
Using Stochastic Comparison for Efficient Model
Checking of Uncertain Markov Chains

Serge Haddad
LSV, ENS de Cachan

61 Av. du Pŕesident Wilson 94235 Cachan, France
Email: Serge.Haddad@lsv.ens-cachan.fr

Nihal Pekergin
LACL, Université Paris Est

61 Av. du Ǵeńeral de Gaulle 94010 Créteil, France
Email: nihal.pekergin@univ-paris12.fr

Abstract—We consider model checking of Discrete Time
Markov Chains (DTMC) with transition probabilities which a re
not exactly known but lie in a given interval. Model checking
a Probabilistic Computation Tree Logic (PCTL) formula for
interval-valued DTMCs (IMC) has been shown to be NP hard
and co-NP hard. Since the state space of a realistic DTMC is
generally huge, these lower bounds prevent the applicationof
exact algorithms for such models. Therefore we propose to apply
the stochastic comparison method to check an extended version
of PCTL for IMCs. More precisely, we first design linear time
algorithms to quantitatively analyze IMCs. Then we developan
efficient, semi-decidable PCTL model checking procedure for
IMCs. Furthermore, our procedure returns more refined answers
than traditional ones: YES, NO, DON’T KNOW. Thus we may
provide useful partial information for modelers in the ‘DON ’T
KNOW’ case.

I. I NTRODUCTION

Specification.Markovian models have been largely used in
performance, dependability and reliability analysis of com-
puter and communication systems. Modeling a quantitative
stochastic system by a DTMC requires the specification of an
initial distribution and a transition probability matrix.How-
ever, sometimes it may be impossible or unrealistic to deter-
mine precisely these probabilities. First of all, transition rates
are estimated through statistical experiences which provide
intervals of values (bounds) but not exact values. Moreover,
these models are the abstraction of complex interactions or
dependence of system parameters thus interval values for
transition probabilities would be more appropriate than precise
ones. Furthermore substituting a reduced Markov chain for the
original one naturally leads to interval values. Interval-valued
Markov chains for which transition probabilities are supposed
to lie within a range of values have been introduced to capture
such uncertainties [18].

Verification.In quantitative model checking, one first specifies
a complex performability or safety guarantee by a temporal
logic formula and then checks its satisfiability based on the
transition graph. Different languages have been proposed de-
pending on the considered stochastic model and properties.In
DTMCs, PCTL [15] has been first proposed and then extended
with more complex operators (e.g. [7]). In CTMCs, a similar
logic, Continuous Stochastic Logic [3] and its extensions [2],
[10] also adapt CTL logic (defined for discrete-event systems).
PCTL is also adequate for Markovian Decision Processes [5].

Model checking of uncertain models.In order to specify
expected behavior, [16] introduces IMCs and checks whether
an IMC conforms to the model of the system w.r.t. different
relations. In [18], the authors show how to obtain parameters
of an IMC. Model checking of IMCs has been investigated first
in [23] where it is shown that PCTL model checking of IMCs
is in PSPACE and it is NP hard and co-NP-hard. The results
have been generalized to!-PCTL logic in [7]. Both [23], [7]
also study interval-valued Markov decision processes.

Our contribution.In this paper, we provide an efficient semi-
decision algorithm for model checking of PCTL formulas over
interval-valued DTMCs (IMCs) based on stochastic compar-
isons. We first design (or improve) linear time algorithms to
quantitatively analyze IMCs.

∙ For any fixed states and every subset of statesS ′, we
compute the minimal and maximal cumulative probability
to go froms to S ′ in one step.

∙ [13] establishes the existence of the greatest≤st mono-
tone and lower bounding transition probability matrix for
a set of substochastic Markov chains specified by an IMC.
Furthermore they design a linear time algorithm to build
such a chain and state a structural characterization w.r.t.
the IMC of finiteness of mean sojourn time in this chain.
We refine this last result by building the subset of (initial)
states for which this sojourn time starting from them is
finite.

The model checking procedure is performed as usual by
a bottom-up evaluation of subformulas and corresponding
labelling of states. However due to the fact that we rely on
a semi-decision procedure, the labels of states are 6-valued:
satisfied for all(∀+), satisfied for none(∀−), exists satisfied
and exists not satisfied(∃+−), exists satisfied(∃+), exists not
satisfied(∃−), don’t know(?). The three first cases are exact
answers while the last three ones are partial ones.

Contrary to [23], [7] our variant of PCTL includes the
mean reachability time operator (D). This operator is useful
for performability studies e.g. the mean time to failure can
be expressed with this operator [24]. Moreover the stochastic
comparison approach is the key point to handle both this
operator and the (time bounded) until operator.

