
Reveal Your Faults: It’s Only Fair!
Stefan Haar, César Rodríguez, and Stefan Schwoon

INRIA and LSV, CNRS and ENS Cachan
61, av. du Président Wilson, 94235 Cachan Cedex, France

stefan.haar@inria.fr, cesar.rodriguez@inria.fr, stefan.schwoon@inria.fr

Abstract—We present a methodology for fault diagnosis in
concurrent, partially observable systems with additional fairness
constraints. In this weak diagnosis, one asks whether a concurrent
chronicle of observed events allows to determine that a non-
observable fault will inevitably occur, sooner or later, on any max-
imal system run compatible with the observation. The approach
builds on strengths and techniques of unfoldings of safe Petri nets,
striving to compute a compact prefix of the unfolding that carries
sufficient information for the diagnosis algorithm. Our work
extends and generalizes the unfolding-based diagnosis approaches
by Benveniste et al. [1] as well as Esparza and Kern [2]. Both
of these focused mostly on the use of sequential observations, in
particular did not exploit the capacity of unfoldings to reveal
inevitable occurrences of concurrent or future events studied by
Balaguer et al. [3]. Our diagnosis method captures such indirect,
revealed dependencies. We develop theoretical foundations and
an algorithmic solution to the diagnosis problem, and present a
SAT solving method for practical diagnosis with our approach.

I. INTRODUCTION

Diagnosis under partial observation is a classical problem
in automatic control in general, and has received considerable
attention in discrete event system (DES) theory, among other
fields. In this paper, we extend diagnosis to include detection
of indirectly implied faults in concurrent systems, under an
asynchronous, partial-order-based observation approach. Let
us first review some settings for diagnosis.

The classical FSM setting [4]: Here one assumes that the
observed system is an automaton or finite state machine (FSM)
with transition set T , behavior given by a prefix-closed language
L ⊆ T ∗, and a set of observable transition labels O. The
associated labeling λ : T → O is not necessarily injective, and
leaves some transitions from T unobservable, in particular a
fault action φ1. Observations are words O ∈ O∗, obtained by
applying the ‘mask’ λ to words in T ∗. Diagnosis is then the
task of deciding whether or not all possible behaviors w ∈ L
that explain an observation O, i.e., such that w ∈ λ−1(O),
contain an occurrence of φ.

Concurrency and Asynchrony: Concurrent systems, e.g.,
in telecommunications, are difficult to supervise using the
classical approach because of the state-explosion problem
in using FSM models. Models that reflect the local and
distributed nature of the observed system, such as Petri nets,
are helpful not only in terms of computational efficiency, but
also conceptually. Putting these ideas together, in [1] diagnosis
is extended to asynchronous models and their non-interleaved
semantics.2 In centralized non-sequential (or asynchronous)

1Or a set Φ of faults, which does not alter the problem much.
2Compare also the discussion of partial-order methods in [5].

diagnosis, there are several sensors, each of which observes (a
fragment of) the system sequentially, as above. However, the
streams of observations from the sensors reach the (centralizing)
supervisor asynchronously; no assumption is made about the
communication architecture or speed. One assumes that the
architecture respects causality (if occurrence of a causally
precedes that of a′, the supervisor sees a before a′), and that
the ordering of observations from the same sensor is respected.

This scenario must not be confused with either (a) decen-
tralized or (b) distributed diagnosis, where several supervisors
cooperate to reach a global verdict on whether or not a fault
has occurred. In (a), all supervisors emit local verdicts (e.g.
yes/no) that are synthesized into a global one. In (b) [6], [7],
explanations are computed in a distributed unfolding procedure,
where supervisors build local explanations that are successively
reduced by communication with other supervisors.

Here, we focus on extending asynchronous diagnosis of safe
Petri nets with an unfolding-based approach that extends that
of [1], [2] or [8]. The key idea is that in concurrent systems,
certain events and properties can be ‘implied’, or revealed, by
others that need not be in direct causal relation. The additional
assumption we need is that of weakly fair behavior: on weakly
fair runs, a transition t that becomes enabled at some point
cannot stay enabled forever; eventually, either t or another
conflicting transition t′ must fire.3 Call t′, or t itself, a spoiler
of t; for the run to be weakly fair, some spoiler of t must fire.
We say that an observation O (weakly) diagnoses fault φ iff
all weakly fair runs that explain O contain φ; this is in line
with weak diagnosability from [9], [10], [11].

Both [1] and [2] use Petri net unfoldings under certain
restrictions: [1] accepts partial-order observations, but refuses
models with unobservable loops; [2] accepts the latter, thanks
to dedicated cutoff criteria, but refuses the former. Our work
uses both features, additionally accounting for weak fairness
in the diagnosis procedure. We generalize the cutoff criteria
of [2] to partially ordered observations, and extend them so as
to guarantee in the constructed prefix a sufficient collection of
spoilers, in the above sense.

Sec. II establishes basic notions and Sec. III presents our
diagnosis framework. In Sec. IV, we develop theoretical
foundations for the problem we solve. An algorithmic solution
via a SAT-encoding is given in Sec. V and Sec. VI concludes
and discusses future work.

3This is often not called ‘weak fairness’ but ‘progress’.

stefan.haar@inria.fr
cesar.rodriguez@inria.fr
stefan.schwoon@inria.fr

...

p1p0

p6

p9

t1

a

t3
ε

t2ε

p4

p2

t5 ε

p3

p5

p10

t9ε t10 ε

t11

b

p7

p8

t6c t7 ε

t8 d

t4

φ/ε

Fig. 1. A safe Petri net with partial observation. The inscription of a transition
indicates its name; the label next to it is either a latin letter or empty (ε),
in which case the transition is invisible. Transition t4 is the invisible fault
transition, which is called φ in the text and whose label is ε.

II. BASIC NOTIONS

In this section, we establish notations and recall existing
results about Petri nets and their unfoldings, see, e.g., [12]. We
also discuss the notions of weak fairness and labelled partial
orders, and prove some useful statements about them.

A. Petri nets

A Petri net (or simply net) is a tuple N = 〈P, T, F,m0〉,
where P and T are disjoint sets of places and transitions,
F ⊆ (P × T) ∪ (T × P) is the flow relation, and m0 : P →
N is the initial marking. N is called finite if P and T are
finite. Places and transitions together are called nodes. For
x ∈ P ∪ T , let •x := {y ∈ P ∪ T : (y, x) ∈ F} be the preset,
and x• := {y ∈ P ∪ T : (x, y) ∈ F} the postset of x.

A marking of N is a function m : P → N that assigns tokens
to every place. A transition t is enabled at m if m(p) ≥ 1
for all p ∈ •t. Such t can fire, leading to the new marking
m′ where m′(p) = m(p) − |{p} ∩ •t| + |{p} ∩ t•|; this is
denoted as m t−→ m′. A finite sequence σ = t1 . . . tn ∈ T ∗
is a run of N if there exist markings m1, . . . ,mn such that
m0

t1−→ m1 . . .
tn−→ mn; marking mn is the marking reached

by σ, denoted by mark(σ). A marking m is reachable if m =
mark(σ) for some run σ. Let R(N) be the set of reachable
markings. An infinite sequence t1t2 . . . ∈ T∞ is a run if all
its finite prefixes are. N is safe if m(p) ≤ 1 for all reachable
m and p ∈ P . All Petri nets considered in this paper are safe,
and we treat their markings as sets.

Fig. 1 shows a Petri net; as usual, places are drawn as circles,
transitions as squares, and the number of tokens in every place
represents the initial marking. Let N ′ = 〈P ′, T ′, F ′,m′0〉 be
a Petri net. A homomorphism from N to N ′ is a function
h : P ∪ T → P ′ ∪ T ′ satisfying h(P) ⊆ P ′, h(T) ⊆ T ′,
h(m0) = m′0, and for all t ∈ T , h restricted to •t and t• is a
bijection to •h(t) and h(t)•, respectively.

