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Abstract. We will describe the recognizable formal power series over

arbitrary semirings and in partially commuting variables, i.e. over trace

monoids. We prove that the recognizable series are certain rational power

series, which can be constructed from the polynomials by using the oper-

ations sum, product and a restricted star which is applied only to series

for which the elements in the support all have the same connected al-

phabet. The converse is true if the underlying semi-ring is commutative.

Moreover, if in addition the semiring is idempotent then the same re-

sult holds with a star restricted to series for which the elements in the

support have connected (possibly di�erent) alphabets. It is shown that

these assumptions over the semiring are necessary. This provides a joint

generalization of Kleene's, Sch�utzenberger's and Ochma�nski's theorems.

1 Introduction

In the theory of automata and formal languages, Kleene's foundational theorem

on the coincidence of regular and rational languages in free monoids has been

extended in many ways. Sch�utzenberger [15] investigated formal power series

over arbitrary semirings (e.g., like the natural numbers) and the free monoid,

i.e. in noncommuting variables, and showed that the recognizable formal power

series coincide with the rational ones. This was the starting point for a large

amount of work on formal power series, cf. [14,9,2,8] for surveys. The concept

of recognizable formal power series has also been de�ned for arbitrary monoids

instead of the free monoid, but it was clear and has been stressed by several

authors (cf., e.g. [14]) that in general then the recognizable and the rational

series do not coincide.

On the other hand, Mazurkiewicz [10,11] introduced an important math-

ematical model for the behaviour of concurrent systems: trace monoids (or

free partially commutative monoids), see also [3,1,4{6] for their well-developed

theory. They are monoids whose generators are partially commutative. Again,

their recognizable languages do not coincide with the rational ones, but by
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Ochma�nski's theorem [12] they coincide with the c-rational languages where

the iteration is restricted to connected languages.

It is the aim of this paper to investigate recognizable formal power series over

trace monoids, thereby obtaining a generalization of both Sch�utzenberger's and

Ochma�nski's results.

We denote by KhhMii the set of all formal power series over the semiring K

and the free partially commutative monoid M . It is known that in general the

recognizable series in KhhM ii form a proper subclass of the rational ones. We

therefore de�ne the subclasses of c-rational and mc-rational series. We say that

a series S is connected, if each element of its support is connected, and S ismono-

alphabetic, if all elements of its support have the same set of generators. The c-

rational series are obtained from the polynomials by allowing the operations sum,

product, and star, but the latter applied only to proper and connected series.

The mc-rational series are constructed in the same way, but using star only for

series which are proper, mono-alphabetic and connected. In view of Ochma�nski's

result, one might expect that the recognizable series in KhhMii coincide with the

c-rational ones. However, we will show that this fails in general even for the

semiring (N;+;�). Our main result is the following:

Theorem 1. Let M be a trace monoid and K a semiring.

(a) Each recognizable series in KhhMii is mc-rational.

(b) If K is commutative, each mc-rational series in KhhM ii is recognizable.

(c) If K is commutative and idempotent, each c-rational series in KhhMii is

recognizable.

The fact that the recognizable series in KhhMii are closed under the product

operation was proved before already by Fliess [7], but only for very speci�c

semiringsK (strong Fatou semirings or the Boolean semiring). By Theorem 1(b),

this holds for arbitrary commutative semirings, and we show by example that

the commutativity of K is needed for this.

Theorem 1(b,c) is proved in section 3. There we also show that if the star S

�

of a recognizable proper series S is connected, then it is also recognizable. This

gives another closure property of the recognizable series under the star-operation.

Part (a) of Theorem 1 is proved in section 4, and in section 5 we give examples

and discuss the relationship with Sch�utzenberger's and Ochma�nski's results. For

lack of space, most proofs are not contained in this extended abstract.

It seems a very interesting research road to investigate which other results

from the theory of formal power series over non-commuting variables can be

extended to series over partially commuting variables, i.e. over trace monoids.

2 Background

Here we recall the necessary notation and background for formal power series

and of trace theory. For more details, we refer the reader to [14,2,4,6].