Organization. The remaining of the paper is organized as
follows. Section II is devoted to IMC (definitions and algo-

rithms). We present the syntax and semantic of the considered
PCTL in section III. Model checking of PCTL is developed
in section IV. Related work is discussed in section V. Finally
we conclude and give some perspectives for this approach in
section VI.

II. I NTERVAL MARKOV CHAINS

A. Definitions

Definition 1: A labelled time-homogeneous DTMCℳ is
a 3-tuple (S,P, L) where S is a finite set ofstates, P is
the transition probability matrix (a stochastic matrix), and L :
S → 2AP is the labelling function which assigns to each state
s ∈ S, the setL(s) of atomic propositionsa ∈ AP that are
valid in s, AP denotes the finite set of atomic propositions.

Following (with slight changes) the definition in [23], we
define the interval-valued, labelled DTMCs as follows :

Definition 2: A labelled interval-valued time homogeneous
DTMC ℳ(P−,P+) is defined by a 4-tuple(S,P−,P+, L),
where S and L are defined as in a labelled DTMC. The
interval-valued DTMC is defined byP− (resp.P+) which
is a substochastic matrix, ie. the row sums may be less or
equal to 1 (resp. superstochastic matrix, ie. the row sums may
be greater or equal to 1).

For all s, t ∈ S, the following inequalities are satisfied
betweenP− andP+ :

0 ≤ P
−[s, t] ≤ P

+[s, t] ∧
∑

t′∈S

P
+[s, t′] ≥ 1 ≥

∑

t′∈S

P
−[s, t′]

(1)
P

−[s, t] ≥ 1−
∑

t′ ∕=t

P
+[s, t′] (2)

P
+[s, t] ≤ 1−

∑

t′ ∕=t

P
−[s, t′] (3)

A DTMC with transition probability matrixP is said to
belong toℳ(P−,P+) (denotedP ∈ ℳ(P−,P+)), if

∀s, t, P
−[s, t] ≤ P[s, t] ≤ P

+[s, t] (4)

Remark. Observe that the set of inequalities (1) is a
necessary and sufficient condition forℳ(P−,P+) to
be non empty. Furthermore one can always changeP

−

and P
+ in order to satisfy inequalities (2) and (3)

without modifying ℳ(P−,P+). Transformations consist
in P

−[s, t] := max(P−[s, t], 1 −
∑

t′ ∕=tP
+[s, t′]) and

P
+[s, t] := min(P+[s, t], 1−

∑

t′ ∕=tP
−[s, t′]).

In the sequel, we denote byℳ (resp.P) a DTMC (resp. a
transition probability matrix) belonging to the set of Markov
chainsℳ(P−,P+).

Verifying PCTL formulas requires to transform the Markov
chain and in particular to build sub-stochastic chains. Thus
we simultaneously deal with stochastic and sub-stochastic
matrices. A sub-stochasticn × n matrix P can also be
considered as an(n+1)×(n+1) stochastic matrix by adding
an additional absorbing states such thatP[s, s] = 1 and
∀s′ ∕= s,P[s′, s] = 1 −

∑

s′′ ∕=sP[s′, s′′]. In the sequel we
interchangeably use these two representations.

So we introduce a set of sub-stochastic matrices in order to
mainly study the strict sub-stochasticity, i.e. with probability
1, the additional absorbing state is reached. This explainsthe
asymmetry of the next definition regarding to definition 2.

Definition 3: An interval valuedn×n sub-stochastic matrix
ℳ(P−,P+,out) is defined by ann×n sub-stochastic matrix
P

−, an n × n positive matrixP+, and a positive vector of
size nout that fulfill:

0 ≤ P
−[s, t] ≤ P

+[s, t] ∧
∑

t′∈S

P
−[s, t′] + out[s] ≤ 1

P
+[s, t] ≤ 1−

∑

t′ ∕=t

P
−[s, t′]− out[s]

A sub-stochasticn × n matrix P is said to belong to
ℳ(P−,P+,out) (denotedP ∈ ℳ(P−,P+,out)), if ∀s, t :

P
−[s, t] ≤ P[s, t] ≤ P

+[s, t] ∧
∑

t∈S

P[s, t] ≤ 1− out[s] (5)

B. Structural Properties of IMC

Given an IMC, a states and a subset of statesS ′, we first
characterize the maximal and minimal value to reachS ′ from
s in one step.