B. Occurrence nets

The causality relation < on a net N is the transitive closure
of F and ≤ the reflexive closure of <. For a node x, we define
its set of causes as [x] := {t ∈ T : t ≤ x}. A set X ⊆ T is
causally closed if [t] ⊆ X for all t ∈ X . The conflict relation
⊆ (P ∪ T)2 on N is the least symmetric relation satisfying
• t # t′ if t, t′ ∈ T with t 6= t′ and •t ∩ •t′ 6= ∅; and
• x # z if there is y ∈ P ∪ T such that x # y and y < z.

Two nodes x, y are concurrent, written x ‖ y, if neither x ≤ y,
nor y ≤ x, nor x # y holds. A set X ⊆ P ∪ T is conflict-free
if ¬(x # y) holds for all x, y ∈ X . An occurrence net is a
safe net O = 〈B,E,G, m̃0〉 if < is a strict partial order for
O; for any b ∈ B, we have |•b| ≤ 1; for all e ∈ E, [e] is finite
and ¬(e # e′) holds; and m̃0 = { b ∈ B : •b = ∅ }.

As per tradition, we call the nodes of B conditions, and
those of E events. A configuration of O is a causally closed,
conflict-free set C of events. C(O) denotes the set of all such
configurations. The configurations of O are concurrent runs
of O, i.e., for every (finite or infinite) configuration C =
{e1, e2, . . .} of O there is at least one run ei1ei2 . . . of O,
called interleaving, such that eiu < eiv implies u < v. If
C is finite, then all its interleavings reach the same marking
cut(C) := (m̃0 ∪ C•) \ •C of O. For e ∈ E, we say that C
enables e, written C e

 , iff e /∈ C and (C ∪ {e}) ∈ C(O).
The height of event e is recursively defined by H(e) :=

1 + max{H(e′) : e′ < e}, where max ∅ := 0. The height of
a configuration C and of occurrence net O, provided both
are finite, are defined as H(C) := max{H(e) : e ∈ C} and
H(O) := max{H(e) : e ∈ E}, respectively.

A prefix of O is a net P = 〈B′, E′, G′, m̃0〉 such that
E′ ⊆ E is causally closed, B′ = m̃0 ∪ (E′)•, and G′ is the
restriction of G to (B′ ∪ E′); we denote this by P v O.

C. Unfoldings

A branching process of N is a pair P = 〈O, f〉, where O is
an occurrence net and f a homomorphism from O to N such
that for all events e, e′ of O, if •e = •e′ and f(e) = f(e′), then
e = e′. For every N , there is a unique (up to isomorphism)
maximal (w.r.t. v) branching process UN = 〈U, f ′〉 that we
call the unfolding of N [12]. Thus, any branching processes
〈O, f〉 is characterised by a prefix O of U and the restriction
f of f ′ to the elements of O. For convenience, we shall often
equate a branching process with its underlying occurrence net
and call it unfolding prefix. With finite configurations C of UN
we associate a marking of N , denoted mark(C) :=f(cut(C)).

An unfolding prefix P is marking-complete if, any marking
m is reachable in N iff there is C ∈ C(P) such that m =
mark(C). E.g., UN is marking-complete but in general infinite.

If two finite configurations C,C ′ of UN reach the same
marking mark(C) = mark(C ′), then the fragments of UN
‘coming after’ C and C ′ are isomorphic, since they are the
unfoldings of N with the initial marking mark(C). This is
formalized, e.g., in Proposition 4.3 of [12]. Let h be such
isomorphism. For every extension I ⊆ E of C (i.e., C ∩ I = ∅
and C ∪ I is a configuration of UN) there is an isomorphic

b1b0

b9

e1a

b6

b′0

b′1

e3 ε

b4

b2

e5ε

b3

b5

e9ε

b10

e11b

b7
b8

e2

ε

b′2

b′3

e6c e7

ε
e10 ε

b′′2

b′′1

b′′0

b′′3

e4φ/ε

b′′′0 b′′′1 b′′′2 b′′′3

e′4φ/ε

b′7

e8d

Fig. 2. A prefix of the unfolding for the net in Fig. 1. Events are named
according to the corresponding transition (via the mapping f): ei, e′i, e

′′
i etc.

for the occurrences of ti. Observation labels are as in Fig. 1.

extension I ′ := h(I) of C ′ reaching the same marking, i.e.,
C ′ ∩ I ′ = ∅, and and mark(C ∪ I) = mark(C ′ ∪ I ′).

D. Weakly fair runs and configurations

Runs represent a sequential view of the executions of a net,
whereas configurations represent the concurrent point of view.
We give and relate the definitions of weak fairness for both.

Let N = 〈P, T, F,m0〉 be a finite Petri net, and UN =
〈〈B,E,G, m̃0〉, f〉 its unfolding. A configuration of UN is
weakly fair if it is ⊆-maximal in C(UN). We denote by Ω(UN)
the set of such configurations, or Ω if no confusion can arise.

Lemma 1. A configuration ω is weakly fair iff it does not
enable any event.

Proof: If ω ∈ Ω enables e, then ω∪{e} is a configuration,
and ω is not maximal, a contradiction. If ω is not weakly fair,
then there exists a configuration C that is a proper superset of
ω. Pick some <-minimal event e from C \ ω. By assumption,
all causal predecessors of e are in ω, so all conditions in •e are
either initial or receive a token from some event in ω. Since C
is a configuration, it is conflict-free, so in particular no event
in ω will remove a token from •e. Thus, ω enables e.

Here we assume, for the sake of simplicity, that all weakly
fair configurations of UN are infinite. This entails no loss
of generality, finite weakly fair configurations correspond to
deadlocks that can be detected and processed separately — for
instance, adding a looping transition.

A spoiler of transition t is any t′ ∈ T such that •t∩ •t′ 6= ∅
(including t itself). We write spoilers(t) for the set of such
transitions. Following Vogler [13], who adapts the concept of
weakly fair termination (see [14]) to a Petri net setting, we
say that an infinite run σ = t1t2 . . . ∈ Tω of N is weakly fair
if its marking sequence m0,m1, . . . satisfies that for all i ∈ N
and all t ∈ T , if mi enables t, then there exists j > i such
that tj ∈ spoilers(t). In other words, any t enabled at some
point along σ either fires eventually, or some other transition

consumes from its preset. For runs of an occurrence net O,
such as UN , we can make the following, stronger statement.

Lemma 2. Let σ be a weakly fair run of O and m0,m1 . . . its
marking sequence. For all i ∈ N and all e ∈ E, if mi enables
e, then ∃k > i ∀j ≥ k : mj does not enable e.

Proof: The statement follows from the definition of weakly
fair runs and the fact that < is acyclic for O; once a token
from •e is consumed, it cannot be replaced, and e remains
disabled forever.

Finally, we observe that weakly fair runs and weakly fair
configurations are related in the following way:

Lemma 3. Every weakly fair run of UN is an interleaving of
some ω ∈ Ω. Conversely, all interleavings of every ω ∈ Ω are
weakly fair.

Proof: Let σ = e1e2 . . . be an (infinite) weakly fair run
and ω := { ei : i ≥ 1 }. Since no ei can fire without its causal
predecessors putting tokens into its preset, ω is causally closed.
Due to the acyclic structure of UN , no condition can receive a
token twice, no event will be repeated in σ, so no two events
can consume from the same place, therefore ω is conflict-free
and hence a configuration. Now suppose ω is not weakly fair,
then by Lemma 1 it enables some event e. Arguing like in the
proof of Lemma 1, we can conclude that all conditions in •e
are either initial or will receive tokens from events in ω, and
that no event in ω consumes from •e. Thus, some marking mi

in the marking sequence for σ enables e, and then e is never
disabled, which contradicts the weak fairness property for σ.

For the converse, let σ be an interleaving of a weakly fair
configuration ω. Suppose that σ is not weakly fair; then some
event e eventually becomes enabled during σ but neither e nor
any conflicting event is in ω. Now, e can only become enabled
if all its causal predecessors are in ω and put tokens into its
preset, so ω ∪ {e} is also causally closed. Thus, ω ∪ {e} is a
configuration, which contradicts maximality of ω.

