
Block-wise P-Signatures and Non-Interactive Anonymous
Credentials with Efficient Attributes

Abstract. Anonymous credentials are protocols in which users obtain certificates from organizations
and subsequently demonstrate their possession in such a way that transactions carried out by the
same user cannot be linked. We present an anonymous credential scheme with non-interactive proofs
of credential possession where credentials are associated with a number of attributes. Following recent
results of Camenisch and Groß (CCS 2008), the proof simultaneously convinces the verifier that certified
attributes satisfy a certain predicate. Our construction relies on a new kind of P-signature, termed
block-wise P-signature, that allows a user to obtain a signature on a committed vector of messages and
makes it possible to generate a short witness that serves as a proof that the signed vector satisfies the
predicate. A non-interactive anonymous credential is obtained by combining our block-wise P-signature
scheme with the Groth-Sahai proof systems. It allows efficiently proving possession of a credential
while simultaneously demonstrating that underlying attributes satisfy a predicate corresponding to the
evaluation of inner products (and therefore disjunctions or polynomial evaluations). The security of our
scheme is proved in the standard model under non-interactive assumptions.

Keywords. P-signatures, anonymous credentials, anonymity, non-interactive proofs, standard model,
efficient attributes.

1 Introduction

Introduced by Chaum [22] and extensively studied in the last two decades [26, 12, 40, 18, 19, 21, 20,
3, 4], anonymous credential systems enable users to authenticate themselves in a privacy-preserving
manner. In such a protocol, a user can prove that an organization has supplied him with a certificate
in such a way that the request for a certificate cannot be linked to any of its proofs of possession
and multiple proofs involving the same credential cannot be linked to each other. In many realistic
applications, it is desirable to augment digital credentials with a number of user attributes (such
as their citizenship, their birth date, their obtained degrees, . . .) while allowing users to selectively
disclose some of their attributes or efficiently prove properties about them without disclosing any
other information. This problem was addressed by Camenisch and Groß [15] who showed how to
conveniently extend the Camenisch-Lysyanskaya construction [18, 19] into an anonymous credential
system with efficient attributes. In this paper, we consider similar problems in the context of non-
interactive anonymous credentials in the standard model, as formalized in [3].

Anonymous credential systems usually combine two essential components. The first one is a
protocol allowing a user to obtain a signature from an organization on a committed value (which is
typically the user’s private key) by sending a commitment to the signer and eventually obtaining a
signature on the message without leaking useful information on the latter. The second component
is a proof of knowledge of a signature on a committed value. Namely, the prover holds a pair (m,σ),
reveals a commitment c to m and demonstrates his possession of σ as a valid signature on m.

Prior Work. While the above tasks can always be inefficiently realized by combining general two-
party computation protocols [47] and zero-knowledge proofs for any NP statements [32], Camenisch
and Lysyanskaya [18, 19] used groups of hidden order and Fujisaki-Okamoto commitments [30] to
build the first practical realizations 10 years ago. Their approach was subsequently extended to

groups of public order using bilinear maps [20, 2].
Until recently, all anonymous credential systems required users to engage in an interactive con-

versation with the verifier to convince him of their possession of a credential. While interaction can
be removed using the Fiat-Shamir paradigm [27] and the random oracle model [6], this methodol-
ogy is limited (see [23, 33] for instance) to only give heuristic arguments in terms of security. This
motivated Belenkiy, Chase, Kohlweiss and Lysyanskaya [3] to design non-interactive1 anonymous
credentials in the standard model – assuming a common reference string – using an underlying
primitive named P-signature (as a shorthand for signatures with efficient Protocols). Their results
were extended by [5] (and, more recently, in [29]) into non-interactive anonymous credential schemes
supporting credential delegation.

Credentials Supporting Efficient Attributes. In real-life situations, users holding a number
of certified attributes may be willing to selectively disclose a restricted number of their attributes
while preserving their privacy and the secrecy of their other attributes. A natural approach is
to extend classical anonymous credentials such as [18, 20] using generalizations of the Pedersen
commitment [42] allowing to commit to n attributes at once in groups of hidden order. However,
disclosing a single specific attribute entails to commit to n − 1 attributes so as to prove that one
attribute matches the disclosed value and committed attributes are the remaining certified ones.
The drawback of this technique is that each proof has linear size in the overall number of attributes.

To address this concern, Camenisch and Groß [15] suggested a completely different technique
consisting in encoding attributes as prime numbers. Basically, users first obtain a signature on two
committed messages: the first one is the user’s private key and the second one consists of the prod-
uct of all users’ attributes. Later on, when the user wants to prove his ownership of a credential
containing a certain attribute, he just has to prove that this attribute divides the second commit-
ted message. Camenisch and Groß also showed how users can prove that they hold an attribute
appearing in some public attribute list and how to handle negated statements (namely, prove that
a certain attribute is not contained in their attribute set). They also showed how to extend their
techniques and prove the conjunction or the disjunction of simple such atomic statements. Unfortu-
nately, their techniques cannot be applied in the setting of non-interactive anonymous credentials
as they inherently rely on groups of hidden order, which makes them hardly compatible with the
Groth-Sahai proof systems [34] used in [3, 5]. It turns out that efficiently handling attributes in this
context requires new techniques to be worked out.

In [45], Shahandashti and Safavi-Naini used threshold attribute-based signatures [41] to con-
struct attribute-based anonymous credentials where users can prove threshold predicates (i.e., the
ownership of t-out-of-n public attributes). However, their construction requires interaction and is
not meant to provide compact proofs, which is the focus of this paper.

Our Contribution. This paper presents an anonymous credential scheme allowing to non-
interactively prove the possession of a credential associated with attributes that satisfy a given
predicate without leaking any further information. To this end, we extend the approach of [3] by
introducing a new kind of P-signature termed block-wise P-signature. In a nutshell, such a primitive
is a P-signature allowing a user to obtain a signature on a committed vector of messages (similarly
to the multi-block P-signature of [5]). Unlike [5] however, our P-signature makes it possible for the
user to generate a short NIZK argument (i.e., the size of which does not depend on the vector size)
that serves as evidence that the signed vector satisfies a certain predicate.

1 The protocol for obtaining a signature on a committed message still demands interaction but the proving phase,
which is usually more frequently executed, consists of one message from the prover to the verifier.

2

Inspired by the work of Katz, Sahai, Waters [38], we present a block-wise P-signature for predi-
cates corresponding to the zero or non-zero evaluation of inner products (and therefore disjunctions
or polynomial evaluations). By combining our block-wise P-signature with the Groth-Sahai method-
ology [34] as in [3], we readily obtain an efficient non-interactive anonymous credential supporting
efficient attributes. By appropriately using the inner product with suitable attribute encodings,
we notably obtain (1) an efficient way for users to prove that specific attributes appear in their
attribute set; (2) a method for concisely proving the inclusion of one of their attributes in a public
list; (3) short proofs that the certified attribute set contains a certain (exact or inexact) threshold
of binary attributes (in a similar way, we can prove that a subset of the certified set is at most t
binary attributes away from some public attribute set). Using a very small amount of interaction
(namely, verifiers just have to send a challenge consisting of a short random value in Zp, where p
is the group order), we can also handle conjunctions of atomic conditions and even more complex
formulas such as CNF or DNF in two rounds. The non-interactivity property is unfortunately lost
when we want to deal with CNF/DNF formulas but our solution still decreases the number of
rounds w.r.t. traditional interactive constructions. Indeed, at least 3 rounds are needed in interac-
tive proofs using Σ protocols.

The security of our scheme is proved in the standard model under non-interactive assumptions.
Although our scheme does not perform as well as the Camenisch-Groß system (notably because,
unlike [15], we cannot prevent the public key size from depending on the number n of attributes),
this yields the first result on non-interactive anonymous credentials with efficient attributes in the
standard model. Like [3, 5], we rely on a common reference string and only need interaction in the
protocol allowing users to obtain their credentials (except for predicates involving conjunctions).

Organization. In section 2, we first give formal definitions of block-wise F -unforgeable signatures
(similarly to [3], we can only prove a relaxed form of unforgeability which suffices in this context)
and block-wise P -signatures. Our realization for inner product relations is described in section 3.
Its application to the realization of anonymous credentials with efficient attributes is detailed in
appendix E, where we also discuss the efficiency of the scheme and the kind of predicates that can
be expressed using inner products.

2 Background and Definitions

Notations. We say that a function ν : N→ [0, 1[is negligible if for, any polynomial p(.), we have
ν(λ) < |1/p(λ)| for any sufficiently large λ ∈ N. If A(x) � B(y) denotes an interactive protocol
between A and B on input x and y, respectively, and if participant A (resp. B) outputs a bit
b ∈ {0, 1} after the execution of the protocol, we write b⇐ A(x) � B(y) (resp. A(x) � B(y)⇒ b).

2.1 Bilinear Maps and Complexity Assumptions
We consider bilinear groups (G,GT) of prime order p with a mapping e : G×G → GT such that:
(1) e(ga, hb) = e(g, h)ab for any (g, h) ∈ G×G and a, b ∈ Z; (2) e(g, h) 6= 1GT whenever g, h 6= 1G.

Definition 1 ([9]). In a group G of prime order p, the Decision Linear Problem (DLIN) is to
distinguish the distributions (g, ga, gb, gac, gbd, gc+d) and (g, ga, gb, gac, gbd, gz), with a, b, c, d, z R← Zp.
The Decision Linear Assumption is the intractability of DLIN for any PPT distinguisher D.

This problem is to decide if vectors ~g1 = (ga, 1, g), ~g2 = (1, gb, g) and ~g3 are linearly dependent.
Like several previous P-signatures, our scheme uses the Hidden Strong Diffie-Hellman assump-

tion [11] that strengthens a “q-type” assumption introduced in [8].

3

Definition 2 ([11]). The q-Hidden Strong Diffie-Hellman problem (q-HSDH) consists in,
given (g, u,Ω = gω) ∈ G3 and a set of q tuples (g1/(ω+ci), gci , uci) with c1, . . . , cq

R← Z∗p, finding
(g1/(ω+c), gc, uc) such that c 6= ci for i = 1, . . . , q.

We also use the following problem, which is not easier than the problem, used in [37], of finding a
pair (gµ, gµab) ∈ (G\{1G})2 given (g, ga, gb) ∈ G3.

Definition 3. The Flexible Diffie-Hellman problem (FlexDH) in G is, given (g, ga, gb) ∈ G3,
where a, b R← Z∗p, to find a triple (gµ, gµa, gµab) such that µ 6= 0.

The paper will make use of two other problems. The first one was introduced – in a potentially
easier variant – in [10].

Definition 4 ([10]). Let G be a group of prime order p. The n-Diffie-Hellman Exponent (n-
DHE) problem is, given elements (g, g1, . . . , gn, gn+2, . . . , g2n) ∈ G2n such that gi = g(αi) for each
i ∈ [1, 2n]\{n+ 1} and where α R← Z∗p, to compute the missing element gn+1 = g(αn+1).

We finally need an assumption that strengthens the n-DHE assumption in the same way as the
FlexDH assumption is a strengthening of the Diffie-Hellman assumption.

Definition 5. Let G be a group of prime order p. The Flexible n-Diffie-Hellman Exponent
(n-FlexDHE) problem is, given elements (g, g1, . . . , gn, gn+2, . . . , g2n) ∈ G2n such that gi = g(αi)

for each i ∈ [1, 2n]\{n + 1} and where α R← Z∗p, to compute a non-trivial triple (gµ, gµn+1, g
µ
2n) ∈

(G\{1G})3, for some µ ∈ Z∗p and where gn+1 = g(αn+1).

Evidence of the generic intractability of the n-FlexDHE assumption is provided in appendix F.

2.2 Commitments to Vectors

We consider perfectly hiding commitments (VecCom,VecOpen) allowing to commit to vectors. In
the following, we denote by V = VecCom(~m; r) the result of committing to ~m = (m1, . . . ,mn) ∈ Znp
using randomness r ∈ Zp. In addition, we require that commitments be openable in a coordinate-
wise manner and call W = VecOpen(~m, r, i) the opening of V in position i ∈ [1, n]. Such a pairing-
based Pedersen-like commitment [42], based on ideas from [10, 17], was described in [39]. The
commitment key is (g, g1, . . . , gn, gn+2, . . . , g2n) ∈ G2n where gi = g(αi) for each i. To commit to
a vector ~m = (m1, . . . ,mn), the committer picks r R← Zp and computes V = gr ·

∏n
j=1 g

mj
n+1−j .

Thanks to the specific choice of {gi}i∈[1,2n]\{n+1}, Wi = gri ·
∏n
j=1,j 6=i g

mj
n+1−j+i serves as evidence

that mi is the i-th component of ~m as it satisfies the relation e(gi, V) = e(g,Wi) · e(g1, gn)mi . The
opening Wi = VecOpen(V, ~m, r, i) at position i is easily seen not to reveal anything about other
components of ~m. Moreover, the infeasibility of opening a commitment to two distinct messages
for some coordinate i ∈ [1, n] relies on the n-DHE assumption.

2.3 Block-wise F-Unforgeable Signatures and P-Signatures

We begin by defining block-wise F-unforgeable signatures. As introduced in [3], F-unforgeability
refers to the infeasibility for the adversary to craft a valid signature on some message m ∈ Zp
while only outputting F (m), for some injective function F , instead of m itself. The need for such
a relaxation stems from the limited extractability of Groth-Sahai proofs: in a nutshell, only gm is
efficiently extractable from a commitment to m ∈ Zp using the trapdoor of the CRS.

For reasons that will become apparent later on, block-wise F-unforgeable signatures will be
associated with two families of relations that we call R1 and R2, respectively.

4

Definition 6. Let D be a domain and let R1 and R2 be families of efficiently computable relations
such that each R ∈ R1 ∪R2 is of the form R : [0, n]×Dn ×Dn → {0, 1} for some n ∈ N. A block-
wise signature for (R1,R2,D) consists of a tuple Σ = (Setup,SigSetup, Sign,Verify,Witness-Gen,
Witness-Verify) of algorithms with the following specifications.

Setup(λ): takes as input a security parameter λ and outputs a set of public parameters params.
SigSetup(λ, n): takes as input a security parameter λ ∈ N and an integer n ∈ poly(λ) denoting the

length of message vectors to be signed. It outputs a key pair (pk, sk).
Sign(sk, ~m): is a (possibly randomized) algorithm that takes as input a private key sk and a vector

~m = (m1, . . . ,mn) of messages where mi ∈ D for i = 1 to n. It outputs a signature σ on ~m.
Verify(pk, ~m, σ): is a deterministic algorithm that takes as input a public key pk, a signature σ and

a message vector ~m = (m1, . . . ,mn). It outputs 1 if σ is deemed valid for ~m and 0 otherwise.
Witness-Gen(pk, R, i, ~m, ~X, σ): takes as input a public key pk, a relation R ∈ R1 ∪R2, an integer

i ∈ [0, n], two distinct vectors ~m = (m1, . . . ,mn) ∈ Dn and ~X = (x1, . . . , xn) ∈ Dn, and a
signature σ. If Verify(pk, ~m, σ) = 0 or R(i, ~m, ~X) = 0, it outputs ⊥. Otherwise, it returns a
witness W proving that σ is a signature on some ~m ∈ Dn s.t. R(i, ~m, ~X) = 1.

Witness-Verify(pk, R, i, ~X,W, σ): is a deterministic algorithm that takes in a public key pk, a re-
lation R ∈ R1 ∪ R2, an integer i ∈ [0, n], a vector ~X ∈ Dn, a witness W and a signature σ.
It outputs 1 if W is deemed as convincing evidence that σ is a valid signature of some vector
~m = (m1, . . . ,mn) ∈ Dn such that R(i, ~m, ~X) = 1.

Except Setup, these algorithms all implicitly take public parameters params as additional inputs.
To lighten notations, we omit to explicitly write them.

The following security definitions considers two kinds of forgers. The first one – which corre-
sponds to case (i) in the definition – refers to attacks where the adversary outputs a new signature
that was not legally obtained by invoking the signing oracle. The second one – captured by case
(ii) – relates to forgeries where the adversary re-uses a signature (say σj for some j ∈ {1, . . . , q})
that was produced by the signing oracle but manages to prove a property that is not satisfied by
the signed vector ~mj .

