
Divisible E-Cash in the Standard Model

Malika Izabachène1 and Benôıt Libert2 ?

1 Ecole Normale Supérieure de Cachan/CNRS/INRIA (France)
2 Université catholique de Louvain (Belgium)

Abstract. Off-line e-cash systems are the digital analogue of regular
cash. One of the main desirable properties is anonymity: spending a coin
should not reveal the identity of the spender and, at the same time,
users should not be able to double-spend coins without being detected.
Compact e-cash systems make it possible to store a wallet of O(2L) coins
using O(L+ λ) bits, where λ is the security parameter. They are called
divisible whenever the user has the flexibility of spending an amount
of 2`, for some ` ≤ L, more efficiently than by repeatedly spending
individual coins. This paper presents the first construction of divisible
e-cash in the standard model (i.e., without the random oracle heuristic).
The scheme allows a user to obtain a wallet of 2L coins by running
a withdrawal protocol with the bank. Our construction is built on the
traditional binary tree approach, where the wallet is organized in such a
way that the monetary value of a coin depends on how deep the coin is
in the tree.

Keywords. E-Cash, provable security, anonymity, non-interactive proofs.

1 Introduction

Introduced by Chaum [22, 23] and developed in [24, 20, 25, 40, 29], electronic cash
is the digital equivalent of regular money. It allows a user to withdraw a wallet
of electronic coins from a bank so that e-coins can be spent to merchants who
can then deposit them back to the bank.

The withdrawal, spending and deposit protocols should be designed in such a
way that it is infeasible to determine when a particular coin was spent: even if the
bank colludes with the merchant, after the deposit protocol, it should be unable
to link a received coin to a particular withdrawal protocol. At the same time,
users should not be able to covertly double-spend coins: should a cheating user
attempt to spend a given coin twice, his identity must be exposed and evidence
of his misbehavior must be given. Ideally, dishonest users should be identified
without the help of a trusted third party and, as in the off-line scenario [24], the
bank should preferably not intervene in the spending protocol between the user
and the merchant.

? This author acknowledges the Belgian Fund for Scientific Research for his “Collab-
orateur scientifique” fellowship.

Related Work. In 2005, Camenisch, Hohenberger and Lysyanskaya [10] de-
scribed a compact e-cash system allowing a user to withdraw a wallet of 2L coins
with a computational cost of O(L+λ), where λ is the security parameter, in the
spending and withdrawal protocols. Using appropriate choices [27, 28] of verifi-
able random functions [34], they also showed how to store a wallet using only
O(L + λ) bits and additionally described a coin tracing mechanism allowing to
trace all the coins of a misbehaving user. The protocol of Camenisch et al. was
subsequently extended into e-cash systems with coin endorsement [13] or trans-
ferability properties [15, 16].

The aforementioned e-cash realizations all appeal to the random oracle model
[6] – at least if the amount of interaction is to be minimized in the spending pro-
tocol – which is known not to accurately reflect world (see [19] for instance). To
fill this gap, Belenkiy, Chase, Kohlweiss and Lysyanskaya [5] described a compact
e-cash system with non-interactive spending in the standard model. Their con-
struction cleverly combines multi-block extensions of P-signatures [3] and sim-
ulatable verifiable random functions [21] with the Groth-Sahai non-interactive
proof systems [31]. Independently, Fuchsbauer, Pointcheval and Vergnaud also
used Groth-Sahai proofs [30] to build a transferable fair (i.e., involving a semi-
trusted third party) e-cash system in the standard model. More recently, Blazy
et al. [7] gave a similar construction with stronger anonymity properties.

Divisible E-Cash. In the constructions of [10], users have to run the spending
protocol N times if the amount to be paid is the equivalent of N coins. One
possible improvement is to use wallets containing coins of distinct monetary val-
ues as in [17]. Unfortunately, this approach does not allow to split individual
coins of large value. This problem is addressed by divisible e-cash systems where
users can withdraw a coin of value 2L that can be spent in several times by
dividing the value of that coin. Divisible e-cash makes it possible for users to
spend the equivalent of N = 2` (with 0 ≤ ` ≤ L) coins more efficiently than by
iterating the spending protocol 2` times. Constructions of divisible e-cash were
proposed in the 90’s [36, 38, 26, 37, 20]. Okamoto provided a practical realization
[37] that was subsequently improved in [20]. Unfortunately, these schemes are
not fully unlinkable since several spends of a given divisible coin can be linked.
To address this concern, Nakanishi and Sugiyama [35] described an unlinkable
divisible e-cash system but their scheme requires a trusted third party to un-
cover the identity of double-spenders. In addition, by colluding with the bank,
the merchant can obtain information on which part of the divisible coin the user
is spending.

In 2007, Canard and Gouget [14] designed the first divisible e-cash system
with full anonymity (and unlinkability) where misbehaving users can be identi-
fied without involving a trusted third party. Later on, Au et al. [1] came up with
a more efficient implementation at the expense of substantially weaker security
guarantees. More recently, Canard and Gouget [18] showed how to improve upon
the efficiency of their original proposal without sacrificing the original security.

Our Contribution. Prior implementations of truly anonymous divisible e-
cash all require the random oracle idealization in their security analysis. In this

2

paper, we describe the first anonymous divisible e-cash in the standard model.
Like the scheme of Belenkiy et al. [5], our construction relies on the Groth-Sahai
non-interactive proof systems [31].

Our scheme is less efficient than the fastest random-oracle-based scheme [18]
in several metrics. While the spending phase has constant (i.e., independent
of the value 2L of the wallet) communication complexity in [18], our spending
protocol requires users to transmit O(L) group elements to the merchant in the
worst case. On the other hand, due to the use of bounded accumulators [2], the
bank has to set up a public key of size O(2L) in [18]3 whereas we only need the
bank to have a key of size O(1).

Achieving divisibility without resorting to random oracles requires to solve
several technical issues. The solutions of Canard and Gouget [14, 18] associate
each wallet with a binary tree – where nodes correspond to expandable amounts –
combined with cyclic groups of distinct but related orders. Since these techniques
do not appear compatible with the Groth-Sahai toolbox, we had to find other
techniques to split the wallet across the nodes of a binary tree. In particular,
we use a different method to authenticate the node corresponding to the spent
divided coin in the tree.

As in the first truly anonymous construction of divisible e-cash [14], the
communication complexity of our spending algorithm depends on how much the
initial amount 2L has to be divided: from an initial tree of value 2L, when a
coin of value 2` has to be spent, the communication cost of the spending phase
is O(L− `). Hence, the more we want to divide the wallet into small coins, the
more expensive the spending phase is.

