with Qi ∈ Q(X). We call such belief

functionssimple. Returning to the interpretation above, this can be intuitively seen as
a probabilistic choice of some setQi with probability ai, from whichC will choose
y ∈ Qi; additionally,Qi is an element ofQ(X), the traditional domain fordemonic
non-determinism.

So any simple belief functionν can be matched with a (simple) valuationν∗ =
∑n

i=1 aiδQi
on Q(X). Note thatν∗(2U) = ν(U) for every openU of X. This is

exactly the sense in which continuous belief functions are essentially continuous valu-
ations on the spaceQ(X) of non-deterministic choices.

Theorem 1. For any continuous valuationP onQ(X), the capacityν defined byν(U) =
P (2U) is a continuous belief function onX.

Conversely, letX be a well-filtered and locally compact space. For every continuous
belief functionν on X there is a unique continuous valuationν∗ on Q(X) such that
ν(U) = ν∗(2U) for every openU of X.

Proof. (Sketch.) The first part follows by computation. For the second part, observe that
⋃n

i=1 2Ui ⊆
⋃m

j=1 2Vj iff for every i, 1 ≤ i ≤ n, there existsj, 1 ≤ j ≤ m, such that



Ui ⊆ Vj . Thus, the functionP given byP (
⋃n

i=1 2Ui) =
∑

I⊆{1,...,n},I 6=∅ (−1)|I|+1

ν
(
⋂

i∈I Ui

)

is well-defined and monotonic. Letν∗(U) be the least upper bound of

P
(

⋃

Q∈J
2int(Q)

)

, whenJ ranges over finite subsets ofU: ν∗ is monotonic, con-

tinuous,ν∗(2U) = P (2U) = ν(U), and fairly heavy computation shows thatν∗ is
modular. Uniqueness is easy. ⊓⊔

Next, we show that this bijection is actually an isomorphism, i.e., it also preserves order
and therefore the Scott topology. To this end, define the ordering ≤ on all capacities,
not just valuations, byν ≤ ν′ iff ν(U) ≤ ν′(U) for every openU of X. We start
by characterizing it in the manner of Jones’ splitting lemma. This [17, Theorem 4.10]
states that

∑m
i=1 aiδxi

≤
∑n

j=1 bjδyj
iff there is matrix(tij)1≤i≤m

1≤j≤n
of coefficients in

R+ such that
∑n

j=1 tij = ai for eachi,
∑m

i=1 tij ≤ bj for eachj, and whenever
tij 6= 0 thenxi ≤ yj . (Jones proves it for cpos, but it holds on any topological space
[29, Theorem 2.4, Corollary 2.6].) We show:

Lemma 1 (Splitting Lemma).
∑m

i=1 aiuQi
≤
∑n

j=1 bjuQ′

j
iff there is matrix(tij)1≤i≤m

1≤j≤n

of coefficients inR+ such that
∑n

j=1 tij = ai for eachi,
∑m

i=1 tij ≤ bj for eachj, and
whenevertij 6= 0 thenQi ⊇ Q′

j .

It follows that: (A) for any two simple belief functionsν, ν′ on X, ν ≤ ν′ iff ν∗ ≤
ν′∗, since the two are equivalent to the existence of a matrix(tij)1≤i≤m

1≤j≤n
satisfying the

same conditions. This can be extended to all continuous belief functions, see below. Let
Cd≤1(X) be the space of continuous belief functionsν onX with ν(X) ≤ 1, ordered
by ≤. Let V≤1(X) the subspace of continuous valuations. We have:

Theorem 2. LetX be well-filtered and locally compact. Every continuous belief func-
tion ν on X is the least upper bound of a directed family of simple belieffunctionsνi

way-belowν. Cd≤1(X) is a continuous cpo.

It follows that continuous belief functions are really the same thing as (sub-)prob-
abilities over the set of demonic choice setsQ ∈ Q(X).

Theorem 3. Let X be well-filtered and locally compact. The functionν 7→ ν∗ defines
an order-isomorphism fromCd≤1(X) to V≤1(Q(X)).