In the context of case (ii), we need to consider two families of relations. The first one is called
R1 and includes relations R1 for which the adversary illegitimately proves that R1(i, ~mj , ~X

?) = 1
and only outputs F (~X?) = (F (x?1), . . . , F (x?n)). The second relation family R2 comprises relations
R2 for which the adversary tricks the verifier into believing that R2(i, ~mj , ~X

?) = 1 and explicitly
outputs ~X? = (x?1, . . . , x

?
n) instead of F (~X?). We cannot consider a single relation family unifying

both R1 and R2 because, for technical reasons, our security proof ceases to work if the adversary
only outputs F (~X?) in the case of relations R2 ∈ R2 (as explained by remark 1 in appendix B).
At the same time, we also need to consider relations R1 ∈ R1 because of the limited extractability
properties of Groth-Sahai proofs.

In the notations of definition 7, Υ ⊂ {1, . . . , n} denotes the smallest subset such that values
{F (xt)}t∈Υ make it possible to verify that ~X = (x1, . . . , xn) satisfies R1(i, ~m, ~X) = 1.

Definition 7. Let R1,R2 be families of relations over [0, n] × Dn × Dn for some domain D. A
block-wise signature scheme Σ is said (F,R1,R2)-unforgeable for some efficiently computable
injective function F (.), if any PPT adversary has negligible advantage in the following game:

1. The challenger runs Keygen(λ, n) and obtains (pk, sk) before sending pk to A.
2. A adaptively queries a signing oracle on up to q ∈ poly(λ) occasions. At each query j ∈ [1, q],
A chooses a vector ~m = (m1, . . . ,mn) and obtains σj = Sign(sk, ~m).

5

3. A outputs a tuple (Pred?,W ?, σ?) consisting of a predicate Pred?, a witness W ? and a signature
σ?. The predicate Pred? consists of a triple which is either of the form (R1, i, {F (x?t)}t∈Υ), for
some subset Υ ⊂ {1, . . . , n} such that i ∈ Υ , or (R2, i, ~X

?) where i ∈ [0, n] is an index, R1 ∈ R1

and R2 ∈ R1 ∪ R2 are relations and ~X? = (x?1, . . . , x
?
n) ∈ Dn is a vector. The adversary wins

if: (a) Witness-Verify(pk, R, i, ~X?,W ?, σ?) = 1. (b) It holds that either:

(i) σ? was not the output of any signing query;
(ii) σ? = σj, for some query j ∈ [1, q], but the queried vector ~mj = (mj,1, . . . ,mj,n) was such

that R1(i, ~mj , ~X
?) = 0 (resp. R2(i, ~mj , ~X

?) = 0) while the predicate Pred? is of the form
(R1, i, {F (x?t)}t∈Υ) (resp. (R2, i, ~X

?)).

The adversary A’s advantage is its probability of being successful, taken over all random coins.

¿From a block-wise F-unforgeable signature, a full-fledged block-wise P-signature is obtained as
specified by definition 8.

Definition 8. A block-wise P-signature combines a (F,R1,R2)-unforgeable block-wise signature
with a vector commitment (VecCom,VecOpen), a perfectly binding commitment (Com,Open) and:

1. An algorithm SigProve1

(
pk, R1, i, Υ, σ, ~m = (m1, . . . ,mn), ~X = (x1, . . . , xn)

)
that, for some rela-

tion R1 ∈ R1 and some subset Υ ⊂ {1, . . . , n} such that i ∈ Υ , generates commitments {Cxt}t∈Υ ,
CW , Cσ and a NIZK proof

π ← NIZPK
(
{xt in Cxt}t∈Υ , W in CW , σ in Cσ | {(W, {F (xt)}t∈Υ , σ) :

∃ ~m s.t. Verify(pk, ~m, σ) = 1 ∧ Witness-Verify(pk, R1, i, ~X,W, σ) = 1}
)
,

and the corresponding VerifyProof1(pk, R1, i, π, Cσ, CW , {Cxt}t∈Υ) algorithm.

2. An algorithm SigProve2(pk, R, i, σ, ~m, ~X) that, for some relation R ∈ R1 ∪ R2, generates com-
mitments CW , Cσ and a proof

π ← NIZPK
(
W in CW , σ in Cσ | {(W,σ) : ∃ ~m s.t. Verify(pk, ~m, σ) = 1

∧ Witness-Verify(pk, R, i, ~X,W, σ) = 1}
)

with its corresponding VerifyProof2(pk, R, i, π, Cσ, CW , ~X) algorithm.

3. A NIZK proof that two perfectly binding commitments open to the same value, i.e., an algorithm
EqComProve outputting a proof of membership for the language

L = {(C,D) s.t. ∃ (x, y), (openx, openy) | C = Com(x, openx) ∧ D = Com(y, openy) ∧ x = y}.

4. SigIssue
(
sk, V ′, (mn1+1, . . . ,mn)

)
� SigObtain(pk, ~m|n1

= (m1, . . . ,mn1), open~m|n1
) is an inter-

active protocol allowing a user to obtain a signature σ on ~m = (m1, . . . ,mn1 ,mn1+1, . . . ,mn)
without letting the signer – whose input consists of V ′ = VecCom(~m|n1

, r′), for some r′ and
n1 ∈ [1, n], and public messages (mn1+1, . . . ,mn) – learn anything about ~m|n1

.

In this definition, Υ ⊂ {1, . . . , n} is the smallest subset such that commitments {Cxt}t∈Υ allow
verifying the proof that the underlying vector ~X satisfies R1(i, ~m, ~X) = 1.

Unforgeability of P-signatures. To define the unforgeability of block-wise P-signatures, we
shall assume that SigIssue � SigObtain starts with the user U committing to a vector (m1, . . . ,mn1)

6

and interactively proving to the issuer his knowledge of an opening of the commitment. We re-
quire the existence of a knowledge extractor EASigObtain that can extract the committed vector
(m1, . . . ,mn1) by rewinding the prover A. Since (VecCom,VecOpen) is a perfectly hiding com-
mitment, this will be necessary to formalize the unforgeability of our P-signatures. We note that a
similar approach was taken in [16] to define specific security properties of e-cash systems.

Definition 9. A block-wise P-signature Σ is (F,R1,R2)-unforgeable, for relation families R1,R2,
if there are efficient algorithms (ExtractSetup,Extract) s.t. (i) the output distributions of Setup and
ExtractSetup are statistically close; (ii) any PPT algorithm A has negligible advantage in this game.

1. The challenger runs params← ExtractSetup(λ) and (sk, pk)← SigSetup(λ, n), for some integer
n ∈ poly(λ), and hands pk to A.

2. On up to q ∈ poly(λ) occasions, A triggers an execution of SigIssue � SigObtain and acts as
a user interacting with the SigIssue-executing challenger. At each such execution j ∈ [1, q], the
challenger runs EASigObtain so as to extract A’s vector ~mj = (mj,1, . . . ,mj,n) (or, more precisely,
the restriction (mj,1, . . . ,mj,n1) to its first n1 coordinates, for some n1 ∈ [1, n]) and bookkeeps
it. We denote by σj the signature obtained by A at the end of the j-th execution of SigObtain.

3. A outputs commitments Cσ, CW , a proof π and a statement claim consisting of a triple which
is either of the form (R1, i, {Cxt}t∈Υ) or (R2, i, ~X), for some integer i ∈ [0, n], some relations
R1 ∈ R1 or R2 ∈ R1 ∪R2, some vector ~X = (x1, . . . , xn) ∈ Dn or some commitments {Cxt}t∈Υ
– for some subset Υ ⊂ {1, . . . , n} – to elements xt ∈ D. The adversary A is successful if:

a. Exactly one of the following conditions is satisfied.

1. claim = (R1, i, {Cxt}t∈Υ) and VerifyProof1(pk, R1, i, π, Cσ, CW , {Cxt}t∈Υ) = 1.
2. claim is of the form (R2, i, ~X) and it holds that VerifyProof2(pk, R2, i, π, Cσ, CW , ~X) = 1.

b. If we define the predicate Pred to be (R, i, {Extract(Cxt)}t∈Υ) in situation 1 and simply claim
in situation 2, the triple

(
Pred,Extract(CW),Extract(Cσ)

)
forms a successful forgery in the

game of definition 7 when the vectors ~m1, . . . , ~mq are those queried for signature.

A’s advantage is its success probability, taken over all coin tosses.

Belenkiy et al. [3] formalized other security notions named signer privacy, user privacy and zero-
knowledge that P-signatures ought to satisfy. These notions are formally defined in appendix A.

2.4 Groth-Sahai Proofs

In the following notations, for equal-dimension vectors ~A and ~B containing exponents or group
elements, ~A� ~B stands for their component-wise product.

To simplify the description, our scheme uses Groth-Sahai proofs based on the DLIN assump-
tion although instantiations based on the symmetric external Diffie-Hellman assumption are also
possible. In the DLIN setting, the Groth-Sahai (GS) proof systems [34] use a common refer-
ence string comprising vectors ~f1, ~f2, ~f3 ∈ G3, where ~f1 = (f1, 1, g), ~f2 = (1, f2, g) for some
f1, f2, g ∈ G. To commit to X ∈ G, one sets ~C = (1, 1, X) � ~f1

r
� ~f2

s
� ~f3

t
with r, s, t R← Zp.

When proofs should be perfectly sound, ~f3 is set as ~f3 = ~f1
ξ1 � ~f2

ξ2 with ξ1, ξ2
R← Z∗p. Commit-

ments ~C = (f r+ξ1t1 , fs+ξ2t2 , X · gr+s+t(ξ1+ξ2)) are then Boneh-Boyen-Shacham (BBS) ciphertexts [9]
that can be decrypted using α1 = logg(f1), α2 = logg(f2). In the witness indistinguishability (WI)

7

setting, defining ~f3 = ~f1
ξ1 � ~f2

ξ2 � (1, 1, g)−1 gives linearly independent (~f1, ~f2, ~f3) and ~C is a per-
fectly hiding commitment. Under the DLIN assumption, the two settings are indistinguishable. In
either case, the commitment is written ~C = GSCom(X, openX) and openX = (r, s, t) is its opening.

To commit to an exponent x ∈ Zp, one computes ~C = ~ϕx� ~f1
r
� ~f2

s
, with r, s R← Z∗p, using a CRS

comprising vectors ~ϕ, ~f1, ~f2. The commitment and its opening are denoted by ~C = GSCom(x, openx)
and openx = (r, s), respectively. In the soundness setting ~ϕ, ~f1, ~f2 are linearly independent vectors

(typically, one chooses ~ϕ = ~f3�(1, 1, g) where ~f3 = ~f1
ξ1� ~f2

ξ2) whereas, in the WI setting, choosing

~ϕ = ~f1
ξ1� ~f2

ξ2 gives a perfectly hiding commitment since ~C is always a BBS encryption of 1G. On a
perfectly sound CRS (where ~f3 = ~f1

ξ1 � ~f2
ξ2 and ~ϕ = ~f3� (1, 1, g)), commitments to exponents are

not fully extractable since the trapdoor (α1, α2) only allows recovering gx from ~C = ~ϕx� ~f1
r
� ~f2

s
.

In order to commit to x ∈ Zp, we will sometimes commit to the group element gx. The result of
this process will be denoted by ~C = GSCom′(x, openx) = GSCom(gx, openx) with openx = (r, s, t).

To prove that committed variables satisfy a set of relations, the Groth-Sahai techniques require
one commitment per variable and one proof element (made of a constant number of group elements)
per relation. Such proofs are available for pairing-product relations, which are of the type

n∏
i=1

e(Ai,Xi) ·
n∏
i=1

·
n∏
j=1

e(Xi,Xj)aij = tT ,

for variables X1, . . . ,Xn ∈ G and constants tT ∈ GT , A1, . . . ,An ∈ G, aij ∈ G, for i, j ∈ [1, n].
Efficient proofs also exist for multi-exponentiation equations

m∏
i=1

Ayii ·
n∏
j=1

X bjj ·
m∏
i=1

·
n∏
j=1

X yiγijj = T,

for variables X1, . . . ,Xn ∈ G, y1, . . . , ym ∈ Zp and constants T,A1, . . . ,Am ∈ G, b1, . . . , bn ∈ Zp and
γij ∈ G, for i ∈ [1,m], j ∈ [1, n].

Multi-exponentiation equations admit zero-knowledge proofs at no additional cost. On a sim-
ulated CRS (prepared for the WI setting), the trapdoor (ξ1, ξ2) makes it is possible to simulate
proofs without knowing witnesses and simulated proofs are perfectly indistinguishable from real
proofs. As for pairing-product equations, NIZK proofs are often possible (this is typically the case
when the target element tT has the special form tT =

∏t
i=1 e(Si, Ti), for constants {(Si, Ti)}ti=1 and

some t ∈ N) but usually come at some expense.
As far as efficiency goes, quadratic pairing product equations cost 9 elements to prove whereas

linear ones (when aij = 0 for all i, j) take 3 group elements. Linear multi-exponentiation equations
of the type

∏m
i=1A

yi
i = T demand 2 group elements.

3 A Construction for Inner Product Relations

As noted in [38], many predicates can be expressed in terms of the inner product of two vectors of
attributes. In this section, we describe a P-signature scheme for families (R1,R2) where R1 encom-
passes (in)-equality relations and R2 relates to inner products. Namely, we set R1 = {REQ, R¬EQ}
and R2 = {RIP, R¬IP}, which are specified as follows. We let D = Zp, for some prime p and, for
vectors ~m ∈ Znp , ~X ∈ Znp , the relations RIP and R¬IP are only defined for i = 0 in such a way that
RIP(0, ~m, ~X) = 1 (resp. R¬IP(0, ~m, ~X) = 1) if and only if ~m · ~X = 0 (resp. ~m · ~X 6= 0). As for R1, we

8

define relations REQ and R¬EQ for i ∈ [1, n] and so that REQ(i, ~m, ~X) = 1 (resp. R¬EQ(i, ~m, ~X) = 1)
if and only if mi = xi (resp. mi 6= xi).

The construction is based on the commitment scheme of section 2.2 and a signature scheme
suggested in [24] to sign group elements. The intuition is to sign a commitment to a vector ~m
using a signature scheme for group elements such as [24, 28, 1]. Here, a lightweight version of the
scheme can be used since, in the proof, the simulator knows the discrete logarithms of the group
elements that are signed (hence, there is no need to combine the scheme with a trapdoor com-
mitment to group elements as in [24]). In this simplified version, the signer holds a public key
comprising (Ω = gω, A = gγ , u, U0, U1 = gβ1) ∈ G6, for private elements (ω, γ, β1). To sign a vector
~m, the signer first computes a commitment V to ~m, chooses c R← Zp and computes σ1 = (gγ)1/(ω+c),
σ2 = gc, σ3 = uc, σ4 = (U0 · V β1)c, σ5 = V c and also sets σ6 as part of the signature.

The construction handles inner products using the properties of the commitment scheme re-
called in section 2.2. More precisely, we use the property that this scheme allows the committer
to generate a short non-interactive argument allowing to convince the verifier that the committed
vector ~m is orthogonal to a public vector ~X = (x1, . . . , xn) without revealing anything else. Con-
cretely, given a commitment C = gr ·

∏n
j=1 g

mj
n+1−j to ~m = (m1, . . . ,mn), for each i ∈ [1, n], we

know that the witness Wi = gri ·
∏n
j=1,j 6=i g

mj
n+1−j+i satisfies

e(gi, C) = e(g1, gn)mi · e(g,Wi), (1)

For each i, if we raise both members of (1) to the power xi and multiply the resulting n equations
altogether, we find

e
(n∏
i=1

gxii , C
)

= e(g1, gn)~m· ~X · e
(
g,

n∏
i=1

W xi
i

)
, (2)

which implies e
(∏n

i=1 g
xi
i , C

)
= e
(
g,
∏n
i=1W

xi
i

)
whenever ~m · ~X = 0. As it turns out, a single group

element W =
∏n
i=1W

xi
i suffices to convince the verifier that ~m · ~X = 0. It can be showed (as in

the proof in appendix B) that, after the commitment phase, if the committer is able to produce
a witness W satisfying e

(∏n
i=1 g

xi
i , C

)
= e
(
g,W

)
and subsequently open the commitment C to a

vector ~m such that ~m · ~X 6= 0, the n-DHE assumption can be broken.
Likewise, the committer can also convince the verifier that ~m · ~X 6= 0 by proving knowledge of

group elements W =
∏n
i=1W

xi
i , W1 = g ~m·

~X
1 ∈ G such that

e
(n∏
i=1

gxii , C
)

= e(W1, gn) · e(g,W). (3)

To convince the verifier that W1 6= 1G, the prover demonstrates knowledge of another group element
W0 = g1/~m· ~X for which e(W0,W1) = e(g, g1). We would like to argue that a malicious committer
cannot open a commitment C to a vector ~m such that ~m · ~X = 0 and also produce (W,W0,W1) ∈ G
such that the equalities e(W0,W1) = e(g, g1) and (3) are both satisfied. Unfortunately, this is not
true since a cheating prover can commit to ~m = ~0 (which is orthogonal to everything). Since the
commitment C = gr and the value W =

∏n
i=1 g

r·xi
i satisfy e(

∏n
i=1 g

xi
i , C) = e(g,W), the prover

can fool the verifier by revealing (W0,W1,W
′) =

(
g
1/µ
1 , gµ,W/gµn

)
, with µ R← Zp, which satisfies

e(W0,W1) = e(g, g1) and e(
∏n
i=1 g

xi
i , C) = e(W1, gn) · e(g,W ′).