Lemma 1:Let ℳ(P−,P+) be a labelled interval-valued
time homogeneous DTMC,S ′ ⊆ S be a subset of states and
s ∈ S be a state. Then:

∙ min(
∑

t∈S′ P[s, t] ∣ P ∈ ℳ(P−,P+)}
= max(

∑

t∈S′ P
−[s, t], 1−

∑

t/∈S′ P
+[s, t])

∙ max{
∑

t∈S′ P[s, t] ∣ P ∈ ℳ(P−,P+))
= min(

∑

t∈S′ P
+[s, t], 1−

∑

t/∈S′ P
−[s, t])

Proof. We only prove the first assertion since the proof of the
second one is similar. Let us denotems ≡ min(

∑

t∈S′ P[s, t] ∣
P ∈ ℳ(P−,P+)). It follows from Equation (4) that
any P ∈ ℳ(P−,P+) fulfills for any subsetS ′ ∈ S
∑

t∈S′ P[s, t] ≥
∑

t∈S′ P
−[s, t]. Moreover, sinceP is

stochastic
∑

t∈S′ P[s, t] ≥ 1 −
∑

t/∈S′ P
+[s, t]. Thusms ≥

max(
∑

t∈S′ P
−[s, t], 1 −

∑

t/∈S′ P
+[s, t]). In order to prove

equality, we exhibit someP ∈ ℳ(P−,P+) that reaches this
value. We observe that we only have to specifyP[s, ∗]. We
order the states ofS such that any state ofS ′ occurs before
the states out ofS ′. We fill row s to minimize the sum of
probabilities for a given set (the first case) with Algorithm1.

Algorithm 1 : Filling algorithm to minimize rows of an
IMC with respect to partial sums

Input : row s of P−,P+;S = {s1, s2, ⋅ ⋅ ⋅ sn};
Output : row s of P ∈ ℳ(P−,P+) ;
sum = 0;
for i = 1 to n do

1.
P[s, si] = max(P−[s, si], 1−sum−

∑

j>iP
+[s, sj]);

2. sum = sum+P[s, si];
end

We prove by induction that at the beginning of each iteration
i (including the casei = n + 1 meaning that the algorithm
exits the loop), the following equations are satisfied:

sum =
∑

j<i

P[s, sj]

∀j < i, P
−[s, sj] ≤ P[s, sj] ≤ P

+[s, sj]

∑

j<i

P[s, sj] = max(
∑

j<i

P
−[s, sj], 1−

∑

j≥i

P
+[s, sj])

The basis casei = 1 is straightforward except for the
last assertion which follows from

∑

j≥1P
+[s, sj] ≥ 1.

Assume that the above inequalities are satisfied fori − 1.
Instruction 2 and the inductive hypothesis ensure thatsum =
∑

j<iP[s, sj]+P[s, si] =
∑

j<i+1 P[s, sj]. Instruction 1 en-
sures thatP[s, si] ≥ P

−[s, si]. Furthermore before instruction
1,
1− sum−

∑

j>iP
+[s, sj]

= 1−
∑

j<iP[s, sj]−
∑

j>iP
+[s, sj]

≤ 1− (1−
∑

i≥j P
+[s, sj])−

∑

j>iP
+[s, sj]

= P
+[s, si].

Thus after instruction 1,P[s, si] ≤ P
+[s, si] (we also use the

inequalityP−[s, si] ≤ P
+[s, si]).

In order to establish the last inequality, we perform a case
study.
Case 1:

∑

j≤iP
−[s, sj] ≥ 1−

∑

j>iP
+[s, sj]

∑

j<iP
−[s, sj]+P

−[s, si] ≥ 1−
∑

j≥iP
+[s, sj]+P

+[s, si]
Hence before instruction 1,
sum+P

−[s, si] ≥ 1−
∑

j>iP
+[s, sj]

P
−[s, si] ≥ 1− sum−

∑

j>iP
+[s, sj]

then after instruction 1,P[s, si] = P
−[s, si]

and after instruction 2,sum =
∑

j≤iP
−[s, sj].

Case 2:
∑

j<iP
−[s, sj] < 1−

∑

j≥iP
+[s, sj]

Using the first and the last inductive assertions, we deduce
that sum = 1−

∑

j≥iP
+[s, si].

Hence before instruction 1,
1− sum−

∑

j>iP
+[s, sj] = P

+[s, si] ≥ P
−[s, si]

Then after instruction 1,
P[s, si] = P

+[s, si]
and after instruction 2,sum = 1−

∑

j>iP
+[s, sj]

Moreover
∑

j≤iP
−[s, sj] ≤

∑

j<iP
−[s, sj] +P

+[s, si]
< (1−

∑

j≥iP
+[s, sj]) +P

+[s, si]
= 1−

∑

j>iP
+[s, sj].

