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Abstract. We study independence of events in the unfoldings of Petri nets, in particular indirect
influences between concurrent events: Confusion in the sense of Smith [11] and weak interference.
The role of structural (conflict) clusters is investigated, and a new unfolding semantics based on
clusters motivated and introduced.
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1. Introduction

A central issue in the semantics of concurrent systems is the modeling of independence of events; it
is the exploitation of independence that allows stubborn set or unfolding methods etc. to reduce the
state space. In partial order semantics, the non-ordering or concurrency relation is a natural candidate
for independence; yet situations described by Petri and others (see [10, 11]) as confusion show that
events concurrent with an event e may nonetheless influence the occurrence of e. This article studies
independence in the context of occurrence nets, which are the semantic domain of Petri net unfoldings.
An unfolding- based definition of confusion, reflecting that of Smith [11], is given. We introduce and
study weak interference and concurrency relations based on cluster subnets; the study of clusters also
leads to a modified unfolding semantics whose events are given by the actions (steps) of clusters.

The two examples in Figure 1 illustrate contexts in which confusion arises: Transitions A and C' in Net
I are concurrent, yet the order of firing matters. In fact, if C fires first, B is never enabled, and C never
had to face a conflict; firing A first creates (or reveals) a conflict between B and C, which C may lose.
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In Net /1, Transition B is clearly in conflict with both A and C; and just as clearly, A is concurrent with
C, i. e. if both fire, they may fire in any ordering. Yet if either of them fires first, the situation for the
other is no longer the same, for B is now disabled and there is no conflict anymore.

This kind of sitvation, al-
though intuitively comprehensi-
ble, is not captured by temporal
logics, even those adapted to par-
tial order semantics such as ISTL
or the logics introduced in [6];
the indirect influence consists in
changes of necessities and possi-
bilities not expressible by modal
operators. We will provide re-
lational descriptions and investi- Figure 1. Confusions in Petri nets
gate manifestations of these weak
causalities in the framework of occurrence nets semantics for systems modeled by Petri nets.

2. Notations and Definitions

By Ny, we denote the set of non-negative integers and by IN that of the positive integers; Z is the set
of (all) integers. For a set £, we denote the power set of £ as JB(€). For z € £ and a binary relation
RCExXE letR = {(y,2) | (z,y) € R} andR[z] := {y € X | (z,y) € R}; by extension, if
p C &, write R[p] for the union of all R[z] forz € u.

A Petri net (with arc weights) is a tple of the form N' = (P, T, W, M). Here, P = P(N) isa
set of places and 7" = T'(N) a set of transitions such that P N T = @; we set X (V) := P(N) UT(N).
Further,

W:(PxT)U(T xP)) = Ny

is the arc weight function. We write W, for the vector

(W(g,p))ger € N}

of the input weights and W), for the vector

(W(p,q))ger € Ny !

of the output weights of p € P, respectively. The inner product of Z\7l is (-,-) : ZITl xZITl 5 Z. A
marking of A is a multiset of places; My : P — [Ny is the initial marking of N.

The set F of arcs of N is given by F := W=1(IN). A net N' = (P, T, W, My) such that W takes
0 and 1 as its only values, is called ordinary; we will note ordinary nets as N' = (P, T, F, Mp). For
every net N' = (P, T, W, My), one obtains an ordinary net N' = (P, T, F, Mp) by taking F as above
and “forgetting” W.
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Transitions may fire one by one or in multi-sets; any transition multiset § : 7 — INj is called a step.

A step # is enabled in a marking M, denoted M —0>, iff, for all p € P, M has enough tokens on p to
satisfy the sum of demands from 6 concerning p:

M(p) > (W, ,0). (1)
0 transforms M into M , denoted M 25 M, iff M -2 and for all p € P

M'(p) = [Mp)-W;.0)] +Wp.0). @

0 is maximal for M if M -% (or M -5 M) and 6 satisfies Condition CMAX:

(CMAX) VgeT3IpeP: M(p) < (W, ,0) + W(p,7);

denote this as My = (or My 2 M ). In fact, Condition (CMAX) holds iff no further firing instance
of any transition g can be added to @ without rendering (1) false for some p.