E. Labelled partial orders (LPOs)

An alphabet is a finite set X, whose elements are called
letters. A labelled partial order (LPO) over X is a tuple α =
〈S,<, λ〉 where < ⊆ S × S is an irreflexive and transitive
(hence antisymmetric) relation on S, and λ : S → X a labelling
map. The size |α| of α is |S|. Let α′ = 〈S′, <′, λ′〉 be an LPO
over X. A homomorphism from α to α′ is a function h : S → S′

verifying
• λ(a) = λ′(h(a)), and (1)
• a < b implies h(a) <′ h(b) for all a, b ∈ S. (2)

An isomorphism between α and α′ is a bijective homomorphism
h from α to α′ where h−1 is a homomorphism from α′ to α.
We say that α is compatible with α′ if there exists a bijective
function f : S → S′ such that
• λ(a) = λ′(f(a)), and (3)
• a < b implies ¬(f(b) <′ f(a)) for all a, b ∈ S. (4)

Note: (2) and (4) are not equivalent, and f must be bijective.
Denote by compat(α) the set of LPOs compatible with α.

Lemma 4. Given LPOs α, α′, if there is a bijective homomor-
phism h from α′ to α, then compat(α) ⊆ compat(α′).

Proof: Let A := 〈SA, <A, λA〉 ∈ compat(α), and let
f1 : SA → S be the associated bijection. Let f2 := h−1 be
the (bijective) inverse of h. We show that f := f2 ◦ f1 satisfies
(3) and (4) from A to α′. For a, b ∈ SA, we prove that:
• f is bijective, as it is the composition of two bijections.
• λA(a) = λ′(f(a)). This is because f1 (by definition) and
f2 (by construction from h) preserve labels.

• a <A b implies ¬(f(b) <′ f(a)). Assume that a <A b
and f(b) <′ f(a). Let aα := f1(a), and bα := f1(b). We
know that ¬(bα < aα) holds by definition of f1. But by
definition of h also bα = h(f(b)) < h(f(a)) = aα holds,
a contradiction.

Lemma 5. LPOs α and α′ are isomorphic iff compat(α) =
compat(α′).

Proof sketch: One direction is trivial, the other is
reasoning by cases on the possible orderings in the LPOs,
after establishing that S and S′ have the same size.

III. REVEALS AND DIAGNOSIS

All diagnosis strives to detect ‘hidden’ events, but we aim
at diagnosing also latent but inevitable events, possibly in the
future of the system’s evolution. That is, we wish to diagnose
exactly whether every weakly fair run that is compatible with
the observations thus far, contains a fault occurrence. By the
above, we thus need to consider all weakly fair configurations
in Ω that contain an explanation of the current observation as
a prefix. Let us formalize these notions.

A. Reveals Relations

In occurrence nets, for two events e, e′, we say (see [15],
[16], [9], [3], [17]) that e reveals e′, written e . e′, iff e ∈ ω ⇒
e′ ∈ ω for all ω ∈ Ω, That is, the occurrence of e entails that
e′ inevitably will occur, or has already occurred. In Fig. 2, e.g.,
we have e5 . e1, e4 . e6, and e3 . e2. After the occurrence of
e5, the occurrence of e3 has become impossible; in a weakly
fair execution, e1 must thus necessarily occur. Similarly, when
e4 occurs, e6 must already have occurred previously (.−1

includes and extends causal precedence). Also, all weakly
fair configurations containing e3 must contain e2. This binary
relation . can be computed, for 1-safe Petri nets, on a finite
prefix whose height is bounded [17].

Binary reveals helps in detecting invisible events; however,
for diagnosis purposes, it is not strong enough. We shall need
more general relation that relates sets to sets, namely the
extended-reveals relation −−. introduced by Balaguer et al. [3].
Suppose that in Fig. 2, a and b are observable labels, and
that we actually do observe their occurrence. From inspection
of Fig. 2, (a) e5 is bound to occur, and (b) one of the two
instances of φ – e4 or e′4 – are inevitable. However, the binary
relation . does not permit to deduce (a) and (b): while the
conjunction of e1 and e11 makes e5 inevitable, we have neither
e1 . e5 nor e11 . e5 individually; also, the disjunction of e4

or e′4 is certain once e5 is assured, but neither e4 or e′4 are
revealed individually. To account for such situations, following
[3] we say, for sets of events A,B, that A extended-reveals
B, written A −−. B, iff every weakly fair configuration that
contains A also ‘hits’ B, i.e.,

A−−. B ⇔ ∀ω ∈ Ω: (A ⊆ ω ⇒ B ∩ ω 6= ∅) .

B. Diagnosis from Partial Observation

For the rest of the paper, we fix the following framework: Let
N = 〈P, T, F,m0〉 be a finite, safe Petri net with unfolding
UN = 〈〈B,E,G, m̃0〉, f〉. We assume that all t ∈ T have
non-empty preset and that all ω ∈ Ω are infinite. Let ε
denote a unique ‘empty’ symbol, and let X denote a non-
empty observation (or alarm) alphabet where ε /∈ X. Let
λ : T → X ∪ {ε} be the mapping associating transitions of N
with observations or ε, and φ ∈ T the unique fault transition.

Let Tobs := T \ Tubs and Tubs := λ−1(ε) be the observ-
able and unobservable transitions of N . Furthermore, let
Eobs := f−1(Tobs) and Eubs := f−1(Tubs) be the observable
and unobservable events of UN . Naturally, we assume that φ is
unobservable, i.e., φ ∈ Tubs , and define the set of fault events
as Eφ := f−1(φ). Observe that Eφ ⊆ Eubs . We extend λ to
E and, by abuse of notation, define λ(e) := λ(f(e)).

We now define the notion of observation pattern, or simply
observation. Observations are LPOs over an observation
alphabet. LPOs allow to capture linearly ordered observations,
produced by a single sensor that observes the interleaving of
the system; or sets of linear orders, produced by a number
of sensors that locally observe each concurrent process of
a distributed system; or yet others. This allows to work in
an asynchronous setting as in [1], but without the need to
enumerate the interleavings of observation patterns, not even
in the correctness proofs, as opposed to the approach of [2].
For the rest of the paper, fix a finite observation pattern
α := 〈Sα, <α, λα〉 over the observation alphabet X.

Given N and α, where α is the observation of some
execution of N , our goal is to determine whether that execution
contains a fault, assuming that runs of N are weakly fair. So
we need to consider all those weakly fair configurations of
UN that are compatible with α. We formalize this in two
steps. First, we associate every configuration C with an LPO
lpo(C) := 〈S,<′, λ′〉, where S :=C ∩Eobs are the observable
events in C, <′ is the restriction of UN ’s causal order < to
S, and λ′ : S → X is the restriction of λ to S. Since <′ and
λ′ are restrictions of < and λ, it is safe to confuse them here,
and so we will.

Second, we define the observations of C as the set
obs(C):=compat(lpo(C)), i.e., the set of all (LPOs modelling)
observations compatible to the LPO of C. Conversely, say that
C explains observation α if α ∈ obs(C), and define

expl(α) := {C ∈ C(UN) : α ∈ obs(C)}.
As a consequence of Lemma 5, for configurations C, C ′, we
have obs(C) = obs(C ′) iff lpo(C) is isomorphic to lpo(C ′).

Definition 1. Observation pattern α weakly diagnoses φ iff

for all C ∈ expl(α), C −−. Eφ. (5)

Since weak diagnosis is the only form of diagnosis we
consider, we will simply speak of diagnosis.

In the context of Fig. 2, any observation containing a label
c or d clearly diagnoses φ. What is more, and may serve to
see the power of weak diagnosis here, is that observing a and
b also weakly diagnoses φ: in fact, every configuration that
allows to observe a and b must contain an occurrence of t5
and the fault. For instance, observe that {e1, e11} −−. {e4, e′4}
holds since every weakly fair run that contains e1 and e11
must contain e5 and thus either e4 or e′4. On the other hand,
observing only a or even a sequence ak is not sufficient for
diagnosing φ (consider a weakly fair run composed only of
occurrences of t1, t9 and t10).

