
Chapter 15
Diagnosis with Petri Net Unfoldings

Stefan Haar and Eric Fabre

15.1 Motivation

Large systems or softwares are generally obtained by designing independent mod-
ules or functions, and by assembling them through appropriate interfaces to obtain
more elaborate functions and modules. The latter can in turn be assembled, up to
forming huge systems providing sophisticated services. Consider for instance the
various components of a computer, telecommunication networks, plane ticket reser-
vation sofwares for a company, etc. Such systems are not only modular in their
design, but often multithreaded, in the sense that many events may occur in parallel.

From a discrete event system perspective, such modular or distributed systems
can be modeled in a similar manner, by first designing component models and then
assembling them through an adequate composition operation. A first approach to
this design principle has been presented in Chapter 5 (see Section 5.5): composition
can be defined as the synchronous product of automata. The transitions of each
component carry labels, and the product proceeds by synchronizing transitions with
identical labels, while all the other transitions remain private. This construction is
recalled in Fig. 15.1 on the simple case of three tiny automata. The size of the
resulting system is rather surprising, given the simplicity of the three components!
And this deserves a detailed study.

One first notices the classical state space explosion phenomenon: the number of
states in the global system is the product of the number of states of their components
(here 2×2×3 = 12). So, the number of states augments exponentially fast with the
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Fig. 15.1 Three components (top) as labeled automata, and their synchronous product
(bottom)

number of components. Second, the number of transitions explodes as well: pri-
vate transitions of a component are cloned many times (see transition (a,u,b) of the
first component for example), and creates the so-called concurrency diamonds, rep-
resenting different possible orderings of transitions (from state ade, one can reach
bc f by firing either uβ or β u).

These phenomena motivate alternate methods of assembling components in order
to make explicit the concurrency of transitions. Petri nets are a natural tool toward
this objective. Reconsidering the above example under the form of Petri nets, one
gets Fig. 15.2. Components are recast into simple PNs with a single token, and their
assembling amounts to gluing transitions with identical labels. The explosion both
in states and in transitions is now kept under control, and the token semantics of PN
makes explicit the fact that several transitions are simultaneously firable. Observe
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in passing that the PNs obtained in this manner are safe: each place contains at most
one token. Moreover, here the number of tokens is constant and characterizes the
number of automata that were assembled.

Did all difficulties of large systems vanish with this simple modeling trick? Not
really. When considering runs of (safe) Petri nets, one may still face explosive phe-
nomena. In the usual sequential semantics, trajectories are modeled as sequences
of events. So, one recovers the difficulty that different interleaving of concurrent
events correspond to different trajectories. For example, trajectories ux and xu both
lead from the inital state ace to state bc f , but correspond to two distinct trajectories.
While it is clear that the exact ordering in which the private events u and x of the
first and third component respectively does not really matter.
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Fig. 15.3 Two trajectories of the PN in Fig. 15.2, as partial orders of events. ‘Time’ (or
precedence, or causality) is oriented from top to bottom

To avoid the explosion in the number of possible runs of a large concurrent sys-
tem, people soon realized the the parallelism, or the concurrency, also had to be
handled in the description of trajectories. The first ideas in this direction came from
Mazurkiewicz traces (not treated here), which consist in establishing an equivalence
relation between sequences of events that only differ by the ordering of their concur-
rent events. A related idea is to directly represent runs as partial orders of events,
rather than sequences. Fig. 15.3 illustrates this idea for the PN of Fig. 15.2. This
representation encodes the causality of events, as derived by the use of resources
(tokens), but discards any unnecessary timing information. The run on the left, for
example, encodes that events v and β occur after the first α , but their order is un-
specified. These simple five events partial order stands for five possible sequences,
obtained as different interleaving of concurrent events (exercise).