As a side note, (up to the≤ 1 subscript)V≤1(Q(X)) is exactly the space into which
Edalat [10] embeds a space of measures onX. The above Theorem states that the space
of objects for which we can do this is exactlyCd≤1(X).

Dually, we may mix probabilistic choice with angelic non-determinism. Space does
not permit us to describe this in detail, see [14, chapitre 6]. The point is that the space
Pb≤1(X) of continuous plausibilities is order-isomorphic toV≤1(Hu(X)), whenever
X is stably locally compact, where the (topological)Hoare powerdomainHu(X) of X
is the set of non-empty closed subsets ofX, with the upper topology of the inclusion
ordering, generated by the subbasic sets3U = {F ∈ H(X)|F ∩U 6= ∅}, U open inX.
The argument goes through a nice notion of convex-concave duality, which intuitively
exchanges good (concave) and evil (convex). The case of chaotic non-determinism is
more complex, see [14, chapitre 7].



4 Choquet Integration

We introduce the standard notion of integration along gamesν. This is mostly well-
known [13]; adapting to the topological case is easy, so we omit proofs [14, chapitre 4].

Let ν be a game onX, andf be continuous fromX to R. Recall that we equip
R with its Scott topology, so thatf is really what is known otherwise aslower semi-
continuous. Assumef bounded, too, i.e.,infx∈X f(x) > −∞, supx∈X f(x) < +∞.
TheChoquet integralof f alongν is:

C

∫

x∈X

f(x)dν =

∫ +∞

0

ν(f−1(t, +∞))dt +

∫ 0

−∞

[ν(f−1(t, +∞)) − ν(X)]dt (2)

where both integrals on the right are improper Riemann integrals. This is well-defined,
sincef−1(t, +∞) is open for everyt ∈ R by assumption, andν measures opens. Also,
sincef is bounded, the improper integrals above really are ordinary Riemann integrals
over some closed intervals. The functiont 7→ ν(f−1(t, +∞)) is decreasing, and every
decreasing (even non-continuous, in the usual sense) function is Riemann-integrable,
therefore the definition makes sense.

An alternate definition consists in observing that anystep function
∑n

i=0 aiχUi
,

wherea0 ∈ R, a1, . . . , an ∈ R+, X = U0 ⊇ U1 ⊇ . . . ⊇ Un is a decreasing sequence
of opens, andχU is the indicator function ofU (χU (x) = 1 if x ∈ X, χU (x) = 0 other-
wise) is continuous, and of integral alongν equal to

∑n
i=0 aiν(Ui)—for anygameν. It

is well-known that every bounded continuous functionf can be written as the least up-

per bound of a sequence of step functionsfK = a+ 1
2K

∑⌊(b−a)2K⌋
k=1 χf−1(a+ k

2K ,+∞)(x),

K ∈ N, wherea = infx∈X f(x), b = supx∈X f(x). Then the integral off alongν is
the least upper bound of the increasing sequence of the integrals offK alongν.

The main properties of Choquet integration are as follows. First, the integral is in-
creasing in its function argument: iff ≤ g then the integral off alongν is less than or
equal to that ofg alongν. If ν is continuous, then integration is also Scott-continuous
in its function argument. The integral is also monotonic andScott-continuous in the
gameν, provided the function we integrate takes only non-negative values, or provided
ν is normalized, i.e., ν(X) = 1. Integration is linear in the game, too, so integrating
along

∑n
i=1 aiνi is the same as taking the integrals along eachνi, and computing the

obvious linear combination. However, Choquet integrationis not linear in the function
integrated, unless the gameν is a valuation. Still, it ispositively homogeneous: inte-
gratingαf for α ∈ R+ yieldsα times the integral off . It is additive oncomonotonic
functionsf, g : X → R (i.e., there is no pairx, x′ ∈ X such thatf(x) < f(x′) and
g(x) > g(x′)). It is super-additive (the integral off + g is at least that off plus that of
g) whenν is convex, in particular whenν is a belief function, and sub-additive whenν
is concave. See [13] for the finite case, [14, chapitre 4] for the topological case.

