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Abstract. We propose axiomatizing some stochastic games, in a canutistate
space setting, using continuous belief functions, respugbilities, instead of
measures. Then, stochastic games are just variations tinwouas Markov chains.
We argue that drawing at random along a belief function is#me as letting the
probabilistic playeP play first, then letting the non-deterministic playeplay
demonically. The same holds for an angdlicusing plausibilities instead. We
then define a simple modal logic, and characterize simuldtiderms of for-
mulae of this logic. Finally, we show that (discounted) pifsyare defined and
unique, where in the demonic cagemaximizes payoff, while&C minimizes it.

1 Introduction

Consider Markov chains: these are transition systems,iwdiolve from state: € X
by drawing the next statgin the state spac& according to some probability distribu-
tion 6(x). One may enrich this model to take into account decisionsengdaplayer
P, which can take actionsin some sef.. In stater € X, P chooses an actiohe L,
and draws the next stageaccording to a probability distributiofy (=) depending on
¢ € L:these ardabeled Markov process¢sMPs) [8]. Adding rewards,(x) on taking
action/ from stater yields Markov decision processgtl]. The main topic there is to
evaluate strategies that maximize the expected payof§jlpgsiscounted.

These notions have been generalized in many directionsi@emstochastic games,
where there is not one but several players, with differeratiggdn security protocols,
notably, it is meaningful to assume that the honest agelfiiectioely define a playeP
as above, who may play probabilistically, and that atteckiefine a second playér,
who playsnon-deterministicallylnstead of drawing the next state at rand@ndelib-
erately chooses its next state, typically to minimiZe expected payoff or to maximize
the probability that a bad state is reached—thidemonicnon-determinism.

A nice idea of F. Laviolette and J. Desharnais (private con2903), which we
develop, is that the theory of these games could be simplifjectlaxing the require-
ments of Markov chains: i = 6,(x) is not required to be a measure, but the additivity
requirement is relaxed to sub-additivity (i.e(A)+v(B) < v(AUB) for disjoint mea-
surable setsl, B), then such “preprobabilities” include both ordinary pabbities and
the following funny-lookingunanimity game: 4, which represents the demonic non-
deterministic choice of an element from the gethe preprobability: 4 (B) of drawing
an elementinB is 1 if A C B, 0 otherwise. The intuition is as follows. Assume that,
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starting from state:, you would like the next statg to be inB. A demonic adversary
C will then strive to picky outsideB. Now if C’'s moves are given by,(z) = u 4, then
eitherA ¢ B, theniitisC’s interest to picky from A\ B, so that the preprobability that
ybeinBis0; or A C B, thenCis forced to playy € B, and the preprobability i$.

However, sub-additive set functions are not quite the mgiion; and second (which
does not detract from F. Laviolette and J. Desharnais’ gnéaition), the right notions
had been invented by economists in the 1950s under the nafceagerative game
with transferable utility” [22] and by statisticians in ti®60s under the names of be-
lief functions and plausibilities, while capacities ando@bet integration are even more
ancient [4]. A nice survey is [13]. These notions are weltAkm in discrete state spaces.
Our generalization to topological spaces is new, and noiatrThe spaces we consider
include finite spaces as well as infinite ones sucR'asbut also cpos and domains.

Outline. We introduce necessary mathematical notions in Sectione2théh de-
velop the theory of continuous games, and continuous bieliestions in particular in
Section 3, showing in a precise sense how the latter modblgrobabilistic and de-
monic non-deterministic choice. We then recall the Chodntegral in Section 4, and
show how taking averages reflects the fact tGatims at minimizingP’s gains. We
briefly touch the dual notion of plausibilities (angelic rdaterminism) in passing. Fi-
nally, we define ludic transition systems, the analogue ofidd\achains, except using
continuous games, in Section 5, and define a notion of simual&pologies. We show
that the coarsest simulation topology is exactly that ddfimea simple modal logic, a
la Larsen-Skou [19]. This illustrates how continuous gaaiksv us to think of certain
stochastic games as really being just LMPs, only with a egddaxotion of probability.