A marking M is reachable from My, denoted My =3 M, iff M = My or there exists a firing
sequence

[ 9 0n
Mo—l)Ml—z-}...—?Mn_I_]:M

If, in addition, M;_ —ii} M; foralli € {1,...,n}, then we say that M is reachable from My under
the maximal step rule, denoted My == M. Write MO%M (My ity M) iff (i) My # M, and (ii)
My = M (or My — M, respectively).

Occurrence nets are the semantic domain for branching unfoldings of Petri Nets. Set <:= F* and
<= F*; the conflict relations ic and # are given by:

1. Forqy,q2 € T, q1 ic ga iff g1 # gz and F~'[q1] N F~"[go] # 0.
2. Forz,y € X, z # y iff there exist i, g2 € T such that g; ic g2, 1 < z, and g2 < y.

ForUd C X, we write max. (min) for the set of maximal (minimal) elements of i w.r.t. <, respectively.
Now, we are ready to define:

1. An ordinary net N' = (P, T, F, My) is called a pre-occurrence net iff:

(a) no backward branching: |[F~![p]| <1 forallp € P;

(b) Acyclicity: —(z < z) forall z € X(N); and

(c) absence of auto-conflict: —(z+#z) for all z € X(N);

(d) With ¢g = min, the initial marking reduces to the set ¢y, i.e. My = 1U,.

2. A causal net (or CN) is a pre-occurrence net such that |F[p]| < 1 forall p € P,

3. An occurrence net (ON) is a pre-occurrence net that, in addition, is
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(a) prefix - finite or well-founded: < contains no infinite decreasing sequence, and
(b) place-initialized: ¢y C P.

Since we will only study unmarked occurrence nets, we will henceforth omit the marking and describe
occurrence nets as, e.g, N = (P,T,F,cp). Setid := {(z,2) : ¢ € PUT}, li:=<U<"! and
co:=(PUT)?— (liU#Uid). For a binary relation R, denote as kens of R its maximal cliques, and
the set of R-kens as &(R). The clements of €(N) := £(co) are called cuts, and those of the set

P (N) := €(N) N PB(P) are place-cuts. In particular, cg is a place-cut. It is easily verified that < is a
partial order, and that li, co, ic and # are symmetric and irreflexive. Moreover, (PUT) x (T UP) is
the disjoint union of id, li, co, and #; finally, a pre-occurrence net N is a CN iff # = .

Unfolding semantics reflects both concurrent and branching behavior of a general marked Petri net
in the structure of an occurrence net. There are different rules for these unfoldings; Figure 6 shows two
of them (cf. [3, 6, 7]) together with a third one that will be introduced below. In any case, unfoldings are
occurrence nets generated inductively by a net system, reflecting the initial marking by the initial cut and
representing subsequent firings of transitions by events and subsequent place markings by conditions.
We will discuss below the motivation for introducing a new semantics; first, however, a closer look at the
structural relations of occurrence nets and their interpretation.

3. Concurrent Runs and Weak Interference

Let N be an occurrence net. With co and li as above, let b=
(co U Ii) and (N) := R(x<). Then the elements of Q(N') are
called the runs of N In [6] (where runs were called branches),
the following was shown (Lemma 2.5 there):

Lemma 3.1. If N = (P,T,F,c) is an ON, the runs of N/
cover N/. Moreover, every run w spans a causal subnet of N
that contains ¢g.

Figure 2. On occurrence sets

If N is the unfolding of a net AV, then its runs represent maxi-
mal processes of N ([3, 4]).