Such true concurrency semantics, which handle time as partially ordered, offer
many advantages. The first one being to keep under control the explosion due to the
intrinsic parallelism of events in large distributed systems. But it also allows one
to model that some global knowledge on the system may be unaccessible. It is a
common place that the knowledge of global time, or of global state, may be un-
reachable in distributed asynchronous systems. This idea was already illustrated in
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Chapter 5 in the case of distributed observations: if a sensor is placed on each com-
ponent, the events observed locally by each sensor may be totally ordered, but the
exact interleaving of observations collected on different sensors can not (always) be
recovered. Therefore, one should also be able to represent distributed observations
as partial orders of observations, rather than sequences.

This chapter aims at introducing the main concepts that make possible working
with partial orders of event, or true concurrency semantics. It first recalls the notion
of (safe) Petri net, and then introduces occurrence nets, a compact data structure
to handle sets of runs, where runs are partial orders of events. It then examines
how diagnosis can be performed with such semantics, by relating partially ordered
observations to possible runs of a Petri net. As for automata, the approach extends to
distributed systems. The chapter closes on the notion of diagnosability, which takes
a new meaning in this context.

15.2 Asynchronous Diagnosis with Petri Net Unfoldings

Nets and homomorphisms. A net is a triple N = (P,T,F), where P and T are
disjoint sets of places and transitions, respectively, and F ⊂ (P× T)∪ (T×P) is
the flow relation. 1 In figures, places are represented by circles, rectangular boxes
represent transitions, and arrows represent F; Fig. 15.4 shows two nets. For node
x ∈ P∪T, call •x � {x′ | F(x′,x)} the preset, and x• � {x′ | F(x,x′)} the postset of
x. Let < be the transitive closure of F and � the reflexive closure of <; further, let
[x] � {x′ | x′ � x} be the prime configuration or cone of x, and [x] � [x]\{x} the
pre-cone of x.

A net homomorphism2 from N to N′ is a map π : P∪ T �−→ P′ ∪ T ′ such that
(i) π(P) ⊆ P′, π(T) ⊆ T ′, and (ii) π|•t : •t → •π(t) and π|t• : t• → π(t)• induce
bijections, for every t ∈ T.

Petri Nets. Let N = (P,T,F) be a finite net. A marking of net N is a multi-set
m : P→ N. A Petri net (PN) is a pair N = (N,m0), where m0 : P→ N is an initial

marking. Transition t ∈ T is enabled at marking m, written m
t−→, iff •t � m, where

we interpret •t as the multi set whose value is 1 on all preplaces of t, and 0 otherwise.
If m

t−→, then t can fire, leading to m′=(m−•t)+ t• (in the multi-set interpretation);

write in that case m
t−→ m′. The set R(m0) contains m0 and the markings of N

reachable through the transitive closure
+−→ of −→.

Only safe nets are considered in this article; the net on the left-hand side of
Fig. 15.4 is safe. If m(p)> 0, we will draw m(p) black tokens in the circle represent-
ing p. A Petri net N = (N,m0) is safe if for all m∈R(m0) and p∈ P, m(p)∈ {0,1}.

1 Only ordinary nets are considered here, i.e. with arc weights 0 or 1.
2 There exist several notions of morphisms for nets and for Petri nets, which are needed e.g.

to formalize composition of nets; see [27, 19, 18, 6, 17] and the references therein.
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Fig. 15.4 A Petri net (left) and a prefix of its unfolding (right)

Semantics. The behavior of Petri nets can be recorded in either an interleaved or a
concurrent fashion. To formalize this, we introduce Occurrence Nets (due to [28])
and Branching Processes. Occurrence nets are characterized by a particular struc-
ture. In a net N = (P,T,F), let <N the transitive closure of F, and �N the reflexive
closure of <N . Further, set t1#imt2 for transitions t1 and t2 if and only if t1 
= t2 and
•t1∩•t2 
= /0, and define # = #N by

a # b⇔ ∃ta, tb ∈ T : [(ta#imtb) ∧ (ta �N a)∧ (tb �N b)] .

Finally, define concurrency relation co = co N by setting, for any nodes a,b ∈
P∪T,

a co b ⇐⇒ ¬(a � b) ∧ ¬(a # b) ∧ ¬(b < a) .