The downside of our e-cash construction is the complexity of the deposit
phase, where the computational workload of the bank depends on the number of
previously received coins when it comes to check that the received coin does not
constitute a double-spending. Even though the bank can be expected to have
significant computational resources (and although the double-spending checks
can be performed in parallel by clerks testing a subset of previously spent coins
each), this would be a real bottleneck in practice. For this reason, our system
is not meant to be a practical solution and should only be seen as a feasibility
result. We leave it as an open problem to build such a system with a more efficient
deposit procedure from the bank’s standpoint: as in previous constructions of
compact e-cash (e.g. [10, 5]), the bank should only have to look up the coin’s
serial number in a table of previously spent coins. It would also be interesting
to reduce the communication complexity of the spending phase so as to only
transmit a constant number of group elements.

3 The reason is that, in all known bounded accumulators, the public key has linear
size in the maximal number of accumulated values.

3

2 Background and Definitions

2.1 Definitions for Divisible E-Cash

An e-cash scheme involves a bank B, many users U and merchantsM (who can
be viewed as special users). All these parties interact together with respect to
the following protocols:

CashSetup(λ): takes as input a security parameter λ and outputs the public
parameters params.

BankKG(params, L): generates bank’s public and secret parameters (skB, pkB)
that allow B to issue wallets of up values up to 2L (we assume that L is part
of pkB). It also defines an empty database DBB for later use.

UserKG(params): generates a user key pair (skU , pkU). We denote as HU the set
of honestly generated public keys.

Withdraw
(
U(params, pkB, skU),B(params, pkU , skB)

)
: is an interactive protocol

between a user U and the bank B that allows an honest user to obtain a
coin of value 2L. The wallet W comprises the coins, the user’s secret key, a
signature from the bank on it and some state information state. The bank
debits U ’s account and stores a piece of tracing information TW in a database
T that allows uncovering the identity of double-spenders.

Spend
(
params, pkB,W , 2`, pkM, info

)
: is invoked by U to spend a coin of value

2` from his wallet and generates a proof Π that the coin is valid. The output
is the coin that includes the proof Π and some fresh public information info

specifying the transaction.
VerifyCoin

(
params, pkM, pkB, coin, v = 2`

)
: allowsM to check the validity of a

given coin and output a bit depending on whether the test is successful.

Deposit
(
params, pkB, pkM, coin, 2

`,DBB
)
: B updates the database DBB with

{(coin, flag, 2`)} where flag indicates whether coin is a valid coin of value 2`

and whether a cheating attempt is detected.

- If coin does not verify, B rejects it and sets flag = “M” to indicate a
cheating merchant.

- If coin verifies, B runs a double spending detection algorithm, using
the database DBB containing already received coins. If an overspent is
detected, the bank sets flag = “U”, outputs the two coins and reports
the double-spending.

- If the coin passes all the tests, the bank accepts the coin, sets flag =
“accept” and credits the merchant’s account.

Identify
(
params, pkB, coina, coinb

)
: the bank retrieves the double-spender’s pub-

lic key pkU using its database DBB and the two different coins.

The security model builds on the model of non-interactive compact e-cash
from [5]. An e-cash scheme is secure if it provides Correctness, Anonymity, Bal-
ance, Identification and Exculpability simultaneously.

Anonymity. Unlike the model of [14], ours adopts a simulation-based formula-
tion of anonymity (note that simulation-based definitions are often stronger than

4

indistinguishability-based ones). No coalition of banks and merchants should dis-
tinguish a real execution of the Spend protocol from a simulated one. In the secu-
rity experiment, the adversary is allowed to obtain users’ public keys, withdraw
and spend coins using the oracles QGetKey,Qwithdraw,QSpend, respectively, which
are defined below. Formally, an e-cash system is anonymous if there exists a
simulator (SimCashSetup,SimSpend) such that, for any adversary A = (A1,A2),
there is a negligible function negl : N→ R such that:

| Pr[params← CashSetup(λ); (pkB, state)← A1(params) :

AQSpend(params,pkB,·,·),QGetKey(params,·),Qwithdraw(params,pkB,·,·)
2 (state) = 1]

− Pr[(params,Sim)← SimCashSetup(λ); (pkB, state)← A1(params) :

AQSimSpend(params,pkB,·,·),QGetKey(params,·),Qwithdraw(params,pkB,·,·)
2 (state) = 1] |< negl(λ)

To formalize security against coalition of users, bank and merchants, the
anonymity game allows the adversary to generate the bank’s public key. It is
granted dynamic access to the list of oracles hereafter and has to decide whether
it is playing the real game, where the spending oracle is an actual oracle, or the
simulation, where the spending oracle is a simulator.

– QGetKey(params, j): outputs pkUj . If Uj does not exist, the oracle generates
(skUj , pkUj)← UserKG(params) and outputs pkUj .

– Qwithdraw(params, pkB, j, f): given a wallet identifier f , this oracle plays the
role of user j – and creates the key pair (skUj , pkUj) if it does not exist yet
– in an execution of Withdraw

(
U(params, pkB, skUj),A(states)

)
, while the

adversary A plays the role of the bank. The oracle then creates a wallet Wf

of value 2i.

– QSpend

(
params, pkB, f, v = 2`, pkM, info

)
: the oracle firstly checks if wal-

let Wf has been created via an invocation of Qwithdraw(params, pkB, j, f). If
not, the oracle outputs ⊥. Otherwise, if Wf contains a sufficient amount,
QSpend runs Spend

(
params, pkB,Wf , i, v = 2`, pkM, info

)
and outputs a coin

of value v from the wallet Wf . In any other case (e.g. if the expandable
amount of Wf is less than 2`), it outputs ⊥.

– QSimSpend

(
params, pkB, f, v = 2`, pkM, info

)
: if f is not the index of a valid

withdrawn wallet obtained from Qwithdraw, the oracle outputs ⊥. Other-
wise, the oracle runs a simulator SimSpend on input of public elements(
params, pkB, pkM, v = 2`, info

)
. Note that SimSpend does not use the user’s

wallet or his public key.

Balance. No coalition of users can spend more coins than they withdrew. The
adversary is a user and can withdraw or spend coins via oracles defined below.
An e-cash system provides the Balance property if, for any adversary, every value
L ∈ poly(λ), we have:

Pr [params← CashSetup(λ); (pkB, skB)← BankKG(params, L);

(qw, nd)← AQwithdraw(params,·,pkB,·)(),Qdeposit(params,pkB,DBB) : qw · 2L < nd] < negl(λ),

5

where nd is the total amount of deposited money after qd successful calls to
oracle Qdeposit (by successful, we mean that the oracle sets flag = “accept”), qw
is the number of successful calls to QWithdraw.

– Qwithdraw

(
params, pkU , skB

)
: the oracle plays the role of the bank in an exe-

cution of the Withdraw protocol, on input
(
A(states),B(params, pkU , skB)

)
,

in interaction with the adversary acting as a cheating user. At the end of the
protocol, Qwithdraw stores a piece of tracing information TW in a database T.