Case 3:
∑

j<iP
−[s, sj] ≥ 1−

∑

j≥iP
+[s, sj]

∧
∑

j≤iP
−[s, sj] < 1−

∑

j>iP
+[s, sj]

Thus before instruction 1,sum =
∑

j<iP
−[s, sj].

1− sum−
∑

j>iP
+[s, sj] =

1−
∑

j<iP
−[s, sj]−

∑

j>iP
+[s, sj]

> −
∑

j<iP
−[s, sj] +

∑

j≤iP
−[s, sj] = P

−[s, si].
Here we have used the second hypothesis of Case 3.
Therefore after instruction 1,
P[s, si] = 1− sum−

∑

j>iP
+[s, sj]

≤ 1− (1−
∑

j≥iP
+[s, sj])−

∑

j>iP
+[s, sj] = P

+[s, si]
The inequality follows from the first hypothesis of Case 3.
After instruction 2,
sum =
∑

j<iP
−[s, sj] + 1−

∑

j<iP
−[s, sj]−

∑

j>iP
−[s, sj]

= 1−
∑

j>iP
+[s, sj].

Using the third inductive assertion withi = n + 1 and
inequation 1, we obtain

∑

j<n+1P[s, si] = 1. Using again
the third inductive assertion withi the index of the first state
not inS ′, we obtain

∑

t∈S′ P[s, t] = max(
∑

t∈S′ P
−[s, t], 1−

∑

t/∈S′ P
+[s, t]). □

In the second case to maximize the sum of probabilities,
we fill row s by Algorithm 2. Let us remark here that if one
is interested in minimizing or maximizing of a partial sum
of probabilities over a subset of statesS ′ ∈ S, it would be
sufficient to perform the loop of these algorithms only for this
subset since they occur first in the enumeration of states.

Algorithm 2 : Filling algorithm to maximize rows of an
IMC with respect to partial sums

Input : row s of P−,P+;S = {s1, s2, ⋅ ⋅ ⋅ sn};
Output : row s of P ∈ ℳ(P−,P+) ;
sum = 0;
for i = 1 to n do

P[s, si] = min(P+[s, si], 1−sum−
∑

j>iP
−[s, sj]);

sum = sum+P[s, si];
end

C. Algorithms for Stochastic Bounds

In this subsection, we present algorithms to construct bound-
ing matrices in the sense of≤st ordering for a given IMC.
We first give the basic definitions and theorems for stochastic
comparison and we refer to [20] for further informations.

1) Stochastic Comparison:The following is the generic
definition for the≤st ordering which is known also as strong
ordering or sample-path ordering.

Definition 4: Let X andY be two random variables taking
values on a totally ordered spaceS,

X ≤st Y ⇐⇒ Ef(X) ≤ Ef(Y)

for all increasing functionsf : S → ℛ whenever expectations
exist.
In the case of finite state spaces, the comparison of random
variables are defined through the following inequalities.

Property 1: Let X andY be two random variables taking
values onS = {s1, s2, . . . , sn}, andp = [p1 . . . pi . . . pn], q =
[q1 . . . qi . . . qn] be probability vectors respectively denoting
distributions ofX and Y (pi = Prob(X = si), and qi =
Prob(Y = si)). X ≤st Y is equivalent to

∀i,
n
∑

k=i

pk ≤
n
∑

k=i

qk ⇔ ∀i,
i

∑

k=1

pk ≥
i

∑

k=1

qk (6)

The first part follows from Def. 4 since increasing functions
are positive linear combinations of indicator functions. The

second is directly deduced from the first part and will be
applied in the sequel since they are straightforwardly general-
izable for sub-stochastic vectors thus more appropriate for our
goals. Let us notice here that we interchangeably useX ≤st Y
and p ≤st q. We apply the following definition to compare
Markov chains.

Definition 5: Let {X(ti)}i≥0 (resp. {Y (ti)}i≥0) be
a DTMC. We say {X(ti)}i≥0 ≤st {Y (ti)}i≥0, if
∀i, X(ti) ≤st Y (ti).
Intuitively, this means that the probability to be states having
a higher number than a fixed one is greater or equal inY at
every instantn. The following folk theorem provides sufficient
conditions to establish the comparison of DTMCs that will be
used in the sequel.