Definition 15.1. A net ON = (B,E,G) is an occurrence net if and only if it satisfies

1. �ON is a partial order;
2. for all b ∈ B, |•b| ∈ {0,1};
3. for all x ∈ B∪E, the set [x] = {y ∈ B∪E | y �ON x} is finite;
4. no self-conflict,i.e. there is no x ∈ B∪E such that x#ONx;
5. the set cut0 of �ON-minimal nodes is contained in B and finite.

In occurrence nets, the nodes of E are called events, and the elements of B are
denoted conditions. The right-hand side of Fig. 15.4 shows an occurrence net.

Occurrence nets are the mathematical form of the partial order unfolding seman-
tics for Petri nets [30]; although more general applications are possible, we will
focus here on unfoldings of safe Petri nets only.
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A branching process of safe Petri net N = (N,m0) is a pair β = (ON,π), where
ON = (B,E,G) is an occurrence net, and π is a homomorphism from ON to N such
that:

1. The restriction of π to cut0 is a bijection from cut0 to the set m0 � {p ∈
P : m0(p) = 1}, and

2. for every e1,e2 ∈ E, if •e1 =
•e2 and h(e1) = h(e2) then e1 = e2.

Branching processes β1 = (ON1,π1) and β2 = (ON2,π2) for N are isomorphic iff
there exists a bijective homomorphism h : ON1→ ON2 such that π1 = π2 ◦ h. The
unique (up to isomorphism) maximal branching process βU = (ONU ,πU ) of N
is called the unfolding of N . A canonical algorithm (see [30] for details) for con-
structing the unfolding of N = (P,T,F,m0) proceeds as follows: For any branch-
ing process β = (ONβ ,πβ ) of N = (P,T,F), with ONβ = (Bβ ,Eβ ,Gβ ), denote as
PE(β ) ⊆ T×Pwrset(B) the set of possible extensions of β , i.e. the set of the pairs
(t,W) such that

• W is a co-set of ONβ , i.e. for a,b ∈W, either a = b or a co b,
• •t = πβ (W),
• Eβ contains no event e such that πβ (e) = t and •e = W.

Now, let cut0 � m0×{ /0} and initialize β = (cut0, /0, /0); recursively, for given β =
(ONβ ,πβ ) with ONβ = (Bβ ,Eβ ,Gβ ), compute PE(ONβ ) and replace:

Eβ by Eβ ∪PE(ONβ ),

Bβ by Bβ ∪{(P,e) | e ∈ PE(ONβ ),p ∈ πβ (e)
•}, and

Gβ by Gβ ∪
{
(b,(t,W)) | (t,W) ∈ PE(ONβ ),b ∈W

}

∪
{
(e,(P,e)) | e ∈ PE(ONβ ),p ∈ πβ (e)

•} .

We will assume that all transitions t ∈ T have at least one output place, i.e. t• is not
empty.

Occurrence nets give rise to a specific kind of partially ordered set with conflict
relation that is known in computer science as event structure.

Definition 15.2 (compare [28]). A prime event structure is a tuple E = (E,�,#,λ ),
where E = ‖E ‖ is the support, or set of events of E , and such that

1. �⊆ E×E is a partial order satisfying the property of finite causes i.e. setting
[e]� {e′ ∈ E | e′ � e}, one has for all e ∈ E, |[e]|< ∞;

2. # ⊆ E×E an irreflexive symmetric conflict relation satisfying the property of
conflict heredity, i.e.

∀ e,e′,e′′ ∈ E : e # e′ ∧ e′ � e′′ ⇒ e # e′′. (15.1)

Events e,e′ ∈ E are concurrent, written e co e′, iff neither e � e′ nor e′ < e nor e # e′

hold. If co is the empty relation, we call E sequential.
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One notices quickly that occurrence nets form particular cases of event struc-
tures. The canonical association of an event structure to an occurrence net ON is by
restricting � and # to the event set E, ”forgetting” conditions.

Sequential and Nonsequential behavior. In the net on the left-hand side of
Fig. 15.4, the transition sequence αδγζ is enabled; so is the sequence αγδζ , and it
is immaterial to us which of the two sequences actually occurs; both lead to the same
final marking (which is identical with the initial marking), and the same actions are
performed, only in different order.