Let M be any monoid and K = (K;+; �; 0; 1) any semiring, i.e., (K;+; 0)

is a commutative monoid, (K; �; 1) is a monoid, multiplication distributes over
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addition, and 0 � x = x � 0 = 0 for each x 2 K. If multiplication is commutative,

we say that K is commutative. If the addition is idempotent, then the semiring

is called idempotent. For instance, the semiring (R[ f1g;min;+;1; 0) is both

commutative and idempotent.

Mappings S from M into K are called formal power series. They are de-

noted as formal sums S =

P

m2M

(S;m):m where (S;m) = S(m) 2 K. The set

supp(S) = fm 2 M j (S;m) 6= 0g is called the support of S, and if it is �nite,

then S is called a polynomial. The collection of all formal power series is denoted

by KhhM ii, and its subset of all polynomials by KhM i. We consider elements

of K also as polynomials in the natural way, having a non-zero entry only at

1 2M . If L � M , we de�ne the characteristic series of L by 1

L

=

P

m2L

1 �m.

Let n � 1 and [n] = f1; : : : ; ng. We let K

n�n

be the monoid of all (n � n)-

matrices over K (with matrix multiplication as usual). A series S 2 KhhM ii

is called recognizable, if there exists an integer n � 1, a monoid morphism � :

M �! K

n�n

and vectors � 2 K

1�n

;  2 K

n�1

such that

(S;m) = � � (�m) �  =

X

i;j2[n]

�

i

(�m)

ij



j

for each m 2 M . In this case, the triple (�; �; ) is called a representation of

S, and we often shortly write S = (�; �; ) to denote this. If i; j 2 [n], we also

abbreviate (�m)

ij

=: �m

ij

. We let K

rec

hhM ii denote the set of all recognizable

formal power series.

With componentwise addition,KhhM ii becomes a commutativemonoid.Now,

the (Cauchy) product of two series S; S

0

inKhhM ii is the series de�ned form 2M

by (S � S

0

;m) =

P

m=m

1

�m

2

(S;m

1

) � (S;m

2

) provided the sum is de�ned (e.g.

when the sum is �nite). With this, KhhM ii is a semiring. The powers S

n

(n � 0)

are de�ned in the natural way.We call S proper, if (S; 1) = 0, and then we put, in

the natural way,S

�

=

P

n�0

S

n

, the star (or iteration) of S, and S

+

=

P

n�1

S

n

,

provided it is de�ned. We let K

rat

hhM ii denote the smallest subset of KhhM ii

which contains all polynomials and is closed under the operations sum, product

and star, where the latter is only applied to proper series. Its elements are called

rational formal power series. Now Sch�utzenberger's theorem states the following

equivalence between recognizable and rational series over the free monoid.

Theorem 2 (Sch�utzenberger, [15]). Let � be any �nite set and K any semi-

ring. Then

K

rec

hh�

�

ii = K

rat

hh�

�

ii:

From this, Kleene's theorem on the coincidence of regular and rational lan-

guages follows by considering the Boolean semiring B = f0; 1g (with 1 + 1 =

1 �1 = 1) and noting that a language L � �

�

is regular i� its characteristic series

1

L

2 B hh�

�

ii is recognizable, and similarly for rationality.

Later we will also need the Hadamard product S � T of two series S; T 2

KhhM ii. It is de�ned by (S � T;m) = (S;m) � (T;m) for all m 2M .

Next we recall basic notions from trace theory. A pair (�; I) is called a trace

alphabet, if � is a �nite set and I is an irreexive symmetric binary independence
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relation on �. Let � denote the smallest congruence on �

�

containing f(ab; ba) :