This work is a summary of most of Chapters 1-9 of [14], in whithproofs, and
many more results can be found.

Related Work. Many models of Markov chains or processes, or stochastiegam
are discrete or even finite-state. Desharraisl. [8] consider LMPs ovemnalytic
spaces, a class of topological spaces that includes nofiaity spaces but also spaces
such asR™. They show an extension of Larsen and Skou’s Theorem [19):states
are probabilistically bisimilar iff they satisfy the sanwrhulae of the logic whose for-
mulae areF’ ::= T|F A F|[{]s.F, where[{]~.. F is true at those stateswhere the
probability,(x)([F],) of going to some state satisfyigby doing actior? is greater
thanr. This is extended to any measurable space threwght bisimulation@ [5].

Mixing probabilistic (playerP) and non-deterministic() behavior has also re-
ceived some attention. This is notably at the heart oftfobabilistic I/0O automataof
Segala and Lynch [25]. The latter can be seen as labeled Markoesses with discrete
probability distribution®,(x) (i.e., linear combinations of Dirac masses), where the set
L of actions is partitioned into internal (hidden) actiongl axternal actions. While
P controls the latter, the former represent non-deterninisnsitions, i.e., under the
control of C. Our model of stochastic games is closer to the strictlyadtng variant of
probabilistic automata, where at each state, a non-datestisi choice is made among
several distributions, then the next state is drawn at namdocording to the chosen
distribution. l.e.C plays, therP, and there is no intermediate state whéngould have
played but noP. This is similar to the model by Mislovet al.[21], who consider state
spaces that are continuous cpos. In our model, this is tiee oty around: in each state,



P draws at random a possible choice set@mvho then picks non-deterministically
from it. Additionally, our model accommodates state spaicaare discrete, or contin-
uous cpos, or topological spaces suclRaswithout any change to be made. Misloste
al. [21] consider a model where non-determinism is chaotic, based on a variant of
Plotkin’s powerdomain. We concentrate on demonic nonfdeteésm, which is based
on the Smyth powerdomain instead. For angelic non-detésmirsee [14, chapitre 6],
and [14, chapitre 7] for chaotic non-determinism.

Bisimulations have been studied in the above models. Threrenany variants on
probabilistic automata [26, 16, 23]. Misloet al. [21] show that (bi)simulation in their
model is characterized by a logic similar to [8], with an adldésjunction operator. Our
result is similar, for a smaller logic, with one less modalegala and Turrini [27]
compare various notions of bisimulations in these contexts

We have already mentioned cooperative games and beliefidnsc See the abun-
dant literature [6, 7, 28, 13, 24, 2]. We view belief functas generalized probabilities;
the competing view as a basis for a theory of evidence is ipetile [15].

An obvious approach to studying probabilistic phenomento itirn to measure
theory and measurable spaces, see e.g. [3]. However, wethagenonstrate that the
theory of cooperative games in the case of infinite stateespeds considerably more
comfortable whenX is a topological space, and we only measure opens instead of
Borel subsets. This is in line with the theory of continuoatuations [17], which has
had considerable success in semantics.

We use Choquet integration to integrate along capacitigq. This is exactly the
notion that Tix [30] used more recently, too, and coincidés whe Jones integral [17]
for integration along continuous valuations. Finally, vilesld also note that V. Danos
and M. Escardo have also come up (private comm.) with a nofioriegration that gen-
eralizes Choquet integration, at least when integratinh mispect to a convex game.

Acknowledgments. Thanks to F. Laviolette, J. Desharnais, V. Danos, P. Panan-
gaden, Ph. Scott, M. Escardo, and the many others who ergrtesr support. Thanks
to the anonymous referees for their helpful comments.

2 Prdiminaries

Our state spaceX are topological spaces. We assume the reader to be famitiar w
(point-set) topology, in particular topology @f but not necessarily Hausdorff spaces.
See [12, 1, 20] for background. L&it(A) denote the interior ofl, ci(A) its closure.