We therefore would like to use a unifying way to reason about such collections
of firing sequences without having to examine each individual one. One way of
capturing the equivalence up to permutation of independent events is developed in
the theory of Mazurkiewicz traces, see [15, 26]. We will use another relation, which
includes also the marking equivalence and which is provided by the concept of
configuration: a unique partially ordered set that represents in a unique and compact
way all enabled interleavings of a set of events. Let us formalize this.

Prefixes and Configurations. The set of causes or prime configuration of e ∈ E is
[e] � {e′ | e′ � e}, as defined above. A prefix of E is any downward closed subset
D ⊆ E, i.e. such that for every e ∈ D, [e] ⊆ D. Prefixes of E induce, in the obvious
way, subevent structures of E in the sense of the above definition. Denote the set
of E ’s prefixes as D(E ). Prefix c ∈ D(E ) is a configuration if and only if it is
conflict-free, i.e. if e ∈ c and e#e′ imply e′ 
∈ c. Denote as C (E ) the set of E ’s
configurations. Call any ⊆-maximal element of C (E ) a run of E ; denote the set of
E ’s runs as Ω(E ), or simply Ω if no confusion can arise.

In Fig. 15.4, the leftmost branch, with events labeled β ,γ,β , is an example of a
configuration.

Every finite configuration c terminates at a cut, i.e. a ⊆-maximal co-set, which
we denote cutc. The mapping c �→ cutc is bijective; for each cut cut, the union of the
cones of all conditions in cut yield the unique configuration c such that cut = ccut.
Moreover, one has the following two correspondences:

If c is a configuration of UN with N = (N,m0), then every occurrence sequence
σ obtained as a linear order extension, i.e. an interleaving, of the partial order �c
yields a firable transition sequence of N . Conversely, every firable transition se-
quence of N corresponds to a linear order extension of some configuration of UN .
To sum up: the nonsequential executions of N are in one-to-one correspondence
with the configurations of U (N ). We will therefore speak of N ’s configurations
and write C (N )� C (UN ) and Ω(N )� Ω(UN ).
• For every reachable marking m of N , there exists at least one cut cut of U (N )

such that ‖π(cut)(p) = m(p)‖ for all p ∈ P, and for the unique configuration c such
that cutc = cut, execution of c takes m0 to m; write m0

c−→ m for this. Conversely,
every finite configuration c corresponds to a unique reachable marking m(c) given
by m(c)� π(cutc). We call configurations such that m(c) = m(c′) marking equiva-
lent, and denote this by c≡m c′.
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15.3 Asynchronous Diagnosis

The fundamental challenge is the same as in the case of finite state machines: cor-
relation of the observation λ ∈ A1∗ with the system model, and thus extract those
runs that are compatible with the observation, i.e. whose image under the observa-
tion mask λ agrees with λ . To this end, one lets the observation steer the evolution
of the system model, by synchronizing with observable transitions. Formally, this
is ensured via a synchronous or Labeled Product: Let N1 = (P1,T1,F1,m1

0) and
N2 = (P2,T2,F2,m2

0) be two Petri nets, with associated labellings λ1 : T1→A1 and
λ2 : T2→ A1 into the same label alphabet A1. The λ -synchronized product of N1

and N2 is the Petri net N1×N2 � (P,T,F,m0), where

1. PV = P1�P2,
2. for i ∈ {1,2}, Tε

i � {t ∈ Ti | λ (t) = ε},
3. T12 � t{t ∈ T1 | λ (t) 
= ε},
4. Fε �

⋃2
i=1(Fi∩Pi×Tε

i )∪
⋃2

i=1(Fi∩Tε
i ×Pi),

5. F12 �
⋃2

i=1(Fi∩Pi×T12)∪
⋃2

i=1(Fi∩T12×Pi),
6. TV � Tε

1 �Tε
2 �T12 and FV � Fε �F12,

7. m0 � m1
0 +m2

0

Figure 15.5 shows the product of a system model N and a Petri net model of a
partially ordered alarm pattern A . The unfolding of this product is shown on the
right-hand side; it exhibits the behavior of N steered by the observation A . Un-
folding UN ×A thus contains exactly those behaviors that explain at least a prefix
of A ; the full explanations are highlighted as κ1 and κ2 in the figure.