We will study here interference between concurrent events guided by the following idea: for every
node x and run w in an occurrence net, w is either compatible with x, that is x € w, or excludes x. For
any set u C PU T, denote

A, = {weQWN)|pCuw}, (3

where parentheses of singletons are omitted, i.e. we write 2 for 2y, 24, is called the occurrence
set of u. Denote the complements of node sets x4 and occurrence sets 2 as u¢ := (P U T) — u and
A := Q(N) — 2, respectively. Applying Definition (3), on casily obtains the following fundamental
properties:

Lemma 3.2. In the above setting, let A,B,C C(PUT)andz,y € (PUT).
L. Qlcn = Q(N} and Q(N) =Ry = QL#[A],
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2. ACB=%UAg C A4,
3, Apns =AU A and A 48 = A4 NAg,
4, z<y=>UA, CAzandzH#y = A NA, =,
5. If 4 C (P UT) contains no #-pair, then 2, # 0;
6. for all nodes z, y,
A — Ay, = U %
uF Y, ZHT

[f 24, C Az, then the occurrence of z entails that of y, not neccessarily afrer the occurrence of z: in
Figure 2, o < [ and A4 = Ap. Morcover, “entails or is entailed by” is a strictly bigger relation than
causality (li) here: one has 3 coy and 23 = 2,. In Net I of Figure 1, %Ag C 2, and g # U,, whereas
Ao € Ayand A, Z A,. Let us dwell on indirect influence such as exerted by A on C. We express
this influence by conditional relations given some A C (P U T) (or, more precisely, the occurrence set
Ax). LetU,V, X C (PUT). We write

(U~ xV) iff Ay # 0 and Ayuy NAp =0,
read: “U forces V given X, The complement I{ is interpreted by 2y, i.c.
UMX\:) iff Apyy NAp =0 and a’\éxv iff Ay ﬂﬂ’_lu N ﬁv =

note that i~ ¢V is not equivalent to —(U~» x V).
In Figure 2, B~sqy iff U contains w;. Part [ of Figure 1 shows a more subtle influence:

A~apgB  but ﬂ(AM{a.,b})-

The following properties of ~+, are easily verified:

Lemma 3.3. Letl;, X C (PUT),i € IN. Then:
. ~aey =n~gs
2. If Axiy, = 0, then ~ 2 [U] = 0
3. ~»y is a partial order on P(P U T).
We say that X interferes (weakly) with { iff there exists A C (P U T) such that
U~y A and - (U~ A).

In the case of singletons, z trivially interferes with y if z#y; interference may (but need not) occur
if z and y are causally ordered. Since these relations are intended to express causal influence, there is
nothing surprising in that. However, weak interference is possible in concurrency pairs: in Net I of
Figure 1, E interferes weakly with D since D~+gC but —(D~+.,C), and yet obviously E co D. — Weak
interference can thus be viewed as a generalization of causality as given by the partial ordering. As it
is a property involving the space of all runs, it is not local; structural criteria for the detection of weak
interference are yet to be found.
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4. Confusion and Clusters

We now lock at another form of weak dependency between nodes, confusion. A confusion is a situation
in which an event e, is in conflict with another event ez such that this conflict is influenced by some e3
considered independent of e;. As the examples of Figure 1 show, such influence can be exerted either
by solving the conflict via another conflict (Example IT), or revealing the hidden conflict (Example
I); in terms of structural relations, this leads to either #- or li-connections. We propose the following
general definition of confusion in terms of occurrence net structures (compare Smith’s [11] definition for
elementary net systems):

Definition 4.1, Letin, de C (P UT) x (P U T) be binary relations on 7. Then the ternary confusion
relation cfy, is given by

cf, = {(4,B,C)eT3:(AdeB) A (BicC) A (AinC)}.

Here, “ic” is as above, and “in” and “de” are interpreted as independence and dependence relations,
respectively; in particular, “in” can be taken as co and “de” as li. Extending the terminology of Smith
[11], we will speak of symmetric in-confusion f{or the situations (i.e. triples) in ;; and of asymmetric

in-confusion for those in cfif’. Setting in = co, we obtain the two cases of Figure 1 as ¢f$° for I and cfg

for I1, respectively. Below, we will see that for a suitably “strong” choice of in, ¢fi" := cfg U cfil is
empty. — First, we note that asymmetric confusion is always of the “forward” type as shown in Figure 1:

Lemma 4.2, cfi® = f?.
Proof: Let B < A and B ic C; then A # C, which contradicts A co C. O

So confusion is a local conflict whose resolution depends on the logical or temporal behavior of a con-
current process.