The Scott topologyn a posetX, with ordering<, has as opens the upward-closed
subsetdJ (i.e.,z € U andx < y imply y € U) such that for every directed family
(74);c; having a least upper boundp,; =; insideU, somex; is already inU. The
way-belowrelation < is defined byx < y iff for any directed family(z;);., with a
least upper bound such thaty < z, thenz < z; for somei € I. A poset iscontinuous
iff ly = {z € X|z < y} is directed, and has as least upper bound. Then every open
U can be writter J,_,; Tz, wherefz = {y € X|z < y}.

Every topological spac& has a specialization quasi-orderingdefined byx < y
iff every open that containg containsy. X is Ty iff < is a (partial) ordering. That of
the Scott topology of a quasi-orderirgis < itself. A subsetd C X is saturatediff A



is the intersection of all opens that contain it; alterreiiviff A is upward-closed ir<.
Every open is upward-closed. LétA denote the upward-closure df under a quasi-
ordering<, | A its downward-closure. A} space isoberiff every irreducible closed
subset is the closukg{z} =| x of a (unique) point:. The Hofmann-Mislove Theorem
implies that every sober spacevigll-filtered [18], i.e., given any filtered family of
saturated compactg);),., in X, and any opew/, (., Q; C U iff Q; C U for some
i € 1. In particular,),.; Q; is saturated compack is locally compaciff whenever
x € U (U open) there is a saturated comp@csuch that: € int(Q) C Q C U. Every
continuous cpo is sober and locally compact in its Scottltgpo We shall consider the
spaceR of all reals with the Scott topology of its natural orderidglts opens aré, R,
and the interval$t, +0), t € R. R is a stably locally compact, continuous cpo. Since
we equipR with the Scott topology, oucontinuousfunctionsf : X — R are those
usually calledower semi-continuouim the mathematical literature.

We call capacityon X any functionv from O(X), the set of all opens ok, to
R*, such that/(§) = 0 (a.k.a., aset function) A gamewr is a monotonic capacity
i.e.,U C Vimpliesv(U) < v(V). (The name “game” is unfortunate, as there is no
obvious relationship between this and games as they ardlydedined in computer
science, in particular with stochastic games. The namessteam cooperative games
in economics, wher« is the set of players, not states.VAluationis amodulargame
v,i.e.,onesuchthat(UuV)+v(UNV)=vU)Nv(V) for every opend/, V. A
game iscontinuousff v(lJ,.; Us) = sup,; v(U;) for every directed familyU;), ., of
opens. Continuous valuations have a convenient theoryith&bpology well [17, 18].

The Dirac valuationé, atz € X is the continuous valuation mapping each open
Utolif x € U, to0 otherwise. (Note thad, = uy,,, by the way.) A finite linear
combination)_"_, a;d,,, a; € RT, is asimple valuation All simple valuations are
continuous. Conversely, Jones’ Theorem [17, Theorem $a®¢sthat, ifX is a con-
tinuous cpo, then every continuous valuatiors the least upper boundp,.; v; of a
directed family(v;),., of simple valuations way-below. Continuous valuations are
canonically ordered by < v/ iff v(U) < v/(U) for every operl/ of X.

3 Continuous Games, and Belief Functions

Defining the “preprobabilities” alluded to in the introdiget is best done by strength-
ening super-additivity. A game on X on X is convexiff v(UUV) +v(UNV) >
v(U)+v (V) for every opend/, V. It is concavef the opposite inequality holds. Convex
games are a cornerstone of economic theory. E.g., Shaflbgsrem states that (on a
finite space) the corép valuation onX|v < p,v(X) = p(X)} of any convex game
is non-empty, which implies the existence of economic éoyial [13, 22]. But this has
only been studied on discrete spaces (finiteness is imliflt3], notably). Finite, and
more generally discrete spaces are sétequipped with the discrete topology, so one
may see our topological approach as a generalization ofquewapproaches.