The diagnosis problem is to decide, given N and observation
α, whether or not α weakly diagnoses φ. One of the keys to
solve it is deciding relation (5) for a given configuration. We
will show below that if C is finite, then C −−. Eφ can be
verified on a bounded extension of C. We give a formalized
solution to this problem in Sec. IV.

IV. A SOLUTION USING EXTENDED REVEALS

By Def. 1 and definition of −−., α diagnoses φ iff

∀C ∈ expl(α) ∀ω ∈ Ω: (C ⊆ ω ⇒ Eφ ∩ ω 6= ∅) (6)

Swapping the two ∀, this can be equivalently rephrased as:

∀ω ∈ Ω: (∃C ∈ expl(α) : C ⊆ ω) ⇒ Eφ ∩ ω 6= ∅ (7)

In this section we derive an algorithm for deciding the negation
of (7), i.e., given α, the algorithm decides whether or not there
is some ω ∈ Ω that contains an explanation C ∈ expl(α)
and such that ω ∩ Eφ = ∅. Deriving this algorithm needs to
overcome two obstacles:

1) expl(α) may be infinite due to unobservable loops. In
Fig. 2, a is explained by any configuration in which t9
and t10 fire any number of times, followed by e1.

2) Ω is an infinite set in general, which we need to finitely
represent while still being able to check for set inclusion
or whether Eφ ∩ ω 6= ∅ for each weakly fair ω.

The main ideas behind our solution can be summarized as
follows. Following [2], we fix 1) showing that it is sufficient for
deciding (7) to search for C within a finite subset of expl(α),
instead of the entire, potentially-infinite set of explanations.
Because this subset is finite, there exists an unfolding prefix
that contains it entirely (Pα), we will see how to construct it.
Once such C has been found, the algorithm needs to decide
if it can be extended into a fault-free, weakly fair ω ∈ Ω. We
show (Lemma 8) that this is the case iff two configurations
C1 ⊂ C2 exist such that both of them reach the same marking,
both are free of faults, C2 disables every event enabled by C1,
and C ⊆ C1. This result does not quite yet give an algorithm,
as, e.g., C2 could be unboundedly large. To fix this we define
two finite unfolding prefixes P1

N and P2
N such that, first, P1

N is
contained in P2

N and, second, the aforementioned C1, C2 exist

iff configurations C̃1 ∈ C(P1
N) and C̃2 ∈ C(P2

N) exist and
satisfy (again) that C̃1, C̃2 reach the same marking, both are
free of faults, C̃2 disables all events enabled by C̃1, and some
other technical condition asking (modulo details) that C ⊆ C̃1.
This ‘iff’ is shown in Lemma 10. These two prefixes can be
seen as fixing 2). Our main result, Theorem 1, formalizes these
ideas; Sec. V derives a decision procedure from them.

A. Succinct explanations

Following [2], we define a finite subclass of explanations of
α and show that it is sufficient for deciding (7).

Definition 2. Configuration C ∈ C(UN) is verbose if it
contains two events e, e′ ∈ C satisfying
• e′ < e, and (8)
• mark([e′]) = mark([e]), and (9)
• obs([e′]) = obs([e]). (10)

If C is not verbose, it is succinct.

Intuitively, C is verbose if it contains the occurrence of
some loop of N consisting entirely of unobservable transitions.
In Fig. 1, t2, t3 is an unobservable loop, that produces the
verbose configuration {e1, e′3, e′2} in Fig. 2 (set e, e′ of Def. 2
as e := e′2 and e′ := e1).

Observe that lpo([e′]) is isomorphic to lpo([e]), by (10) and
Lemma 5, and that [e′] ⊆ [e], by (8). This means that all events
in [e] \ [e′] are unobservable, see Fig. 3 (a). It also means that
lpo([e]) = lpo([e′]), i.e., the LPO isomorphism is the identity
function on C restricted to observable events. Finally, observe
that (9) does not imply (8), even for 1-safe nets.

Def. 2 is different from the equivalent definition in [2] only
in that obs(C) is defined differently: here, it is a set of LPOs
while in [2] it is the set of sequences λ(σ) where σ is an
interleaving of C.

Every finite verbose configuration C can be peeled (even-
tually multiple times) yielding a succinct configuration that
reaches the same marking and has at least the same observations.
If C is an explanation of some α, peeling intuitively corre-
sponds to finding a shorter explanation C ′ where unnecessary
(unobservable) fragments of C have been removed. Although
C ′ ⊆ C may hold, in general it does not hold.

Let us formalise this idea. Let C be verbose and finite, and
let e, e′ ∈ C be events satisfying (8)-(10). Let I := C \ [e].
Recall that I are events of UN that fire after cut([e]). We
define peele,e′(C) as the configuration

C ′ := [e′] ∪ I ′,
where I ′ is the isomorphic copy of I that continues UN just
after cut([e′]). Recall that I ′ is well defined, as we said in
Sec. II-C. Since |[e′]| < |[e]|, we have |C ′| < |C|. So if C ′

is still verbose, we only need to peel again finitely many
times before obtaining a succinct configuration. We denote
by peel∗(C) the set of succinct configurations resulting from
peeling C as many times as necessary (choosing any e, e′

that satisfy (8)-(10) every time we peel). We conjecture that
peel∗(C) is a singleton, but do not rely on it in the sequel.
Lemma 6 implies that peel∗(C) are explanations of α if C is.

Lemma 6. For any verbose configuration C with C ′ :=
peele,e′(C), it holds that:
• mark(C) = mark(C ′) (11)
• obs(C) ⊆ obs(C ′) (12)
• C ′ ∩ Eφ 6= ∅ ⇒ C ∩ Eφ 6= ∅ (13)

Proof: Let e, e′ ∈ C be events satisfying (8)-(10). Recall
that C has the form [e]] I , and C ′ the form [e′]] I ′.

(11) is a consequence of (9) and the fact that I, I ′ are
isomorphic. (12) is more laborious. Let lpo(C) := 〈S,<, λ〉
and lpo(C ′) := 〈S′, <, λ〉. In the sequel we define a mapping
h : S′ → S and prove that h is a bijective homomorphism
from lpo(C ′) to lpo(C). (12) then follows by Lemma 4.

Let f1 be the LPO isomorphism between lpo([e]) and
lpo([e′]). Recall that f1 is actually the identity function. Let
f2 : I ′ → I be the isomorphism between I ′ and I . Define
h := f1 ∪ f ′2 where f ′2 is the restriction of f2 to S′, i.e., the
observable events of C ′.

Observe that h is bijective because it is the union of two
bijections whose domains and codomains are disjoint; it satisfies
(1) because so do f1 and f2. Finally, for e1, e2 ∈ S′ with
e1 < e2, we show that (2) holds. There are three cases:
• e1, e2 ∈ [e′]. Then h(e1) = e1 < e2 = h(e2).
• e1, e2 ∈ I ′. Since the isomorphism f2 preserves causality,

we have h(e1) = f2(e1) < f2(e2) = h(e2).
• e1 ∈ [e′] and e2 ∈ I ′. There is some c ∈ cut([e′]) such

that e1 < c < e2. Since N is safe and by (9), there is
a single condition c′ ∈ cut([e]) such that f(c) = f(c′),
where f is UN ’s labelling. c # c′ or c ‖ c′ does not
hold, because [c] ∪ [c′] ⊆ C and N is safe. So c ≤
c′ holds, since c′ < c contradicts e′ < e. Since [e2]
consumes c, necessarily [f2(e2)] consumes c′, as I ′ and
I are isomorphic. We therefore have:

h(e1) = f1(e1) = e1 < c ≤ c′ < f2(e2) = h(e2)

As for(13), let ẽ ∈ C ′ ∩ Eφ be some fault. If ẽ ∈ [e′] ⊆ C,
then ẽ ∈ C. If ẽ ∈ I ′, then f2(ẽ) ∈ I ⊆ C is also fault, because
f2 preserves transition labels. In both cases C ∩ Eφ 6= ∅.

Define the set of succinct explanations of α as

succexpl(α) := {C ∈ expl(α) | C is succinct}

Proposition 1. succexpl(α) is finite.