One of the most interesting things is that integrating with respect to a unanimity
game consists in taking minima. This suggests that unanimity games indeed model
somedemonicform of non-determinism. Imaginef(x) is the amount of money you
gain by going to statex. The following says that taking the average amount of money
with respect to a demonic adversaryC will give you back the least amount possible.



Proposition 1. For any continuousf : X → R+,

C

∫

x∈X

f(x)duA = inf
x∈A

f(x)
Moreover, if A is compact, then
the inf is attained: this equals
minx∈A f(x).

Since Choquet integration is linear in the game, the integral of f along a simple belief
function

∑n
i=1 aiuQi

yields
∑n

i=1 ai minx∈Qi
f(x): this is the expected min-value of

f obtained by drawingQi at random with probabilityai (P plays) then lettingC non-
deterministically move to the statex ∈ Qi that minimizes the gain. We can generalize
this to non-discrete probabilities overQ(X) by using theν 7→ ν∗ isomorphism:

Theorem 4. For any bounded continuous functionf : X → R, let f∗ be the function
from Q(X) to R defined byf∗(Q) = minx∈Q f(x). Say that a capacityν is linearly
extensible from belowif and only if there is continuous valuationP onQ(X) with:

C

∫

x∈X

f(x)dν = C

∫

Q∈Q(X)

f∗(Q)dP (3)

for every bounded continuousf . If X is well-filtered and locally compact, then the ca-
pacities that are linearly extensible from below are exactly the continuous belief func-
tions, andP must beν∗ in (3).

It follows in particular that wheneverν is the least upper bound of a directed family
(νi)i∈I of simple belief functionsνi, then integratingf : X → R with respect toν can
be computed by taking least upper bounds of linear combinations of mins. Therefore
the Choquet integral along continuous belief functions coincides with Edalat’slower
R-integral[10], which was only defined for measures.

This can be dualized to the case of plausibilitiesν, assumingX stably locally com-
pact [14, théorème 6.3.17]. Then we talk about capacities that are linearly extensible
from above. There is an isomorphismν 7→ ν∗ such thatν∗(3U) = ν(U) for all U , and
integratingf alongν amounts to integratingf∗ alongν∗, where for everyF ∈ Hu(X),
f∗(F ) = supx∈F f(x). (I.e., C now maximizesour gain.) Then the Choquet integral
along continuous plausibilities coincides with Edalat’supper R-integral[10].

5 Ludic Transition Systems, Logic, Simulation, Rewards

Let J≤1(X) be the space of all continuous gamesν on X with ν(X) ≤ 1. This is
equipped with its Scott topology. It will be practical to consider another topology. The
weak topologyon a subspaceY of J≤1(X) is the topology generated by the subbasic
open sets[U > r] = {ν ∈ Y |ν(U) > r}, U open inX, r ∈ R. It is in general
coarser than the Scott topology, and coincides with it whenY = V≤1(X) andX is
a continuous cpo [30, Satz 4.10]. One can show that the weak topology is exactly the
coarsest that makes continuous all functionals mappingν ∈ Y to the integral off along
ν, for all f : X → R+ bounded continuous. (See [14, section 4.5] for details.)

By analogy with Markov kernels and LMPs, define aludic transition systemas a
family θ = (θℓ)ℓ∈L, whereL is a given set ofactions, and eachθℓ is a continuous map
from the state spaceX to J≤1 wk(X). (See [14, chapitres 8, 9] for missing details.) The



main change is that, as announced in the introduction, we replace probability distribu-
tions by continuous games. One may object that LMPs are defined asmeasurable, not
continuous, so that this definition overly restricts the class of transition systems we are
considering. However, the mathematics are considerably cleaner when assuming con-
tinuity. Moreover, the weak topology is so weak that, for example, it only restrainsθℓ

so thatx 7→ θℓ(x)(U) is continuous as a function fromX to R+, equipped with its
Scotttopology; this certainly allows it to have jumps. Finally, one may argue, following
Edalat [10], that any second countable locally compact Hausdorff spaceX can be em-
bedded as a set of maximal elements of a continuous cpo (namely Q(X); other choices
are possible) so that any measure onX extends to a continuous valuation onQ(X).
This provides a theory of approximation of integration onX through domain theory.
One may hope a similar phenomenon will apply to games—for some notion of games
yet to be defined on Borel subsets, not opens.
Logic. Following [8, 5], define the logicL⊤∧∨

open by
the grammar shown right, whereℓ ∈ L, r ∈ Q ∩
[0, 1] in the last line. Compared to [8, 5], we only
have one extra disjunction operator. The same logic,
with disjunction, is shown to characterize simulation
for LMPs in [9, Section 2.3].