Theorem 1:Let P (resp.P′) be the probability transition
matrix of the time-homogeneous Markov chain{X(ti)}i≥0

(resp. {Y (ti), i ≥ 0}). The comparison of Markov chains
is established ({X(ti)}i≥0 ≤st {Y (ti)}i≥0), if the following
conditions are satisfied :

∙ X(t0) ≤st Y (t0),
∙ at least one of the probability transition matrices is mono-

tone, that is, eitherP or P′ (sayP) is ≤st monotone, if
for all probability vectorsp andq,

p ≤st q =⇒ pP ≤st qP

which is equivalent to

1 ≤ i ≤ n− 1, P[si, ∗] ≤st P[si+1, ∗]

whereP[si, ∗] denotes the row of matrixP for statesi.
∙ the transition matrices are comparable in the sense of the

≤st order :

P ≤st P
′ ⇐⇒ 1 ≤ i ≤ n, P[si, ∗] ≤st P

′[si, ∗]

Algorithm 3 : Construction of the greatest lower bounding
matrix P

∙

Input : P
−,P+ : n× n matrices;out: a vector of

sizen representing the minimal transition
probabilities to reach the absorbing state;

Output : P∙ ∈ ℳ(P−,P+);
P

∙ ≤st ∀P ∈ ℳ(P−,P+);
for i = 1 to n do

for j = 1 to n do
P
a[si, sj] = min(

∑j
k=1P

+[si, sk], 1−
∑n
k=j+1 P

−[si, sk])− out[i]);

(Ih) if (i ≤ j) and (Pa[si, sj] == 1) then
halt;

end
P

∙[si, 1] = P
a[si, 1];

for j = 2 to n do
P

∙[si, sj] = P
a[si, sj]−P

a[si, sj−1];
end

end

2) Bounding Algorithms:We now present algorithms to
construct bounding algorithms for IMC with one absorbing
state proposed in [13], [14].

Algorithm 3 builds the greatest lower bounding matrix in
the sense of≤st ordering for matrices in the given interval
with an additional information specified (minimal transition
probabilities to reach the absorbing state). Thus it follows from
Eq. 6 that∀P ∈ ℳ(P−,P+):

1 ≤ i ≤ n, 1 ≤ j ≤ n,

j
∑

k=1

P
∙[si, sk] ≥

j
∑

k=1

P[si, sk] (7)

Given an input matrix, Algorithm 4 produces the greatest
monotonelower bounding matrix in the sense of≤st ordering.
Moreover∀t, (P★)t is monotone and provides a lower bound-
ing matrix for all transition probability matrices in the interval.
Thus∀P ∈ ℳ(P−,P+):

∀i, ∀j,

j
∑

k=1

(P★)t[si, sk] ≥

j
∑

k=1

(P)t[si, sk] (8)

These inequalities yield indeed the upper bounds to reach
statess1 ⋅ ⋅ ⋅ sj in t steps beginning from statesi, in the case
P
★ is strictly substochastic.

Algorithm 4 : Construction of monotone lower bounding
matrix P

★

Input : P
∙, see Algorithm 3;

Output : P
★ ≤st ∀P ∈ ℳ(P−,P+); P★ is monotone;

P
★[sn, .] = P

∙[sn, .];
for i = n− 1 downto 1 do

x = 0;
for j = 1 to n do

P
★[si, sj] =

max(
∑j
k=1P

∙[si, sk],
∑j
k=1P

★[si+1, sk])− x;
x = x+P

★[si, sj];
end

end

A fundamental issue related to a sub-stochastic matrix,P,
is the following one: which components of the vector given
below are finite?

∑

t≥0

(Pt)1n

where1n is the unit vector (all entries are 1) of sizen. This
question can be solved in the general case by the construction
of the strongly connected components of the underlying graph
related toP and then by local summations related to this
decomposition. In the particular case when the matrix is
monotone a quick criterion whether the set of infinite values
is empty has been established in [13].

Property 2: The following statements are equivalent:
∙ P

★ is strictly substochastic which is equivalent to the
convergence of the series

∑

t≥1(P
★)t,

∙ ∀i
∑

j≤iP
∙[si, sj] < 1,

∙ ∀i
∑

j≤iP
+[si, sj] < 1 or

∑

j>iP
−[si, sj] > 0,

∙ Condition (Ih) of Algorithm 3 is never satisfied.
Here we refine this criterion for monotone matrices by

determining the subset of states with finite values by an
efficient algorithm that simply parses once every entry.