Recall that the unanimity game, is defined byu,(U) = 1if A C U, uxs(U) =
0 otherwise. Clearlyu4 is convex. It is in fact more. Call a gametotally convex
(the standard name, whexi is discrete, i.e., whely; is an arbitrary subset of, is
“totally monotonic”; we changed the name so as to name tatatavity the dual of



total monotonicity) iff:

v (Q Ui> > Z (=DM, <ﬂ Ui> (1)

IC{1,...n},I#£0 iel

for every finite family(U;);._, of opens { > 1), where|I| denotes the cardinality df

A belief functionis a totally convex game. The dual notiontofal concavityis obtained
by replacinglJ by () and conversely in (1), and turning into <. A plausibility is
a totally concave game. [ is replaced by= in (1), then we retrieve the familiar
inclusion-exclusion principle from statistics. In paciar any (continuous) valuation
is a (continuous) belief function. Clearly, any belief ftina is a convex game. The
converses of both statements fail: Qh= {1, 2, 3} with the discrete topologys; 2}

is a belief function but not a valuation, agdu oy + ugy 33 + U233 — U1 23}) IS a
convex game but not a belief function.

WhenX is finite, itis well-known [13] that any capacitycan be writterd_ , . 4
aauy for some coefficienta 4, € R, in a unique way. Alsoy is a belief function iff all
coefficients are non-negative. An interpretation of thigrfola is thatv is essentially a
probabilistic choice of some non-empty subdetwith probability a4, from which C
can choose an elemente A non-deterministically.

Our first result is to show that this result transfers, in sdoren, to the general
topological case. Le®(X) be theSmyth powerdomaiof X, i.e., the space of all non-
empty compact saturated subsétof X, ordered by reverse inclusion. Q(X) is
equipped with its Scott topology, and is known to provide decuate model of de-
monic non-determinism in semantics [1]. Wh&nhis well-filtered and locally com-
pact,Q(X) is a continuous cpo. Its Scott topology is generated by tis&lmpen sets
oU ={Q € AX)|Q C U}, U openinX.

The relevance of(X) here can be obtained by realizing that a finite linear com-
binationzle a;u 4, With positive coefficients is aontinuousbelief function iff every
subsetd; is compact; and thats, = uy4,. Any such linear combination that is con-
tinuous is therefore of the formy_"_; a,uq,, with Q; € Q(X). We call such belief
functionssimple Returning to the interpretation above, this can be ireliyi seen as
a probabilistic choice of some séX; with probability a;, from which C will choose
y € Q;; additionally,@; is an element of2(X), the traditional domain fodemonic
non-determinism.

So any simple belief functiow can be matched with a (simple) valuatioh =
Yoi, aidg, on Q(X). Note thatv*(OU) = v(U) for every openU of X. This is
exactly the sense in which continuous belief functions aeertially continuous valu-
ations on the space(X) of non-deterministic choices.

Theorem 1. For any continuous valuatio onQ(X), the capacity defined by (U) =
P(OU) is a continuous belief function al.

Conversely, leX be a well-filtered and locally compact space. For every goardgis
belief functionv on X there is a unique continuous valuatieri on Q(X) such that
v(U) = v*(OU) for every operyJ of X.

Proof. (Sketch.) The first part follows by computation. For the setpart, observe that
Ur,ou; U;”Zl gV; iff for every i, 1 < i < n, there existg, 1 < j < m, such that



U; C V. Thus, the functiorP given by P (", aU;) = D oIC{1, o} 0 (71)”‘4rl
v (N;e; Us) is well-defined and monotonic. Let*(U) be the least upper bound of
P (UQeg Dmt(Q)), whenJ ranges over finite subsets tf »* is monotonic, con-

tinuous,v*(0U) = P(OU) = v(U), and fairly heavy computation shows that is
modular. Uniqueness is easy. O

Next, we show that this bijection is actually an isomorphism, it also preserves order
and therefore the Scott topology. To this end, define thermgle< on all capacities,
not just valuations, by < ' iff v(U) < v/(U) for every openU of X. We start
by characterizing it in the manner of Jones’ splitting lemffiais [17, Theorem 4.10]
states thad " | a;0,, < Z;.Lzl b;é,. iff there is matrix(t,;j)léiém of coefficients in
SIsSn