a I bg. The quotient monoid M = M (�; I) := �

�

= � is called the trace monoid

(or free partially commutative monoid) over (�; I). If w 2 �

�

, we let [w] denote

the equivalence class of w in M . Also, let �(w) be the set of all letters of �

occurring in w, called the alphabet of w. Since equivalent words have the same

alphabet, we may put �([w]) = �(w). If A;B � �, we write A I B to denote

that a I b for all a 2 A; b 2 B. We also write w I A or [w] I A to abbreviate

that �(w) I A, similarly, w I w

0

for �(w) I �(w

0

), etc. A subset � � � is called

connected, if it cannot be split � = A[B into two non-empty subsets such that

A I B. Again, w and [w] are connected, if �(w) is connected. A language L � M

or L � �

�

is called connected, if each of its elements is connected, and mono-

alphabetic, if �(m) = �(m

0

) for allm;m

0

2 L. Then the collection of all c-rational

languages in M (respectively, in �

�

) is de�ned as the smallest set of languages

of M (respectively, of �

�

) containing all �nite languages and which is closed

under the operations union, product and star, where the latter is applied only

to connected languages. The following characterizes the recognizable languages

of M (recall that a language L � M is recognizable i� it is accepted by some

�nite M -automaton, or, equivalently, i� its syntactic monoid is �nite).

Theorem 3 (Ochma�nski, [12,4,6]). Let (�; I) be any trace alphabet and M

its trace monoid. Then a language L � M is recognizable i� it is c-rational.

Again, one should note that the Kleene's theorem mentioned above is a spe-

cial case of Theorem 3 since when the independence relation is empty, the trace

monoid M (�; ;) is the free monoid �

�

and in this case all languages are con-

nected, hence rational sets are also c-rational.

The goal of this paper is a common generalization of Theorems 2 and 3,

that is, a characterization of the recognizable formal power series in KhhM ii

where K is a semiring and M a trace monoid. Let S 2 KhhM ii. We say that S

is connected, if supp(S) is a connected language in M , and mono-alphabetic, if

supp(S) is mono-alphabetic. In the latter case, we put �(S) = �(m) if S 6= 0

and m 2 supp(S). Now let K

mc�rat

hhM ii (mono-alphabetic-connected rational)

be the smallest subset of KhhMii which contains all polynomials and is closed

under the operations sum, product and star, where the latter gets applied only

to proper, mono-alphabetic and connected series. Similarly, we let K

c�rat

hhM ii

(connected rational) be the collection of series obtained from the polynomials

by allowing the operations sum, product and star, where now star is applied to

all proper and connected series. Similarly, we de�ne connected series in Khh�

�

ii

and the collection of mc-rational series in Khh�

�

ii.

3 Mc-rational series are recognizable

In this section, let (�; I) be a trace alphabet and M = M (�; I) its trace monoid.

We will prove Theorem 1(b,c). This will require a more particular notion of

representations which we introduce �rst.
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De�nition 4. Let S = (�; �; ) 2 KhhM ii be a recognizable series with � :

M �! K

n�n

. The representation (�; �; ) is alphabetic, if there exist two func-

tions

 

�;

!

� : [n] �! P(�) such that for all u 2 M , the following three conditions

are satis�ed:

(1) Whenever �u

ij

6= 0, then

 

�(j) =

 

�(i) [ �(u) and

!

�(i) =

!

�(j) [ �(u);

(2) whenever �

i

6= 0, then

 

�(i) = ;;

(3) whenever 

j

6= 0, then

!

�(j) = ;.

We call (�; �; ;

 

�;

!

�) an alphabetic representation of S. Here,

 

�(k) describes

the past alphabet of k and

!

�(k) the future alphabet of k. We say that k is initial,

if

 

�(k) = ;, and k is �nal, if

!

�(k) = ;.

We will often use the fact that if (�; �; ) is alphabetic and �u

ij

6= 0, then i

initial implies that

 

�(j) = �(u), and j �nal implies

!

�(i) = �(u). Moreover, if

u 6= 1, then i initial implies �u

ki

= 0, and j �nal implies �u

jk

= 0, for any k.

Proposition 5. Let S 2 KhhM ii be a recognizable series. Then there exists an

alphabetic representation of S.

First we want to show that the product of two recognizable series in KhhM ii

is again recognizable. For more particular semirings K (strong Fatou semirings

or the Boolean semiring), the result has been obtained already by Fliess [7,

Prop. 2.2.14 and 2.2.15]. Our proof will not use the full notion of alphabetic

representation, since it can be based either on the past alphabets (the function

 

�) or the future alphabets, only. The full notion of alphabetic representation

will come into use when we deal with iteration.

Theorem 6. Let K be a commutative semiring and let S

1

; S

2

2 KhhMii be two

recognizable series. Then their product S = S

1

� S

2

is also recognizable.