To address this problem, we require the prover to additionally reveal (W2,W3) = (g ~m· ~X , g ~m· ~X2n)

9

when stating that ~m · ~X 6= 0. The extra checks e(W1, g) = e(g1,W2) and e(W1, g2n) = e(g1,W3)
then suffice to convince the verifier. Under the n-FlexDHE assumption, we can show (as detailed
in appendix B) that the prover cannot generate witnesses (W0,W1,W2,W3,W) and subsequently
open the commitment to a vector ~m that contradicts the assertion.

Setup(λ): chooses bilinear groups (G,GT) with a generator g R← G. It generates a perfectly sound
Groth-Sahai CRS f = (~f1, ~f2, ~f3). Public parameters consist of params :=

(
(G,GT), g, f

)
.

SigSetup(λ, n): picks γ, ω, α, β1
R← Zp, u, U0

R← G and computes Ω = gω, A = gγ , U1 = gβ1 as well
as gi = g(αi) for each i ∈ [1, n]∪ [n+ 2, 2n]. The private key is sk = (γ, ω, β1) and the public key
is defined to be pk =

(
u, Ω = gω, A = gγ , U0, U1, {gi}i∈[1,2n]\{n+1}

)
.

Sign(sk, ~m): to sign ~m = (m1, . . . ,mn), conduct the following steps.

1. Pick r R← Zp and compute V = gr ·
∏n
j=1 g

mj
n+1−j = gm1

n · · · g
mn
1 · gr.

2. Choose c R← Zp and compute

σ1 = gγ/(ω+c), σ2 = gc, σ3 = uc, σ4 = (U0 · V β1)c, σ5 = V c, σ6 = V

and output σ = (σ1, σ2, σ3, σ4, σ5, σ6, r).

Verify(pk, ~m, σ): parse σ as (σ1, σ2, σ3, σ4, σ5, σ6, r) and ~m as (m1, . . . ,mn).

1. Return 0 if the following equalities do not hold

e(A, g) = e(σ1, Ω · σ2), e(u, σ2) = e(σ3, g), e(g, σ4) = e(U0, σ2) · e(U1, σ5), (4)
e(g, σ5) = e(σ6, σ2). (5)

2. Return 1 if σ6 = gr ·
∏n
j=1 g

mj
n+1−j and 0 otherwise.

Witness-Gen(pk, R, i, ~m, ~X, σ): parse σ as (σ1, σ2, σ3, σ4, σ5, σ6, r). Parse ~m and ~X as (m1, . . . ,mn)
and (x1, . . . , xn), respectively and return ⊥ if Verify(pk, ~m, σ) = 0.

a. If R = REQ (and i ∈ [1, n]), return ⊥ if mi 6= xi. Otherwise, compute and output the witness
W = gri ·

∏n
j=1,j 6=i g

mj
n+1−j+i.

b. If R = R¬EQ (and i ∈ [1, n]), return ⊥ if mi = xi. Otherwise, compute W0 = g1/(mi−xi),
W1 = gmi−xi1 , W2 = gmi−xi , W3 = gmi−xi2n and W4 = gri ·

∏n
j=1,j 6=i g

mj
n+1−j+i. Return the

witness W = (W0,W1,W2,W3,W4).

c. If R = RIP (and i = 0), return ⊥ if ~m· ~X 6= 0. Otherwise, compute Wi = gri ·
∏n
j=1,j 6=i g

mj
n+1−j+i

for i = 1 to n. Then, compute and output the witness W =
∏n
i=1W

xi
i .

d. If R = R¬IP (and i = 0), return ⊥ if ~m · ~X = 0. Otherwise, compute W0 = g1/(~m· ~X),
W1 = g ~m·

~X
1 , W2 = g ~m·

~X , W3 = g ~m·
~X

2n . For i = 1 to n, compute W4,i = gri ·
∏n
j=1,j 6=i g

mj
n+1−j+i

and finally set W4 =
∏n
i=1W

xi
4,i. Return the witness W = (W0,W1,W2,W3,W4).

Witness-Verify(pk, R, i, ~X,W, σ): parse σ as (σ1, σ2, σ3, σ4, σ5, σ6, r) and ~X as (x1, . . . , xn). Return
0 if equations (4)-(5) are not satisfied. Otherwise, two cases are distinguished.

a. If R = REQ (and i ∈ [1, n]), return 1 iff e(gi, σ6) = e(g1, gn)xi · e(g,W).

10

b. If R = R¬EQ (and i ∈ [1, n]), parse W as (W0,W1,W2,W3,W4) ∈ G5 and return ⊥ if it does
not parse properly. Return 1 iff e

(
gi, σ6 · g−xin+1−i

)
= e(W1, gn) · e(g,W4) and2

e(W0,W1) = e(g, g1), e(W1, g) = e(g1,W2), e(W1, g2n) = e(g1,W3). (6)

c. If R = RIP (and i = 0), parse W as W ∈ G and return 1 iff e(g,W) = e
(∏n

i=1 g
xi
i , σ6

)
.

d. If R = R¬IP (and i = 0), parse W as (W0,W1,W2,W3,W4) ∈ G5 and return ⊥ if it does not
parse properly. Return 1 iff e

(∏n
i=1 g

xi
i , σ6

)
= e(W1, gn) · e(g,W4) and

e(W0,W1) = e(g, g1), e(W1, g) = e(g1,W2), e(W1, g2n) = e(g1,W3). (7)

The correctness of algorithms Sign and Verify is almost straightforward and that of Witness-Gen
and Witness-Verify follows from the properties of the commitment scheme in section 2.2.

P-Signature Protocols. To obtain a complete P-signature, the scheme is augmented with
algorithms SigProvei, for i ∈ {1, 2}, and EqComProve.

SigProve1(pk, R, i, Υ = {i}, σ, ~m, ~X): parse σ as (σ1, σ2, σ3, σ4, σ5, σ6, r), ~m and ~X as (m1, . . . ,mn)
and (x1, . . . , xn), respectively. Then, compute {~Cxt,j = GSCom(Xt,j , openxt,j)}t∈Υ,j∈{1,2,3} as
commitments to the variables {(Xt,1, Xt,2, Xt,3) = (gxt1 , g

xt , gxt2n)}t∈Υ . For j = 1 to 6, compute
~Cσj = GSCom(σj , openσj) and generate a NIZK proof that committed variables {σj}6j=1 sat-
isfy (4)-(5). This requires to introduce auxiliary variables σ7 ∈ G, θ1 ∈ Zp with their own
commitments ~Cσ7 = GSCom(σ7, openσ7), ~Cθ1 = GSCom(θ1, openθ1) and to prove that

e(σ7, g) = e(σ1, Ω · σ2), e(u, σ2) = e(σ3, g), (8)
e(g, σ4) = e(U0, σ2) · e(U1, σ5), e(g, σ5) = e(σ6, σ2), (9)

θ1 = 1, e(A/σ7, g
θ1) = 1GT (10)

Let πσ be the proof for relations (8)-(10). Then, the algorithm considers two cases.

- If R = REQ, let ~CW = GSCom(W, openW), with W = Witness-Gen(pk, REQ, i, ~m, ~X, σ).
Generate proofs πxi , {πXt,j}t∈Υ,j=1,2 that committed variables σ6, W and Xi,1 satisfy

e(gi, σ6) = e(Xi,1, gn) · e(g,W), (11)
e(Xi,2, g1) = e(Xi,1, g), e(Xi,2, g2n) = e(Xi,3, g). (12)

The final proof is π =
(
{~Cxt,j}t∈Υ,j∈{1,2,3}, {~Cσj}7j=1,

~CW , ~Cθ1 , πσ, πxi , {πXt,j}t∈Υ,j=1,2

)
.

- If R = R¬EQ, generate commitments {CWj}4j=0 to the variables (W0,W1,W2,W3,W4) ←
Witness-Gen(pk, R¬EQ, i, ~m, ~X, σ). Generate proofs πxi , πW for relations (13) and (14)

e(gi, σ6) · e(Xi,1, gn)−1 = e(W1, gn) · e(g,W4) (13)
e(W0,W1) = e(g, g1) e(W1, g) = e(g1,W2) e(W1, g2n) = e(g1,W3), (14)

and proofs {πXt,j}t∈Υ,j=1,2 that {(Xt,1, Xt,2, Xt,3)}t∈Υ satisfy (12). The final proof consists
of π =

(
{~Cxt,j}t∈Υ,j∈{1,2,3}{~Cσj}7j=1, {~CWi}4j=0,

~Cθ1 , πσ, πxi , πW , {πXt,j}t∈Υ,j=1,2

)
.

2 Looking ahead, W0 will be useful to convince the verifier (via the first relation of (7)) that W1 6= 1G when
(W1,W2,W3,W4) will appear in committed form within Groth-Sahai proofs produced by SigProve2. Although W0

is not strictly necessary in Witness-Verify in the cases R = R¬IP and R = R¬EQ (since the algorithm can directly
check that W1 6= 1G), we included it among the outputs of Witness-Gen for ease of explanation.

11

SigProve2(pk, R, i, σ, ~m, ~X): parse σ and ~m as previously and ~X as (x1, . . . , xn). For i = 1 to 6,
compute ~Cσi = GSCom(σi, openσi). Using extra variables σ7 ∈ G, θ1 ∈ Zp and their commit-
ments ~Cσ7 = GSCom(σ7, openσ7), ~Cθ1 = GSCom(θ1, openθ1), generate a NIZK proof that {σi}6i=1

satisfy (4)-(5). We call πσ the proof for (8)-(10). Then, consider the two following cases.

- If R = RIP, set ~CW = GSCom(W, openW), where W = Witness-Gen(pk, RIP, 0, ~m, ~X, σ).
Then, generate a proof π ~X that W and σ6 satisfy

e(
n∏
j=1

g
xj
j , σ6) = e(g,W). (15)

The NIZK proof is π =
(
{~Cσj}7j=1,

~CW , ~Cθ1 , πσ, π ~X
)
.

- If R = R¬IP, define the auxiliary variable Θ = g ∈ G and generate ~CΘ = GSCom(Θ, openΘ),
{~CWj = GSCom(Wj , openWj)}4j=0, where {Wj}4j=0 ←Witness-Gen(pk, R¬IP, 0, ~m, ~X, σ). Then,
generate a proof πNOT

~X
that Θ and {Wi}4i=0 satisfy

e(W0,W1) = e(Θ, g1), e(W1, g) = e(g1,W2), (16)
e(W1, g2n) = e(g1,W3), e(Θ/g, gθ1) = 1GT . (17)

e(
n∏
j=1

g
xj
j , σ6) = e(g,W4) · e(W1, gn). (18)

The NIZK proof consists of π =
(
{~Cσj}7j=1, {~CWj}4j=0,

~Cθ1 , πσ, π
NOT
~X

)
.

- If R = REQ (and i ∈ [1, n]), the algorithm generates ~CW = GSCom(W, openW) where
W ←Witness-Gen(pk, REQ, i, ~m, ~X, σ), introduces a commitment ~CXi = GSCom(Xi, openXi)
to the auxiliary variable Xi = gxi1 and compute proofs πW and πxi that

e(gi, σ6) = e(Xi, gn) · e(g,W) e(Xi/g
xi
1 , g

θ1) = 1GT (19)

The proof is π =
(
{~Cσj}7j=1,

~CW , ~CXi ,
~Cθ1 , πσ, πW , πxi

)
.

- If R = R¬EQ (and thus i ∈ [1, n]), compute {~CWj = GSCom(Wj , openWj)}4j=0 where
{Wj}4j=0 ← Witness-Gen(pk, R¬EQ, i, ~m, ~X, σ), introduce ~CXi = GSCom(Xi, openXi) for the
auxiliary variable Xi = gxi1 and generate proofs (πXi,W , {πWj}3j=1, πXi , πΘ) for

e(gi, σ6) · e(Xi, gn)−1 = e(W1, gn) · e(g,W), (20)
e(W0,W1) = e(Θ, g1), e(W1, g) = e(g1,W2), e(W1, g2n) = e(g1,W3), (21)

e(Xi/g
xi
1 , g

θ1) = e(Θ/g, gθ1) = 1GT (22)

The proof is π =
(
{~Cσj}7j=1, {~CWj}4j=0,

~CXi ,
~Cθ1 , πσ, πXi,W , {πWj}3j=1, πXi , πΘ

)
.

SigIssue
(
sk, V ′, (mn1+1, . . . ,mn)

)
� SigObtain(pk, ~m|n1

= (m1, . . . ,mn1), open~m|n1
): the user U and

the issuer interact with each other in the following way.

1. U commits to ~m|n1
= (m1, . . . ,mn1) and computes V ′ = gr

′ ·
∏n1
j=1 g

mj
n+1−j , where r′ R← Zp,

retains open~m|n1
= (m1, . . . ,mn1 , r

′) and provides the issuer with an interactive WI proof

of knowledge of (m1, . . . ,mn1 , r
′) such that V ′ = gr

′ ·
∏n1
j=1 g

mj
n+1−j .

12

2. The issuer sets V = V ′ ·
∏n
j=n1+1 g

mj
n+1−j . Then, it randomly chooses c, r′′ R← Zp, computes

σ1 = gγ/(ω+c), σ2 = gc, σ3 = uc and

σ4 =
(
U0 · (V · gr

′′
)β1
)c
, σ5 = (V · gr′′)c, σ6 = V · gr′′

and returns σ̃ = (σ1, σ2, σ3, σ4, σ5, σ6) and r′′.

3. U outputs σ = (σ1, σ2, σ3, σ4, σ5, σ6, r), where r = r′ + r′′.

The algorithm EqComProve for generating proofs that two commitments open to the same value is
standard: if ~CX = GSCom(X, openX) and ~CY = GSCom(Y, openY) are Groth-Sahai commitments
to X = Y ∈ G, the NIZK proof can be a proof that ~CX � ~CY

−1
is a commitment that opens to

1G. If we write ~f1 = (f1, 1, g), ~f2 = (1, f2, g) and ~f3 = (f31, f32, f33), this amounts to proving the
existence of (ρ1, ρ2, ρ3) ∈ Z3

p such that ~CX� ~CY
−1

= (fρ11 ·f
ρ3
31 , f

ρ2
2 ·f

ρ3
32 , g

ρ1+ρ2 ·fρ333). On a simulated
CRS, this relation can always be proved in NIZK since it is a linear multi-exponentiation equation.

Efficiency. From an efficiency standpoint, the outputs of SigProve1 consist of 80 elements of G
for REQ and 101 group elements for R¬EQ. Each proof produced by SigProve2 requires less than 80
group elements for relations REQ and RIP and at most 107 elements in the case of R¬EQ and R¬IP.

When these proofs are combined to prove the ownership of a credential, they result in non-
interactive proofs demanding about 2 kB at the 80-bit security level. A detailed efficiency analysis
is provided in appendix E.3.

We leave it as an interesting open problem to eliminate the dependency on n in the public key
size (as was done in [15]) without using interaction or random oracles.

Security. The security of the scheme relies on the assumptions described at the beginning of
section 2. The proofs of the following theorems are available in appendices B, C and D, respectively.

Theorem 1. If the HSDH, FlexDH and n-FlexDHE assumptions hold in G, the above block-wise
P-signature scheme is (F,R1,R2)-unforgeable w.r.t. the injective function F (m) = (gm1 , g

m, gm2n)
and the relations families R1 = {REQ, R¬EQ}, R2 = {RIP, R¬IP}.

Theorem 2. The block-wise P-signature provides signer and user privacy if the underlying WI
proof of knowledge is secure.