Proof: Since N is finite, there are finitely many events in
UN of height less or equal to any given n ∈ N, and thus finitely
many configurations made up of such events. Assume now
there are infinitely many succinct explanations of α. Because
of the above, there must be a succinct explanation C that
contains e ∈ C such that H(e) = k(|α|+ 1), where k is the
number of reachable markings in the net. Let e1 < . . . <
e|α|+1 = e be events in some causality chain from m̃0 to
e such that mark(e1) = . . . = mark(e|α|+1), which exist
by the pigeonhole principle. Since only |α| events in C are
observable, [ei+1]\[ei] ⊆ Eubs holds for some i. So C contains
two causally related events, whose local configurations have
the same LPO, thus the same observation (Lemma 5), and
reach the same marking. So C is verbose, a contradiction.

The previous proof works even if (8) is removed from Def. 2.
However, (8) is required for the following statement.

Proposition 2. The shortest explanations of α are succinct.

Proof: (Shortest in number of events) If C explains α and
is verbose, peel∗(C) are shorter explanations of α.

Proposition 2 would still work if (8) is replaced by the more
general condition |[e′]| < |[e]|, but (12) would become false.

The main lemma of this subsection shows that (7) can
be rephrased into (14), eliminating the need to examine all
potentially infinitely many explanations of α.

Lemma 7. Observation pattern α diagnoses φ iff

∀ω ∈ Ω: (∃C ∈ succexpl(α) : C ⊆ ω)⇒ Eφ ∩ ω 6= ∅ (14)

Proof: (7) and (14) differ only in that succexpl(α) has
replaced expl(α). Trivially, (7) implies (14). Assume that (14)
holds and let ω ∈ Ω, C ∈ expl(α) be such that C ⊆ ω. We
show that ω∩Eφ 6= ∅. If C is succinct, we are done, so assume
C is verbose and let C ′ ∈ peel∗(C). By (11), we can append
an isomorphic copy I of ω \ C to C ′, yielding a weakly fair
configuration ω′ :=C ′∪I . By (12), C ′ is a succinct explanation
of α. Because C ′ ⊆ ω′ and (14), it holds that ω′ ∩Eφ 6= ∅. If
C ′ ∩ Eφ 6= ∅, by (13), we have C ∩ Eφ 6= ∅. If I ∩ Eφ 6= ∅,
then ω \ C must contain a fault because it is isomorphic to I .
In any case, ω ∩ Eφ 6= ∅.

B. Characterizing weakly fair configurations

We now investigate a finite characterization of the weakly
fair configurations in Ω that allows to reason about (i) inclusion
of (succinct) explanations and (ii) absence of faults.

According to (14), α does not diagnose φ iff we can find a
fault-free, weakly fair configuration ω that contains a succinct
explanation. The next lemma establishes a characterization of
such configurations, where the spoilers of an event play an
important role:

Lemma 8. Let C be a finite configuration. There exists a
weakly fair ω ∈ Ω such that C ⊆ ω and ω ∩ Eφ = ∅ iff there
are C1, C2 ∈ C(UN) satisfying
• C ⊆ C1 ⊆ C2, and (15)
• mark(C1) = mark(C2), and (16)
• ∀e ∈ E : C1

e
 ⇒ spoilers(e) ∩ C2 6= ∅, and (17)

• C2 ∩ Eφ = ∅. (18)

Proof: The main idea is simple: fault-free, weakly fair
configurations exist iff one can find configurations C1, C2 with
C1 ⊆ C2, both free of faults, extending C, reaching the same
marking, and such that C2 \ C1 disables all events enabled by
C1. The fragment C2 \C1 can then be iterated infinitely often
without leaving any event enabled forever.

Formally, let ω ∈ Ω be weakly fair, such that C ⊆ ω and
ω ∩ Eφ = ∅. Let σ = e1e2 . . . be any weakly fair interleaving
of ω, and en the last event of C in σ. By the pigeonhole
principle there is infinitely many n ≤ n1 < n2 < · · · ∈ N such
that mark(σn1

) = mark(σn2
) = . . . , where σi denotes the

run e1e2 . . . ei. Let C1 be the restriction of ω to σn1
. Because

σ is weakly fair, there is some i ∈ N such that σni contains
one spoiler for every event enabled by C1 (Lemma 2). Let C2

be the restriction of ω to σni . Then C1, C2 satisfy (15)-(18).
For the opposite direction, let C1, C2 be configurations

satisfying (15)-(18). We construct a fault-free, weakly fair
ω ∈ Ω. For convenience, we write PLoop(C1, C2) for all
pairs C1, C2 ∈ C satisfying (15) and (16). Since mark(C1) =
mark(C2), we can append an isomorphic copy of C2 \ C1 to
C2, yielding C3, such that PLoop(C2, C3) and C3 ∩Eφ = ∅
hold. Iterating this construction, we obtain a family (Cn)n∈N of
configurations satisfying PLoop(Cn, Cn+1) and Cn∩Eφ = ∅
for all n ∈ N. Let ω :=

⋃
n∈N Cn be the configuration resulting

from their union. We prove that ω does not enable any event,
and thus ω ∈ Ω by Lemma 1. By contradiction, let e be any
event enabled by ω. It is therefore enabled by Ci for some
i ∈ N. Since the unfolding after cut(Ci) is isomorphic to the
unfolding after cut(C1), there is some e′ isomorphic to e that
is enabled by C1. By construction, spoilers(e′) ∩ C2 6= ∅, so
there is some ê′ in C2 \C1 that disables e′. Because Ci+1 \Ci
is isomorphic to C2\C1, there is some spoiler of e in Ci+1\Ci,
and ω does not enable e, a contradiction.

In Fig. 1, (t1, t9, t10)ω is a weakly fair run, represented
in Fig. 2 by the fault-free, weakly fair configuration ω :=
{e1, e9, e10, e′1, . . .} ∈ Ω. Setting C :=∅, Lemma 8 implies the
existence of C1 = ∅ and C2 = {e1, e9, e10}.

While Lemma 8 identifies a method for finding fault-free,
weakly fair configurations, there are still infinitely many
configurations C1, C2 to consider. We would thus like to define
a finite unfolding prefix of UN such that, C1, C2 exist and verify
(15) to (18) iff there are small copies of C1, C2 among the
configurations of such a prefix that still satisfy (15) to (18).

Recall that it is possible [12] to compute a finite, marking-
complete prefix P1

N := 〈B1, E1, G1, m̃0〉 of UN . For any
configuration C of UN , we denote by CE1

the set C ∩ E1.
Below, we define a prefix P2

N that includes P1
N and preserves

not only reachability of markings but also the capability of
a configuration to spoil previously enabled events, i.e., those
events that can take the role of C2 in (17). P2

N will be defined
using the following notion of cutoff, which is relative to P1

N :

Definition 3. Event e ∈ E is an sp-cutoff if there is e′ ∈ E
such that, setting D := [e] \ [e′], we have e′ < e, and

• f(•D \D•) = f(D• \ •D), and (19)
• B1 ∩ •D = ∅. (20)

Observe that (20) imposes that D, the ‘difference’ between
[e] and [e′], cannot consume conditions generated by events of
P1
N , see Fig. 3 (b). This means that [e] and [e′] spoil exactly

the same events among all those enabled by any C1 ∈ C(P1
N).

Although it is not clear after Def. 3, (19) implies mark([e]) =
mark([e]), as the following lemma implies:

Lemma 9. Let e be an sp-cutoff, and e′ as in Def. 3. For all
C ∈ C(P1

N), if C ∪ [e] is a configuration, then

mark(C ∪ [e]) = mark(C ∪ [e′]).

e
e

e′

B1

(b)

e′

(a)

Fig. 3. The lined area in (a) represents unobservable, φ-labelled, events of a
verbose explanation. In (b), the lined area depicts D := [e] \ [e′] in Def. 3,
which does not consume any condition in B1.

Proof: (sketch) Show by cases, using (19)-(20), that

f((m̃0 ∪ C• ∪ [e]•) \ (•C ∪ •[e])) =

f((m̃0 ∪ C• ∪ [e′]•) \ (•C ∪ •[e′])).
Any configuration C of UN that contains some sp-cutoff

e can be trimmed in a way analogous to the way verbose
configurations can be peeled into succinct configurations, cf.
Lemma 6. Trimming C corresponds to finding some smaller
configuration C ′ that preserves the above spoiling capabilities.