Proof. Let (�

1

; �

1

; 

1

) be a representation of S

1

and let (�

2

; �

2

; 

2

;

 

�;

!

�) be an

alphabetic representation of S

2

(Proposition 5). We assume that �

i

: M �!

K

n

i

�n

i

for i = 1; 2, and let n = n

1

� n

2

. Subsequently we identify [n] with

[n

1

]� [n

2

]. Next, we de�ne � : �

�

�! K

n�n

by

�(a)

(i

1

;i

2

)(j

1

;j

2

)

= �

i

2

;j

2

I(a; i

2

)�

1

(a)

i

1

;j

1

+ �

i

1

;j

1

�

2

(a)

i

2

;j

2

where

�

i;j

=

(

1 if i = j

0 otherwise

and I(u; i) =

(

1 if u I

 

�(i)

0 otherwise

Note that I(a; j

2

)�

2

(a)

i

2

;j

2

= 0, hence at most one of the two terms is non-zero.

One can prove that �(a) � �(b) = �(b) � �(a) for all (a; b) 2 I. Hence, �

factorizes to a morphism � : M �! K

n�n

. Next we claim that this factorization

is given by the explicit formula

�(w)

(i

1

;i

2

)(j

1

;j

2

)

=

X

w=uv

I(u; i

2

)�

1

(u)

i

1

;j

1

�

2

(v)

i

2

;j

2
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Finally, de�ne � 2 K

1�n

;  2 K

n�1

by �

(i

1

;i

2

)

= �

1

i

1

�

2

i

2

; 

(k

1

;k

2

)

= 

1

k

1



2

k

2

. We

can verify that S = (�; �; ) which proves the theorem.

The following result shows that a mono-alphabetic recognizable series has

an alphabetic representation (�; �; ;

 

�;

!

�) with an even more speci�c form. For

this, let e

1

= (1; 0; : : : ; 0) 2 K

1�n

and e

n

= (0; : : : ; 0; 1)

t

2 K

n�1

.

Proposition 7. Let S 2 KhhM ii be recognizable, proper and mono-alphabetic

with �(S) = A. Then there exists an alphabetic representation (e

1

; �; e

n

;

 

�;

!

�)

of S with

!

�(1) =

 

�(n) = A.

We will now prove the following essential closure property of recognizable

series. Note that Theorem 1(b) follows easily from Theorems 6 and 8.

Theorem 8. Let K be a commutative semiring and let S 2 KhhM ii be a proper,

connected, mono-alphabetic and recognizable series. Then, S

�

is recognizable.

The proof of this theorem is based on a rather involved construction. Let

S 2 KhhM ii be a proper, recognizable, connected and mono-alphabetic series

with �(S) = A. Let S = (e

1

; �; e

n

;

 

�;

!

�) be an alphabetic representation with

!

�(1) =

 

�(n) = A (Proposition 7). Let m � 1. We identify [n

m

] with the set [n]

m

of allm-tuples with entries from [n].We use ~{ as abbreviation for such anm-tuple

(i

1

; : : : ; i

m

), similarly ~|;

~

k. Nowwe de�ne functions �

0

; : : : ; �

m

: �

�

�! K

n

m

�n

m

by

�

0

a

~{~|

=

(

�a

i

1

n

if ~| = (i

2

; : : : ; i

m

; 1)

0 otherwise

�

p

a

~{~|

=

(

�a

i

p

j

p

if j

l

= i

l

for all l 6= p

0 otherwise

(p � 1)

Also, let

H

~{

=

8

>

<

>

:

1 if

!

�(i

p

) [

 

�(i

p

) = A = �(S) for all p;

!

�(i

1

) 6= ; and

!

�(i

p

) I

 

�(i

q

) for all p < q

0 otherwise

Let H 2 K

n

m

�n

m

be given byH

~{~|

= H

~{

�H

~|

, and de�ne �

�

: �

�

�! K

n

m

�n

m

by �

�

= H � (�

0

+ � � �+�

m

), where (H ��

p

)(w)

~{~|

= H

~{~|

��

p

w

~{~|

for any w 2 �

�

and ~{; ~| 2 [n]

m

.

Theorem 8 results clearly from the following two essential results.