Theorem 3. The block-wise P-signature is zero-knowledge if the DLIN assumption holds in G.

4 Non-Interactive Anonymous Credentials with Efficient Attributes

In appendix E, we provide the complete details about how block-wise P-signatures for these re-
lation families can be generically turned into non-interactive anonymous credentials with efficient
attributes. Proper security definitions for these are given in appendix E.1 and we prove the security
of the generic construction in the same way as in [3] in appendix E.2.

In a nutshell, the construction appeals to SigProve1 to prove that the first component of the
user’s certified vector ~m is his private key skU which the user’s pseudonym is a commitment of.
Then, SigProve2 is used to convince the verifier that the certified vector ~X satisfies ~m · ~X = 0.
As described in appendix E.2, the construction is presented without optimizations for the sake of
generality. Its optimized variant provides proofs of about 2 kB.

Appendix E.4 summarizes the predicates that can be expressed using inner product relations and

13

suitable attribute encodings (already used in [38]). For example, when ~m contains the coefficients
a polynomial whose roots are the user’s attributes, the inclusion (or the non-inclusion) of some at-
tribute ω ∈ Zp can be selectively demonstrated by setting the coordinates of ~X as (1, ω, . . . , ωn−1).
A similar technique can be used to prove that some certified attribute ω (this time encoded as a
sub-vector (1, ω, . . . , ωn−1) of ~m) lies in a public list (or not) by proving its orthogonality to some
~X that contains the coefficients of a polynomial.

Using more complex attribute encodings, inner products can also handle disjunctions of a small
(e.g., logarithmic in λ) number of atomic conditions. If we assume only two rounds of interaction,
conjunctions can also be dealt with: the verifier just has to send a short random challenge in Zp
which is used to randomize the vector ~X in such a way that the condition ~m · ~X = 0 guarantees
the validity of assertions (m1 = x1) ∧ . . . ∧ (mn = xn) with overwhelming probability. Although
the need for interaction seems at odds with the original motivation of P-signatures, we still gain
something since only two rounds are necessary.

Finally, as already noted in [38], inner products also provide a method to prove exact threshold
statements about sets of binary attributes. For example, if ~m and ~X encode two sets of binary
attributes (such as “gender”, “graduated”, etc.) X and S, the prover can convince the verifier
that |S ∩X| = t. In addition, by combining the same technique with set membership proofs [13],
statements about inexact thresholds |S ∩X| ≤ t can also be proved as detailed in appendix E.4.

References

1. M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev and M. Ohkubo. Structure-Preserving Signatures and Com-
mitments to Group Elements. In Crypto’10, LNCS 6223, pp. 209–236, 2010.

2. N. Akagi, Y. Manabe, T. Okamoto. An Efficient Anonymous Credential System. In Financial Cryptography
(FC’08), LNCS 5143, pp. 272–286, 2008.

3. M. Belenkiy, M. Chase, M. Kohlweiss and A. Lysyanskaya. P-signatures and noninteractive anonymous creden-
tials. In TCC’08, LNCS 4948, pages 356–374, 2008.

4. M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya and H. Shacham. Randomizable Proofs
and Delegatable Anonymous Credentials. In Crypto’09, LNCS 5677, pp. 108–125, 2009

5. M. Belenkiy, M. Chase, M. Kohlweiss and A. Lysyanskaya. Compact E-Cash and Simulatable VRFs Revisited.
In Pairing’09, LNCS 5671, pp. 114–131, 2009.

6. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In ACM
CCS’93, pp. 62–73, 1993.

7. O. Blazy, G. Fuchsbauer, M. Izabachène, A. Jambert, H. Sibert, D. Vergnaud. Batch Groth-Sahai. In Applied
Cryptography and Network Security (ACNS’10), LNCS 6123, pp. 218–235, 2010.

8. D. Boneh and X. Boyen. Short signatures without random oracles. In Eurocrypt’04, LNCS 3027, pages 56–73,
2004.

9. D. Boneh, X. Boyen and H. Shacham. Short Group Signatures. In Crypto’04, LNCS 3152, pp. 41–55, 2004.
10. D. Boneh, C. Gentry and B. Waters. Collusion-Resistant Broadcast Encryption with Short Ciphertexts and

Private Keys. In Crypto’05, LNCS 3621, pp. 258–275, 2005.
11. X. Boyen and B. Waters. Full-domain subgroup hiding and constant-size group signatures. In PKC’07 , LNCS

4450, pp. 1–15, 2007.
12. S. Brands. Rethinking Public Key Infrastructure and Digital Certificates – Building in Privacy. PhD Thesis,

Eindhoven Inst. of Tech., 1999.
13. J. Camenisch, R. Chaabouni and a. shelat. Efficient Protocols for Set Membership and Range Proofs. In

Asiacrypt’08, LNCS 5330, pp. 234–252, 2008.
14. J. Camenisch, N. Chandran, and V. Shoup. A public key encryption scheme secure against key dependent chosen

plaintext and adaptive chosen ciphertext attacks. In Eurocrypt’09, LNCS 5479, pp. 351–368, 2009.
15. J. Camenisch and T. Groß. Efficient Attributes for Anonymous Credentials. In ACM-CCS’08, pp. 345–356, ACM

Press, 2008. Extended version available from http://eprint.iacr.org/2010/496.
16. J. Camenisch, S. Hohenberger and A. Lysyanskaya. Compact E-Cash. In Eurocrypt’05, LNCS 3494, pp. 302–321,

2005.

14

17. J. Camenisch, M. Kohlweiss and C. Soriente. An Accumulator Based on Bilinear Maps and Efficient Revocation
for Anonymous Credentials. In PKC’09, LNCS 5443, pp. 481–500, 2009.

18. J. Camenisch and A. Lysyanskaya. An Efficient System for Non-transferable Anonymous Credentials with Op-
tional Anonymity Revocation. In Eurocrypt’01, LNCS 2045, pp. 93–118, 2001.

19. J. Camenisch and A. Lysyanskaya. A Signature Scheme with Efficient Protocols. In SCN’02, LNCS 2576, pp.
268–289, 2001.

20. J. Camenisch and A. Lysyanskaya. Signature Schemes and Anonymous Credentials from Bilinear Maps. In
Crypto’04, LNCS 3152, pp. 56–72, 2004.

21. J. Camenisch, E. Van Herreweghen. Design and implementation of the idemix anonymous credential system.
In ACM-CCS’02, pp. 21–30, ACM Press, 2002.

22. D. Chaum. Security without identification: Transaction systems to make big brother obsolete. Communications
of the ACM, 28(10), pp. 1030–1044, 1985.

23. R. Canetti, O. Goldreich and S. Halevi. The Random Oracle Methodology, Revisited. In STOC’98, pp. 209–218,
ACM Press, 1998.

24. J. Cathalo, B. Libert and M. Yung. Group Encryption: Non-Interactive Realization in the Standard Model. In
Asiacrypt’09, LNCS 5912, pp. 179–196, 2009.

25. D.-W. Cheung, N. Mamoulis, W.-K. Wong, S.-M. Yiu and Y. Zhang. Anonymous Fuzzy Identity-based Encryp-
tion for Similarity Search. In ISAAC 2010, LNCS 6506, pp. 61–72, 2010.

26. I. Damg̊ard. Payment Systems and Credential Mechanisms with Provable Security Against Abuse by Individuals.
In Crypto’88, LNCS 403, pp. 328–335, 1988.

27. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature problems. In
Crypto’86, LNCS 263, pp. 186–194, 1986.

28. G. Fuchsbauer. Automorphic Signatures in Bilinear Groups and an Application to Round-Optimal Blind Signa-
tures. Cryptology ePrint Archive: Report 2009/320, 2009.

29. G. Fuchsbauer. Commuting Signatures and Verifiable Encryption and an Application to Non-Interactively Del-
egatable Credentials. In Eurocrypt’11, LNCS 6632, pp. 224–245, 2011.

30. E. Fujisaki, T. Okamoto. Statistical Zero Knowledge Protocols to Prove Modular Polynomial Relations. In
Crypto’97, LNCS 1294, pp. 16–30, 1997.

31. S. Goldwasser, S. Micali, R. Rivest. A Digital Signature Scheme Secure Against Adaptive Chosen-Message
Attacks. SIAM J. Comput. 17(2), pp. 281–308, 1988.

32. O. Goldreich, S. Micali, A. Widgerson. Proofs that Yield Nothing But their Validity and a Methodology of
Cryptographic Protocol Design. In FOCS’86, pp. 174–187, 1986.

33. S. Goldwasser and Y. Tauman-Kalai. On the (In)security of the Fiat-Shamir Paradigm In FOCS’03, pages
102–115, 2003.

34. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In Eurocrypt’08, LNCS 4965,
pp. 415–432, 2008.

35. M. Jakobsson, K. Sako, R. Impagliazzo. Designated Verifier Proofs and Their Applications. In Eurocrypt’96,
LNCS 1070, pp. 143–154, 1996.

36. J. Katz. Efficient and Non-malleable Proofs of Plaintext Knowledge and Applications. In Eurocrypt’03, LNCS
2656, pp. 211–228, 2003.

37. S. Kunz-Jacques and D. Pointcheval. About the security of MTI/C0 and MQV. In SCN’06, LNCS 4116, pp.
156–172, 2006.

38. J. Katz, A. Sahai and B. Waters. Predicate Encryption Supporting Disjunctions, Polynomial Equations, and
Inner Products. In Eurocrypt’08, LNCS 4965, pp. 146-162, 2008.

39. B. Libert and M. Yung. Concise Mercurial Vector Commitments and Independent Zero-Knowledge Sets with
Short Proofs. In TCC’10, LNCS 5978, pp. 499–517, 2010.

40. A. Lysyanskaya, R. Rivest, A. Sahai, S. Wolf. Pseudonym Systems. In Selected Areas in Cryptography (SAC’99),
LNCS 1758, pp. 184–199, 1999.

41. H.K. Maji, M. Prabhakaran, M. Rosulek. Attribute-based signatures. In CT-RSA’11, LNCS 6558, pp. 376–392,
2011.

42. T. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. In Crypto’91, LNCS
576, pp. 129–140, 1991.

43. V. Shoup. Lower bounds for discrete logarithms and related problems. In Eurocrypt’97, LNCS 1233, pp. 256–66,
1997.

44. A. Rial, M. Kohlweiss and B. Preneel. Universally Composable Adaptive Priced Oblivious Transfer. In Pairing’09,
LNCS 5671, pp. 231–247, 2009.

45. S.-F. Shahandashti, R. Safavi-Naini. Threshold Attribute-Based Signatures and Their Application to Anonymous
Credential Systems. In Africacrypt’09, LNCS 5580, pp. 198–216, 2009.

15

46. J. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. Journal of the ACM 27, pp.
701717, 1980.

47. A. Yao. How to Generate and Exchange Secrets. In FOCS’86, pp. 162–167, 1986.

A Other Security Definitions for Block-wise P-signatures

The notion of unforgeability for P-signatures was formalized in section 2. This section gives proper
definitions for the notions of signer and user privacy and the zero-knowledge property.

These definitions are essentially those of Belenkiy et al. [3] with minor changes due to need to
accommodate to the efficient attribute setting.

Signer Privacy. As formalized in [3], this notion captures that, during its interaction with the
honest issuer, an adversary acting as a malicious user should not gain any side information be-
yond the signature on a vector ~m = (~m|n1

|(mn1+1, . . . ,mn)) ∈ Dn. More precisely, there must
exist an efficient simulator SimIssue such that no PPT adversary A can tell whether it is run-
ning SigIssue � SigObtain in interaction with a real issuer or if it is interacting with SimIssue
that only has access to a signing oracle. Formally, a block-wise P-signature ensures signer privacy
if there is a negligible function ν(λ) such that, for any PPT algorithm A = (A1,A2), we have∣∣Pr[ExpA(λ) = 1]− Pr[ExpSimIssue

A (λ) = 1]
∣∣ ≤ ν(λ), where ExpA and ExpSimIssue

A are experiments de-
fined as follows.

ExpA(λ) :

params← Setup(λ)
(sk, pk)← SigSetup(λ, n)
(~m, open~m|n1

, state)← A1(params, sk)

C~m|n1
← VecCom(~m|n1

, open~m|n1
)

SigIssue
(
sk, C~m|n1

, (mn1+1, . . . ,mn)
)

� A2(state)⇒ b

Return b

ExpSimIssue
A (λ) :

params← Setup(λ)
(sk, pk)← SigSetup(λ, n)
(~m, open~m|n1

, state)← A1(params, sk)

C~m|n1
← VecCom(~m|n1

, open~m|n1
)

σ ← Sign(sk, ~m)
SimIssue

(
C~m|n1

, (mn1+1, . . . ,mn), σ
)

� A2(state)⇒ b

Return b

We note that, as insisted in [3], SimIssue is allowed to rewind A if necessary.

User Privacy. User privacy is also defined following [3]. It requires that any malicious signer
interacting with an honest user be unable to learn anything about the user’s private messages
~m|n1

∈ Dn1 . As previously, there must exist an efficient simulator SimObtain – which is allowed to
rewind the adversary A – such that a dishonest signer A cannot distinguish a conversation with
a real user from an interaction with SimObtain. A block-wise P-signature provides user privacy if
there is a negligible function ν(λ) such that, for any PPT algorithm A = (A1,A2), it holds that∣∣Pr[ExpA(λ) = 1]− Pr[ExpSimObtain

A (λ) = 1]
∣∣ ≤ ν(λ), where ExpA and ExpSimObtain

A are the experi-
ments defined hereafter. In these two experiments, the adversary is allowed to generate the signer’s
key pair (sk, pk) herself but we assume that the user performs a sanity check on the public key pk.
As before, SimObtain is allowed to rewind the adversary.

16

ExpA(λ) :

params← Setup(λ)
(pk, ~m, open~m|n1

, state)← A1(params)

if Valid(pk) = 1
C~m|n1

← VecCom(~m|n1
, open~m|n1

)

else output ⊥
b⇐ A2(state) � SigObtain(pk, ~m|n1

, open~m|n1
)

Return b

ExpSimObtain
A (λ) :

params← Setup(λ)
(pk, ~m, open~m|n1

, state)← A1(params)

if Valid(pk) = 1
C~m|n1

← VecCom(~m|n1
, open~m|n1

)

else output ⊥
b⇐ A2(state) � SimObtain(pk, C~m|n1

)

Return b

Zero Knowledge. To formalize the zero-knowledge property, we introduce a simulator Sim that
implements P-signature algorithms for generating parameters, proving statements involving some
relation family R and proving the equality of commitment openings without using any secret. If
the adversary cannot tell whether it is interacting with real algorithms or simulators, the scheme
is guaranteed not to leak useful information about secret values.