Formally, let C be any configuration that contains an
sp-cutoff e and event e′ ∈ C as in Def. 3. Consider the
configuration CE1

∪ [e] ⊆ C. Since CE1
is a configuration of

P1
N , by Lemma 9, mark(CE1 ∪ [e]) = mark(CE1 ∪ [e′]). So

we can partition C as (CE1 ∪ [e]) and I := C \ (CE1 ∪ [e]),
and define trime,e′(C) as the configuration

C ′ := (CE1
∪ [e′]) ∪ I ′,

where I ′ is the isomorphic copy of I after cut(CE1
∪ [e′]).

Lemma 10. Let C ′ := trime,e′(C) for any configuration C of
UN . We have:
• mark(C) = mark(C ′) (21)
• C ∩ E1 ⊆ C ′ ∩ E1 (22)
• C ∩ Eφ = ∅ ⇒ C ′ ∩ Eφ = ∅ (23)
• ∀e ∈ B•1 : spoilers(e) ∩ C 6= ∅ ⇒

spoilers(e) ∩ C ′ 6= ∅ (24)
• |C ′| < |C| (25)

Proof: (22), (23), and (25) hold by construction of C ′.
(21) is a consequence of the fact that UN stripped of CE1

∪ [e]
is isomorphic to UN stripped of CE1

∪ [e′]. So isomorphic
sets of events I and I ′ yield the same marking of N . As
for (24), let e, e′ ∈ C be as in Def. 3, let ê ∈ B•1 , and let
ê† ∈ spoilers(ê) ∩ C. Three cases are possible:
• ê† ∈ (C ∩ E1) ∪ [e′]. Then by construction, ê† ∈ C ′.
• ê† ∈ [e] \ [e′]. Not possible, entails contradiction to (20).
• ê† ∈ I . Let c ∈ •ê†∩B1 be any condition in B1 consumed

by ê†. We show that c ∈ cut(CE1
∪ [e′]). This is because

c ∈ m̃0 ∪ (C ∩ E1)• (since C is causally closed), and
also c /∈ •(CE1 ∪ [e′]) (since the only event ê† in C
that consumes c is in I). With analogous reasoning,
one shows that c ∈ cut(CE1

∪ [e]). Now, because I ,
starting from cut(CE1

∪ [e]), is isomorphic to I ′, starting
from cut(CE1

∪ [e′]), and c belongs to both cuts, if ê†

consumes from c, its isomorphic event in I ′ also consumes

from c and hence spoils ê.
Observe that no event in P1

N is an sp-cutoff, and thus P2
N

contains P1
N . Trimming decrements the number of events

(25), so if trime,e′(C) still has a sp-cutoff we can trim again
finitely many times until getting an sp-cutoff-free configuration,
choosing any e, e′ as in Def. 3 every time we trim. Let
trim∗(C) denote the set of such configurations.

We define P2
N := 〈B2, E2, G2, m̃0〉 as the unfolding prefix

whose events are exactly all non sp-cutoff events, i.e.,

E2 := {e ∈ E : e is not sp-cutoff}.

Proposition 3. P2
N is finite.

Proof: Assume E2 is infinite. As in the proof of Proposi-
tion 1, we can find infinitely many events e1 < e2 < . . . in E2.
Because T and the number of reachable markings in N are
finite, we can furthermore assume that f(e1) = f(e2) = . . .
and mark([e1]) = mark([e2]) = . . . Define the sequence
of difference sets Di = [ei] \ [ei+1], for i ≥ 1. For i < j,
•Di ∩ •Dj = ∅, otherwise [ej] would have conflicts. Since B1

is finite, the number of Dis consuming from B1 must then be
finite. So there is some k ≥ 1 such that B1 ∩ •Di = ∅ holds
for all i ≥ k. Then ek+1 is an sp-cutoff, a contradiction.

We can now state our main result:

Theorem 1. Observation pattern α does not diagnose φ iff
there exist configurations

C,C ′1 ∈ C(UN), C1 ∈ C(P1
N), C2 ∈ C(P2

N)

satisfying the following properties:
• C is a succinct explanation of α, and (26)
• C ⊆ C ′1, and (27)
• C1 ⊆ C2, and (28)
• mark(C ′1) = mark(C1) = mark(C2), and (29)
• ∀e ∈ E : C1

e
 ⇒ spoilers(e) ∩ C2 6= ∅, and (30)

• there is no fault event in either C ′1 or C2. (31)

Proof: By (14), if α does not diagnose φ, there is a
fault-free, weakly fair configuration ω ∈ Ω and some succinct
explanation C ∈ succexpl(α) with C ⊆ ω. By Lemma 8, there
are configurations C̃1, C̃2 that satisfy (15)-(18). Define C1 ∈
C(P1

N) as any configuration in P1
N that reaches mark(C̃1).

Now let C ′2 denote C1 ∪ I where I is an isomorphic copy
of C̃2 \ C̃1 starting at cut(C1). Define C2 as either C ′2 if C ′2
contains no sp-cutoff or as any configuration in trim∗(C ′2)
otherwise. In both cases, C2 ∈ C(P2

N). Define C ′1 ⊆ ω as
any configuration satisfying (27) whose marking is mark(C̃1),
which exists because ω repeats mark(C̃1) infinitely often.

(26) and (27) holds by definition of C,C ′1. By construction,
C1 ⊆ C ′2. If C ′2 has sp-cutoffs and C2 is taken from trim∗(C ′2),
by (22) and the fact that C1 ⊆ E1, we have C1 ⊆ C2. So
(28) holds in any case. (29) holds by construction of C ′1, C1,
(16), and (21). Because ω is fault-free, C ′1 is as well. By (18),
C̃1, C̃2 are fault free, and so is C ′2 (by isomorphism). Then, by
(23), C2 is fault-free. This shows (31). As for (30), we observe
the following. C̃1, C̃2 satisfy (17). Since C̃1 cannot contain
any spoiler of the events it enables, all such spoilers are in
C̃2 \ C̃1. Then, C ′2 disables all events enabled by C1 because

C ′2 \ C1 is isomorphic to C̃2 \ C̃1. Now, because C1 ⊆ E1,
all such events are in B•1 . Then by (24), C2 disables all them,
and (30) holds.

If C,C ′1, C1, C2 exist and verify (26)-(31), by Lemma 8
some fault-free, weakly fair configuration ω ∈ Ω exists and
repeats infinitely often mark(C1) = mark(C ′1). Construct
another weakly fair configuration ω′ := C ′1 ∪ I ∈ Ω where I
is an isomorphic copy of ω \ C1 starting at cut(C ′1). Now, ω′

contains a succinct explanation and is fault-free because so
was C ′1, and by isomorphism between ω \ C1 and I .

In other words, Theorem 1 states that α does not diagnose
φ iff one can find configurations C1, C2 in some suitable finite
unfolding prefixes and a succinct explanation C of α such that
mark(C1) can be reached from mark(C) without executing
fault events. There is only finitely many succinct explanations
of α, and we can decide whether one marking is reachable from
another without executing faults using our next Proposition.
So Theorem 1 suggests a decision algorithm for the diagnosis
problem that we shall investigate in Sec. V.

Proposition 4. There exist fault-free configurations C ⊆ C ′ of
UN iff there is fault-free configurations Ĉ ⊆ Ĉ ′ of, respectively,
P1
N ,P2

N , satisfying:

mark(C) = mark(Ĉ) and mark(C ′) = mark(Ĉ ′).

Proof sketch: P1
N is marking-complete and we can find the

requested fault-free Ĉ in C(P1
N), see the proof of Proposition

4.9 (a) in [12]. Let Ĉ ′′ := Ĉ ∪ I where I is an isomorphic
copy of C ′ \ C starting at cut(Ĉ). Let Ĉ ′ := Ĉ ′′ if Ĉ ′′ ⊆ E2,
or Ĉ ′ ∈ trim∗(Ĉ ′′) otherwise. Then Ĉ, Ĉ ′ satisfy the lemma
by (21)-(23).