R™* such thatzyzltij = q; for eachi, >°1", t;; < b; for eachj, and whenever
t;; # 0thenz; < y;. (Jones proves it for cpos, but it holds on any topologicaksp
[29, Theorem 2.4, Corollary 2.6].) We show:

Lemmal (SplittingLemma). 37 | ajug, < 377, bjugy iff thereis matrix(ti;)1<i<m

1<5<n
of coefficients iR+ such thad """, ¢;; = a; for eachi, 31", t;; < b; for eachj, and
whenever;; # 0then@; 2 Q'

Yi

It follows that: (A) for any two simple belief functions, »/ on X, v < v/ iff v* <

v'*, since the two are equivalent to the existence of a matyp} <<, satisfying the
1<j<n
same conditions. This can be extended to all continuousftfahictions, see below. Let

Cd<;(X) be the space of continuous belief functiensn X with »(X) < 1, ordered
by <. Let V<, (X) the subspace of continuous valuations. We have:

Theorem 2. Let X be well-filtered and locally compact. Every continuousédfdiinc-
tion v on X is the least upper bound of a directed family of simple béliattionsy;
way-below. Cd<;(X) is a continuous cpo.

It follows that continuous belief functions are really traree thing as (sub-)prob-
abilities over the set of demonic choice s@ts Q(X).

Theorem 3. Let X be well-filtered and locally compact. The function— v* defines
an order-isomorphism fror@d <, (X) to V<1 (Q(X)).

As a side note, (up to the 1 subscript)V<;(Q(X)) is exactly the space into which
Edalat [10] embeds a space of measureXoithe above Theorem states that the space
of objects for which we can do this is exac@id <, (X).

Dually, we may mix probabilistic choice with angelic nonteleninism. Space does
not permit us to describe this in detail, see [14, chapitrd B¢ point is that the space
Pb<;(X) of continuous plausibilities is order-isomorphic¥oc; (K, (X)), whenever
X is stably locally compact, where the (topologiddbtare powerdomaift(, (X) of X
is the set of non-empty closed subsetsXgfwith the upper topology of the inclusion
ordering, generated by the subbasic sets= {F' € H(X)|FNU # 0}, U openinX.
The argument goes through a nice notion of convex-concaaktyjuvhich intuitively
exchanges good (concave) and evil (convex). The case oficlraan-determinism is
more complex, see [14, chapitre 7].



4 Choquet Integration

We introduce the standard notion of integration along gameEhis is mostly well-
known [13]; adapting to the topological case is easy, so wi¢ mmofs [14, chapitre 4].

Let v be a game orX, and f be continuous fromX to R. Recall that we equip
R with its Scott topology, so thaf is really what is known otherwise dswer semi-
continuous Assumef bounded, too, i.einf,cx f(z) > —o0, sup e x f(x) < +o0.
TheChoquet integrabf f alongv is:

00 0
iexf(x)d” / o(f (¢, +o0) )i + / (¢, +o0)) — v(X)dt (2)

— 00

where both integrals on the right are improper Riemann mategThis is well-defined,

sincef~1(t, +o0) is open for every € R by assumption, and measures opens. Also,
sincef is bounded, the improper integrals above really are orgiRémann integrals

over some closed intervals. The functior- v(f~1(t,+00)) is decreasing, and every
decreasing (even non-continuous, in the usual sense)idanist Riemann-integrable,
therefore the definition makes sense.

An alternate definition consists in observing that agp function)_;" ; a;xv,,
whereag € R, a1,...,a, €RT, X =Uy D U; D ... D U, is a decreasing sequence
of opens, ang is the indicator function o/ (xy (x) = 1if x € X, xy(z) = 0 other-
wise) is continuous, and of integral alongqual to) ", a;v(U;)—for anygamev. It
is well-known that every bounded continuous functjooan be written as the least up-

per bound of a sequence of step functigps= a-+5x ,E(:bl’“)m Xf1(at 4oy (T,
e

K € N, wherea = inf e x f(x), b = sup,cx f(x). Then the integral of alongv is
the least upper bound of the increasing sequence of theaisenf f alongv.