F ::= ⊤ true
| F ∧ F conjunction (and)
| F ∨ F disjunction (or)
| [ℓ]>rF modality

Let JF Kθ be the set of statesx ∈ X whereF holds:J⊤Kθ = X, JF1 ∧ F2Kθ = JF1Kθ ∧
JF2Kθ, JF1 ∨ F2Kθ = JF1Kθ∨JF2Kθ, andJ[ℓ]>rF Kθ = δ−1

ℓ [JF Kθ > r] is the set of states
x such that the preprobabilityδℓ(JF Kθ) that the next statey will satisfy F on firing an
ℓ action is strictly greater thanr. Note that this is well-defined, precisely becauseδℓ is
continuous fromX to a space of games with the weak topology. Also, it is easy to see
thatJF Kθ is always open.
Simulation. Now definesimulationin the spirit of event bisimulation [5] (we shall see
below why we do not call itbisimulation). For any topologyO on X coarser than that
of X, let X : O be X equipped with the topologyO. A simulation topologyfor θ is
a topologyO on X, coarser than that ofX, such thatδℓ is continuous fromX : O to
J≤1 wk(X : O), i.e.,δ−1

ℓ [U > r] ∈ O for eachU ∈ O and eachr ∈ R. (A close notion
was introduced in [31, Theorem 29].) One non-explanation for this definition is to state
that this is exactly event bisimulation [5], only replacingσ-algebras by topologies. A
better explanation is to revert back to Larsen and Skou’s original definition of proba-
bilistic bisimulation in terms of an algebra oftests(in slightly more abstract form). A
(bi)simulation should not be thought as an arbitrary equivalence relation, rather as one
generated from a collectionTst of tests, which are subsetsA of X: x ∈ X passes the
test iff x ∈ A, it fails it otherwise. Two elements are equivalent iff theypass the same
tests. Now in a continuous setting it only makes sense that the tests be open: any open
U defines a continuous predicateχU from X to the Sierpínski spaceS = {0, 1} (with
the Scott topology of0 ≤ 1), and conversely. LetOTst be the topology generated by
the testsTst. It is sensible to require thatδ−1

ℓ [U > r] be a test, too, at least whenU is
a finite union of finite intersections of tests (for the general case, appeal to the fact that
δℓ(x) is continuous, and that any open can be approximated by such afinite union): one
can indeed test whetherx ∈ δ−1

ℓ [U > r] by firing transitions according to the preprob-
ability δℓ(x), and test (e.g., by sampling, knowing that ifδℓ(x) is a belief function for
example, then we are actually playing also against a demonicadversaryC) whether our



chances of getting to a statey ∈ U exceedr. And this is essentially how we defined
simulation topologies.

Every simulation topologyO defines a specialization quasi-ordering�O, which is
the analogue of the standard notion of simulation here. (Note that in the case of event
bisimulation, i.e., takingσ-algebras instead of topologies,�O would be an equivalence
relation—becauseσ-algebras are closed under complements—justifying the fact that
event bisimulation really is a bisimulation, while our notion is a simulation.) Write
≡O= �O ∩ �O the equivalence associated with simulation�O. Clearly, there is a
coarsest (largest) simulation topologyOθ. The following is then easy:

Theorem 5. Let O be a simulation topology forθ on X. For anyF ∈ Lopen, JF Kθ ∈
O. In particular [Soundness], ifx ∈ JF Kθ and x �O y theny ∈ JF Kθ. Conversely
[Completeness], the coarsest simulation topologyOθ is exactly that generated by the
opensJF Kθ, F ∈ L⊤∧∨

open.