V. A DECISION METHOD FOR DIAGNOSIS

Theorem 1 states a set of necessary and sufficient conditions
that characterize whether or not a given observation α diagnoses
φ. In this section, we present a method for deciding if these
conditions hold. We discuss (Sec. V-A) which information
is needed in order to decide them, and how to obtain that
information (Sec. V-B). Based on this, we present an encoding
of the diagnosis problem into SAT (Sec. V-C).

A. Preparation

Given the observation α, we need to decide whether all
conditions in Theorem 1 hold. Our goal is to minimize the
work that is sensitive to changes in α, in particular when α is
extended by additional observations. However, (26) and (27)
seem to require constructing not only the prefix containing all
succinct explanations, but also a large section of the unfolding
beyond each of these explanations. Fortunately, this can be
avoided thanks to Proposition 4 and the fact that C ′1 and C1

in Theorem 1 do not depend on C being an explanation of α,
merely on the fact that C ′1 is a fault-free extension of C. So,
we only require that mark(C ′1) is reachable from mark(C)
without executing faults, and replace (27) by:

∃C ′ : mark(C) = mark(C ′) ∧ C ′ ⊆ C ′1 (32)

Hence it suffices to construct only two unfolding prefixes:

• One prefix Pα containing all succinct explanations of α,
used to search for C.

• Prefix P2
N w P1

N , to check for the existence of a weakly
fair configuration starting from a given marking (see
Lemma 10), and whether one marking is reachable from
another (see Proposition 4). We shall search for C ′, C1

in P1
N and for C ′1, C2 in P2

N .
Observe that restricting the construction of these prefixes to
their fault-free parts automatically satisfies (31). Also, notice
that Pα depends only on the observation, whereas P2

N only
on N . So P2

N can be constructed offline, before α is acquired.

B. Constructing the prefixes

We now explain how to compute the prefixes P2
N and Pα.

There exist well-known algorithms [12] and efficient tools
[18], [19] for constructing Petri net unfoldings. Typically, the
goal in those constructions is to obtain a marking-complete
prefix; to this end, they start with the initial marking of UN ,
then discover and add events to the prefix one by one until
each branch eventually reaches a so-called cutoff event whose
causal successors remain unexplored. For our constructions,
the iterative structure of these algorithms can be maintained,
it suffices to replace the criteria for cutoffs.

1) Constructing Pα: We need to restrict the unfolding
construction as follows: (i) exclude fault events to ensure (31);
(ii) restrict to explanations of α; and (iii) preserve all succinct
explanations and eliminate all verbose ones.

For (i) and (ii), we synchronize N with a net representing
α = 〈S,<, λ〉. Let Smin (resp. Smax) be the elements without
predecessor (resp. successor) in S. We re-translate α into an
occurrence net Oα = 〈Pα, S, Fα,mα〉, whose events are S
and whose causal relation is <. The definition of Oα is quite
standard, we only remark that Pα := Pmin] Pmid] Pmax

is partitioned in three sets, where Pmax (resp. Pmin) is the
postset (resp. preset) conditions of Smax (resp. Smin).

We then compose N = 〈P, T, F,m0〉 and Oα into a net
Nα = 〈P ′, To ∪ Tu, G,m′0〉, where:
• P ′ = P ∪ Pα;
• To = { 〈t, s〉 : t ∈ T obs , s ∈ S, λ(t) = λ(s) };
• Tu = T ubs \ {φ};
• for 〈t, s〉 ∈ To, •〈t, s〉 = •t ∪ •s and 〈t, s〉• = t• ∪ s•
• for t ∈ Tu, •t and t• remain as in N ;
• m′0 = m0 ∪mα.
Intuitively, Nα adds the places of Oα to N in order to

record which parts of α have been seen during an execution.
The observable transitions of N and Oα are synchronized
to ensure that no run contradict α or add further observable
events, and faults are excluded. Consider the unfolding UNα .
Projecting each event labelled with a tuple 〈t, s〉 to t instead,
then each configuration C of UNα is also a configuration of
UN ; moreover C explains α iff mark(C) contains Pmax .

It remains to assure (iii). Thanks to Def. 2 it suffices to
cut the construction of UNα at any event e such that there is
another event e′ < e with mark([e′]) = mark([e]). Indeed, this
ensures both (9) and (10) as no observable event has occurred
after e′. By the pigeon-hole principle on the finitely many

reachable marking in N , this cutoff criterion is guaranteed to
yield a finite prefix Pα.

2) Constructing P2
N : We construct P2

N in two phases.
First, P1

N is obtained by the usual unfolding methods for
marking-complete prefixes (e.g., [12]). Then, we extend P1

N

by additional events, using Def. 3 as a cutoff criterion. Observe
that deciding whether e ∈ E is an sp-cutoff entirely depends
information contained in [e].

C. Encoding diagnosis into SAT

We propose an encoding of the diagnosis problem into SAT.
Given prefixes P1

N ,P2
N ,Pα, computed as per Sec. V-B, we

construct a formula ϕ that is satisfiable iff α does not diagnose
φ. This approach immediately gives a decision procedure
via efficient SAT solving. Not surprisingly, one can show
(reduction from the reachability problem for unfolding prefixes)
that finding the configurations C,C ′, C1, C

′
1, C2 discussed in

Sec. V-A in these prefixes is NP-hard.
SAT-based decision procedures for unfolding-related prob-

lems have been used, e.g. to solve deadlock or reachability
problems [20], [21], where satisfying assignments represent
configurations with suitable properties. While we re-use this
idea, the specificities of diagnosis require to encode multiple
configurations and relate them according to Theorem 1.

For an unfolding prefix P = 〈〈B,E,G, m̃0〉, f〉 of N or
Nα, and a label l, we define collections of Boolean variables

v(l) := {vlx : x ∈ B ∪ E}, m(l) := {ml
p : p ∈ P}.

Intuitively, all variables in v(l) will encode a configuration
identified by l, and those in m(l) a marking referred by l.
Write amo(v1, . . . , vn) for ‘at most one of v1, . . . , vn holds’.
For labels l, l′, we define the following predicates:
? config(l,P) :=

(∧
e∈E

∧
e′∈••e(vle ⇒ vle′)

)
∧(∧

c∈B,{e1,...,en}=•c amo(vle1 , . . . , v
l
en)
)
∧(∧

c∈B vlc ⇔
(∧

e∈•c vle ∧
∧
e∈c• ¬vle

))
demands v(l) to represent a configuration of P (a causally-
closed, conflict-free set of events) and its cut.
? subset(l, l′,P) :=

∧
e∈E(vle ⇒ vl

′

e) asks that l-labelled
events are a subset of l′-labelled events.
? mark(l, l′,P):=

∧
p∈P

(
ml
p ⇔

(∨
c∈f−1(p) vl

′

c

))
asks that

m(l) reflects the marking associated with the cut of v(l),
assuming that v(l) encodes a configuration of P .
? enables(l, l′,P) :=

∧
e∈E

(
vl
′

e ⇔ (
∧
c∈•e vlc)

)
means that,

assuming config(l,P) holds, event variable vl
′

e is true iff e is
enabled in the configuration represented by v(l).
? spoils(l, l′,P) :=

∧
e∈E

(
vl
′

e ⇒ (
∨
e′∈(•e)• vle′)

)
holds iff

v(l) has one spoiler for each event true in v(l′).
? explains(l) :=

∧
p∈Pmax

∨
f(c)=p vlc, requests that the con-

figuration referred by l is a succinct explanation of α.
Although these predicates are at worst quadratic in the size

of P , a linear size version exist for all of them. Also, not all
of them are directly given in CNF, but a linear translation is
always possible; the same holds for amo(·), cf. [21].