Formally, a block-wise P-signature protocol is said zero-knowledge if there exists a simula-
tor Sim = (SimSetup,SimSigProve1, SimSigProve2,SimEqComProve), such that for any PPT adver-
sary, simulated parameters paramss are computationally indistinguishable from those produced by
Setup, and for all outputs (paramss, τ) of SimSetup, it holds that (1) Com(paramss, ·) is now per-
fectly hiding; (2) SimSigProve1(paramss, τ, pk, R1, i, Υ, ~X) generates identically distributed proofs
to those produced by SigProve1(paramss, pk, R1, i, Υ, σ, ~m, ~X) for any i ∈ [1, n], any signature σ on
~m, any relation R1 ∈ R1 and any ~X ∈ Dn; (3) SimSigProve2(paramss, τ, pk, R, i, ~X) generates
proofs which are indistinguishable from those generated by SigProve2(paramss, pk, R, i, σ, ~m, ~X)
for any i ∈ [0, n], for any signature σ on ~m, any relation R ∈ R1 ∪ R2 and any ~X ∈ Dn; (4)
SimEqComProve(paramss, τ, Cx, Cy) is indistinguishable to EqComProve(paramss,m, openx, openy),
where Cx = Com(x, openx) and Cy = Com(y, openy). As before, the previous notions can be defined
using a real security game and a simulation. The two games should be indistinguishable even if the
adversary is given the simulation trapdoor τ in both games. Using the standard notations of [31],
this is formalized by mandating the existence of negligible functions ν(.) such that the following
equalities hold for any relations R1 ∈ R1 and R ∈ R1 ∪R2:∣∣Pr

[
params← Setup(λ); b← A(params) : b = 1]

−Pr[(paramss, τ)← SimSetup(λ); b← A(paramss) : b = 1
]∣∣ < ν(λ),∣∣Pr

[
(paramss, τ)← SimSetup(λ); (pk, i, σ, ~m, ~X, state)← A1(paramss, τ);

(C, π)← SigProve1(params, pk, R1, i, σ, ~m, ~X); b← A2 (state,C, π) : b = 1
]

− Pr
[
(paramss, τ)← SimSetup(λ); (pk, i, σ, ~m, ~X, state)← A1(paramss, τ);

(C, π)← SimSigProve1(paramss, τ, pk, R1, ~X); b← A2 (state,C, π) : b = 1
]∣∣ < ν(λ),∣∣Pr

[
(paramss, τ)← SimSetup(λ); (pk, i, σ, ~m, ~X, state)← A1(paramss, τ);

(CW , Cσ, π)← SigProve2(paramss, pk, R, i, σ, ~m, ~X); b← A2(state, CW , Cσ, π) : b = 1
]

− Pr
[
(paramss, τ)← SimSetup(λ); (pk, i, σ, ~m, ~X, state)← A1(paramss, τ);

(CW , Cσ, π)← SimSigProve2(paramss, τ, pk, R1, ~X); b← A2 (state, CW , Cσ, , π) : b = 1
]∣∣ < ν(λ),

17

∣∣Pr
[
(paramss, τ)← SimSetup(λ); (m, openx, openy, state)← A1(paramss, τ);

(Cx, Cy, π)← EqComProve(paramss,m, openx, openy); b← A2(state, Cx, Cy, π) : b = 1
]

−Pr
[
(paramss, τ)← SimSetup(λ); (m, openx, openy, state)← A1(paramss, τ);

(Cx, Cy, π)← SimEqComProve
(
paramss, τ,Com(m, openx),Com(m, openy)

)
;

b← A2(state, Cx, Cy, π) : b = 1
]∣∣ < ν(λ)

B Proof of Theorem 1

The proof considers three kinds of forgeries in the attack game. In the following notations, we denote
by σj = (σj,1, σj,2, σj,3, σj,4, σj,5, σj,6, rj) the output of the j-th signing query. We also denote by
(σ? = (σ?1, σ

?
2, σ

?
3, σ

?
4, σ

?
5, σ6, r

?),Pred?,W ?) the forgery that the adversary A outputs.

- Type I F-forgeries: are such that the forgery σ? = (σ?1, σ
?
2, σ

?
3, σ

?
4, σ

?
5, σ

?
6, r

?
i) contains a triple

(σ?1, σ
?
2, σ

?
3) for which (σ?1, σ

?
2, σ

?
3) 6= (σj,1, σj,2, σj,3) for all j ∈ [1, q].

- Type II F-forgeries: are such that σ? contains (σ?1, σ
?
2, σ

?
3) such that (σ?1, σ

?
2, σ

?
3) = (σj,1, σj,2, σj,3),

for some j ∈ [1, q] but σ?6 6= σj,6.
- Type III F-forgeries: are such that σ? = (σ?1, σ

?
2, σ

?
3, σ

?
4, σ

?
5, σ

?
6, r

?) contains (σ?1, σ
?
2, σ

?
3, σ

?
6) such

that (σ?1, σ
?
2, σ

?
3, σ

?
6) = (σj,1, σj,2, σj,3, σj,6), for some j ∈ [1, q], but the condition b.(ii) of defini-

tion 7 is satisfied. Namely, we are faced with one of the following situations.

• Type III-A attacks: the predicate Pred? is of the form Pred? = (REQ, i, {F (x?t)}t∈Υ), for
some i ∈ Υ ⊂ {1, . . . , n} and some vector ~X? = (x?1, . . . , x

?
n) such that x?i is not the

message at the i-th coordinate of ~mj and the forged witness W ? nevertheless satisfies
Witness-Verify(pk, REQ, i, ~X?,W ?, σ) = 1.
• Type III-B attacks: Pred? = (R¬EQ, i, {F (x?t)}t∈Υ), for some index i ∈ Υ ⊂ {1, . . . , n} and

some vector ~X? = (x?1, . . . , x
?
n) such that x?i does coincide with the message at the i-th coordi-

nate of ~mj although the witness W ? is such that Witness-Verify(pk, R¬EQ, i, ~X?,W ?, σ) = 1.
• Type III-C attacks: Pred? = (RIP, 0, ~X?), for some vector ~X? ∈ Znp and the witness W ?

satisfies Witness-Verify(pk, RIP, i, ~X?,W ?, σ?) = 1 whereas ~mj · ~X? 6= 0.
• Type III-D attacks: Pred? = (R¬IP, 0, ~X?), for some vector ~X? ∈ Znp , and W ? is such that

Witness-Verify(pk, R¬IP, 0, ~X?,W ?, σ?) = 1 while ~mj · ~X? = 0.

We observe that Type I and Type II F-forgeries encompass those for which the adversary wins the
game of definition 7 because σ? was not the output of any signing query. Type III attacks cover
the case of the adversary winning the game because condition b.(ii) is satisfied in definition 7.

Type I forgeries are easily seen (see lemma 1) to break the HSDH assumption whereas lemma 2
and lemma 3 show that Type II and Type III forgeries give rise to algorithms solving the FlexDH
and FlexDHE problems, respectively. ut

Lemma 1. Any Type I F-forgery contradicts the q-HSDH assumption, where q is the number of
signing queries.

Proof. The proof is based on ideas from [11]. We show a simple algorithm B that, on input of
(g, u,Ω = gω) ∈ G3, and a set tuples (Ai = g1/(ω+ci), Bi = gci , Ci = uci) with c1, . . . , cq ∈R Zp, uses
a Type I forger A to find a triple (g1/(ω+c), gc, uc) such that c 6= ci for i = 1, . . . , q. To generate
the public key pk, B chooses β0, β1

R← Zp, α, γ R← Z∗p and sets U0 = gβ0 , U1 = gβ1 , U0 = gβ0 ,

18

U1 = gβ1 , A = gγ . It also defines {gi}i∈[1,2n]\{n+1} using a random α R← Zp. The public key
pk =

(
g, h,Ω,A,U0, U1, {gi}i∈[1,2n]\{n+1}

)
is given to A.

To answer a signing query involving a vector ~m = (m1, . . . ,mn), B first picks r R← Zp, computes
σ6 = V = gr ·

∏n
j=1 g

mj
n+1−j and defines the polynomial P~m[X] = r +

∑n
j=1mn+1−jX

j . It then
generates signature parts (σ1, σ2, σ3) as (Aγk , Bk, Ck) using the next available tuple (Ak, Bk, Ck)
(with k ∈ [1, q]). As for signature elements σ4 = (U0 · V β1)ck and σ5 = V ck , they are calculated
as σ4 = Bk

β0+β1·P~m(α) and σ5 = Bk
P~m(α). The game ends with A outputting a Type I forgery

σ? = (σ?1, σ
?
2, σ

?
3, σ

?
4, σ

?
5, σ

?
6, r

?). Since (σ?1, σ
?
2, σ

?
3) did not appear in any signing query, (σ?1

1/γ , σ?2, σ
?
3)

must solve the q-HSDH instance. ut

Lemma 2. A Type II F-forger with success probability ε allows breaking the FlexDH assumption
with probability ε/q, where q is the number of signing queries.

Proof. The proof is inspired from [24][Lemma 2]. From a Type II forger, we build an algorithm B
that finds a non-trivial triple (gµ, gµa, gµab) on input of (g, ga = ga, gb = gb). To prepare the public
key pk, B chooses ω R← Z∗p, γu, γa

R← Z∗p and sets Ω = gω, A = (ga · gω)γa (so that γ = logg(A)
is implicitly defined as γ = (a + ω)γa) and u = gγu . Next, B picks two pairs (τ0, τ1) R← (Zp)2,
(ρ0, ρ1) R← (Zp)2 and defines U0 = gρ0 · gτ0b , and U1 = gρ1 · gτ1b . This implicitly defines the values
β0 = logg(U0) = ρ0 + bτ0 and β1 = ρ1 + bτ1, which are not available to B. As in the proof of lemma
1, {gi}i∈[1,2n]\{i} are also defined for a randomly chosen α R← Zp. At the outset of the game, B also
chooses q? R← [1, q].

When the signature of a vector ~m = (m1, . . . ,mn) is queried, the query’s treatment depends on
the index k ∈ [1, q] of the query.

- If k 6= q?, B picks r R← Zp and computes σ6 = V = gr ·
∏n
j=1 g

mj
n+1−j and defines the polynomial

P~m[X] = r+
∑n

j=1mn+1−jXj . It generates the triple (σ1, σ2, σ3) by setting σ1 = (ga·gω)γa/(ω+ck),
σ2 = gck , σ3 = uck for a randomly drawn ck

R← Zp. Since it knows logg(V) = P~m(α), it can also
compute σ4 = (gρ0+P~m(α)·ρ1 · (gb)τ0+P~m(α)·τ1)ck and σ5 = gP~m(α)·ck ,

- If k = q?, B will implicitly define cq? = a by setting σ1 = gγa , σ2 = ga, σ3 = gγua . Next,
B considers the polynomial P0[X] =

∑n
j=1mn+1−jX

j and defines r = −P0(α) − τ0/τ1 and
computes σ6 = V = gr ·

∏n
j=1 g

mj
n+1−j . We note that, since τ0, τ1 are independent of A’s view,

the above choice of r gives a random-looking σ6. Moreover, we have U0·V β1 = gρ0+P~m(α)ρ1 , where
P~m[X] = r + P0[X], so that σ4 is computable as σ4 = (ga)ρ0+P~m(α)ρ1 . Finally, σ5 = (ga)P~m(α) is
also easily computable.

Finally, A outputs a forgery σ? such that (σ?1, σ
?
2, σ

?
3) appeared in the output of some signing query.

With probability 1/q, this query happens to be the q?-th query (and B fails otherwise), so that
(σ?1, σ

?
2, σ

?
3) = (gγa , ga, g

γu
a). By assumption, the output of this query contained an element σq?,6

such that σq?,6 6= σ?6. We call χ0 = r + P0(α) the value χ0 = logg(σq?,6). The fourth component of
the forgery can be written as

σ?4 = (ga)ρ0+χρ1 · (gab)τ0+χτ1

where χ = logg(σ?6). Since the q?-th query involved the same cq? = a, dividing out the value
σq?,4 = (ga)ρ0+P~m(α)ρ1 = (ga)ρ0+χ0ρ1 · (gab)τ0+χ0τ1 from σ?4 yields

T4 = σ?4/σq?,4 = (ga)(χ−χ0)ρ1 · (gab)(χ−χ0)τ1

19

whereas the quotient of σ5 = hχ0a and σ?5 reveals T5 = σ?5/σ5 = h(χ−χ0)a. Hence, B extracts

R3 =
(
g(χ−χ0)

)ab
= T4/T5, R2 =

(
g(χ−χ0)

)a
= T5, R1 =

σ?6
σq?,6

= g(χ−χ0)

which must form a non-trivial triple (gµ, gµa, gµab) = (R1, R2, R3), with µ = χ− χ0. ut

Lemma 3. Any PPT adversary outputting a Type III F-forgery would contradict the n-FlexDHE
assumption.

Proof. We outline an algorithm B that takes as input a tuple (g, g1, . . . , gn, gn+2, . . . , g2n), where
g` = g(α`) for each ` ∈ [1, 2n]\{n + 1} and uses a Type III forger A to find a non-trivial tuple
(gµ, gµn+1, g

µ
2n) = (gµ, gµ·(α

n+1), gµ·(α
2n)).

Algorithm B uses its input to define {g`}`∈[1,2n] whereas other components of the public key are
chosen as specified by the key generation algorithm and B retains the private key sk = (γ, ω, β1)
which allows perfectly answering signing queries.

Type III-A attacks: We first consider Type III-A forgeries. By assumption, A outputs a forgery
σ? = (σ?1, σ

?
2, σ

?
3, σ

?
4, σ

?
5, σ

?
6, r

?) such that σ?6 appeared in the j-th signing query, for some j ∈
[1, q]. The adversary also outputs a predicate Pred? = (REQ, i, {F (x?t)}t∈Υ) consisting of an index
i ∈ [1, n], a set of function values {F (x?t) = (Ft,1, Ft,2, Ft,3) = (gx

?
t

1 , gx
?
t , g

x?t
2n)}t∈Υ , for some vector

~X? = (x?1, . . . , x
?
n) and some subset Υ ⊂ {1, . . . , n}, as well as a witness W ? ∈ G such that

e(gi, σ?6) = e(g,W ?) · e(Fi,1, gn). From the j-th signing query ~mj = (mj,1, . . . ,mj,n) (for which
x?i 6= mj,i by assumption) made by the adversary, B is able to construct a witness W ′ ∈ G such
that e(gi, σ?6) = e(g,W ′) · e(g1, gn)mj,i since it had to compute σ?6 itself when answering the query.
This implies that

e(g,W ?/W ′) = e(gmj,i−x
?
i

1 , gn) = e(gmj,i1 · F−1
i,1 , gn).

Since the right-hand-side member of the first equality equals e(gmj,i−x
?
i

1 , gn) = e(g, gmj,i−x
?
i

n+1), it

easily comes that W ?/W ′ = g
mj,i−x?i
n+1 . Moreover, from the values (Fi,2, Fi,3), algorithm B also obtains

gmj,i−x
?
i = gmj,i ·F−1

i,2 and gmj,i−x
?
i

2n = g
mj,i
2n ·F

−1
i,3 which yield a solution (gmj,i/Fi,2,W ?/W ′, g

mj,i
2n /Fi,3)

to the n-FlexDHE instance with µ = mj,i − x?i .
Type III-B attacks: We now turn to Type III-B forgeries. Namely, at the end of the game,
the adversary A outputs a forgery σ? = (σ?1, σ

?
2, σ

?
3, σ

?
4, σ

?
5, σ

?
6, r

?) such that σ?6 was part of the
jth signing query, for some j ∈ [1, q]. The adversary’s output (Pred?,W ?) also includes an index
i ∈ [1, n], a set of function values {F (x?t) = (Ft,1, Ft,2, Ft,3) = (gx

?
t

1 , gx
?
t , g

x?t
2n)}t∈Υ and a witness

W ? = (W ?
0 ,W

?
1 ,W

?
2 ,W

?
3 ,W

?
4) ∈ G5 such that W ?

1 6= 1G and

e(gi, σ?6) · e(Fi,1, gn)−1 = e(gi, σ? · g
−x?i
n+1−i) = e(W ?

1 , gn) · e(g,W ?
4) (23)

e(W ?
1 , g) = e(g1,W ?

2) (24)
e(W ?

1 , g2n) = e(g1,W ?
3), (25)

which would trick a verifier into believing that mj,i 6= x?i although mj,i = x?i . From the j-th
signing query, B knows the signed vector ~mj = (mj,1, . . . ,mj,n) as well as an exponent rj ∈ Zp
such that σ?6 = grj ·

∏n
k=1 g

mj,k
n+1−k. By hypothesis, we have mj,i = x?i , which allows B to compute

W ′ = g
rj
i ·
∏n
k=1 g

mj,k
n+1−k+i? such that

e(gi, σ?6 · g
−x?i
n+1−i) = e(g,W ′). (26)

20

The combination of (23) and (26) implies e(g,W ′/W ?
4) = e(W ?

1 , gn). If we define µ = logg1(W ?
1),

the latter relation implies that W ′/W ?
4 = gµn+1 and equations (24)-(25) guarantee that we also have

W ?
2 = gµ and W ?

3 = gµ2n. It comes that(
W ?

2 ,W
′/W ?

4 ,W
?
3

)
= (gµ, gµn+1, g

µ
2n)

forms a non-trivial solution to the n-FlexDHE instance.

Type III-C attacks: We now assume that the adversary A produces a Type III-C forgery and
show that it allows computing gn+1 = g(αn+1), and a fortiori break n-FlexDHE.