– Qdeposit

(
params, pkB, pkM, coin, v,DBB

)
: this oracle plays the role of the bank

while the adversary plays the role of the merchant in the protocol. The ora-
cle initializes the bank database DBB at ∅ and returns the same response as
Deposit

(
params, pkB, pkM, coin, v,DBB

)
.

Identification. Given two fraudulent but well-formed coins, the bank should
identify the double-spender. This property is defined via an experiment where
the adversary A is the double-spender and has access to a Qwithdraw oracle defined
hereafter. Its goal is to deposit a coin twice without being identified by the bank.
We denote by coina and coinb the two coins produced by A. Their corresponding
entries in DBB are of the form (coina, flaga, va, pkMa

) and (coinb, flagb, vb, pkMb
)

with coina = (infoa; ∗) and coinb = (infob; ∗), respectively. We also define a
predicate SameCoin that given two coins coina and coinb and their respective
values va and vb, outputs 1 if the bank detects a double-spending during the
deposit of coina and coinb: in the context of divisible e-cash, it means that
either coina and coinb are the same coin or that one of them, say coina, is
the result of dividing the other one (and thus va divides vb). The adversary
is successful if its coins satisfy SameCoin(coina, coinb, va, vb) = 1 but the bank
fails to identify the user using the database T of tracing pieces of information
that were collected during executions of Qwithdraw. An e-cash scheme provides
double-spenders identification if for any adversary A and any L ∈ poly(λ),

Pr [params← CashSetup(λ); (pkB, skB)← BankKG(params, L);(
(coina, va), (coinb, vb)

)
← AQwithdraw(params,·,skB,·)(params, pkB) :

(infoa; pkMa) 6= (infob; pkMb
) ∧ SameCoin(coina, coinb, va, vb) = 1

∧ VerifyCoin(params, pkMt , pkB, coint, vt) = 1 for t ∈ {a, b}
∧ Identify(params, pkB, coina, coinb) /∈ T] < negl(λ)

The oracle Qwithdraw has the same specification as in the Balance property.

Exculpability. No coalition of bank and merchants interacting with an hon-
est user U should be able to produce two coins (coina, coinb) such that Iden-
tify(params, pkB, coina, coinb) = pkU while user U never double-spent. More for-
mally, we define a game with the challenger playing the role of an honest user
and the adversary playing the role of the bank and merchants. The adversary A
is given access to oracles QGetKey,Qwithdraw,QSpend that allow it to obtain users’
keys, create wallets and spend coins. The exculpability property holds if, for any

6

PPT adversary A, we have

Pr [params← CashSetup(λ); (pkB, st)← A(params);

(pkB, coina, coinb, va, vb)

← AQSpend(params,pkB,·,·),QGetKey(params,·),Qwithdraw(params,·,·,·)(params, st);

SameCoin(coina, coinb, va, vb) = 1;

pkU ← Identify(params, coina, coinb) : pkU ∈ HU] < negl(λ),

where HU denotes the set of honest users. Oracles QGetKey, Qwithdraw and QSpend

are defined exactly as in the notion of anonymity.

2.2 F-Unforgeable Signatures

Since the e-cash construction described in the paper relies on a common refer-
ence string, the following algorithms all take as input a set of common public
parameters paramsGS. To lighten notations, we omit to explicitly write them in
the syntax hereafter.

Definition 1. A multi-block signature scheme consists of efficient algorithms
Σ = (SigSetup,KeyGen, Sign,Verify) with the following specification.

SigSetup(λ): takes as input a security parameter λ ∈ N and outputs params that
gives the length n ∈ poly(λ) of message vectors to be signed.

Keygen(params): takes as input the public parameters and outputs a key pair
(pk, sk).

Sign(sk, ~m): is a (possibly randomized) algorithm that takes in a private key sk
and a vector ~m = (m1, . . . ,mn) of messages. It outputs a signature σ.

Verify(pk, ~m, σ): is a deterministic algorithm that takes as input a public key
pk, a signature σ and a message vector ~m = (m1, . . . ,mn). It outputs 1 if σ
is deemed valid for ~m and 0 otherwise.

Definition 2 ([5]). A multi-block signature scheme Σ is F-unforgeable, for
some injective function F (.), if no probabilistic polynomial time (PPT) adversary
has non-negligible advantage in the following game:

1. The challenger runs Setup and Keygen to obtain a pair (pk, sk), it then sends
pk to A.

2. A adaptively queries a signing oracle. At each query i, A chooses a vector
~m = (m1, . . . ,mn) and obtains σi = Sign(sk, ~m).

3. The adversary A outputs a pair
(
(F (m?

1), . . . , F (m?
n)), σ?

)
and wins if: (a)

Verify(pk,m?, σ?) = 1; (b) A did not obtain any signature on the vector
(m?

1, . . . ,m
?
n).

Definition 3 ([5]). A multi-block P-signature combines an F-unforgeable multi-
block signature scheme Σ with a commitment scheme (Com,Open) and three
protocols:

7

1. An algorithm SigProve(params, pk, σ, ~m = (m1, . . . ,mn)) that generates a
series of n commitments Cσ, Cm1

, . . . , Cmn and a NIZK proof

π ← NIZPK
(
m1 in Cm1

, . . . ,mn in Cmn , σ in Cσ

| {(F (m1), . . . , F (mn), σ) : Verify(pk, ~m, σ) = 1}
)

and the corresponding VerifyProof(params, pk, Cm1 , . . . , Cmn , Cσ) algorithm.
2. A NIZK proof that two commitments open to the same value, i.e., a proof

for the relation

R = {((x, y), (openx, openy))

| C = Com(x, openx) ∧ D = Com(y, openy) ∧ x = y}.

3. A protocol SigIssue � SigObtain allowing a user to obtain a signature on
a committed vector ~m = (m1, . . . ,mn) without letting the signer learn any
information on ~m.

2.3 Bilinear Maps and Complexity Assumptions

We consider a configuration of asymmetric bilinear groups (G1,G2,GT) of prime
order p with a mapping e : G1 × G2 → GT such that: (1) e(ga, hb) = e(g, h)ab

for any (g, h) ∈ G1 × G2 and a, b ∈ Z; (2) e(g, h) 6= 1GT whenever g 6= 1G1
and

h 6= 1G2
. Since we rely on the hardness of DDH in G1 and G2, we additionally

require that no isomorphism be efficiently computable between G2 and G1.