The main properties of Choquet integration are as follovirst,Rhe integral is in-
creasing in its function argument: ff < ¢ then the integral of alongv is less than or
equal to that ofy alongwv. If v is continuous, then integration is also Scott-continuous
in its function argument. The integral is also monotonic &uwwbtt-continuous in the
gamev, provided the function we integrate takes only non-negatalues, or provided
v is normalized i.e.,v(X) = 1. Integration is linear in the game, too, so integrating
along>"" , a;v; is the same as taking the integrals along eacland computing the
obvious linear combination. However, Choquet integrattomot linear in the function
integrated, unless the gamreis a valuation. Still, it ispositively homogeneouste-
gratingaf for « € R™ yields « times the integral off. It is additive oncomonotonic
functionsf,g : X — R (i.e., there is no paie, 2z’ € X such thatf(z) < f(z') and
g(x) > g(a’)). Itis super-additive (the integral gf+ g is at least that of plus that of
g) whenv is convex, in particular when is a belief function, and sub-additive when
is concave. See [13] for the finite case, [14, chapitre 4]tiertbpological case.

One of the most interesting things is that integrating webkpect to a unanimity
game consists in taking minima. This suggests that unayigames indeed model
somedemonicform of non-determinism. Imaging(z) is the amount of money you
gain by going to state. The following says that taking the average amount of money
with respect to a demonic adversd&rill give you back the least amount possible.



Proposition 1. For any continuous : X — R™T,
Moreover, if A is compact, then

y f(x)dus = inf f(x) the inf is attained: this equals
z€X r€A .
mingeca f(z).

Since Choquet integration is linear in the game, the integrd along a simple belief
function )"} | a;up, yieldsY ! | a; min,cq, f(z): this is the expected min-value of
f obtained by drawing; at random with probability:; (P plays) then lettingC non-
deterministically move to the statec @; that minimizes the gain. We can generalize
this to non-discrete probabilities ov@( X') by using thes — v* isomorphism:

Theorem 4. For any bounded continuous functigh: X — R, let f, be the function
from Q(X) to R defined byf.(Q) = min,cq f(x). Say that a capacity is linearly
extensible from belowf and only if there is continuous valuatidh on Q(X) with:

gf f(@)dv = 9( £.(Q)dP 3)
z€X QeQ(X)

for every bounded continuoys If X is well-filtered and locally compact, then the ca-
pacities that are linearly extensible from below are exatile continuous belief func-
tions, andP must bev* in (3).

It follows in particular that whenever is the least upper bound of a directed family
(vi),¢; of simple belief functions;, then integratingf : X — R with respect tos can
be computed by taking least upper bounds of linear comloingtof mins. Therefore
the Choquet integral along continuous belief functionsicigies with Edalat'dower
R-integral[10], which was only defined for measures.

This can be dualized to the case of plausibilitieassumingX stably locally com-
pact [14, théoréme 6.3.17]. Then we talk about capacitiasate linearly extensible
from above There is an isomorphism+— v, such thav,.(¢U) = v(U) for all U, and
integratingf alongr amounts to integrating* alongv., where for evenf’ € 3, (X),
[*(F) = sup,ep f(z). (I.e.,C now maximizesour gain.) Then the Choquet integral
along continuous plausibilities coincides with Edalatsper R-integra[10].

5 Ludic Transition Systems, Logic, Simulation, Rewards

Let J<1(X) be the space of all continuous gamesn X with v(X) < 1. This is
equipped with its Scott topology. It will be practical to cicer another topology. The
weak topologyon a subspac¥® of J<;(X) is the topology generated by the subbasic
open set§U > r| = {v € Y|v(U) > r}, U openinX, r € R. Itis in general
coarser than the Scott topology, and coincides with it whies- V<;(X) and X is
a continuous cpo [30, Satz 4.10]. One can show that the wextagy is exactly the
coarsest that makes continuous all functionals mappiagdt” to the integral off along
v,forall f : X — RT bounded continuous. (See [14, section 4.5] for details.)