The game ends with the adversary A outputting a forgery σ? = (σ?1, σ
?
2, σ

?
3, σ

?
4, σ

?
5, σ

?
6, r

?) that
coincides with the output of the j-th signing query, for some index j ∈ [1, q]. The adversary
A also outputs a witness W ? ∈ G and a predicate Pred? = (RIP, 0, ~X?) consisting of a vector
~X? = (x?1, . . . , x

?
n) such that ~mj · ~X? 6= 0. Yet, since Witness-Verify(pk, RIP, 0, ~X?,W ?, σ?) = 1, it

must hold that

e
(n∏
i=1

g
x?i
i , σ

?
6

)
= e(g,W ?). (27)

From the j-th signing query ~mj = (mj,1, . . . ,mj,n), B knows an opening (mj,1, . . . ,mj,n; rj) of the
commitment σ?6 (i.e., σ?6 = VecCom(~mj ; rj)). This allows computing W̃k = g

rj
k ·
∏n
`=1,` 6=k g

mj,`
n+1−`+k

for k = 1 to n, which in turn yields W̃ =
∏n
k=1 W̃

x?k
k ∈ G such that

e
(n∏
i=1

g
x?i
i , σ

?
6

)
= e(g1, gn)~mj · ~X

? · e(g, W̃). (28)

Combining (27) and (28), we find e(g,W ?/W̃) = e(g1, gn)~mj · ~X
?
, so that gn+1 = (W ?/W̃)

1

~mj · ~X? and
a fortiori break the n-FlexDHE assumption.

Type III-D attacks: We are left with Type III-D forgeries where the game ends with the adversary
A outputting a forgery σ? = (σ?1, σ

?
2, σ

?
3, σ

?
4, σ

?
5, σ

?
6, r

?) that coincides with the output of the j-th
signing query, for some j ∈ [1, q], but A also produces a vector Pred? = (R¬IP, 0, ~X?) for some vector
~X? = (x?1, . . . , x

?
n) such that ~mj · ~X? = 0 and a witness W ? that would wrongly convince a verifier

that ~mj · ~X? 6= 0. The adversary’s output thus comprises W ? = (W ?
0 ,W

?
1 ,W

?
2 ,W

?
3 ,W

?
4) ∈ G5 such

that W ?
1 6= 1G and

e
(n∏
i=1

g
x?i
i , σ

?
6

)
= e(W ?

1 , gn) · e(g,W ?
4) (29)

e(W ?
1 , g) = e(g1,W ?

2) (30)
e(W ?

1 , g2n) = e(g1,W ?
3) (31)

From the j-th signing query, B has recollection of the vector ~mj = (mj,1, . . . ,mj,n) and some rj ∈ Zp
such that (mj,1, . . . ,mj,n; rj) forms an opening of σ?6 = VecCom(~mj ; rj) = grj ·

∏n
k=1 g

mj,k
n+1−k. By

hypothesis, it holds that ~mj · ~X? = 0, so that B can use (~mj ; rj) and ~X? to compute W̃ ∈ G such
that

e(
n∏
i=1

g
x?i
i , σ

?
6) = e(g, W̃). (32)

21

Then, (29) and (32) guarantee that e(g, W̃ /W ?
4) = e(W ?

1 , gn). Now, if we define µ = logg1(W ?
1)

(which is non-zero since W ?
1 6= 1G), we thus have W̃/W ?

4 = gµn+1 and equations (30)-(31) in turn
imply W ?

2 = gµ and W ?
3 = gµ2n. It eventually comes that(

W ?
2 , W̃ /W ?

4 ,W
?
3

)
= (gµ, gµn+1, g

µ
2n)

is a non-trivial solution to the given n-FlexDHE instance. ut

Remark 1. In the proof of lemma 3, the reduction needs to know the vector ~X? = (x?1, x
?
2, . . . , x

?
n)

in the case of Type III-C and Type III-D forgeries because its coordinates are needed to construct
the witnesses W̃ that satisfy (28) in the Type III-C case and (32) in Type III-D forgeries. In these
cases, the proof of lemma 3 ceases to go through if the reduction only knows3 F (x?j) for j = 1 to n.

Nevertheless, it is easy to see that the proof of lemma 3 still works when B is only given
{F (x?j)}nj=1 for values {x?j}nj=1 that are somehow (i.e., by means of additional proofs) constrained to
belong to a small polynomial-sized interval. In this case, B can determine {x?j}nj=1 from {F (x?j)}nj=1

by applying F (.) to all interval elements. This fact is useful when certain threshold predicates about
the vector ~m are proven as noted in section E.4.

C Proof of Theorem 2

Signer Privacy: In an execution of SigIssue � SigObtain, the simulator SimIssue receives a com-
mitment C~m|n1

of some vector ~m|n1
and a public vector (mn1+1, . . . ,mn). The simulator first

rewinds the adversary from the WI proof of knowledge so as to extract ~m|n1
, open~m|n1

, where
~m|n1

= (m1, . . . ,m|n1
) and open~m|n1

= (~m|n1
, r′). If the extraction fails, it outputs ⊥. Other-

wise, it queries ~m = (m1, . . . ,mn1 ,mn1+1, . . . ,mn) to its signing oracle and obtains a signature
σ = (σ1, . . . , σ6, r) and sends σ as well as r′′ = r − r′ back to the adversary. It is easy to see that,
unless SimIssue fails to extract open~m|n1

using the knowledge extractor, the simulation is perfect.

User Privacy: The simulator now has to emulate the user running SigObtain in an execution of
SigIssue � SigObtain without using the user’s private inputs (~m|n1

, open~m|n1
). To this end, the

user-simulator SimObtain uses the simulator of the interactive WI proof of knowledge of an opening
of the commitment C~m|n1

. The simulator is trivial since, given that the commitment is perfectly
hiding, any opening gives identically distributed proofs.

D Proof of Theorem 3

We show that, when the reference string f = (~f1, ~f2, ~f3) produced by SimSetup is prepared for the

WI setting (i.e., with ~f3 = ~f1
ξ1 � ~f2

ξ2 � (1, 1, g)−1), all proofs produced by these algorithms can be
simulated without knowing any witness using the trapdoor of the simulated CRS.

More precisely, the simulator Sim = (SimSetup, SimSigProve1, SimSigProve2,SimEqComProve1,
SimEqComProve2) proceeds as follows.

3 This is actually the main reason why the model considers two families of relations R1 and R2 rather than one: R1

is the family of relations for which the coordinates of ~X are only available as {F (xi)}i∈Υ whereas R2 is a family

of relations for which we consider ~X = (x1, . . . , xn) to be public.

22

SimSetup: the Groth-Sahai CRS f = (~f1, ~f2, ~f3) is chosen so as to have ~f3 = ~f1
ξ1� ~f2

ξ2�(1, 1, g)−1

for some ξ1, ξ2 ∈ Zp. The pair τ = (ξ1, ξ2) will serve as a trapdoor allowing to simulate proofs
without knowing any witnesses.

SimSigProve1: on a simulated CRS, the witnesses {σi = 1G}7i=1 and can be used to generate a
proof for equations (8)-(9) of πσ.

- In the case R = REQ, the assignment Xi,1 = Xi,2 = Xi,3 = W = 1G yields a proof πxi ,
{πXt,j}t∈Υ,j∈{1,2} for equation (11)-(12).

- In the case, R = R¬EQ, together with the trivial assignment σ6 = 1G, the witnesses
Xi,1 = g−1

1 , W1 = g1, W2 = g, W3 = g2n and W4 = 1G provide valid proofs πxi , πW
and {πXt,j}t∈Υ,j∈{1,2} for equations (13)-(14) and (12), respectively.

As for relations (10) of the proof πσ, the NIZK simulator can make use of the trapdoor τ , which
allows trapdoor opening to 0 a commitment Cθ1 to θ1 = 1 (so as to generate a fake proof that
σ7 = A in the last relation of (10)).

SimSigProve2: the witnesses {σi = 1G}7i=1 and Θ = W = 1G can be used to generate proofs for
equations (8)-(9) of πσ.

- If R = RIP, the witness W = 1G gives a proof for equation of (15).
- If R = R¬IP, the assignment Θ = W0 = W1 = W2 = W3 = W4 = 1G gives us proofs for

relations (16), (18) and the leftmost equation of (17). As for the last equations of (10) and
(17), the NIZK simulator uses the trapdoor τ of the CRS to generate proofs for the false
statements σ7 = A and Θ = g (by trapdoor opening to 0 the commitment to θ1 = 1).

- If R = REQ, setting Xi = W = 1G (along with σ6 = 1G) allows simulating a proof for the
first equation of (19) whereas the second relation of (19) is handled (like the last equation
of (10)) by trapdoor opening to 0 the commitment to θ1 = 1 (thanks to the trapdoor τ).

- If R = R¬EQ, we can set Θ = Xi = W0 = W1 = W2 = W3 = W4 = 1G so as to satisfy
(20)-(21) and use the trapdoor τ to fake a proof that Xi = gxi1 and Θ = g (in the two
equations of (22)) at the same time as the proof that σ7 = A (in the last equation of (10)).

SimEqComProve: recall that EqComProve aims at proving that ~CX and ~CY are Groth-Sahai com-
mitments to the same X = Y ∈ G. To this end, it uses the random coins that were used to
compute ~CX = (1, 1, X) � ~f1

rx � ~f2
sx � ~f3

tx and ~CY = (1, 1, Y) � ~f1
ry � ~f2

sy � ~f3
ty to define

variables (ρ1, ρ2, ρ3) = (rx − ry, sx − sy, tx − ty) ∈ (Zp)3 (and their commitments ~Cρ1 ,
~Cρ2 ,

~Cρ3)
such that

~CX � ~CY
−1

=
(
fρ11 · f

ρ3
31 , f

ρ2
2 · f

ρ3
32 , g

ρ1+ρ2 · fρ333

)
, (33)

where ~f1 = (f1, 1, g), ~f2 = (1, f2, g) and ~f3 = (f31, f32, f33). On a simulated CRS, commitments
{ ~Cρj}j∈{1,2,3} can be replaced by commitments to 0 and the trapdoor τ makes it possible to
generate fake a proof for equation (33) (see, e.g., [14][Section 4.4] for details).

On a simulated (i.e., witness indistinguishable) CRS, all commitments are perfectly hiding and
simulated proofs are perfectly indistinguishable from real proofs since proofs always have the same
distribution, no matter which witnesses are used to generate them.

Moreover, since perfectly WI and perfectly sound common reference strings are indistinguishable
under the DLIN assumption, no PPT adversary can tell apart real proofs and simulated proofs as
long as the DLIN assumption holds in G. ut

23

E Applications of Block-Wise P-signatures to Anonymous Credentials

Anonymous credential systems involve users, organizations (which deliver credentials to users) and
a certification authority (CA) which is responsible for registering users’ public keys.

E.1 Non-Interactive Anonymous Credentials with Efficient Attributes

Let n ∈ poly(λ). Let R1,R2 : [0, n]×Dn×Dn → {0, 1} be relation families, for some domain D, and
F be an injective function. A non-interactive anonymous credential system with efficient attributes
consists of:

• a vector commitment scheme (VecCom,VecOpen).
• a set (CredSetup,PseudonymIssue,PseudonymObtain,CredIssue,CredObtain,CredProve,CredVerify)

of PPT algorithms or protocols with the following specifications.

CredSetup(λ): takes as input a security parameter λ and outputs at set of public parameters
params. As part of this protocol, users and organizations generate their public and secret keys
using auxiliary algorithms OKeygen and UKeygen which are described hereafter. We assume
that they register their public keys with the CA. We refer to PKI as the collection of all public
keys, and to the identity of the user as his public key pk. The outcome of the registration step
is the user (whose private input is his secret key sk) obtaining a root credential CCA whereby
the CA authenticates sk.

OKeygen(λ): allows an organization O to generate its key pair (skO, pkO). We assume that, as
part of its public key pkO, organization O specifies an integer n ∈ poly(λ), which is the size of
attribute vectors that O is willing to certify.

UKeygen(λ): is a user key generation algorithm outputting a pair (skU , pkU).
PseudonymIssue(·) � PseudonymObtain(pkU , skU , CCA): is an interactive protocol allowing a user

and an organization to agree on a pseudonym (nym) N for the user. The users’s private input
is his key pair (pkU , skU) and his root credential CCA whereas the organization does not have
any private input. Their common output is the pseudonym N . The user has a private output
auxN consisting of some auxiliary information that may be needed later on.

CredIssue
(
pkO, skO, N, V, (mn1+1, . . . ,mn)

)
� CredObtain

(
pkU , skU , N, auxN , ~m|n1

, (mn1+1, . . . ,mn)
)
:

is an interactive protocol whereby a user obtains a credential from an organization without leak-
ing his identity and while just revealing his pseudonym N . The user’s input is (pkU , skU , auxN),
a committed vector ~m|n1

= (m1, . . . ,mn1), for some integer n1 ∈ [1, n], such that m1 = skU and
a public vector (mn1+1, . . . ,mn); the organization’s private input is its key pair (pkO, skO), a
commitment V = VecCom((m1, . . . ,mn1); r) and a public vector (mn1+1, . . . ,mn). The user’s
private output is his credential C which he obtains without letting the organization learn any-
thing about ~m|n1

= (m1, . . . ,mn1).
CredProve(pkU , skU , auxN1 , auxN2 , C,R, i, ~m,

~X): is an algorithm allowing a user - known to an
organization O1 under pseudonym N1 and to another organization O2 under pseudonym N2 -
to prove to O2 his possession of a credential C from O1 on a vector ~m = (m1, . . . ,mn) such
that R(i, ~m, ~X) = 1. The algorithm takes as input (pkU , skU , auxN1 , auxN2), the vector ~m, the
credential C, some relation R ∈ R1∪R2 and some vector ~X = (x1, . . . , xn). The output consists
of a proof πC .

CredVerify(N2, i, R, πC , ~X): is an algorithm run by organization O2. It outputs 1 if πC convinces
O2 about the validity of the statement proven by CredProve.

24

Such an anonymous credential system should provide anonymity and unforgeability. In short,
the latter captures that: (1) each pseudonym corresponds to a well-defined identity; (2) if a user
with pseudonym N manages to prove that he holds a credential from organization O for which the
committed ~m satisfies R(i, ~m, ~X) = 1 for some ~X ∈ Dn, then it must be the case that organization
O has indeed issued a credential to some pseudonym N ′ corresponding to the same identity as N . In
addition, that credential must correspond to a vector ~m satisfying the aforementioned properties.

The notion of anonymity requires that, even if an adversary corrupts the CA and a subset of
organizations, it cannot tell whether (a) it is interacting with real users who obtain credentials and
prove properties about them as dictated by the adversary; (b) it is interacting with a simulator
producing a simulated set of public parameters and emulates real users without using any witnesses
depending on provers’ identities.

The definition of unforgeability proceeds analogously to definition 9 in the context of P-
signatures: we assume that the interactive protocol CredIssue � CredObtain requires the user to
provide an interactive proof of knowledge of his committed sub-vector (m1, . . . ,mn1) and we call
EACredObtain the knowledge extractor of this proof of knowledge.

Definition 10. A anonymous credential system with efficient attributes for relation families R1,R2

is unforgeable if there are efficient algorithms (ExtractSetup,Extract) such that (i) Setup and
ExtractSetup have statistically close output distributions; (ii) no PPT algorithm A obtain non-
negligible advantage in the following game.

1. The challenger runs params ← ExtractSetup(λ) and (skO, pkO) ← OKeygen(λ) and gives the
public key pkO (which defines an integer n ∈ poly(λ)) to the adversary A.

2. On at most q ∈ poly(λ) occasions, A starts an execution of the CredIssue � CredObtain protocol
and plays the role of a user interacting with the CredIssue-executing challenger. At each execution
j ∈ [1, q], the challenger appeals to the knowledge extractor EACredObtain to extract A’s committed
vector ~mj = (mj,1, . . . ,mj,n) (or, more precisely, its restriction (mj,1, . . . ,mj,n1) where n1 ∈
[1, n]). We call Cj the credential (i.e., the signature) obtained by A at the end of the j-th query.

3. A outputs a pseudonym N2, a vector ~X ∈ Dn, an integer i ∈ [0, n], a relation R ∈ R1 ∪R2 and
a proof πC . At this stage, the challenger computes F (skU) = Extract(N2), for some injective
function F . The adversary A wins if CredVerify(N2, i, R, πC , ~X) = 1 and neither of the signed
vectors ~mj = (mj,1, . . . ,mj,n) was such that mj,1 = skU and R(i, ~mj , ~X) = 1.

As usual, A’s advantage is defined to be its success probability, taken over all random coins.

Definition 11. A non-interactive anonymous credential system with efficient attributes provides
anonymity if no PPT adversary can tell apart the two games described hereafter.

Real: The challenger generates public parameters params using CredSetup. The adversary A re-
ceives params and is allowed to invoke the following oracles on polynomially many occasions.

QUKeygen(U): generates a key pair (skU , pkU) on behalf of user U and outputs pkU . At most
one such query is allowed for each user U .