Algorithm 5 : Determination of states that reach the
absorbing state with probability 1 in a monotone sub-
stochastic matrix
Input : P

★, see Algorithm 4;
Output : set of states;
reacℎ = true; iprec = 0;
for i = 1 to n do

if (reacℎ) and (
∑i
j=1P

★[si, sj] == 1) then
reacℎ = false; iprec = i;

else if (
∑i
j=1 P

★[si, sj] == 1) or

(
∑i−1
j=1 P

★[si, sj] > 0) then
iprec = i;

elsereacℎ = true;
end
return {iprec+ 1, . . . , n}

Property 3: Given an input sub-stochastic(n × n) matrix
P
★, Algorithm 5 returns the set of states that reach with

probability 1 the additional absorbing state (indexed byn+1)
Proof. Assume that a statei fulfills

∑i
j=1P

★[si, sj] == 1,

then for all i′ ≤ i,
∑i′

j=1 P
★[s′i, sj] == 1 by monotonicity.

Consequently the subchain reduced to states 1 to i is a Markov
chain and there is a null probability to reach the absorbing
state. There are two cases: there is no suchi . Then ∀i <
n

∑

j>iP[si, sj] > 0 and
∑

j≥1 P[sn, sj] < 1. This means
that in the graph deduced this chain, there is a path from any
state to the absorbing state. Thus with probability 1, each state
reaches the absorbing state.

Otherwise, let us callimax the greatest state that fulfills
∑imax
j=1 P

★[simax, sj] == 1. After iteration imax, reacℎ
becomes false andiprec = imax. We distinguish two cases:

∙ reacℎ is false at the end of the algorithm. Soiprec = n

and ∀i > imax
∑i−1
j=1P

★[si, sj] > 0) . The inequality
means that in the graph there is an edge fromi to a
smaller state. And by induction, there is a path to the set
{1, . . . , imax}. There is a non null probability to never
reach the absorbing state.

∙ reacℎ becomes true at iterationjmin (and remains true
until the end of the algorithm). By the same reasoning,
the set of states{imax + 1, . . . , jmin − 1}, there is a
non null probability to never reach the absorbing state.
By monotonocity ,∀j′ ≥ jmin,

∑jmin−1
k=1 P[sj , sk] =

0. This means that the states{jmin, n} may be
considered in isolation. By definition ofimax,
∑imax
j=1 P

★[simax, sj] == 1 is never satisfied. Thus with
probability 1, these states reach the absorbing state.□

Remarks
∙ Algorithm 3 can be also applied for the cases without

any absorbing state. In such a caseout vector must be
taken as 0.

∙ Algorithms 3 and 4 are given separately for the sake of
the readability, however it is possible to build the greatest
lower bounding, monotone matrix by parsing once every
entry starting from the greatest row. Thus the worst-case
complexity forn× n matrices isO(n2).

III. PCTL

A. PCTL for MCs

We give here the syntax of PCTL close to [15] but extended
by a duration operator (see [19]). Let�, � be integers,p ∈
[0, 1] be a probability,r ∈ ℝ>0 be a positive real,a be an
atomic proposition, and⊲ be a comparison operator∈ {≤,≥}.
The syntax of PCTL is defined by:

� ::= true ∣ a ∣ � ∧ � ∣ ¬� ∣
P⊲p(X�) ∣ P⊲p(�1 U [�,�]�2) ∣ D⊲r(�)

The path formulaX� asserts that the second state of
the path satisfies the state formula�. The path formula
�1 U [�,�]�2 asserts that there exists ani ∈ [�, �] s.t. the
itℎ state satisfies the state formula�2 while all preceeding
states satisfy�1. P⊲p(') asserts that the probability measure
� of random paths satisfying the path formula' fulfills � ⊲ p.
D⊲r(�) asserts that the expected time� to reach a state
satisfying� fulfills � ⊲ r. In the sequel we call itthe mean
reachability time operator.

Let us present the formal semantics of these formulas. We
denotes ∣= �, the satisfaction of a state formula� by s and
S� ≡ {s ∣ s ∣= �} is the subset of states that satisfy�. A path
� ≡ s0s1 . . . is an infinite sequence of states of the Markov
chain. We denote� ∣= ', the satisfaction of a path' formula
by �.

� ∣= X� iff s1 ∣= �

� ∣= �1U
[�,�]�2 iff ∃i � ≤ i ≤ � ∧ si ∣= �2

∧∀j < i sj ∣= �1

Let � be a state formula and� be a sequence then
FTime(�, �) ≡ min{i ∣ si ∣= �}. Observe that if� is never
satisfied thenFTime(�, �) = ∞.