Proposition 9. Let K be a commutative semiring and assume that m � jAj.

Then �

�

(ab) = �

�

(ba) for all a; b 2 � such that a I b.

Hence �

�

factorizes to a morphism from M to K

n

m

�n

m

, and we have:
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Proposition 10. Let K be a commutative semiring and assume that m � jAj.

Then S

�

= (�

~

1

; �

�

; 

~

1

) where �

~

1

; 

~

1

are the row respectively column vectors which

have a 1 only at entry

~

1 = (1; : : : ; 1), and 0 otherwise.

Next we wish to derive a further closure properties of K

rec

hhM ii.

De�nition 11. Let S 2 KhhM ii or S 2 Khh�

�

ii and A � �. Then the restric-

tion of S to A is the series S

A

de�ned by

(S

A

; w) =

(

(S;w) if �(w) = A

0 otherwise

First we show that the restriction preserves both recognizability and mc-

rationality of series.

Proposition 12. Let S 2 KhhM ii be recognizable. Then S

A

is also recognizable.

Proposition 13. Let S 2 Khh�

�

ii or S 2 KhhM ii be mc-rational. Then S

A

is

also mc-rational.

The following lemmageneralizes a result of Pighizzini [13] for trace languages.

Lemma 14. Let S 2 KhhM ii be proper and A � � be nonempty. Then (S

�

)

A

=

Z

+

X where X =

P

B�A

(S

�

)

B

and Z = (X � S)

A

.

Next we derive another su�cient condition which implies that the star of a

recognizable series is again recognizable and, also, that the star of an mc-rational

series is again mc-rational.

Theorem 15.

1. Let K be a commutative semiring and S 2 KhhM ii be proper and recognizable

such that S

�

is connected. Then S

�

is recognizable.

2. Let K be any semiring and S 2 Khh�

�

ii or S 2 KhhM ii be proper and mc-

rational such that S

�

is connected. Then S

�

is mc-rational.

For positive semirings, the condition S

�

connected is stronger than S con-

nected. This latter condition is actually su�cient to obtain the closure properties

stated in Theorem 15 when the semiring is commutative and idempotent. This is

an easy consequence of Theorem 1(a) and of Theorem 17 for which the following

lemma is crucial.

Lemma 16. Let K be a commutative and idempotent semiring. Let S 2 KhhM ii

be a connected series and let B;C � � be independent subsets of the alphabet.

Then, (S

�

)

B[C

= (S

�

)

B

� (S

�

)

C

.

Theorem 17. Let K be a commutative and idempotent semiring. A series in

KhhMii is mc-rational i� it is c-rational.

7



Proof. One direction is clear and for the converse, it su�ces to show that the

star of an mc-rational connected series S is still mc-rational. We will �rst show

by induction on the size of A � � that if S is an mc-rational connected series

then (S

�

)

A

is mc-rational. The theorem follows directly since S

�

=

P

A��

(S

�

)

A

.

Clearly, (S

�

)

;

= 1 is mc-rational. Now, assume A 6= ; and let A

1

; : : : ; A

n

be the connected components of A: A = A

1

[ � � � [ A

n

and A

i

I A

j

for i 6= j.

By Lemma 16, we obtain (S

�

)

A

= (S

�

)

A

1

� � � (S

�

)

A

n

and we are reduced to

the case A connected. Now, using Lemma 14 we obtain (S

�

)

A

= Z

+

X where

X =

P

B�A

(S

�

)

B

and Z = (X � S)

A

. Then X is mc-rational by induction

hypothesis. By Proposition 13, it follows that Z is also mc-rational. Since we

have assumed A connected, we deduce that (S

�

)

A

= Z � Z

�

�X is mc-rational.

Note that Theorem 1(c) follows from Theorem 1(b) and Theorem 17.

4 Recognizable series are mc-rational

Thoughout this section, let K be an arbitrary (possibly non-commutative) semi-

ring and (�; I) a trace alphabet. We will prove that all recognizable series in

KhhMii are mc-rational. This uses the concept of lexicographic normal forms of

traces and LNF-representations of series which we introduce �rst. For this, �x

any linear order � on �. We extend this to the lexicographic linear order, also

denoted by �, on �

�

. We say that a word w is the lexicographic normal form

of [w], if it is the smallest element of [w] with respect to �. Then LNF is the

set of all words which are lexicographic normal forms. Note that LNF is closed

under pre�xes (and su�xes). Now let A

LNF

= (Q;�; �; q

0

; Q) be the minimal

(reduced) automaton for LNF.