We can now turn to the encoding of Theorem 1, where
(27) is replaced by (32), as discussed in Sec. V-A. Fix labels

m, m′, C, C′, C′1, C1, C2, D. Each of these labels identifies (the
collection of Boolean variables representing) a configuration or
a marking, except for D, which represents a set of events. For
instance C represents the configuration C, note the different
typography. Our formula ϕ is the conjunction of the following
constraints:

1) config(C,Pα) ∧mark(m, C,Pα) ∧ explains(C)
2) config(C′,P1

N) ∧mark(m, C′,P1
N)

3) config(C′1,P2
N) ∧mark(m′, C′1,P1

N)
4) config(C1,P1

N) ∧mark(m′, C1,P2
N)

5) config(C2,P2
N) ∧mark(m′, C2,P2

N)
6) subset(C′, C′1,P1

N) ∧ subset(C1, C2,P2
N)

7) enables(C1, D,P2
N) ∧ spoils(C2, D,P2

N)

Only 1) actually depends on α, whereas remaining constraints
can be built before α is known. 7) corresponds to (30), the
others to (28), (29), and (32). Conditions (26) and (31) of
Theorem 1 are guaranteed by construction.

VI. OUTLOOK

We presented an unfolding-based method solving the prob-
lem of weak diagnosis for partially observable safe Petri nets.

Weak diagnosis exploits indirect dependencies, captured by
the reveals relations, in order to explore the system’s executions
that explain a given observation pattern, and determine whether
an unobservable fault is inevitable. We stress that despite its
name, ‘weak’ diagnosis is actually stronger than usual diagnosis
as in [1]. Whereas in [1] an observation can only be used
to detect faults having occurred in the past, weak diagnosis
captures also faults that are concurrent or in the future of the
observation, under weak fairness. The requirement of [1] that
no unobservable cycle is present in the system is also dropped,
thanks to a characterization of the succinct explanations, that
bound the unfolding prefix needed to perform diagnosis. The
results here contain those of [2] and strengthen the existing
approaches to the more powerful capability of weak diagnosis.
We have shown how diagnosis can be performed using an
algorithmic construction, and given an encoding into SAT.

We intend to produce an implementation of our approach.
While many of its ingredients are available by minor modi-
fications of existing tools and verification infrastructure, e.g.
[18], a practical obstacle to overcome could be the sizes of the
prefixes required in order to perform diagnosis. As for prefix
P2
N , note that it contains all system behaviours, but can be

constructed offline once and for all. The size of P2
N can be

exponential in the size of the net (and polynomial in the size
of the reachability graph); however, it is known that unfoldings
tend to be much smaller than this for systems that exhibit a
high degree of concurrency. In general, the weak-diagnosis
problem for Petri nets is PSPACE-complete (hardness follows
by reduction from the reachability problem, membership by the
fact that a fault-free weakly fair run matching the observation
pattern can be nondeterministically simulated in linear space).

The prefix containing all the succinct explanations must be
created online, but contains only the behaviours compatible with
the observation. Notice that it can alternatively be obtained
by producing a marking-complete unfolding of the net Nα

from Sec. V-B, which should result in a reduction of its size.
In this paper, we omitted this possibility for the sake of a
simpler presentation. Also, representing both prefixes as merged
processes [20] should result in a dramatic reduction of their
size.

Future work also includes verification of weak diagnosability
[22], [15], [16], [9], [10] based on the results here. Further, local
projections of observations, as exploited in [2], are interesting,
especially in the context of distributed diagnosis.

Acknowledgment: We thank Javier Esparza and the
anonymous reviewers for their helpful suggestions. This work
has been supported by project ImpRo ANR-2010-BLAN-0317.

REFERENCES

[1] A. Benveniste, E. Fabre, S. Haar, and C. Jard, “Diagnosis of asynchronous
discrete-event systems: a net unfolding approach,” IEEE Trans. Aut. Cont.,
vol. 48, no. 5, pp. 714–727, 2003.

[2] J. Esparza and C. Kern, “Reactive and proactive diagnosis of distributed
systems using net unfoldings,” in Proc. ACSD, 2012, pp. 154–163.

[3] S. Balaguer, T. Chatain, and S. Haar, “Building tight occurrence nets
from reveals relations,” in Proc. ACSD. IEEE, 2011, pp. 44–53.

[4] C. Cassandras and S. Lafortune, Introduction to discrete event systems.
Springer, 2008.

[5] E. Fabre and A. Benveniste, “Partial order techniques for distributed
discrete event systems: Why you cannot avoid using them,” Discrete
Event Dynamic Systems, vol. 17, no. 3, pp. 355–403, 2007.

[6] E. Fabre, A. Benveniste, S. Haar, and C. Jard, “Distributed monitoring of
concurrent and asynchronous systems,” Discrete Event Dynamic Systems,
vol. 15, no. 1, pp. 33–84, 2005.

[7] P. Baldan, S. Haar, and B. König, “Distributed unfolding of Petri nets,”
in Proc. FoSSaCS, ser. LNCS 3921, Mar. 2006, pp. 126–141.

[8] S. Haar and É. Fabre, “Diagnosis with Petri net unfoldings,” in Control
of Discrete-Event Systems, ser. LNCIS, C. Seatzu, M. Silva, and J. H.
van Schuppen, Eds. Springer, 2013, vol. 433, pp. 301–318.

[9] S. Haar, “Types of asynchronous diagnosability and the reveals-relation
in occurrence nets,” IEEE Transactions on Automatic Control, vol. 55,
no. 10, pp. 2310–2320, 2010.

[10] A. Agarwal, A. Madalinski, and S. Haar, “Effective verification of weak
diagnosability,” in Proc. 8th SAFEPROCESS. IFAC, Aug. 2012.

[11] S. Haar, “What topology tells us about diagnosability in partial order
semantics,” JDEDS, vol. 22, no. 4, pp. 383–402, 2012.

[12] J. Esparza, S. Römer, and W. Vogler, “An improvement of McMillan’s
unfolding algorithm,” Formal Methods in System Design, vol. 20, no. 3,
pp. 285–310, 2002.

[13] W. Vogler, “Fairness and partial order semantics,” Inf. Process. Lett.,
vol. 55, no. 1, pp. 33–39, 1995.

[14] N. Francez, Fairness. Springer, 1986.
[15] S. Haar, “Unfold and cover: Qualitative diagnosability for Petri nets,” in

Proc. CDC. IEEE, 2007, pp. 1886–1891.
[16] ——, “Qualitative diagnosability of labeled Petri nets revisited,” in Proc.

CDC. IEEE, 2009, pp. 1248–1253.
[17] S. Haar, C. Kern, and S. Schwoon, “Computing the reveals relation in

occurrence nets,” in Proc. GandALF, ser. ENTCS 54, 2011, pp. 31–44.
[18] S. Schwoon, “MOLE,” www.lsv.ens-cachan.fr/~schwoon/tools/mole/.
[19] V. Khomenko, “PUNF,” http://homepages.cs.ncl.ac.uk/victor.khomenko/

tools/punf/.
[20] V. Khomenko, A. Kondratyev, M. Koutny, and W. Vogler, “Merged

processes – a new condensed representation of Petri net behaviour,” Acta
Informatica, vol. 43, no. 5, pp. 307–330, 2006.

[21] C. Rodríguez and S. Schwoon, “Verification of Petri nets with read arcs,”
in Proc. CONCUR, ser. LNCS 7454, 2012, pp. 471–485.

[22] S. Haar, A. Benveniste, E. Fabre, and C. Jard, “Partial order diagnosability
of discrete event systems using Petri net unfoldings,” in Proc. CDC.
IEEE, 2003, pp. 3748–3753.

www.lsv.ens-cachan.fr/~schwoon/tools/mole/
http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/punf/
http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/punf/

	I Introduction
	II Basic notions
	II-A Petri nets
	II-B Occurrence nets
	II-C Unfoldings
	II-D Weakly fair runs and configurations
	II-E Labelled partial orders (LPOs)

	III Reveals and Diagnosis
	III-A Reveals Relations
	III-B Diagnosis from Partial Observation

	IV A solution using extended reveals
	IV-A Succinct explanations
	IV-B Characterizing weakly fair configurations

	V A decision method for diagnosis
	V-A Preparation
	V-B Constructing the prefixes
	V-C Encoding diagnosis into SAT

	VI Outlook
	References