Definition 4. The q-Hidden Strong Diffie-Hellman problem (q-HSDH) in
(G1,G2) is, given (g, u, h,Ω = hω) ∈ G2

1×G2
2 and tuples (g1/(ω+ci), gci , hci , uci)

with c1, . . . , cq
R← Z∗p, finding (g1/(ω+c), hc, uc) such that c 6= ci for i = 1, . . . , q.

Definition 5. The q-Decision Diffie-Hellman Inversion problem (q-DDHI)
in (G1,G2) consists in, given (g, g(α), . . . , g(α

q)) ∈ Gq+1
1 and η ∈ G1, deciding if

η = g1/α or η ∈R G1.

Definition 6 ([3]). The Triple Diffie-Hellman problem (TDH) in (G1,G2)
is, given a tuple (g, ga, gb, h, ha) ∈ G3

1 ×G2
2, and pairs (ci, g

1/a+ci)i=1,...,q where

a, b, c1, . . . , cq
R← Z∗p, to find a triple (gµb, hµa, gµab) such that µ 6= 0.

Definition 7. The Decision 3-party Diffie-Hellman problem (D3DH) in
(G1,G2) is, given elements (g, ga, gb, gc, h, ha, hb, hc, Γ) ∈ G4

1 ×G4
2 ×G1, where

a, b, c R← Zp, to decide if Γ = gabc or Γ ∈R G1.

2.4 Building Blocks

Non-interactive witness indistinguishable proofs. Our construction uses
Groth-Sahai proofs for pairing product equations (PPE) of the form:

n∏
j=1

e(Aj ,Yj)
n∏
j=1

e(Xi,Bi)
m∏
i=1

n∏
j=1

e(Xi,Yj)γi,j = tT ,

8

where Xi,Yj are variables in G1 and G2, respectively, and Aj ∈ G1,Bi ∈ G2 and
tT ∈ GT are constants for i ∈ [1,m] and j ∈ [1, n].

A proof system is a tuple of four algorithms (SetupGS,ProveGS,VerifyProofGS):
SetupGS outputs a common reference string (CRS) crs, ProveGS first gener-
ates commitments of variables and constructs proofs that these variables sat-
isfy the statement, and VerifyProofGS verifies the proof. GS proofs are witness-
indistinguishable and some of these can be made zero-knowledge as shown later.
The proofs satisfy correctness, soundness and witness-indistinguishability. Cor-
rectness requires that a verifier always accepts honestly generated proofs for
true statements. Soundness guarantees that cheating provers can only prove
true statements. Witness-indistinguishability requires that an efficient simulator
GSSimSetup should be able to produce a common reference string (CRS) crs′

that is computationally indistinguishable from a normal crs. When commitments
are computed using crs′, they are perfectly hiding and the corresponding non-
interactive proofs are witness indistinguishable: i.e., they leak no information on
the underlying witnesses. Zero-knowledge additionally requires the existence of
an algorithm GSSimProve that, given a simulated CRS crs′ and some trapdoor
information τ , generates a simulated proof of the statement without using the
witnesses and in such a way that the proof is indistinguishable from a real proof.

As a building block, we will use a NIZK proof of equality of committed group
elements as defined in [3, 5].

If Cx = GSCom(x, openx) and Cy = GSCom(y, openy) are Groth-Sahai com-
mitments to the group element x = y ∈ G1, the NIZK proof can be a proof that
committed variables (x, y, θ) ∈ G2

1×Zp satisfy the equations e(x/y, hθ) = 1 and
e(g, hθ)e(1/g, h) = 1GT . Using the trapdoor of the CRS, we can trapdoor open
to 1 a commitment to 0 and generate fake proofs for the latter relation. Setting
θ = 0 and θ = 1, respectively, allows to construct a valid (simulated) witness for
each of the two equations. Under the SXDH assumption, commitments cost 2
elements in the group. Thus, if the commitment to y is in G2

1, the proof above
costs 8 elements G1 and 6 in G2, 6 multi-exponentiations and 26 pairings (to
verify). This includes commitments to y ∈ Zp and hθ.

Multi Block P-signatures. In [5], a multi-block P-signature was proved F-
secure under the HSDH and the TDH assumptions. Let (p,G1,G2, GT , e, g, h)
be parameters for a bilinear map, the public parameters are then defined as
(p,G1,G2, GT , e, g, h, paramsGS, e(g, h)), where g and h are random elements of
G1 and G2 respectively. The public key and the private key are defined to be
pk = (u, U = gβ , Ũ = hβ , {Vi = gai , Ṽi = hai}ni=1) and sk = (β,~a = (a1, . . . , an)),
where u R← G1 and for random scalars β, a1, . . . , an. To sign a vector of message
~m = (m1, . . . ,mn), the signer chooses r R← Zp such that r 6= −(β +

∑n
i=1 aimi)

and computes σ = (g1/β+r+
∑n
i=1 aimi , hr, ur). Verification of a signature σ =

(σ1, σ2, σ3) on some block ~m is done by checking whether

e
(
σ1, Ũ · σ2 ·

n∏
i=1

Ṽ mii

)
= e(g, h) and e(u, σ2) = e(σ3, h).

9

As shown in [5], the above scheme can be augmented with the following P-
signature protocols.

SigProve(params, pk, σ, ~m): parse the signature σ as (σ1, σ2, σ3) and the vector
~m as (m1, . . . ,mn). To commit to an exponent mi ∈ Zp, compute Groth-
Sahai commitments of hmi and umi as

(Ci,1, Ci,2, Ci,3) = Com
(
mi, (openmi,1, openmi,2, openmi,3)

)
=
(
GSCom(hmi , openmi,1),

GSCom(umi , openmi,2),GSCom(Ṽ mii , openmi,3)
)
.

Generate an auxiliary variable θ = 1 ∈ Zp with its own commitment Cθ =
GSCom(θ, openθ). Then, generate commitments {Cστ }3τ=1 to {στ}3τ=1 and
give a NIZK proof that

e(gθ, h) = e
(
σ1, Ũ · σ2 ·

n∏
i=1

Ṽ mii

)
,

e(u, σ2) = e(σ3, h),

θ = 1

e(g, Ṽ mii) = e(Vi, h
mi), e(u, hmi) = e(umi , h) for i ∈ {1, . . . , n}

We denote the complete proof by

πsig =
(
{Cστ }3τ=1, π

sig
1 , πsig2 , πsigθ , {πsigmi,1, π

sig
mi,2
}ni=1

)
.

Note that πsig1 is a proof for a quadratic equation and requires 4 elements

of G1 and 4 elements of G2. Other equations are linear: each of πsig2 and

{πsigmi,2}
n
i=1 demands 2 elements of G1 and 2 elements of G2 whereas proofs

{πsigmi,1}
n
i=1 only takes two elements of G1 each since all variables are in

G2. The NIZK property stems from the fact that, on a simulated CRS, a
commitment to 0 can be trapdoor opened to 1. For this reason, except for
the equation θ = 1 (for which one can simply equivocate the commitment),
all other proofs can be simulated using the witnesses 1G1

, 1G2
and θ = 0.