We note that there is a connection between inter-
ference and confusion: for simplicity, take three nodes
z,y, 2, where z interferes with y in such a way that
y~+zz but =(y~+pz). Then this entails that the net con-
tains either net I'I of Figure 1, i.e. Symmetric con-
fusion, or the subnet of net I of Figure 1 spanned
by {b,c,d,e, A, B,C}, that is, asymmetric confusion,
with z,y, z possibly but not necessarily in the roles of
A, B, C, respectively. On the other hand, not all confu-
sions entail interference: take the net obtained from I by
eliminating E and G. Then one has ¢f (4, B, C); still,
there is no interference since A4 = A, .

So, weak interference and confusion are incompara-
ble relations, although both occur together “often™. We
remark here that, in a broader perspective, the notion of
interference is a degenerate case of stochastic non-independence for some suitable probability measure;
investigating this trace here would lead too far afield.

We will next see that a more restrictive strong concurrency relation excludes confusion.

Figure 3.  On strong concurrency
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Definition 4.3. Letz € (P U T). The (conflict) cluster! (z) of z is the smallest set satisfying
1. =z € y(z);
2.YgeT:FlgNvy(z) #0 = q € y(z)
3. Vpe P: Flp|Ny(z) # 0 = p € y(z)

A cluster is a set ¥ C X(N) for which there exist z € X (N) such that v = ~(z); we denote the set
of clusters of A" as I'(A). Note that clusters in Free Choice nets [2] contain at most one place; in event
graphs, clusters contain at most one place and one transition. It is therefore outside thesce classes that
clusters are most interesting, and may lead to “non-free choices”.

From Definition 4.1, it is clear that
different choices of independence relations
yield different notions of confusion. We
will now study the result of regarding clus-
ters as units, i.e. assume that whatever de-
vice is used to resolve a conflict, that de-
vice must have knowledge of and control
over the cluster in which the conflict arises.
Then, e.g., A and C in Figure | are not in-
dependent at all, since their “controllers”
are not: in I, they belong to the same clus-
ter, and in 17, A causally precedes the clus-
ter y(C). We therefore introduce the fol-
lowing more restrictive notions of indepen-
dence.

Figure 4.  Clusters v, and 3 are not convex

Definition 4.4. Let 1,72 € I'(N) and 2o € X; write A [co] Biff B x 72 C co. Two nodes 1, z9 €
(P UT) are cluster concurrent, denoted z; sc zg, iff y(z) [co] y(z2).

Note that sc is strictly stronger than co (sc C co and sc # co); it eliminates both asymmetric and
symmetric confusion:

Theorem 4.5. cfy” = cfy = 0.
Proof: B ic C implies y(B) = v(C); so both A < B and A# B contradict A sc C. O

This means that we were, in a way, wrong to “be confused” about the independence between A and B:
those events are weakly causally connected.

Another re-enforcement of co can be obtained in the following way. Recall that a subset A of a poset
(€,<)is convex iff forallz,y € Aandv € £,z < v < yimplies that v € A; equivalently, iff all
vsuch that < [v]N A # @ and <! [u] N A # 0 belong to A. As Figure 4 shows, clusters need not be
convex; so we define:

"For simplicity, we only speak of clusters
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Figure 5. Ccc’s not partially ordered (left); weak interference (right)

Definition 4.6. For a net
N = (P, T,W, M) and z € X, the convex (conflict) cluster (ccc) y(z) of z is the smallest set satis-

Bt
l. z €y(z);
2. VgeT:Flglny(z) # 0= q €~(z)
3. Vp e P: Flp]noy(z) # 0= p € y(2):
4. Allv € (P UT) such that < [v] N y(z) # 0 and <~ [v] Ny(z) # B belong to (z).
A cec is a sety C X(N) for which there exist z € X (N) such that v = v(z).

The following definition is analogous to that of sc:

Definition 4.7. Lety;,v» € and zo € X'; write A [co] Biff (B % 2) C co. Twonodes 21, z2 € (PUT)
are cce concurrent, denoted z1 cc zg, iff y(z1) [co] y(z2).