QPseudonymIssue(U,Oj): allows A, acting as a dishonest organization Oj, to request the gener-
ation of a pseudonym for user U . If no public key was defined for U or no root creden-
tial CCA was defined for pkU , the oracle outputs ⊥. Otherwise, the oracle runs algorithm
PseudonymObtain using the input (pkU , skU , CCA) in an execution of PseudonymIssue �
PseudonymObtain. The PseudonymIssue-executing A is allowed to choose the public key pkOj

25

of the dishonest organization but, if the same organization Oj is involved in subsequent
queries, the same public key pkOj must be re-used by A. If the protocol terminates, A ob-
tains a pseudonym N for user U and QPseudonymIssue(U) holds auxN back from the adversary.

QCredObtain(U,N,Oj , ~m|n1
, (mn1+1, . . . ,mn)) : this oracle first checks if a key pair (skU , pkU)

was created and if a pseudonym N was registered by organization Oj for user U . If not, the
oracle returns ⊥. Otherwise, it starts an execution of

A(params, U, state) � CredObtain(pk, sk, N, auxN , ~m|n1
, (mn1+1, . . . ,mn))

using the adversarially-chosen vectors ~m|n1
and (mn1+1, . . . ,mn) (where n is fixed by Oj’s

public key and n1 ∈ [1, n] is chosen by A). If the protocols successfully terminates, it stores
the obtained credential Cf .

QCredProve(params, U,N1, N2, Cf , R, i, ~m, ~X): first checks if pseudonyms N1 and N2 have been
registered for user pkU by some organizations O1 and O2, respectively. If not, the oracle
outputs ⊥. Otherwise, it checks if O1 has indeed delivered a credential Cf to user U for the
vector ~m ∈ Dn. If not or if R(i, ~m, ~X) = 0, it aborts. Otherwise, the oracle responds by
returning the output of CredProve(pkU , skU , auxN1 , auxN2 , Cf , R, i, ~m,

~X).
After a number of queries, the adversary halts and outputs a bit b ∈ {0, 1}.

Ideal: The challenger generates simulated parameters params and a simulation trapdoor τ by run-
ning an algorithm SimCredSetup(λ). The adversary receivers paramss and is allowed to query
the same oracles as in the Real game. However, instead of answering QPseudonymIssue, QCredProve

and QCredObtain queries using users’ private keys and credentials, the challenger makes use of
a simulator SimCred(τ) that uses τ to answer all queries without knowing any user’s private
inputs. After a number of queries, the adversary halts and outputs a bit b ∈ {0, 1}.

The adversary A’s advantage is defined in the standard way, as the difference between the probabil-
ities to have b = 1 in games Real and Ideal.

In the above definition, the adversary’s interaction with oracles QPseudonymIssue and QCredObtain is
restricted to be sequential since, in the Ideal game, the simulator must be able to rewind the
adversary when these oracles are invoked.

E.2 Construction from Block-Wise P-Signatures

Let Σ = (Setup, SigSetup, Sign,Verify,Witness-Gen,Witness-Verify, {SigProvei,EqComProvei}i=1,2,
SigIssue, SigObtain) be a secure block-wise P-signature for the relation families R1 = {REQ, R¬EQ},
R2 = {RIP, R¬IP} and let (VecCom,VecOpen) and (Com,Open) be the associated commitment
schemes. The construction of anonymous credentials with efficient attributes goes as follows.

CredSetup(λ): runs params← Σ.Setup(λ) and generates a commitment key for (VecCom,VecOpen).
OKeygen(λ): chooses n ∈ poly(λ), runs (sk, pk)← Σ.SigSetup(λ, n) and sets (skO, pkO) = (sk, pk).
UKeygen(λ): uniformly picks a secret key skU in the domainD and computes pkU = PublicKey(skU)

using some appropriately defined function PublicKey(.).
PseudonymIssue(·) � PseudonymObtain(pkU , skU , CCA): the user U generates his pseudonym N

as a perfectly binding commitment N = Com(skU , openskU) to his secret key skU , for some
appropriate opening openskU and sets the auxiliary information auxN to be openskU . In addition,
U generates a proof that he holds a credential from the CA for this pseudonym (using the
algorithm below). He finally sends N to the organization and proves knowledge of (skU , openskU)
using some non-malleable [36] designated verifier [35] interactive proof.

26

CredIssue
(
pkO, skO, N, V

′, (mn1+1, . . . ,mn)
)

� CredObtain
(
pkU , skU , N, auxN , ~m|n1

, (mn1+1, . . . ,mn)
)
:

the takes as input a commitment V ′ = VecCom(~m|n1
, open~m|n1

), for some open~m|n1
. Then,

U provides O with an interactive zero-knowledge proof that he knows how to open V ′ to
a vector containing skU in its first coordinate and that N opens to the same skU . Finally,
U and O run SigIssue(skO, V ′, (mn1+1, . . . ,mn)) � SigObtain(pkO, ~m|n1

, open~m|n1
). As a re-

sult of this protocol, U obtains a credential C consisting of O’s signature σ on the vector
~m = (m1, . . . ,mn1 ,mn1+1, . . . ,mn) without revealing anything about ~m|n1

.
CredProve(pkU , skU , auxN1 , auxN2 , C,R, i, ~m,

~X): parse the credential C as a P-signature σ. Com-
pute (Cx1 , CW1 , Cσ, π1) ← SigProve1(pk, REQ, 1, Υ = {1}, σ, ~m, ~X ′), where ~X ′ = (skU , 0, . . . , 0)
and denote by Cx1 the commitment to x1 = skU which is part of SigProve1’s output. Compute
(CW , C ′σ, π2)← SigProve2(pk, R, i, σ, ~m, ~X). Finally, generate π3 ← EqComProve(Cx1 , N2, auxN2)
as a proof that perfectly binding commitments N2 and Cx1 open to the same value and a similar
proof π4 ← EqComProve(Cσ, Cσ′) that Cσ and C ′σ conceal the same value. Return the complete
proof πC = (Cx1 , CW1 , Cσ, π1, CW , C

′
σ, π2, π3, π4).

CredVerify(N2, i, R, πC , ~X): parse πC as (Cx1 , CW1 , Cσ, π1, CW1 , C
′
σ, π2, π3, π4). Return 1 if it holds

that VerifyProof1(pk, REQ, 1, π1, Cσ, CW , {Cx1}) = VerifyProof2(pk, R, i, π2, C
′
σ, CW ,

~X) = 1 and
if π3 (resp. π4) is a valid proof that Cx1 and N2 (resp. Cσ and Cσ′) open to the same message.
Otherwise, return 0.

We note that, if Cσ consists of several commitments to group elements, π4 must be obtained
by running EqComProve for each commitment that Cσ, C ′σ consist of.

When the above construction is instantiated using the concrete P-signature of section 3, the
anonymous credential system can be optimized by only including Cσ (instead of both Cσ and C ′σ)
in πC and removing π4.

Theorem 4. The above anonymous credential system is unforgeable if the interactive proof used
in CredIssue � CredObtain is sound and if the underlying P-signature is itself unforgeable.

Proof. We construct a reduction B that breaks the security of the P-signature in the sense of
definition 8 using its interaction with an adversary A in the game of definition 10.

Whenever A decides to run an execution of CredIssue � CredObtain (and thereby sends a
pseudonym N and a commitment V to B), B uses the knowledge extractor EACredObtain to obtain A’s
committed vector ~m|n1

= (m1, . . . ,mn1) (as well as the opening open~m|n1
of A’s commitment V ′.

Unless A is able to break the soundness of the interactive proof system, ~m|n1
must be such that

m1 = skU , where skU is the content of the perfectly binding commitment N . Then, B engages in an
execution of SigIssue � SigObtain with its own challenger in the game of definition 8. This protocol
results in B obtaining a P-signature σ on a vector ~m whose first n1 coordinates are those of ~m|n1

(its
remaining coordinates are attributes that are either chosen by A and revealed to the organization
or chosen by the latter). Then, by executing the simulator SimIssue(V ′, (mn1+1, . . . ,mn), σ) (which
exists thanks to the signer privacy property of the P-signature), B simulates an execution of SigIssue
(in interaction with A who runs SigObtain) the outcome of which is A obtaining the P-signature σ
as a credential.

The game ends with A outputting a pseudonym N2, an index i ∈ [0, n], a relation R ∈ R1∪R2,
a vector ~X ∈ Dn and a proof πC . At this step, B parses πC as (Cx1 , CW1 , Cσ, π1, CW1 , C

′
σ, π2, π3)

and flips a fair coin β R← {0, 1}. We note that, by the perfect soundness of the non-interactive
proof π3, Cx1 is guaranteed to contain the same value skU as the pseudonym N2. If β = 0, the

27

reduction B outputs (Cσ, CW1 , π1, claim) where claim = (REQ, 1, Cx1). If β = 1, it rather outputs
(C ′σ, CW , π2, claim) where claim = (R, i, ~X). We argue that, if A has advantage ε, B has advantage
ε/2. To see why, we distinguish two situations:

1. Extract(Cσ) = Extract(C ′σ) does not correspond to any σ that B obtained by running SigIssue �
SigObtain in interaction with its own challenger.

2. Extract(Cσ) = Extract(C ′σ) corresponds to σj , which stands for the j-th signature that B obtains
from its challenger in the game of definition 8.

In case 1, it is easy to see that B always breaks the security of the P-signature scheme, no matter
what the value of β is. Therefore, we only need to worry about situation 2. By assumption, we
know that the j-th vector ~mj that B used when running SigObtain was such that either mj,1 6= skU ,
where skU = F−1(Extract(Cx1)), or R(i, ~mj , ~X) = 0. If β = 0, B is thus betting on the former
case whereas, if β = 1, it hopes for the situation R(i, ~mj , ~X) = 0. Since β ∈R {0, 1} is chosen
independently of A’s view, the announced result follows. ut

The proof of anonymity proceeds exactly like the proof of anonymity in [3].

Theorem 5. The scheme provides anonymity if the interactive proof system used in CredIssue �
CredObtain is zero-knowledge and if the P-signature is zero-knowledge.

Proof. The proof uses a sequence of hybrid experiments H0, H1, . . . ,H5 where H0 is the real ex-
periment and H5 is an experiment where the adversary only sees proofs that are simulated (using
the simulator Sim = (SimSetup, SimProve1,SimProve2, SimEqComProve) of the P-signature) without
using any witness.

H0: is the real experiment. Namely, the adversary interacts with real users and organizations
running the protocol. In addition, the adversary is allowed to act as a dishonest organization
and run CredIssue during executions of CredIssue � CredObtain with honest users.

H1: is like the original experiment H0 but the adversary is given simulated public parameters
paramss produced by (paramss, τ) ← SimSetup(λ). Everything else proceeds as in H0 and,
in particular, the adversary still observes real proofs generated by SigProve1, SigProve2 and
EqComProve. The simulation trapdoor τ is not used here. By the zero-knowledge property of
the P-signature, this change is not noticeable by the adversary.

H2: is identical to H1 with one difference. Namely, when honest users interact with organizations
in the registration of their pseudonyms, they still honestly generate their pseudonyms. However,
they produce the zero-knowledge proof of knowledge of (skU , openskU) using the ZK simulator
instead of the real witnesses. The zero-knowledge property of the interactive proof system
guarantees that the adversary’s view is not affected by this change.

H3: is as H2 with the difference that, at each invocation of EqComProve in the computation of
π3 and π4 as part of CredProve, the adversary is provided with simulated proofs generated by
SimEqComProve. In particular, instead of generating commitments to (ρ1, ρ2, ρ3) using the state
information transmitted by SigProve1 and SigProve2 at each run of CredProve as EqComProve
did, SimEqComProve rather uses commitments to 0 (which does not change anything for A as
those commitments are perfectly hiding). Since the P-signature is zero-knowledge, this change
can be made without the adversary noticing.

H4: in this experiment, all proofs produced by SigProve1 and SigProve2 are replaced by simulated
proofs obtained from SimSigProve1 and SimSigProve2 that produce NIZK proofs without even
knowing P-signatures σ (as established by theorem 3). Hence, by the ZK property of the P-
signature, we know that this will not make any difference w.r.t. H3 in A’s view.

28

H5: is like H4 but, at each run of CredObtain, simulated honest users run algorithm SimObtain
(which exists due to the user privacy property of the P-signature) instead of the real algorithm
SigObtain. This change is allowed since, from experiment H4 onwards, users to not use their
credentials to generate proofs any longer. The user privacy property of the P-signature ensures
that A’s view is not noticeably altered by this modification.

H6: is identical to H5 but, when registering their pseudonyms, users always compute them as
commitments to 1G. This change is clearly conceptual as those commitments have the same
distribution either way.

It is easy to observe that, in experiment H6, the adversary is interfacing with a full-fledged simulator
that emulates the behavior of real users without using any secret. ut

E.3 Efficiency

Our block-wise P-signature scheme is fairly efficient for such a primitive: each proof consists of about
hundred group elements (at most 54784 bits for a 128-bit security level on supersingular curves)
and their verification always requires less than 20 pairing evaluations and multi-exponentiations
with small exponents.

The most expensive part of their generation is the witness generation: the algorithm Witness-Gen
requires one multi-exponentiation using n base elements. The computational cost of a naive imple-
mentation (without pre-computation) is similar to the cost n single-base exponentiations but, using
classical techniques, it can be reduced to the cost of one exponentiation (with a pre-computation
stage and a storage of 2n elements in G) and time-memory tradeoffs are possible: witnesses can be
generated using t exponentiations at the expense of storing 2n/t pre-computed elements.

Table 1 summarizes the costs of the P-signature generation (after the generation of the wit-
ness) and verification. The multi-exponentiations mentioned in the P-signature generation are for
constant-size basis (i.e., independent of n).

Size (# of elements in G) Generation Verification [7]

Algorithm SigProve1

R = REQ 80 80 ·MultiExp 18 · Pairing

R = R¬EQ 101 101 ·MultiExp 20 · Pairing

Algorithm SigProve2

R = RIP 65 66 ·MultiExp 15 · Pairing

R = R¬IP 104 105 ·MultiExp 20 · Pairing

R = REQ 77 77 ·MultiExp 16 · Pairing

R = R¬EQ 107 107 ·MultiExp 20 · Pairing

Table 1. Efficiency of the P-signature protocol

For instance, a proof generated by SigProve1 for the relation R = REQ consists in the commit-
ment of the 12 elements σj (for j ∈ {1, . . . , 7}), θ1, W and Xi,1, Xi,2, Xi,3 for some i ∈ {1, . . . , n}
and proof elements that they satisfy the relations (8)-(12) (i.e., three (general) pairing product
equations, five linear pairing product equations and one linear multi-exponentiation). Such a proof
is therefore made of 12× 9 + 3× 9 + 5× 3 + 1× 2 = 80 elements from G and its verification requires

29

the computation of 18 pairings4 and multi-exponentiations in G (using the batching techniques
from [7]). Table 1 summarizes the computational cost of our P-signature scheme.

From a bandwidth point of view, the efficiency of our anonymous credential system is compa-
rable with that of previous non-interactive constructions like [3]: in the worst case, a credential
generated by CredProve consists in 134 group elements in G (68608 bits for a 128-bit security level).
From a computational standpoint, the number of (dominant) pairing operations in CredVerify is
always less than 24 (if we remove redundant group elements and further batch the verification
equations). In comparison with the non-interactive scheme of [3], the main overhead is the number
of exponentiations (which is linear in n) when it comes to generate proofs.

E.4 Predicates Handled using Inner Products

In [38], Katz, Sahai and Waters showed how to express a number of predicates using inner prod-
ucts. For example, consider a polynomial P [Z] = ρ0 + ρ1Z + · · ·+ ρn−1Z

n−1 ∈ Zp[Z] and, for some
w ∈ Zp, define the relation Rpoly(P,w) = 1 iff P (w) = 0. This relation can be expressed by encoding
the coefficients of P [Z] as ~m = (ρ0, . . . , ρn−1) and defining the vector ~X = (1, w, w2, . . . , wn−1) in
such a way that P (w) = 0⇔ ~m · ~X = 0. Multivariate polynomials can be handled in a similar way,
as summarized in the table hereafter.

We consider vectors ~m = (m1, . . . ,mn) that contain the user’s private key in their first coordi-
nate (i.e., m1 = sk) and that other coordinates encode the user’s attributes. To prove statements
about their attribute set without revealing their key sk, users can simply prove that ~m is orthogonal
to ~X = (0, x1, . . . , xn−1), for the appropriate choice of (x1, . . . , xn−1).