Note that, the product of two 1-safe Petri nets is a 1-safe Petri net. Moreover, in
perfect analogy with the synchronous product of finite automata, the semantics of
the product projects into the semantics of the two factors; i.e., if ΠNi denotes the
operation of erasing, from any prefix of UN , all arcs and conditions that are not
mapped to parts of Ni, one has (see [10]):

∀ c ∈ C (N ) :

{
ΠN1 ∈ C (N1)
ΠN1 ∈ C (N1)

(15.2)

Remark: The above construction can be formalized as a pullback in appropriate
categories.

The advantage is that results such as 15.2 can be derived from much stronger
results which imply that the unfolding of the pullback of two safe nets is isomorphic
to the pullback of the two unfoldings. The theory necessary to detail these algebraic
tools is beyond the scope of this chapter; see [6, 7, 18] . In the asynchronous di-
agnosis setting, observations are partially ordered. The representation of alarm pat-
terns thus generalizes with respect to the linear automaton model above. Figure 15.5
shows , in the center, an alarm pattern represented as an occurrence net A (without
conflict), with concurrently observed alarm labels; for instance, the β -labeled event
on top is concurrent with the α-labeled one to its right. Time flows top-down; we
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Fig. 15.5 The methodology for unfolding-based Diagnosis. From left to right: A Petri net
model N of a system, taken from Fig. 15.4; the marked places are represented by thick-lined
circles. Then, a partially ordered observation (alarm pattern) A consisting of two disjoint
totally ordered chains of event labels β → ρ1→ β and α → ρ2→ α , is represented as
a small Petri net (arrows point downward) with added places between successive events.
Then, one forms the product N ×A by synchronizing transitions that bear the same label.
Finally (right), the unfolding UN ×A contains exactly two explanations for A , namely the
configurations κ1 and κ2. The events not belonging to either of these explanations are shown
in gray; they cannot be extended into any explanation of A and can be pruned away

have sometimes omitted arrows. The central step in the diagnosis procedure now
consists in computing computing UN ×A, shown on the right hand side.

Remark: In the example, this unfolding is finite, as opposed to the unfolding of
the system net N . This is an important feature, which requires a strong observabil-
ity property (compare Section 15.5):

• There must not exist any cyclic firing sequence m1
t1−→ m2

t2−→ . . .mn
tn−→ m1

between reachable markings in N such that λ (ti) = ε for all i ∈ {1, . . . ,n}.

In fact, otherwise UN ×A will contain at least one infinite branch, since the transi-
tions of any such loop can fire indefinitely, unrestrained by A. Conversely, if any
loop in the behavior of N must contain at least one observable transition, then it
can be performed only a finite number of times since A is finite. If this require-
ment cannot be met, another remedy consists in truncating branches that produce
two nested marking-equivalent configuration that are observation-equivalent; such
a pair κ ⊆ κ ′ with κ ′\κ 
= /0 need not be explored further. Cutoff criteria like this,
have been exploited by [29] and others to ensure all analysis can be carried out on
a complete finite prefix; 1-safeness of the system model ensures that for any fixed
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Fig. 15.6 Illustrating the correlation of an alarm pattern A on the right with a linearly
ordered alarm pattern (right-hand side)

observation A , a prefix of finite size of UN ×A is sufficient to find essentially all
explanations — up to the above surgery to remove unobservable loops — for A .

By relation (15.2), we deduce that the set of configurations that explain A is
obtained as the following prefix of UA×N :

DA � ΠN

(
Π−1

A (A)
)
, (15.3)

where as above ΠA is the operation of removing all non-A parts from UA×N .
Therefore, we have as diagnosis set

diag(A) = {c ∈ C (N ) : ∃ c̄ ∈ C (UA×N ) : c⊆ΠN (c̄)} . (15.4)

Notice that diag(A) is in general a proper superset of Ω(UA×N ). For the final
diagnosis task it remains, once diag(A) has been computed, to inspect all its con-
figurations for the presence of an occurrence of φ .