De�nition 18. We will call a morphism � : �

�

�! K

n�n

an LNF-morphism,

if there exists a function � : [n] �! Q such that for all a 2 � and all i; j 2 [n],

�a

ij

6= 0 implies �(i)

a

�! �(j) in A

LNF

. Then any representation (�; �; ) with

an LNF-morphism� of a series S 2 Khh�

�

ii will be called an LNF-representation

of S.

Proposition 19. Let S

0

2 Khh�

�

ii be recognizable. Then S = S

0

� 1

LNF

has an

LNF-representation.

Next we note that for any n � 1 there is a canonical isomorphism � between

the semiring of n � n-matrices Khh�

�

ii

n�n

and the semiring of formal power

series K

n�n

hh�

�

ii, given by (�(A); w) = ((A

ij

; w)) if A = (A

ij

) 2 Khh�

�

ii

n�n

.

Subsequently, we will often identify A with its image �(A).

We will also use the following result.

Lemma 20 (Ochma�nski, [12,4]). Let w 2 �

�

be a word such that w;w

2

2

LNF. Then w is connected.

Proposition 21. Let � : �

�

�! K

n�n

be an LNF-morphism, and let M =

P

a2�

�a � a 2 K

n�n

h�

�

i. Then the entries of M

�

are mc-rational series.
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Proof. We �rst show, by induction on the length of w, that (M

�

; w) = �w for

any word w. Indeed, clearly (M

�

; 1) = 1 = �1 and (M

�

; wa) = (1+M

�

M;wa) =

(M

�

M;wa) = (M

�

; w)(M;a) = �w � �a = �(wa).

By lack of space we only give the proof for n = 1, which already shows several

connections between all the results. Hence, assume that n = 1. ThenM 2 Kh�

�

i

is proper and mc-rational. Now, let w 2 �

�

. If (M

�

; w) = �w 6= 0, since � is an

LNF-morphism, we have a path �(1)

w

�! �(1) in A

LNF

. Therefore, w;w

2

2 LNF

and by Ochma�nski's lemma 20, w is connected. Hence M

�

is connected and so,

by Theorem 15, mc-rational.

Theorem 22. Let S 2 Khh�

�

ii be recognizable. Then S � 1

LNF

is mc-rational.

Proof. By Proposition 19 we can choose an LNF-representation (�; �; ) of S

0

=

S � 1

LNF

. Let M =

P

a2�

�a � a. We have seen in the proof of Proposition 21

that (M

�

; w) = �w for any word w.

Now, � and  are vectors with entries in K, and M

�

has only mc-rational

series as entries by Proposition 21. Hence �M

�

 2 Khh�

�

ii is an mc-rational

series. Finally, observe that for any word w,

(�M

�

; w) = (

X

i;j

�

i

(M

�

)

ij



j

; w) =

X

i;j

�

i

((M

�

)

ij

; w)

j

)

=

X

i;j

�

i

�w

ij



j

= ��w = (S

0

; w):

Therefore S � 1

LNF

= S

0

= �M

�

 is mc-rational.

Corollary 23. Let S 2 Khh�

�

ii be recognizable with supp(S) � LNF. Then S

is mc-rational.

Let M;N be two monoids and h : M �! N be a morphism. Then h

�1

:

KhhN ii �! KhhM ii given by (h

�1

(S); w) = (S; h(w)) (w 2 N ) is a semiring mor-

phism. Moreover, if S = (�; �; ) 2 K

rec

hhN ii, then (h

�1

(S); w) = (S; h(w)) =

��h(w), hence (cf. [14, p.32])

h

�1

(S) = (�; � � h; ) 2 K

rec

hhM ii:

Let ' : �

�

�! M be the canonical epimorphism. Then ' extends naturally

to a mapping, denoted by �, from Khh�

�

ii to KhhM ii given by

�(S) =

X

w2�

�

(S;w)'(w) =

X

t2M

0

@

X

w2'