Let ℳ be a Markov chain and' be a path formula. Then
Probℳ(s, ') is the probability that a random path inℳ
starting froms satisfies'. E denotes the expectation operator.
�ℳ(s) is a random path inℳ starting froms (i.e. a random
variable).

s ∣= true for all s ∈ S
s ∣= a iff a ∈ L(s)
s ∣= ¬� iff s ∕∣= �

s ∣= �1 ∧ �2 iff s ∣= �1 ∧ s ∣= �2
s ∣= P⊲p(X�) iff Probℳ(s,X�) ⊲ p
s ∣= P⊲p(�1 U [�,�]�2) iff Probℳ(s, �1U

[�,�]�2) ⊲ p
s ∣= D⊲r(�) iff E(FTime(�ℳ(s), �)) ⊲ r

B. PCTL for IMCs

As an IMC is a set of Markov chains, different semantics
are possible. In [23], the authors propose a “boolean” universal
semantics, i.e.:

ℳ(P−,P+), s ∣= � iff ∀ℳ ∈ ℳ(P−,P+) ℳ, s ∣= �

Combining the universal satisfiability of� and the one of¬�,
one obtains three cases:

1) ∀ℳ ∈ ℳ(P−,P+), ℳ, s ∣= �

2) ∀ℳ ∈ ℳ(P−,P+), ℳ, s ∣= ¬�
3) ∃ℳ,ℳ′ ∈ ℳ(P−,P+), ℳ, s ∣= � ∧ℳ′, s ∣= ¬�

However if we apply a semi-decision procedure for the
model checking, the number of cases increases. Elaborating
this idea, this leads to six semi decision cases described below.
In order to concisely represent them we denote the result of
checking� on a states, s.� ∈ {∀+, ∀−, ∃+−, ∃+, ∃−, ?}.

∙ s.� = ∀+ ensures that(s, �) belongs to case 1.
∙ s.� = ∀− ensures that(s, �) belongs to case 2.
∙ s.� = ∃+− ensures that(s, �) belongs to case 3.
∙ s.� = ∃+ ensures that(s, �) belongs to cases 1 or 3.
∙ s.� = ∃− ensures that(s, �) belongs to cases 2 or 3.
∙ s.� =? all cases are possible.

The three first answers fully characterize the situation while
the next two ones partially characterize it and the last one
provides no conclusion.

IV. M ODEL CHECKING PCTL

Given an interval valued DTMCℳ and a PCTL formula�,
the verification algorithm proceeds by a bottom-up evaluation
of sub-formulae of� in the syntactic tree of the formula
�. From leaves to the root, each state is labelled with an
assignment of a value to the sub-formula. Hence, every step
of the algorithm evaluates a formulae viewing the operands of
the most external operator as values assigned by the previous
evaluations. Let in the sequel, , 1, 2 denote already evalu-
ated state formula. This leads us to study each operator. In the
sequel, the assignment of the state by label∃+− is implicit and
corresponds to cases where the state is successively labelled
with both ∃+ and∃−.

� = ¬ The algorithm labels a states with s.� = ∀+ (resp.
s.� = ∀−, s.� = ∃+−, s.� = ∃+, s.� = ∃−, s.� =?) if it is
labelled withs. = ∀− (resp.s. = ∀+, s. = ∃+−,s. =
∃−, s. = ∃+, s. =?).

� = 1 ∧ 2 The algorithm labels a states depending on
valuess. 1, s. 2 as presented in the table below. For instance,
when s. 1 = ∃+ and s. 2 = ∃−, we know that there is a
model such thats does not fulfill 2. So this model does not
fulfill � and this is the only information that can be deduced
thus leading tos.� = ∃−.

s. 1 ∖ s. 2 ∀+ ∀− ∃+− ∃+ ∃− ?
∀+ ∀+ ∀− ∃+− ∃+ ∃− ?
∀− ∀− ∀− ∀− ∀− ∀− ∀−

∃+− ∃+− ∀− ∃− ∃− ∃− ∃−

∃+ ∃+ ∀− ∃− ? ∃− ?
∃− ∃− ∀− ∃− ∃− ∃− ∃−

? ? ∀− ∃− ? ∃− ?

� = P⊲p(X) We handle the case⊲ =≤ wherep < 1. The
other case (≥) is omitted as it is similar.

We can labels.� = ∀+, by considering the upper bound-
ing case: if the one-step transition probability from states
remains less thanp with maximal transition probabilities to
states where is possibly satisfied, then condition 1 of the
satisfability is ensured. We label a states with s.� = ∀+ if

min(
∑

s′. ∕=∀−

P
+[s, s′], 1−

∑

s′. =∀−

P
−[s, s′]) ≤ p

We can labels.� = ∀−, by considering the lower bounding
case: if the one-step transition probability from states exceeds
p with minimal transition probabilities to states where� is
surely satisfied, then condition 2 of the satisfability is ensured.
We label a states with s.� = ∀− if

max(
∑

s′. =∀+

P
−[s, s′], 1−

∑

s′. ∕=∀+

P
+[s, s′]) > p

For all states not yet labelled, we compute two realsms

and Ms by means of the filling algorithms given in the
previous section. To computems, we first apply Algorithm
1 with input parameterS ′ = {s′ ∣ s′.� ∕= ∀−}, to determine
the output parameterP[s, ∗] with s ∈ S and then compute
ms =