By analogy with Markov kernels and LMPs, defindualic transition systenas a
family 0 = (0,),.,,, whereL is a given set ofctions and eaclt, is a continuous map
from the state spac¥ to J<; ,+(X). (See [14, chapitres 8, 9] for missing details.) The



main change is that, as announced in the introduction, wiageprobability distribu-
tions by continuous games. One may object that LMPs are defismeasurablenot
continuous, so that this definition overly restricts thesslaf transition systems we are
considering. However, the mathematics are considerabhnelr when assuming con-
tinuity. Moreover, the weak topology is so weak that, forrayde, it only restraing,
so thatz — 6,(x)(U) is continuous as a function frof¥ to R, equipped with its
Scotttopology; this certainly allows it to have jumps. Finallpeomay argue, following
Edalat [10], that any second countable locally compact HaidsspaceX can be em-
bedded as a set of maximal elements of a continuous cpo (pa&l); other choices
are possible) so that any measure ¥rextends to a continuous valuation @fX).
This provides a theory of approximation of integration Bnthrough domain theory.
One may hope a similar phenomenon will apply to games—forespation of games
yet to be defined on Borel subsets, not opens.
Logic. Following [8, 5], define the Iogidlgﬁé/n by
the grammar shown right, whetee L,r € QN e T
[0,1] in the last I_m_e. C_ompared to [8, 5], we only_ | F A F conjunction (and)
hgve one ex?ra d.|31unct|on operator. T.he same qulc, | Fv F disjunction (or)
with disjunction, is shown to characterize simulation | [f]-,F modality

. . >r
for LMPs in [9, Section 2.3].
Let [F], be the set of states € X whereF holds:[T], = X, [F1 A Fa], = [Fi], A
[Fo]ly, [y V Boll, = [Fu], V[Faly, and[[€]s, F], = 6, '[[F], > r]is the set of states
x such that the preprobability ([F'],) that the next statg will satisfy F" on firing an
£ action is strictly greater than Note that this is well-defined, precisely becatisés
continuous fromX to a space of games with the weak topology. Also, it is easgéo s
that[F7], is always open.
Simulation. Now definesimulationin the spirit of event bisimulation [5] (we shall see
below why we do not call ibisimulation). For any topolog{ on X coarser than that
of X, let X : O be X equipped with the topology). A simulation topologyor @ is
a topologyO on X, coarser than that oX, such that, is continuous fromX : O to
J<1 we(X 0 0), i.e.,6[1[U > r] € O for eachU € O and eachr € R. (A close notion
was introduced in [31, Theorem 29].) One non-explanatioHis definition is to state
that this is exactly event bisimulation [5], only replacineplgebras by topologies. A
better explanation is to revert back to Larsen and Skou@iral definition of proba-
bilistic bisimulation in terms of an algebra tésts(in slightly more abstract form). A
(bi)simulation should not be thought as an arbitrary edaivee relation, rather as one
generated from a collectidfist of tests, which are subsetsof X: xz € X passes the
test iff x € A, it fails it otherwise. Two elements are equivalent iff thegss the same
tests. Now in a continuous setting it only makes sense tleatietsts be open: any open
U defines a continuous predicate from X to the Sierpiski spaceS = {0,1} (with
the Scott topology 06 < 1), and conversely. LeDr,; be the topology generated by
the testsT'st. It is sensible to require thaf ' [U > 7] be a test, too, at least whéhis
a finite union of finite intersections of tests (for the geheese, appeal to the fact that
0¢(z) is continuous, and that any open can be approximated by dirdteaunion): one
can indeed test whetherc 6, YU > 7] by firing transitions according to the preprob-
ability 6,(x), and test (e.g., by sampling, knowing thatifx) is a belief function for
example, then we are actually playing also against a denaaiviersaryC) whether our

true



chances of getting to a stajec U exceedr. And this is essentially how we defined
simulation topologies.