It should be noted that the computation of (a sufficient prefix of) UN ×A can
be ”sequentialized” and considerably simplified if A is linearly ordered, i.e. an
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observation sequence A = a1a2 . . .an ∈A1∗ (see [10, 29] for more details). In fact,
letting Ai be the ith prefix of A , one obtains diag(Ai+1) from diag(Ai) in the
following way:

1. Compute the extension with new events following the unfolding algorithm,
2. Stop each branch either after after the first occurrence e of an observable transi-

tion.
3. Then, remove all such e whose label is not ai+1, and ..
4. ... prune away all those events that do not allow to explain Ai+1, i.e. that are in

conflict with all occurrences of ai+1 computed in the previous steps.

In Fig. 15.6, we see that only the configuration shown in white in the unfolding
prefix at the bottom is capable of explaining entirely the alarm pattern on the right-
hand side. In fact, the ρ-labeled event shown in gray is part of an explanation for
an observation sequence β αρ (formed by its own prime configuration plus the α-
event on the right hand side), but this configuration cannot be extended to explain the
subsequent occurrence of α in the pattern. As a result, it is pruned away in the fourth
round, since it is in conflict with the second α in white, a conflict inherited from the
one indicated in the figure. Similarly, the other events shown in gray are pruned
away since they cannot provide explanations for the present alarm observation, nor
— a fortiori — for any of its extensions.

15.4 Taking the Methodology Further

The use of unfoldings brings conceptual and technical gains since it allows to ab-
stract away from interleavings of concurrent events. Still, the computation of the
diagnosis sets can still be hampered by the size of the necessary unfolding prefixes.
One notices that the main factor that leads to high widths of branching processeses
is the number of conflicting branches. Two approaches have launched for improving
the data structures used, and both tackle the impact of branching:

1. First, suppose that the supervised system N is decomposed into subcompo-
nents N1, . . . ,Nn that are supervised separately and locally; the observation A
is therefor also fragmented into local portions A1, . . . ,An. The global diagno-
sis prefix DA is in general too big to be computed directly; by contrast, local
prefixes DAi obtained by unfolding Ni×Ai are of more manageable size, and
can be computed locally. The number B(DA) of branches in DA is bounded by
K � ∏n

i=1 B(DAi), so we can expect an exponential gain in the storage space re-
quired. However, care must be taken to compute the right local diagnosis: since
not all combinations of local branches match into a global run, DAi is an over-
approximation of the local diagnosis obtained as the projection Πi(DA) of the
global diagnosis DAi to the ith component. The nontrivial task is thus to orches-
trate correctly the distributed computation of the unfolding of an n-component
net; see Fig. 15.7 for an illustration of the communication between two ”unfold-
ers” in the context of the running example. The work [17] carries out this task
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Fig. 15.7 The example from Fig. 15.5, with the distributed computation of the diagnosis net
on the right, in two components

in the context of composition via shared places, as in Fig. 15.7. Another lead
was followed in [6] where the composition was required to form a pullback in
a suitable Petri net category (see also [18]), which allows to use powerful alge-
braic tools to characterize the data exchange between two components. While
the details of this research are beyond the scope of this presentation, one should
note that all results point to the fact that best theoretical (and practical ?) results
can be obtained if the interfaces — i.e. the net parts that are shared between two
components — should be concurrency-free. This is the assumption made, e.g. in
[27].

2. In [16], the distributed approach is combined with a methodology for reducing
the width of unfoldings by using trellis structures: when a state is reached on
two or more different branches, the branches are fused on that state, and share
the different future extensions. This avoids the width explosion of the stored data
structures for long observations, by quotienting the occurrence net structure that
forces the inheritance of conflict and thus the separation of branches even if they
differ only on an initial segment. The technical challenges of this approach are
tackled and solved in [16, 19].