VerifyProof(params, pk, πsig, (C1, . . . , Cn)) Works in the obvious way and re-
turns 1 if and only if the proof πsig generated by SigProve is convincing.

EqComProve(params, pk, x, y) The protocol for proving that two commitments
open to the same value employ the usual technique already used in [3, 5] and
is reviewed section 2.4.

SigIssue(sk, (C1, . . . , Cn)) � SigObtain(params, pk, ~m, {(Ci, openi)}ni=1) is a se-
cure two-party protocol between the issuer and the receiver where the latter
obtains a signature on a committed vector of messages. As suggested in [5],
this can be done using the 2-party protocol of [32] for computing a cir-
cuit on committed inputs. Another option would be to use the two-party
computation protocol from [4] that relies on homomorphic encryption.

Theorem 1 ([5]). If the HSDH and the TDH assumptions hold in (G1,G2),
the scheme is F-unforgeable w.r.t. the injective function F (m) = (hm, um).

10

3 Construction of Divisible E-cash

Known approaches for divisible e-cash [37, 35, 15, 18] make use of a binary tree
with L + 1 levels (for a monetary value of 2L) where each node corresponds
to an amount of money which is exactly one of half the amount of its father.
Double-spenders are detected by making sure that each user cannot spend a coin
corresponding to a node and one of its descendants or one of its ancestors.

In these tree-based constructions, one difficulty is for the user to efficiently
prove that the path connecting the spent node to the root is well-formed. In [14,
18], this problem is solved using groups of distinct order: [14] uses a sequence of
L+1 groups G1, . . . ,GL+1 of prime order pν where Gν is a subgroup of Z?pν−1

for
ν = 1, . . . , L+ 1. The solution of [18] uses L+ 2 bounded accumulators (one for
each level of the tree and one for the whole tree) so as to only use two distinct
group orders. The use of groups of distinct order (and double discrete logarithms
in [14]) is hardly compatible with Groth-Sahai proofs and, in our system we need
to find a different technique to prevent users from spending coins associated with
a node and one of its ancestors in the same tree.

3.1 General Description of the Scheme

No coin is spent One coin is spent

Fig. 1. Binary tree for spending one coin in a wallet of 24 coins

Our construction uses the tree-based approach. Each wallet W consists of a
divisible coin of value 2L, for some L ∈ N, and the complexity of the spending
phase depends on the depth of the node in the tree W : the deeper the node is, the
more expensive the spending phase will be. When an honest user U with key pairs
(pkU , skU) interacts with the bank B, he obtains a wallet W = (s, t, skU , σ, state)
consisting of the bank’s signature σ on the vector (s, t, skU) where s, t are seeds
for the Dodis-Yampolskiy PRF [28]. In our notation, state is a variable indicating
the availability of coins.

To spend a coin of value v = 2` (with ` ≤ L) in the tree, the user U determines
the next node corresponding to an unspent coin at height `: the root of the tree
is used if the user wants to spend his entire wallet at once whereas the leaves
correspond to the smallest expandable amounts. Each node will be assigned

11

a unique label consisting of an integer in the interval [1, 2L+1 − 1]. A simple
assignment is obtained by labeling the root as x0 = 1 and the rightmost leaf as
2L+1 − 1, all other nodes being considered in order of appearance, from the left
to the right and starting from the root.

In order to construct a valid coin, the user has to choose a previously unspent
node of label xcoin at the appropriate level and do the following: (1) Prove
his knowledge of a valid signature on committed messages (s, t, skU) and his
knowledge of skU . (2) Commit to the PRF seeds via commitments to the group
elements (S, T) = (hs, ht). (3) Commit to the path that connects xcoin to the
root and prove that commitments pertain to a valid path. (4) Evaluate a coin
serial number YL−` = g1/(s+xcoin) where the input is the label of the node to be
spent. (5) Generate NIZK proofs that everything was done consistently. (6) Add
some material that makes it impossible to subsequently spend an ancestor or a
descendant of xcoin without being detected.

At step (1), we use the multi-block P-signature scheme to sign the block
(s, t, skU). Using the proof produced by SigProve in the P-signature, we can
efficiently prove knowledge of a signature on committed inputs in NIZK.

The trickiest problem to solve is actually (6). If {x0, . . . , xL−`} denotes the
path from the root x0 to xL−` = xcoin, for each j ∈ {0, . . . , L − `}, we include
in the coin a pair (Tj,1, Tj,2) where Tj,1 = hδj,1 , for some random δj,1

R← Zp, and
Tj,2 = e(Yj , Tj,1), where Yj = g1/(s+xj) is the value of the PRF for the label xj .
In addition, U must add a NIZK proof that the pair (Tj,1, Tj,2) was correctly
calculated. By doing so, at the expense of ns pairing evaluations at each deposit
(where ns denotes the number of previously spent coins), the bank will be able
to detect whether a spent node is in the path connecting a previously spent node
to the root. At the same time, if U does not overspend at any time, the coins he
spends remain computationally unlinkable.

By itself, the pair (Tj,1, Tj,2) only renders cheating attempts evident. In order
to expose the public key pkU of double spenders, U is required to add a pair
(Tj,3, Tj,4) = (hδj,2 , pkU · e(Yj , Tj,3)) at each node of the path: by doing so, pkU
is exposed if U subsequently spends a node above xcoin in the path. However,
we have to consider a second kind of double-spending, where the two coins
involve the same tree node xcoin = xL−`. To deal with this case, we require U to
additionally use the seed t of his wallet and the merchant’s data R and compute
another security tag ZL−` = gskU gR/(t+xL−`). The latter will be used to identify
cheating users in the same way as in [10].

Finally, in order to obtain the exculpability property (and prevent a dishonest
bank from wrongly accusing the user of double-spending coins), we need to add
yet another pair of the form (hδj,3 , e(g0, h

skU) · e(Yj , hδ3)), where g0 ∈ G1 is part
of the CRS, in such a way that framing the user requires to compute e(g0, h

skU)
and solve a (computational) Bilinear Diffie-Hellman instance.

In order to solve problem (5), we need to generate non-interactive proofs for
a number of pairing-product equations. Since the notion of anonymity requires
to build a simulator that emulates the prover without knowing any witness,
it means that we need NIZK proofs for pairing product equations on multiple

12

occasions. Fortunately, the specific equations fall into the category of equations
for which NIZK proofs are possible at the cost of introducing extra variables.
For this reason, we will have to introduce auxiliary variables for each pairing
product equations.