Every simulation topology) defines a specialization quasi-orderitg, which is
the analogue of the standard notion of simulation here.€Nwit in the case of event
bisimulation, i.e., taking-algebras instead of topologiesy would be an equivalence
relation—because-algebras are closed under complements—justifying thetfet
event bisimulation really is a bisimulation, while our rostiis a simulation.) Write
=o= =p N = the equivalence associated with simulatigp. Clearly, there is a
coarsest (largest) simulation topology. The following is then easy:

Theorem 5. Let O be a simulation topology fa# on X. For any F' € Lopen [F], €
O. In particular [Soundness], if: € [F], andz <¢ y theny € [F],. Conversely
[Completeness], the coarsest simulation topol@dyis exactly that generated by the
opens[F],, F € aggevn

This can be used, as is standard in the theory of Markov chtamsmp states. Given
a topology0, let X/0O be the quotient spack/=¢, equipped with the finest topology
such thayy : X : O — X/0 is continuous. Let theirect imagef|[v] of a gamev on
X by a continuous map : X — Y be f[v](V) = v(f~1(V)). Taking direct images
preserves monotonicity, modularity, (total) convexitgtél) concavity, and continuity.

Proposition 2. LetO be a simulation topology fdt. The functior, /O mappingge (=)
to go [0¢ ()] is well defined and continuous fral¥y O to J <1 ., (X/O) for everyl € L.
The familyd/O = (0,/0), is then a ludic transition system o¥i/O, which we call
thelumpedludic transition system.

ForanyF € Lgﬁevnandx € X,z andgp () satisfy the same formulagy ([F],) =

[Fly0, and[F[, = g5 ([F]y0), in particular, = € [F], iff go (z) € [Fly,0-
Rewards and payoffs. A classical problem on Markov decision processes is to eval-

uate average payoffs. Since LMPs and ludic transition systare so similar, we can
do exactly the same. Imagirie plays according to a finite-state progrdih i.e., an

automaton withinternal statesy, ¢’ and transitionsqu’. Let LRI X — R be

a family of bounded continuousward functions: we may think thathq, (x) is the

amount of money gains if she fires her internal transitiqne—>q’, drawing the next
statey at random alond,(x). Let Vytog € (0, 1] be a family of so-calledliscounts

Define the average payoff, starting from statehenP is in its internal state, by:

o= s |r @ ] Vo)) @
6q' /g—=q' vex

This formula would be standard 6 («) were a probability distribution. What is less
standard is what (4) means whér{z) is a game. E.g., whefy(z) is a simple belief

function"""*, aiesuq,,., then:
Y
W)= o [wm Yy 2 e i V)| ©)
C,q q—q 1=




where we see th& has control over the visible transitiofisand tries to maximize his
payoff (sup), while C will minimize it, and some averaging is taking place in-beén.
The equation (4) does not always have a solution in the faofiigll V,s. But there are
two cases where it has, similar to those encountered in Mat&oision processes.

Theorem 6. Assumd is standardi.e.,d,(X) is always eithed or 1, and the se{x €
X|0¢(x) = 0} of deadlock stateis open; or thatrqi)q/(x) >0forallq, ¢, ¢,z € X.

Assume also that there ateb € R with a < rqi)q,(a:),vqi)q, <bforall g, ¢,

x € X. Then (4) has a unique solution in any of the following twoesas
[Finite Horizon] If all paths in IT have bounded length.
[Discount] If there is a constant € (0, 1) such thatquq, < ~foreveryq, ¢, ¢

Whend, is a simple belief function, Equation (5) is then a Bellmgpet equation that
can be solved by dynamic programming techniques. Then ob#eat any continuous
belief function is the directed lub of simple belief funet®by Theorem 2, under mild
assumptions. This offers a canonical way to approximatavieeage payof,.
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