Proving the inclusion of given attributes. Suppose that users’ attributes are encoded in an un-
ordered set S of size |S| ≤ n−2. If users want to prove that a specific attribute x ∈ Zp is in their set
S, they can define ~m = (sk, ρ0, . . . , ρn−2) using the coefficients of P [Z] =

∏
ω∈S(Z−ω) =

∑n−2
k=0 ρkZ

k

and merely prove that ~m · ~X = 0 where ~X = (0, 1, x, . . . , xn−2).

Proving OR statements about given attributes. By exchanging the roles of ~X and ~m in the
above encoding, we obtain a simple way for users to prove that one of their attributes is contained
(or not) in a list of public attributes. Suppose that users have at most t = |S| attributes and
that d is a pre-specified bound on the size of public lists where users are allowed to hide their
attributes. If the scheme is set up for n = t · (d + 1) + 1, the vector ~m = (~ω1| . . . |~ωt|sk) must
be a concatenations of t sub-vectors of the form ~ω` = (1, ω`, ω2

` , . . . , ω
d
`) for each ` ∈ [1, t]. In

order to prove that attribute ω` ∈ S is contained within Spub = {s1, . . . , sd}, for some ` ∈ [1, t],
users can define ~X =

(
0,0(`−1)·(d+1)|(ρ0, . . . , ρd)|0n−`·(d+1)

)
using the coefficients of the polynomial

P [Z] =
∏d
k=1(Z−sk) = ρ0+ρ1Z+· · ·+ρdZd and then prove that ~m· ~X = 0. This entails that, when

executing the CredIssue � CredObtain protocol, users have to prove that sub-vectors {~ω`}t`=1 are all
of the form ~ω` = (1, ω`, ω2

` , . . . , ω
d
`). Fortunately, standard Σ-protocols allow to do this with O(n)

exponentiations using Horner’s polynomial evaluation algorithm. The asymptotic communication
complexity is not affected as O(n) elements still have to be transmitted as in the basic proof of
knowledge of an opening of σ6 = VecCom(m1, . . . ,mn; r).

By combining the above technique with our proof for the non-zero evaluation of inner products,
we obtain a very efficient protocol allowing users to prove that they are above 21 years old (by
setting d = 21) for example.

4 A naive verification procedure requires 252 pairing evaluations.

30

Proving non-exclusive OR statements. In situations where users’ attributes sets consist of
ordered vectors (M1, . . . ,Mt), it was shown in [38] that inner products can handle disjunctions of
the form (M1 = X1)∨. . .∨(Mt = Xt) when t is not too large (since vectors of size n = 2t are needed).
With t = 3, for example, the encoding ~m = (sk,M1M2M3,M1M3,M2M3,M1M2,M1,M2,M3, 1),
~X = (0, 1,−X2,−X1,−X3, X2X3, X1X3, X1X2,−X1X2X3) guarantees that ~m · ~X = 0 if and only
if (M1 − X1)(M2 − X2)(M3 − X3) = 0. Of course, some extra work is needed to prove the well-
formedness of the committed part of ~m during the execution of CredIssue � CredObtain.

Proving AND statements using limited interaction. When ~m = (sk,M1, . . . ,Mn−1) is an
ordered attribute vector, a technique of [38] handles conjunctions (M1 = X1)∧ . . .∧(Mn−1 = Xn−1)
by proving that the polynomial P [M1, . . . ,Mn−1] = r1(M1−X1)+ · · ·+rn−1(Mn−1−Xn−1), where
r1, . . . , rn−1 ∈ Zp are random coefficients, cancels in (X1, . . . , Xn−1). In our setting, the coefficients
{rj}n−1

j=1 must be chosen by the verifier (as it is the only way to guarantee their uniform distribution
and their independence of public values (X1, . . . , Xn−1)). Using these random coefficients, the prover
can provide evidence that the vector ~m� (0, X1, . . . , Xn−1)−1 is orthogonal to (0, r1, . . . , rn−1) by
generating a proof for the equation e

(
σ6 ·

∏n
j=2 g

Xj−1

n+1−j ,
∏n
j=2 g

rj−1

j

)
= e(g,W).

As it turns out, we need two rounds of interaction here: when the prover decides to prove that
(M1 = X1)∧ . . .∧ (Mn−1 = Xn−1), a challenge {rj}n−1

j=1 has to be sent by the verifier to randomize
the polynomial P [M1, . . . ,Mn−1]. Fortunately, the amount of interaction can be minimized (in
particular, the communication complexity can remain independent of n) by having the verifier send
a single challenge value r ∈ Zp which allows defining rj = rj−1 for j = 1 to n − 1. Thanks to
the Schwartz-Zippel lemma [46], the prover can only cheat if r ∈R Zp is a root of the polynomial
P [Z] = (M1−X1)+Z(M2−X2)+· · ·+Zn−2(Mn−1−Xn−1), which occurs with negligible probability.
The same technique allows dealing with negated conjunctions (M1 6= X1) ∨ . . . ∨ (Mn−1 6= Xn−1)
by proving the non-orthogonality of ~m� (0, X1, . . . , Xn−1)−1 and (0, 1, r, r2, . . . , rn−2).

Batch proofs of inclusion using limited interaction. The Schwartz-Zippel lemma can also be
used to simultaneously prove the inclusion of several attributes when users’ attributes are encoded
as the root of a polynomial P [Z] =

∏
ω∈S(Z − ω) whose coefficients are in ~m. Namely, suppose

that the prover wishes to convince the verifier that x1, . . . , xt ∈ S, where S denotes his attribute
set. To this end, he defines ~X1 = (0, 1, x1, . . . , x

n−2
1), . . . , ~Xt = (0, 1, xt, . . . , xn−2

t) and uses them
to construct ~Y = ~X1 + r · ~X2 + · · · + rt−1 · ~Xt, where r ∈R Zp is a random challenge sent by the
verifier, and prove that ~m · ~Y = 0. This convinces the verifier that ~m · ~Xj = 0 for each j ∈ [1, t]
with overwhelming probability. Indeed, if there exists j ∈ [1, t] such that ~m · ~Xj 6= 0, we can only
have ~m · ~Y = 0 if the verifier accidentally chooses r as a root of a specific polynomial of degree at
most t− 1 and this occurs with probability smaller than t/p, which is negligible.

CNF and DNF Formulas. Similarly to [38], CNF and DNF formulas can be expressed by
combining the above techniques. For example, the 3-CNF

(M1 = X1) ∨ (M2 = X2) ∨ (M3 = X3) ∧ (M2 = X2) ∨ (M4 = X4) ∨ (M5 = X5)

requires to encode the polynomial (M1−X1)(M2−X2)(M3−X3)+r(M2−X2)(M4−X4)(M5−X5),
for some random r ∈ Zp, using vectors of length n = 16. In general, a t-CNF with k clauses can be
expressed with vectors of size n = k · 2t.

The table below summarizes the basic predicates that easily translate in terms of inner products.

31

Predicate Implementation as a polynomial

(z = I1) ∨ (z = I2) · · · ∨ (z = In−1) fOR,I1,I2,...,In−1(z) =
∏n−1
j=1 (z − Ij) = 0

(z1 = I1) ∨ (z2 = I2) ∨ · · · ∨ (zn−1 = In−1) fOR,I1,I2,...,In−1
(z1, . . . , zn−1) =

∏n−1
j=1 (zj − Ij) = 0

(z1 = I1) ∧ (z2 = I2) · · · ∧ (zn−1 = In−1) fAND,I1,I2,...,In−1(z1, . . . , zn−1) =
∑n−1
j=1 rj(zj − Ij) = 0

(z1 6= I1) ∨ (z2 6= I2) · · · ∨ (zn−1 6= In−1) fOR-NOT,I1,I2,...,In−1(z1, . . . , zn−1) =
∑n−1
j=1 rj(zj − Ij) 6= 0

(z 6= I1) ∧ (z 6= I2) ∧ · · · ∧ (zn−1 6= In−1) fAND-NOT,I1,I2,...,In−1(z) =
∏n−1
j=1 (z − Ij) 6= 0

(z1 6= I1) ∧ (z2 6= I2) ∧ · · · ∧ (zn−1 6= In−1) fAND-NOT,I1,I2,...,In−1
(z1, . . . , zn−1) =

∏n−1
j=1 (zj − Ij) 6= 0

Proving exact threshold statements over binary attributes. When users’ attributes are
binary, another technique – also suggested in [38] – allows a user to convince a verifier that he
holds exactly t attributes appearing in a list of ` public binary attributes. Let U be an attribute
universe of size u = |U|. If S ⊂ U is the subset of attributes held by the prover and X ⊂ U is
the `-set of public attributes, S is encoded as a vector ~m = (sk, 1, M̃1, . . . , M̃u) ∈ {0, 1}u+1 × Zp
of length n = u + 2, where M̃i = 1 if attribute i is in S and M̃i = 0 otherwise. The set X ⊂ U is
translated to the vector ~X = (0,−t, x̃1, . . . , x̃u) ∈ Zp×{1, . . . , `}×{0, 1}u where x̃j = 1 if and only
if attribute j belongs to X. Proving the statement then amounts to demonstrating that ~m · ~X = 0.
Again, the encoding of ~m requires the user to prove that each committed M̃i is a binary value
during the execution CredIssue � CredObtain but this can be achieved using standard techniques.

In [25], a very similar technique was suggested to prove that binary sub-vectors (M̃1, . . . , M̃u)
and (x̃1, . . . , x̃u) are exactly t ∈ [1, u] elements apart in terms of Hamming distance. This technique
was based upon the simple observation that this distance can be expressed as

∑u
j=1 M̃j(1− 2x̃j) +∑u

j=1 x̃j which, in our setting, easily translates in terms of inner products using the encoding
~m = (sk, 1, M̃1, . . . , M̃u) and ~X = (0,−t+

∑u
j=1 x̃j , 1− 2x̃1, . . . , 1− 2x̃u).

Proving inexact thresholds. The above techniques only allow proving exact threshold and Ham-
ming distance predicates and it would be interesting to extend them so as to prove statements of
the form “sets S and X have at most d attributes in common” or “sets S and X are at most d
attributes apart”. One way to solve this problem is to have the prover only publicize the value t
in committed form and provide evidence that t belongs to some small verifiable range [1, d] with
d ∈ [1, u]. The techniques of Camenisch, Chaabouni and shelat [13] provide a solution to this prob-
lem if we increase the signer’s public key and let it consist of O(n2) elements.

We illustrate this for inexact threshold statements (namely “S and X have at most d common
attributes”) for which it is convenient to define ~X = (x1, x2, . . . , xn) = (0,−t, x̃1, . . . , x̃u). Instead of
proving equation (15) for a fully public vector ~X, the user does it in the case where x2 is committed
and (x2, . . . , xn) are public. Namely, the prover computes and discloses a Groth-Sahai commitment
~Ct = GSCom′(t, opent) to t ∈ Zp and proves that the committed t satisfies

e
(
σ6, g

−t
2 ·

u∏
j=1

g
x̃j
j+2

)
= e(g,W), (34)

using the committed witness W =
∏u+2
j=1 W

xj
j , where Wj =

∏n
k=1,k 6=j g

xj
n+1−k+j . To complete the

proof, the only problem left is to provide evidence that the value hidden by Ct falls in the range [1, d]
(since the latter is small, this extractability of t from Ct is guaranteed and everything goes through
in the proof of lemma 3 as explained by Remark 1 in appendix B) and this is where the technique
of [13] comes into play. Instead of using a single key pair (sk, pk), the signer generates exactly
u = n− 2 additional P-signature key pairs (sk1, pk1), . . . , (sku, pku) (note that all these P-signature
instances only need to sign vectors containing a single message, so that they require a commitment

32

key for an instance of (VecCom,VecOpen) where n = 1). For j = 1 to u, the secret key skj is used to
generate a set of P-signatures Σj = {sigj,1, . . . , sigj,j} on integer values {1, . . . , j} and all signatures
Σ1, . . . , Σu are then set as part of the public key. Eventually, the prover has to merely prove his
knowledge (using algorithm SigProve1) of a valid signature sigd,t on the message t ∈ Zp contained in
the commitments {~CT,j = GSCom(Tj , openT,j)}j∈{1,2,3}, where (T1, T2, T3) = (gt1, g

t, gt2n), w.r.t. the
public key pkd. In addition, the prover uses SigProve2 to demonstrate his possession of a signature
σ = (σ1, . . . , σ6, r) under pk as well as his knowledge of (Γ,W) ∈ G2 such that

e(σ6, Γ ·
u∏
j=1

g
x̃j
j+2) = e(g,W) e(T2, g2) · e(g, Γ) = 1GT (35)

By doing so, the verifier will be convinced that the committed t ∈ Zp is such that t ∈ [1, d] and
the same twist can be applied to prove inexact Hamming distance statements. We note that the
P-signature of [3] was used in a similar way to construct non-interactive range proofs in [44].

F Generic Security of the n-FlexDHE Problem

Theorem 6. Let A be an adversary in the generic group model that makes at most t group operation
queries and pairing evaluations. On inputs (g, g1, . . . , gn, gn+2, . . . , g2n) ∈ G2n such that gi = g(αi),
for i ∈ {1, 2, . . . , n, n + 2, . . . 2n}, and where α R← Z∗p, the probability that A outputs a solution
(gµ, gµn+1, g

µ
2n) ∈ (G\{1G})3, for some µ ∈ Z∗p for the n-FlexDHE Problem in symmetric bilinear

groups is bounded by O(t2/p).

Proof. We provide an analysis of the n-FlexDHE Problem in the (symmetric) generic bilinear group
model [43]. A denotes an adversary against the n-FlexDHE Problem and B the simulator that
emulates group operation using two lists of polynomials in Zq[X]: L1 = {(F1,i, ξ1,i), i = 1, · · · , t1}
and LT = {(FT,j , ξT,j), j = 1, · · · , tT } such that at step t, the following equality remains true
t1 + tT ≤ t + 2n + 1. The entries ξ1,i and ξT,j are random strings used to represent elements in G
and GT respectively. The initialization step (t = 0) sets t1 = 2n, tT = 0 and defines a list L1 of
2n+ 1 polynomials {F1,1 = 1, F1,2 = X, . . . , F1,n+1 = Xn, F1,n+3 = Xn+2, . . . , F1,2n+1 = X2n} with
corresponding random strings ξ1,i (that represents elements of the given input in G). A is given as
input the list L1 of polynomials and may request either:

– Multiplication of group elements in G: on input two representations ξ1,i and ξ1,j . B
increments t1, computes the sum F1,i+F1,j and sets F1,t1 = F1,i+F1,j . If the resulting polynomial
already appears in the list L1 for some index ` < t1, then it sets ξ1,t1 ← ξ1,`, else it chooses a
fresh random string for ξ1,t1 . Note that group operations in G result in (at most t1) univariate
polynomials of degree at most 2n.

– Pairing computation: Upon reception of a pairing operation request (consisting in two
representations ξ1,i and ξ1,j), B increments tT , computes the product of the polynomial, F1,i ·F1,j

and sets FT,tT = F1,i · F1,j . If the resulting polynomial already appears in the list LT for some
index ` ≤ tT , then it ξT,tT ← ξT,`, else it chooses a fresh random string for ξT,tT . Note that
pairing operations in GT result in polynomials of degree at most 4n2.

– Multiplication of group element in GT : B proceeds exactly as before except that group
operations are answered using LT and result in polynomials of degree at most 4n2.

33

We will evaluate later the probability that the simulation above deviates from real oracle re-
sponses. At the end, A outputs a triple (ξ1,`1 , ξ1,`2 , ξ1,`3) with 1 ≤ `i ≤ t1 for i ∈ {1, 2, 3}.
Note that A’s response is correct if the following equalities hold:{

F1,`1 ·Xn+1 − F1,`2 = 0

F1,`1 ·X2n − F1,`3 = 0

By degree considerations, it is easy to see that A cannot produce such a valid triple. Thus, the
winning probability of A is bounded by the probability that it detects deviation of the simulated
oracle from the real one. To quantify this, B chooses a uniformly and independently random
assignment for X in Zp. If the evaluations of two polynomials are equal, our simulation would
output two different representations whereas a real oracle would output the same representation.
Since polynomials are of degree at most 2n in two variables, after t queries, using the Schwartz-
Zippel lemma [46], the probability that A detects the simulation is bounded by 2n(t+2n+1)2/p.

ut

34