This can be used, as is standard in the theory of Markov chains, to lumpstates. Given
a topologyO, let X/O be the quotient spaceX/≡O, equipped with the finest topology
such thatqO : X : O → X/O is continuous. Let thedirect imagef [ν] of a gameν on
X by a continuous mapf : X → Y bef [ν](V ) = ν(f−1(V )). Taking direct images
preserves monotonicity, modularity, (total) convexity, (total) concavity, and continuity.

Proposition 2. LetO be a simulation topology forθ. The functionθℓ/O mappingqO(x)
to qO[θℓ(x)] is well defined and continuous fromX/O toJ≤1 wk(X/O) for everyℓ ∈ L.
The familyθ/O = (θℓ/O)ℓ∈L is then a ludic transition system onX/O, which we call
the lumpedludic transition system.

For anyF ∈ L⊤∧∨
openandx ∈ X, x andqO(x) satisfy the same formulae:qO(JF Kθ) =

JF Kθ/O
, andJF Kθ = q−1

O
(JF Kθ/O

), in particular,x ∈ JF Kθ iff qO(x) ∈ JF Kθ/O
.

Rewards and payoffs. A classical problem on Markov decision processes is to eval-
uate average payoffs. Since LMPs and ludic transition systems are so similar, we can
do exactly the same. ImagineP plays according to a finite-state programΠ, i.e., an

automaton withinternal statesq, q′ and transitionsq
ℓ

−→q′. Let r
q

ℓ
−→q′

: X → R be

a family of bounded continuousreward functions: we may think thatr
q

ℓ
−→q′

(x) is the

amount of moneyP gains if she fires her internal transitionq
ℓ

−→q′, drawing the next
statey at random alongθℓ(x). Let γ

q
ℓ

−→q′
∈ (0, 1] be a family of so-calleddiscounts.

Define the average payoff, starting from statex whenP is in its internal stateq, by:

Vq(x) = sup
ℓ,q′/q

ℓ
−→q′

[

r
q

ℓ
−→q′

(x) + γ
q

ℓ
−→q′

C

∫

y∈X

Vq′(y)dθℓ(x)

]

(4)

This formula would be standard ifθℓ(x) were a probability distribution. What is less
standard is what (4) means whenθℓ(x) is a game. E.g., whenθℓ(x) is a simple belief
function

∑nℓ

i=1 aiℓxuQiℓx
, then:

Vq(x) = sup
ℓ,q′/q

ℓ
−→q′

[

r
q

ℓ
−→q′

(x) + γ
q

ℓ
−→q′

nℓ
∑

i=1

aiℓx min
y∈Qiℓx

Vq′(y)

]

(5)



where we see thatP has control over the visible transitionsℓ, and tries to maximize his
payoff (sup), while C will minimize it, and some averaging is taking place in-between.
The equation (4) does not always have a solution in the familyof all Vqs. But there are
two cases where it has, similar to those encountered in Markov decision processes.

Theorem 6. Assumeθ is standard, i.e.,θℓ(X) is always either0 or 1, and the set{x ∈
X|θℓ(x) = 0} of deadlock statesis open; or thatr

q
ℓ

−→q′
(x) ≥ 0 for all q, ℓ, q′, x ∈ X.

Assume also that there area, b ∈ R with a ≤ r
q

ℓ
−→q′

(x), γ
q

ℓ
−→q′

≤ b for all q, ℓ, q′,

x ∈ X. Then (4) has a unique solution in any of the following two cases:
[Finite Horizon] If all paths inΠ have bounded length.
[Discount] If there is a constantγ ∈ (0, 1) such thatγ

q
ℓ

−→q′
≤ γ for everyq, ℓ, q′.

Whenθℓ is a simple belief function, Equation (5) is then a Bellman-type equation that
can be solved by dynamic programming techniques. Then observe that any continuous
belief function is the directed lub of simple belief functions by Theorem 2, under mild
assumptions. This offers a canonical way to approximate theaverage payoffVq.
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