�1

(t)

(S;w)

1

A

:t:

As is well-known from general results (cf., e.g., [14, pp.13,14]), � is a semiring

morphismand if S is proper, then �(S

�

) = �(S)

�

. Furthermore, if S is connected

(respectively, mono-alphabetic), then �(S) is also connected (respectively, mono-

alphabetic). From this, it is clear that if S is mc-rational, then �(S) is also

mc-rational. Now we prove Theorem 1(a).
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Theorem 24. Let S 2 KhhM ii be recognizable. Then S is mc-rational.

Proof. Let S = (�; �; ) 2 K

rec

hhM ii. As noted before, '

�1

(S) 2 K

rec

hh�

�

ii.

By Theorem 22, '

�1

(S) � 1

LNF

is mc-rational. Hence also �('

�1

(S)� 1

LNF

) is

mc-rational. Now for each t 2 M we have

(�('

�1

(S) � 1

LNF

); t) =

X

w2'

�1

(t)

('

�1

(S) � 1

LNF

; w)

=

X

w2'

�1

(t)\LNF

('

�1

(S); w) =

X

w2'

�1

(t)\LNF

(S; '(w)) = (S; t):

Therefore, S = �('

�1

(S) � 1

LNF

) is mc-rational.

5 Examples and consequences

Here we will give two examples to show that the assumptions in Theorems 6 and 8

(hence, in Theorem 1(b,c)) are necesssary. We also indicate the relationship with

the results of Sch�utzenberger and Ochma�nski. First, we show that in Theorem 6

the commutativity of K is necessary.

Example 25. Consider the trace alphabet (�; I) with � = fa; bg and a I b, and

let K = Bh�

�

i. Let S =

P

n

a

n

:a

n

; T =

P

n

b

n

:b

n

2 KhhM ii. Then S and T are

recognizable. Indeed, if � : �

�

�! K is de�ned by �(a) = a and �(b) = 0 and

� =  = 1, then S = (�; �; ). However, we can show that S � T 2 KhhM ii is not

recognizable.

Secondly, we want to show that in general K

rec

hhMii is properly contained in

K

c�rat

hhM ii. That is, we show that the star of a connected recognizable series

may not be recognizable. (Thus by Theorem 15, the star of this series will not

be connected.)

Example 26. Again consider the trace alphabet (�; I) with � = fa; bg and a I b,

and let S = a + b 2 NhMi. Then, obviously, S is a connected polynomial and

(S

�

; t) =

�

jtj

a

+jtj

b

jtj

a

�

for all t 2 M . Hence, S

�

=

P

n;m2N

�

n+m

n

�

a

n

b

m

. We can prove

that S

�

is not recognizable.

Let � be any �nite alphabet. If I = ;, the trace monoidM (�; I) is isomorphic

to�

�

. Hence, by Theorem 24 we haveK

rec

hh�

�

ii � K

mc�rat

hh�

�

ii � K

rat

hh�

�

ii.

Now, using one inclusion of Theorem 2, we obtainK

rec

hh�

�

ii = K

mc�rat

hh�

�

ii =

K

rat

hh�

�

ii which is in fact a strengthening of Theorem 2.

Now we show how to deduce and actually strengthen Theorem 3 from our

results. The following can be proved in the same way as classically for the free

monoid (cf. [14,2]).

Proposition 27. L � M is recognizable (resp. rational, c-rational, mc-rational)

i� 1

L

2 B hhM ii is recognizable (resp. rational, c-rational, mc-rational).
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Since the boolean semiring B is both commutative and idempotent, we de-

duce from Theorem 1 that a series in B hhM ii is recognizable i� it is c-rational i�

it is mc-rational. Using Proposition 27, we deduce that a trace language L � M

is recognizable i� it is c-rational i� it is mc-rational. The �rst equivalence is

precisely Ochma�nski's theorem. The second one is a strengthening of a result

by Pighizzini [13] which characterizes the recognizable languages as those lan-

guages obtained from �nite sets of traces using union, concatenation, restriction

to subalphabet and star restricted to monoalphabetic and connected languages.
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