Note also that the approach presented here for the case of static system topologies
has been extended, in [21] and [7] to graph transformation systems (GTS) for mod-
eling dynamically evolving system topologies; GTS are a proper generalization of
Petri nets, yet share with them many properties and techniques, such as partial order
unfoldings.
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15.5 Asynchronous Diagnosability: Weak versus Strong

Let us turn now to analyzing the power of the unfolding-based diagnosis approach,
and ask under which circumstances a fault φ is diagnosable. Recall the classical
definition of diagnosability given by [31], which we give in the equivalent presenta-
tion of [14]. Write s ∼η s′ iff s,s′ ∈ T∗ are mapped to the same observable word in
o∗, and call any sequence s such that φ occurs in s a faulty sequence, and all other
sequences healthy. Then:

Definition 15.3 (Strong Diagnosability). Language L is not (strongly) diagnos-
able iff there exist sequences sN ,sY ∈L such that:

1. sY is faulty, sN is healthy, and sN ∼η sY ;
2. moreover, sY with the above is arbitrarily long after the first fault, i. e. for every

k ∈N there exists a choice of sN ,sY ∈L with the above properties and such that
the suffix sY/φ of sY after the first occurrence of fault φ in sY satisfies |sY | ≥ k.

Note that, verification of this property is possible without using unfoldings, see
[12, 13] and this book. The verification of strong diagnosability with the use of
unfoldings is studied in [29], via the construction of a verifier net: the verifier V
is obtained as the product of two isomorphic copies N1 and N2 of the diagnosed
system N , with synchronization only on observable transitions. Therefore, two
unsynchronized copies φ1 and φ2 of the unobservable fault event exist; the verifica-
tion then consists in checking (on a suitable complete finite prefix of the unfolding)
whether V allows some infinite run ω on which φ1 occurs and φ2 does not.

Weak Diagnosability. However, it was shown in [24, 25] that for Petri nets, this
property is not the only relevant one; a net may violate strong diagnosability and still
be weakly diagnosable, in the following sense : on any faulty execution, bounded
observation is sufficient to detect that on all maximal concurrent runs are compat-
ible with the observation, φ must have occurred or is inevitable, possibly in the
future. The presence of these weak and strong properties reflects the choice of se-
mantics that produces the event structure model of behavior for the system that is
investigated.

What Interleavings do and do not see. Figure 15.8 illustrates that choosing a par-
tial order versus an interleaving semantics has important consequences. Assume
that a is the only observable transition. In sequential semantics, the net is not ob-
servable: Consider the run ωs ∈ Ω(Eseq) which consists only of occurrences of v
and u; it contains no observable event. Further, when choosing fault φ = v, the net
is not diagnosable, since all runs without an occurrence y are observationally in-
discernible from the run ω ′ formed only by occurrences of b and a; this ∼η -class
therefore contains both faulty and healthy runs.

By contrast, when we consider the partial order semantics of the same net N , the
above ωs is not a run. Its only extension ω̄ into a maximal configuration contains
also an infinite number of occurrences of a and b; ω̄ is also the only run with this ob-
servation pattern. In fact, all runs ω ∈Ω(EU ) are fault-definite, i.e. every run must
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Fig. 15.8 A Petri Net (left) with a prefix of its unfolding (right) to illustrate the difference of
strong and weak diagnosability

contain an occurrence of v. The example allows to observe several important phe-
nomena. In fact, it illustrates that decentralized systems with weak synchronization
between subsystems may elude diagnosis under the interleaved viewpoint, while be-
ing well captured under partial order semantics. In the example, consider now b the
fault event, instead of v, and a observable. Then, the new system is neither classi-
cally observable nor classically diagnosable. However, removing the loop u−v from
the system leaves a classically diagnosable system. In other words, it is the presence
of the second loop, running in parallel and without influence on the fault occur-
rence, that blocks diagnosis of the fault.3 Thus, the partial order approach actually
increases precision for partial observation of highly concurrent systems.