In Figure 3, g5 sc gg and ¢ sc g4, but —(gy sc gg) since g3 < g7 and hence —y;[co]ys; also, (g s¢ g9)
since gg # g7. Since all clusters here are convex, sc can be replaced by cc in the above. In general,
however, sc and cc need not coincide: in Figure 4, A sc F, but A is not in cc with F’; in fact, the entire
structure in Figure 4 forms a single ccc. Note that 7y, is a cce itself; this shows that cce’s need not be
disjoint, as opposed to clusters.

Now, cc is stronger than sc since every cluster vy is contained in some ccc. But even cc does not
exclude weak interference: Consider the net on the right hand side of Figure 5. Obviously, A cc D (and
thus A sc D), yet D~ 4B while —(D~+¢B).
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5. Cluster Processes

So far, we have investigated in-
dependence and clusters that arise
in net unfoldings; we have neither
looked into clusters of the origi-
nal net, nor modified the unfold-
ing semantics; now we do both,
Note first that Definition 4.3 is
applicable to non-occurrence nets
as well; this is not the case for
Definition 4.6 since it requires an
order relation, which is not given
in general on an arbitrary net
(quasi-orders lead to a “convex-
ity” notion that is far too restric-
tive). So, denote the set of clus-
ters of N as T'(N); again, clusters
are pairwise disjoint. However,
clusters may have forms that are
not even possible in occurrence
nets: consider the net in Figure 7.
Its structure is a cluster, but it can never occur in an occurrence net since d#d, which is excluded.

We propose to unfold a Petri net in such a way that the events of the unfolding represent instances
not necessarily of single transitions — which, as we saw, may not be as independent of one another as the
unfolding suggests — but of steps. However, using global steps would be unwise from a computational
point of view, and also ignore the actual independence of events at a great distance (in terms of causal
influence) from one another. So, rather than looking at al/l steps enabled in some global state of the net,
examine the local steps within each cluster; they can be carried out independently of that in other clusters
and allow to calculate the global steps as their products. So we consider the cluster viewpoint as on an
intermediate scale between the local and the global one.

Consider first the existing unfolding semantics, illustrated in Figure 6. While Engelfriet’s branching
processes 3], shown on the bottom of the left hand side of Figure 6, are driven, informally speaking,
by “token trajectories” and permit concurrency of events that do not compete for any individual token,
branching executions (Vogler [13], Esparza, Romer and Vogler [5], Haar [7]), bottom right in Figure 6,
regard places as variables whose values are given by the number of tokens; transitions then read from and
write on these variables. As a result, auto-concurrency is excluded, i.e. no transition can fire more than
once at a time, even if the marking would allow several concurrent firings; also, transitions accessing the
same place may not act jointly.

The third point of view, top right in Figure 6, allows for an unfolding semantics with collective token
view and auto-concurrency of transitions. It is based on cluster steps defined as follows:

®
©
© g

Figure 6. Three semantics

Definition 5.1. For v € I'(N), a y-step is a multi-set over 7 (7y) and thus a step of A; denote as O(7)



268 S. Haar/ Clusters, Confusion and Unfoldings

the set of y-steps, and set

W) == |J em.
YET(AN)

If 6 satisfies M, == (or M}, == M") for the restriction M = M- 1p(,) of M (0, then 6 is maximal
relative «y for M, written as M = (or M 2 m ). Further, we will denote as

y = NP
7 = {peP|Fp]ny#0}

the sets of inpur and output places of a cluster v, respectively.

Definition 5.2. Let N' = (P, 7, W, Mp) be a net and N = (P, T,F,¢p) an occurrence net. II =
(N, m,7,)) is called a branching cluster process or BC process of A iff the mappings 7 : P — P,
A:P = Nyand1: T = G(N) satisfy

1. forall p € ¢, A(p) = Mo(m(p)):
2. forall gy, g, € T, (F '] = F @] AT(q) = 7(G2)) = T = s
3. forall ,, 5y € P: By co Py = 7(B,) # m(By);

4. forall g € T it holds that for any p € (°7(g) U 7(g)°), there exist pin, Pour € P such that:

 {pH) NF8 = {pin},
7~ ({p}) N F[0] {Pout}
Mpin) = (W,,6),

MPouw) = (Apin) = (6,9)) + (W, 6),

Il

where 8 := 7(g); compare the firability condition (1) and the firing equation (2).
Further:
1. if Nis a CN, I is called a cluster process or C process of ;
2. if for all g the step 6 := 7(q) satisfies (compare CM AX):
Vi€ (TNy(@): IpeP: Mpin) < (W,,6) +W(p,g),
then IT is a max- cluster step process of the respective type, i.e. BCM or CM.