Example. Suppose that, in his wallet L = 4, U uses the seed s to spend the
amount of v = 22. The left part of Figure 1 represents the state of the wallet
when no coin has been spent. In the rightmost tree, the black node indicates the
target node xcoin of value v and greyed nodes are those that cannot be spent
any longer once the black node was spent.

3.2 Construction

We now describe our divisible e-cash system where the withdrawal protocol
allows users to obtain a wallet of a divisible coin of value 2L.

CashSetup(λ): chooses bilinear groups (G1,G2,GT) of order p > 2λ and genera-
tors g, g0

R← G1, h R← G2. It also generates a Groth-Sahai common reference
string paramsGS = {g, h, ~u1, ~u2, ~v1, ~v2} for the perfectly soundness setting.
The algorithm also selects a collision-resistant hash function H : {0, 1}∗ →
Zp. The output is params := {(G1,G2,GT), g0, paramsGS , H}.

BankKG(params, L): runs SigSetup(λ, n) with n = 3 to obtain a key pair (sk, pk)
for the P-signature of section 2.4. The bank’s key pair is defined to be
(skB, pkB) = (sk, pk) and pkB consists of

pkB =
(
u, U = gβ , Ũ = hβ , {Vi = gai , Ṽi = hai}3i=1, L

)
.

UserKG(params): the user U defines his key pair as (skU , pkU = e(g, h)skU) for
a random skU

R← Zp.
Withdraw

(
U(params, pkB, skU),B(params, pkU , skB)

)
: U and B run the following

interactive protocol:

1. The user U first picks s′, t′ R← Zp at random and computes perfectly
hiding commitments Cs′ = Com(s′, opens′), Ct′ = Com(t′, opent′) and
CskU = Com(skU ; openskU). The user sends (Cs′ , Ct′ , CskU) to B and pro-
vides interactive witness indistinguishable proofs that he knows how to
open (Cs′ , Ct′). In addition, he provides an interactive zero-knowledge4

proof that CskU is a commitment to the private key skU that was used
to generate pkU .

2. If the proofs verifies, B picks (s′′, t′′)← Z2
p which are sent to U .

3. The user U sets s = s′+s′′ and t = t′+t′′, updates commitments Cs′ and
Ct′ into commitments Cs = Com(s, opens) and Ct = Com(t, opent). The
user sends (Cs, Ct) to the bank with a proof that these commitments
were properly calculated.

4 The zero-knowledge property will be needed in the proof of weak exculpability.

13

4. U and B jointly run the protocol

SigIssue(params, sk, (Cs, Ct, CskU))

� SigObtain(params, pk, (s, t, skU), (opens, opent, openskU))

in such a way that U eventually obtains B’s signature σ on (s, t, skU).
The user U stores the wallet W = (s, t, skU , σ, state), where state = ∅.

5. B records a debit of value v = 2L on U ’s account. It stores the transcript
of the protocol and the tracing information pkU in its database T.

Spend
(
params, pkB,W = (s, t, skU , σ, state), 2`, pkM, info

)
: Let us assume that

U wants to spend a coin of value 2` for the wallet W of initial value 2L.
Using state, U determines the label xcoin ∈ [1, 2L+1 − 1] of the first node
corresponding to an unspent coin at height ` in the tree associated with the
wallet. Let {x0, x1, . . . , xL−`} denote the path connecting node xcoin = xL−`
to the root x0 = 1 of the tree. The user U computes S = hs and T = ht and
conducts the following steps.

1. U has to prove that he knows a signature σ on the committed vector
(s, t, skU) ∈ Z3

p. To this end, he first generates commitments and proofs(
{CS,i}3i=1, {CT,i}3i=1, {CU,i}3i=1, π

sig
)
← SigProve(params, pk, σ, (s, t, skU)).

The output of SigProve includes {CU,i}3i=1, which are commitments to

(LU,1, LU,2, LU,3) = (hskU , uskU , Ṽ skU3), and {CS,i, CT,i}3i=1, that con-

tain (LS,1, LS,2, LS,3) = (hs, us, Ṽ s1) and (LT,1, LT,2, LT,3) = (ht, ut, Ṽ t2),
respectively. In addition, U computes CKU = GSCom(hskU , open′U) as
a commitment to KU = hskU and generates a NIZK proof πKU ←
EqComProve(LU,1,KU) that CKU and CU,1 are commitment to the same
value. This amounts to prove that

e(LU,1/KU , h
θ) = 1GT and θ = 1, (1)

for some variable θ ∈ Zp contained in Cθ = GSCom(θ, openθ) and that
will be re-used in subsequent steps of the spending protocol.

2. For j = 0 to L− ` do the following.

a. If j > 0, generate a commitment CXj = GSCom(hxj , openxj) to
Xj = hxj and a proof that xj = 2xj−1 + bj , for some bit bj ∈ {0, 1}.
To this end, generate the commitments Cbj = GSCom(gbj , openbj)
and C ′bj = GSCom(hbj , open′bj) as well as a NIZK proof πxj ←
EqComProve(CXj , C

′
Xj

) that CXj and C ′Xj = C2
Xj−1

· C ′bj open to

the same value. To prove that bj ∈ {0, 1}, U generates a NIZK proof
(πbj ,1, πbj ,2) for the pairing-product equations e(gbj , h) = e(g, hbj)
and e(gbj , hbj) = e(gbj , h), which guarantee that b2j = bj , so that
bj ∈ {0, 1}.

b. If j < L − `, generate a commitment CYj = GSCom(Yj , openYj) to

the PRF value Yj = g1/(s+xj) as well as a NIZK proof πYj that
it satisfies e(Yj , LS,1 · Xj) = e(g, h), where Xj = hxj . This con-
sists of a commitment CΦYj to a variable ΦYj ∈ G1 and a proof

14

that e(ΦYj , LS,1 ·Xj) = e(g, h) and e(Yj/ΦYj , h
θ) = 1GT . Then, pick

δj,1, δj,2, δj,3
R← Zp and compute

Tj,1 = hδj,1 , Tj,2 = e(Yj , h)δj,1

Tj,3 = hδj,2 , Tj,4 = pkU · e(Yj , h)δj,2 ,

Tj,5 = hδj,3 , Tj,6 = e(g0, h
skU) · e(Yj , h)δj,3 .

Generate NIZK proofs (πj,T1
, πj,T3

, πj,T5
) that (Yj ,KU) satisfy

Tj,2 = e(Yj , Tj,1)

Tj,4 = e(g,KU) · e(Yj , Tj,3) (2)

Tj,6 = e(g0,KU) · e(Yj , Tj,5).