Following [25], we argue that systems like this which allow to derive from the ob-
servation that the fault inevitably occurs are diagnosable as well, albeit in a weaker
sense: weakly diagnosable. The formalization given in [25] develops a topological
description which we will not follow here.

Defining Weak Diagnosability. Let Φ ⊆ E be a set of invisible fault events; in
particular, no event in Φ is observable, i.e. λ (Φ)∪Dom(η) = /0. A configuration
c ∈ C (E ) is called faulty iff c∩Φ 
= /0, and healthy otherwise. Denote as ΩF (CF)
the set of faulty runs (configurations), and ΩNF the set of healthy runs. Finally, set,
for ω ∈Ω :

[[ω ]]η �
{

ω ′ ∈Ω | ω ∼η ω ′
}
.

Then weak diagnosability for a Petri net means that for all maximal configurations,
observation equivalence implies fault equivalence:

3 Thanks to A. Giua who made the first author discover this aspect by a remark in a DISC
workshop discussion.
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Definition 15.4. Safe Petri net N = (P,T,F,m0) is weakly F-diagnosable iff for
every ω ∈Ω(N ),

ω ∈ΩNF ⇒ [[ω ]]η ⊆ΩNF, (15.5)

and weakly N-diagnosable iff for every ω ∈Ω(N ),

ω ∈ΩF ⇒ [[ω ]]η ⊆ΩF (15.6)

It is interesting to note that both notions are equivalent, i.e. N is weakly F-
diagnosable iff it is N-diagnosable. This property — obtained in [25] from the sym-
metry of pseudometrics — confirms a result in [32] for strong diagnosability, and
shows that the symmetry is intrinsic to the concept of diagnosability, rather than a
property of the semantic framework.

15.6 Conclusion and Outlook

The use of unfoldings in diagnosis constitutes an important tool in managing large
and highly distributed systems, since it allows to avoid the explosion of state space
size and the associated huge number of interleaved sequences that would other-
wise have to be dealt with. The exploitation of the partial order semantics allows
to exhibit concurrency and, dually, causal precedence exactly, thus permitting to
focus on essential dependencies in the system. Techniques of correlation via event
synchronizations, verifier construction, etc. that had been known in the sequential
framework carry over in a natural way to the concurrent case. Also, one notices that
systems that are highly distributed in space — both for the execution of their
processes and their observation — may necessitate a distributed multisupervisor
approach, to factorize the branching structure of the set of processes and curb
the number of such processes to be handled by any one diagnoser. This field still
leaves room for developments, both concerning diagnosis procedures and verifica-
tion methods for diagnosability.

Effective verification of weak diagnosability is work in progress. The verification
of strong diagnosability has been shown to PSPACE-complete for the sequential
case in [8]. This theoretical bound is a fortiori true for the non-sequential case. It
is therefore important now to develop efficient algorithms for verification of weak
diagnosability.

Another approach to partial observation in concurrent systems, introduced in
[22, 23, 24], consists in looking for inevitable occurrences that are revealed by ob-
servation, regardless of the possible time for occurrence (which may be concurrent
with the observation, with no synchronization). Knowledge of such relations in the
system allows to raise alarms and start countermeasures as soon as the threat be-
comes apparent, without waiting for evidence of its actual occurrence.
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Finally, let us point out that probabilistic measures for concurrent runs of Petri
net unfoldings have been studied in [1, 2, 3, 4, 5, 9, 20, 11]. It remains to develop, in
the concurrency setting, probabilistic diagnosis methods on the one hand, and char-
acterizations and verification methods of probabilistic diagnosability on the other,
generalizing the existing works for the sequential case.

15.7 Further Reading

The central reference for asynchronous diagnosis with Petri nets is [10]; for the
extension to graph grammar models of systems with evolving topology see [7].
Diagnosability for the unfolding-based approaches is treated in the references
[22, 23, 24, 25, 29]. Readers that which to better understand occurrence nets and
the partial order semantics in general may wish to read [28] and/or compare with
Mazurkiewicz Traces [15, 26]. The practical computation of (complete prefixes of)
unfoldings are very well described by [30].
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