The mappings 7 and 7 correspond to the structural unfolding, taking conditions to places and events
to steps; since conditions represent states of places, we also need the mapping A to assign token numbers
to conditions,
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By induction, one shows as in [3] that to each cut ¢ of the cluster unfolding corresponds a unique
reachable marking M (c) of NV, such that for two cuts ¢;, ¢z and an event g, one has

= (1 — F'@)) UF[g] iff M(c1)) 28 M(cp).

The construction of cluster processes requires that each place (p) be represented in every instance, even
with no tokens: one then has some p with (p) = p and A(p) = 0. This creates a lot of “extra” conditions
in the sense that they «can be avoided wunder the two other semantics.
Moreover, conditions representing the same place p before and af-
ter some step @ may have identical values of A, which indicates
A =" that @ did not change the number of tokens on p, irrespective of
‘ - whether p was ignored by @ or whether non-vanishing effects of 6
J_,_\-"‘-) on p cancelled out. So the event g representing an instance of the
B~ cluster step 7(g) indicates also that the system made the “choice”
. j-’ff\? to fire exactly 7(g) and no further transition instance; and, in par-
~b v € ticular, to not use the tokens left over by 7(g) and to ignore the
places that do not contribute to 7(g); and these negative actions or
non-actions are exhibited in the unfoldings just as actions are. —
Of course, some of the choices just described may be forced by the enabling conditions. In Figure 6, the
events not admitted in the BCM process but admitted in the BC process are drawn in dashed lines.

It may be desirable, for conciseness of the unfolding, to omit the extra conditions just described; we
will not go into the details of the modifications needed to do this.

Note that max- cluster step semantics is halfway between the (global) maximal step firing rule and
the single transition firing rule; every maximal step is expressible as a concatenation of maximal cluster
steps, but not vice versa. Similarly, not every firing sequence can be simulated by a max- cluster step
sequence: in Figure 7, Transition 8 will never be enabled if only max- cluster steps are allowed, since o
will consume both tokens on a with two simultaneous firings in the same step. But under single transition
firing— and a fortiori under general cluster step firing—, a sequence af is possible.

BC processes allow to ignore token history and identity, i.e. they share the advantage of branching
executions over branching processes; moreover, they allow auto-concurrency and simultaneous firing of
transitions in structural conflict, which is important to reflect the actual time consummation of concurrent
runs in the context of timed transitions; compare Winkowski’s approach ([14, 15, 16]).

Let us look once more at independence in this unfolding. Suppose steps 6, € ©(vy;) and 82 € O(7s)
are jointly enabled in Mj. They will be represented by concurrent events in the unfolding iff

Figure 7. On step semantics

viNy® =0 and °yoNy° =0 Y]

In fact, suppose that p € °y; N ¥2°; then @, and @, are in conflict over which of them accesses p first,
0 to (possibly) take tokens from p or #» to (possibly) put tokens on p. As a result, the unfolding will
contain a branching between (at least) two runs, one seeing first an instance of #; and then of 6, the
other an instance of @y before one of 2. Hence (4) defines an independence relation, based on which
traces over G(N) are generated by the system dynamics.

There are still other forms of independence that are yet to be formalized, such as stochastic indepen-
dence, which requires an appropriate probabilistic model that we shall not develop here, and Informa-
tion independence: This means roughly that the decisions leading to z and y have no effect (however
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indirect) on those leading to y and vice versa. For this, it has to be understood what decision in a complex
distributed system means, a question beyond the scope of this article.
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