These proofs require new commitments {CΦj,k}k=1,3,5, CΦ′Yj
and

CΦ′′Yj
to auxiliary variables {Φj,k}k=1,3,5, Φ′Yj , Φ

′′
Yj
∈ G1 respectively

and proofs for relations

Tj,2 = e(Yj , Φj,1),
Tj,4 = e(g,KU) · e(ΦY ′j , Φj,3)

Tj,6 = e(g0,KU) · e(ΦY ′′j , Φj,5),

e(Yj/ΦY ′j , h
θ) = 1GT ,

e(Yj/ΦY ′′j , h
θ) = 1GT ,

{e(gθ, Tj,k/Φj,k) = 1GT }k∈{1,3,5}.

c. If j = L − `, compute the serial number YL−` = g1/(s+xL−`) and
generate a NIZK proof πYL−` that e(YL−`, LS,1 · XL−`) = e(g, h).
This proof consists of a commitment CΦYL−` to ΦYL−` ∈ G1 and

proofs for equations

e(ΦYL−` , LS,1 ·XL−`) = e(g, h), e(YL−`/ΦYL−` , h
θ) = 1GT .

Compute ZL−` = gskU ·gR/(t+xL−`), where R = H(info, pkM) ∈ Zp,
and a NIZK proof πZL−` that ZL−` is well-formed. This requires
new Groth-Sahai commitments CWL−` , CΦWL−` to auxiliary variables

WL−` = g1/(t+xL−`), ΦWL−` = g1/(t+xL−`) and a proof that:

e(g,KU) · e(WL−`, h
R) = e(ZL−`, h),

e(WL−`, LT,1 ·XL−`) = e(g, h)

e(WL−`/ΦWL−` , h
θ) = 1GT .

Finally, update state into state′ = state ∪ {(xcoin)} and output the coin

coin =
(
{CS,i}3i=1, {CT,i}3i=1, {CU,i}3i=1, CKU , πKU , π

sig,

{CXj , Cbj , C ′bj , πxj , πbj ,1 πbj ,2}
L−`
j=1 ,

{(Tj,1, Tj,2, Tj,3, Tj,4, Tj,5, Tj,6), CYj , CΦYj , C
′
ΦYj

, C ′′ΦYj
,

{CΦj,k}k∈{1,3,5}, πYj , πj,T1 , πj,T3 , πj,T5}L−`−1j=0 ,

YL−`, ZL−`, CΦYL−` , CWL−` , CΦWL−` , πYL−` , πZL−` , info
)

15

VerifyCoin
(
params, pkM, pkB, v = 2`, coin

)
: parse coin as above. Return 1 iff all

proofs verify.

Deposit
(
params, pkB, pkM, coin, 2

`,DBB
)
: parse coin as above and perform the

same checks as VerifyCoin. Then, define DB′B = DBB∪{(coin, flag, 2`, pkM)}
where the value of flag depends on whether coin is a valid coin of value 2`

and whether a cheating attempt is detected.

- If coin does not properly verify, B sets flag = “M” to indicate a cheating
merchant.

- If coin properly verifies, the bank B runs the following test. For each en-
try (coins, flags, 2

`s , pkMs
) ∈ DBB, where s = 1 to |DBB|, B parses coins

as above. If (infos, pkMs
) = (info, pkM), B sets flag = “M”. Other-

wise, from coins, it extracts the path {(Ts,j,1, Ts,j,2, Ts,j,3, Ts,j,4)}L−`s−1j=0 ,
the serial number YL−`s ∈ G1 and the tag ZL−`s ∈ G1. It also parses
coin to extract the path {(Tj,1, Tj,2, Tj,3, Tj,4)}L−`−1j=0 , the serial number
YL−` ∈ G1 and the tag ZL−`. If ` < `s and TL−`s,2 = e(YL−`s , TL−`s,1),
B sets flag = “U”, outputs coins and coin and reports a double-spending.
Likewise, if ` > `s and Ts,L−`,2 = e(YL−`, Ts,L−`,1), B also sets flag =
“U” and outputs coins and coin. Finally, if ` = `s, B sets flag = “U” if
and only if YL−` = YL−`s .

- If coin verifies and no double-spending is detected, B sets flag = “accept”
and credits the account of pkM by the amount of 2`.

After the above tests, the updated database DB′B supersedes DBB.

Identify
(
params, pkB, coina, coinb

)
: on input of fraudulent coins coina and coinb,

the bank B can identify the double-spender as follows.

1. Extract infoa, {(T (a)
j,1 , T

(a)
j,2 , T

(a)
j,3 , T

(a)
j,4)}L−`a−1j=0 , (Y

(a)
L−`a , Z

(a)
L−`a) ∈ G2

1 from

coina. Also, parse coinb to retrieve infob, {(T (b)
j,1 , T

(b)
j,2 , T

(b)
j,3 , T

(b)
j,4)}L−`b−1j=0

and (Y
(b)
L−`b , Z

(b)
L−`b) ∈ G2

1.

2. If `b > `a, recover pkU as pkU = T
(a)
L−`b,4/e(Y

(b)
L−`b , T

(a)
L−`b,3). If `b < `a, pkU

can be obtained as pkU = T
(b)
L−`a,4/e(Y

(a)
L−`a , T

(b)
L−`a,3). In the case `a = `b,

we must have Y`a = Y`b . Then, B computes Ra = H(infoa, pkMa
),

Rb = H(infob, pkMb
) and then κ = (Z

(a)
L−`a/Z

(b)
L−`b)

1/(Ra−Rb), which

allows recovering gskU = Z
(a)
L−`a/κ

Ra and thus pkU = e(gskU , h).

The security of the scheme relies on the collision-resistance of H and the
intractability assumptions recalled in Section 2.3. More precisely, we state the
following theorem for which a proof is given in the full version of the paper.

Theorem 2. Assuming that H is a collision-resistant hash function and that
the SXDH, D3DH, TDH, D3DH, qw-HSDH and the 2L+2-DDHI assumptions
where qw denotes the number of Qwithdraw queries all hold in (G1,G2), our e-cash
scheme provides anonymity, balance, identification and weak-exculpability.

The most difficult part of the security proof is the proof of anonymity. More
precisely, when it comes to build a simulator, we need to simulate NIZK proofs

16

for pairing product equations of the form (2), which is non-trivial. Indeed, as
noted in [31], this is only known to be possible when the target element of the
equation (which lives in GT) can be written as a pairing of known elements of
G1 and G2. The problem is that, in equations like (2), some pairing values have
to be gradually replaced by uniformly random values of GT . To deal with this
problem, we appeal to the D3DH assumption in a similar way to [33]. Namely,
the D3DH input element Γ , which is either gabc or a random element of G1,
is available as a “pre-image” of the target pairing value and makes it possible
to simulate proofs for pairing product equations at the expense of introducing
auxiliary variables.

References

1. M. H. Au, W. Susilo, Y. Mu. Practical Anonymous Divisible E-Cash from
Bounded Accumulators. In Financial Cryptography 2008, LNCS 5143, pp. 287–
301 , 2008.

2. M. H. Au, Q. Wu, W. Susilo, Y. Mu. Compact E-Cash from Bounded Accumu-
lator. In CT-RSA’07, LNCS 4377, pp. 178–195, 2007.

3. M. Belenkiy, M. Chase, M. Kohlweiss, and A. Lysyanskaya. P-signatures and
noninteractive anonymous credentials. In TCC’08, LNCS 4948, pages 356–374,
2008.

4. M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya,
H. Shacham. Randomizable Proofs and Delegatable Anonymous Credentials. In
Crypto’09, LNCS 5677, pp. 108–125, 2009

5. M. Belenkiy, M. Chase, M. Kohlweiss, and A. Lysyanskaya. Compact E-Cash and
Simulatable VRFs Revisited. In Pairing’09, LNCS 5671, pp. 114–131, 2009.

6. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM CCS’93, pp. 62–73, 1993.

7. O. Blazy, S. Canard, G. Fuchsbauer, A. Gouget, H. Sibert, J. Traoré. Achieving
Optimal Anonymity in Transferable E-Cash with a Judge. In Africacrypt 2011,
LNCS 6737, pp. 206–223, 2011.

8. D. Boneh, C. Gentry, B. Waters. Collusion Resistant Broadcast Encryption with
Short Ciphertexts and Private Keys. In Crypto’05, LNCS 3621, pp. 258–275, 2005.

9. X. Boyen and B. Waters. Full-domain subgroup hiding and constant-size group
signatures. In PKC’07 , LNCS 4450, pp. 1–15, 2007.

10. J. Camenisch, S. Hohenberger, A. Lysyanskaya. Compact E-Cash. In Eurocrypt’05,
LNCS 3494, pp. 302–321, 2005.

11. J. Camenisch, S. Hohenberger, A. Lysyanskaya. Balancing Accountability and
Privacy Using E-Cash. In SCN’06, LNCS 4116, pp. 141–155, 2006.

12. J. Camenisch, M. Kohlweiss, C. Soriente. An Accumulator Based on Bilinear Maps
and Efficient Revocation for Anonymous Credentials. In PKC’09, LNCS 5443, pp.
481–500, 2009.

13. J. Camenisch, A. Lysyanskaya, M. Meyerovich. Endorsed E-Cash In IEEE Security
& Privacy’07, pp. 101–115, 2007.

14. S. Canard, A. Gouget. Divisible E-Cash Systems Can Be Truly Anonymous. In
Eurocrypt’07, LNCS 4515, pp. 482–497, 2007.

15. S. Canard, A. Gouget, J. Traoré. Improvement of Efficiency in (Unconditional)
Anonymous Transferable E-Cash. In Financial Cryptography 2008, LNCS 5143,
pp 202–214, 2008.

17

16. S. Canard, A. Gouget. Anonymity in Transferable E-cash. In ACNS’08, LNCS
5037, pp. 207–223, 2008.

17. S. Canard, A. Gouget, E. Hufschmitt. A Handy Multi-coupon System. In
ACNS’06, LNCS 3989, pp. 66–81, 2006.

18. S. Canard, A. Gouget. Multiple Denominations in E-cash with Compact Trans-
action Data. In Financial Cryptography 2010, LNCS 6052, pp. 82–97, 2010.

19. R. Canetti, O. Goldreich, S. Halevi. The Random Oracle Methodology, Revisited.
In STOC’98, pp. 209–218, ACM Press, 1998.

20. A.-H. Chan, Y. Frankel, Y. Tsiounis. Easy Come - Easy Go Divisible Cash. In
Eurocrypt’98, LNCS 1403, pp. 561–575, 1998.

21. M. Chase, A. Lysyanskaya. Simulatable VRFs with Applications to Multi-theorem
NIZK. In Crypto’07, LNCS 4622, pp. 303–322, 2007.

22. D. Chaum. Blind Signatures for Untraceable Payments. In Crypto’82, pp. 199–203,
1982.

23. D. Chaum. Blind Signature Systems. In Crypto’83, p. 153, 1983.
24. D. Chaum, A. Fiat, M. Naor. Untraceable Electronic Cash. In Crypto’88, LNCS

403, pp. 319–327, 1988.
25. D. Chaum, T. Pedersen. Transferred Cash Grows in Size. In Eurocrypt’92, LNCS

658, pp. 390–407, 1992.
26. S. D’Amiano, G. Di Crescenzo. Methodology for Digital Money based on General

Cryptographic Tools. In Eurocrypt’94, LNCS 950, pp. 156–170, 1994.
27. Y. Dodis. Efficient Construction of (Distributed) Verifiable Random Functions. In

PKC’03, LNCS 2567, pp. 1–17, 2003.
28. Y. Dodis, A. Yampolskiy. A Verifiable Random Function with Short Proofs and

Keys. In PKC’05, LNCS 3386, pp. 416–431, 2005.
29. M. K. Franklin, M. Yung. Secure and Efficient Off-Line Digital Money. In

ICALP’93, LNCS 700, pp. 265–276, 1993.
30. G. Fuchsbauer, D. Pointcheval, D. Vergnaud. Transferable Constant-Size Fair

E-Cash. In CANS’09, LNCS 5888, pp. 226–247, 2009.
31. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups.

In Eurocrypt’08, LNCS 4965, pp. 415–432, 2008.
32. S. Jarecki, V. Shmatikov. Efficient Two-Party Secure Computation on Committed

Inputs. In Eurocrypt’07, LNCS 4515, pp. 97–114, 2007.
33. B. Libert, D. Vergnaud. Group Signatures with Verifier-Local Revocation and

Backward Unlinkability in the Standard Model. In CANS’09, LNCS 5888, pp.
498-517, 2009.

34. S. Micali, M.-O. Rabin, S. Vadhan. Verifiable Random Functions. In FOCS’99,
pp. 120–130, 1999.

35. T. Nakanishi, Y. Sugiyama. Unlinkable Divisible Electronic Cash. In ISW’00,
LNCS 1975, pp. 121–134, 2000.

36. T. Okamoto. K. Ohta. Universal Electronic Cash. In Crypto’91, LNCS 576, pp.
324–337, 1991.

37. T. Okamoto. An Efficient Divisible Electronic Cash Scheme. In Crypto’95, LNCS
963, pp. 438–451, 1991.

38. J.-C. Pailles. New Protocols for Electronic Money. In Auscrypt’92, LNCS 718, pp.
263–274, 1992.

39. T. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In Crypto’91, LNCS 576, pp. 129–140, 1991.

40. Y. Tsiounis. Efficient Electronic Cash: New Notions and Techniques. PhD Thesis,
Northeaster University, Boston, 1997.

18