∑

s′∈S′ P[s, s′]. Similarly, Ms is computed from
Algorithm 2 with input parameterS ′ = {s′ ∣ s′.� = ∀+}
and Ms is computed from the obtained vector for the set
S ′ = {s′ ∣ s′.� = ∀+}: Ms =

∑

s′∈S′ P[s, s′]). Then the not
yet labelled states are labelled as follows: Ifms ≤ p∧Ms > p

thens.� = ∃+− else ifms ≤ p thens.� = ∃+ else ifMs > p

thens.� = ∃− elses.� =?.

� = P⊲p(1 U [�,�] 2)

Principle. Once 1 and 2 have been evaluated, the standard
method consists to eliminate states fulfilling¬(1 ∨ 2) to
merge states fulfilling 2 in an absorbing state and to study the
behaviour of the transformed substochastic chainwithout the
absorbing state during the interval[0, �−1] and the behaviour
of the transformed substochastic chainwith the absorbing
state during the interval[�, �]. In the framework of IMC,
the probability to stay in a subset of states and then reach
some absorbing state can be lower bounded usingP

− (see
below case 4). However usingP+ for the upper bound does
not provide accurate results (since for instance the pointwise
upper bounding often transforms a substochastic matrix in a
superstochastic one!) and this is where stochastic comparison
takes place (see case 3). Other cases are simpler.

As in the case of the former operator, we consider here the
case⊲ =≤ and there are 6 possible answers that we can assign
to a state.

1. In the case� = 0, some immediate conclusions are
possible from the label ofs.

– if s. 2 = ∀+, formula� is satisfied with probability
1, thus these states are labelled withs.� = ∀−.

– if s. 1 = ∀−, somme immediate conclusions de-
pending on the label fors. 2 are possible:
∗ s. 2 = ∀− =⇒ s.� = ∀+. Formula � is not

satisfied with probability 1, thus these states are
labelled withs.� = ∀+.

∗ s. 2 = ∃− =⇒ s.� = ∃+. Formula � is not
satisfied with probability1 for some chains of the
interval, thus these states are labelled withs.� =
∃+.

∗ s. 2 = ∃+ =⇒ s.� = ∃−. Formula� is satisfied
for some chains of the interval with probability 1
thus these states are labelled withs.� = ∃−.

* s. 2 = ∃+− =⇒ s.� = ∃+−. Formula � is
satisfied for some chains and it is not satisfied
for other chains of the interval.

2. In the cases. 1 = ∀−, and� > 0, formula� is satisfied
with probability 0. Thus these states are labelled with
s.� = ∀+.

3. We now see if we can label with∀+. We define two sets:
S1 = {s ∣ s. 2 = ∀− ∧ s. 1 ∕= ∀−}, S2 = {s ∣ s. 2 ∕=
∀−}. The statesS −S1 are made absorbing. We consider
the upper bounding case to reach absorbing statesS2 from
S1 states. First we reorder states ofS1with respect to the
maximal transition probabilities toS2 states (the matrices
are reordered by row and column permutations). Then
we build lower bounding matrix restricted to statesS1,
and make it monotone by means of algorithms given in
section II-C.
3.1. Construct a column vector,r+ of sizen for maximal

transition probabilities to the absorbingS2 states
from S1 states. The maximal transition probability
from a statesi ∈ S1 to S2 for all possible Markov
chains in the interval∈ ℳ(P−,P+) is defined by
r
+[si] :

r
+[si] = min(

∑

sk∈S2

P
+[si, sk], 1−

∑

sk ∕∈S2

P
−[si, sk])

(9)
We reorder this vector in the decreasing order
(r+[s1] ≥ r

+[s2] ⋅ ⋅ ⋅ ≥ r
+[sn]).

3.2. ConstructP∙ through Algorithm 3 by consider-
ing the set of statesS1. In the sequel, we de-
note this set by{s1, s2, ⋅ ⋅ ⋅ sn} The input pa-
rameters of Algorithm 3 areP− and P

+ ma-
trices of sizen; vector out is defined by sum-
ming the probabilities overS − S1 states:∀si ∈
S1, out[si] = max(

∑

sk ∕∈S1
P

−[si, sk], 1 −
∑

sk∈S1
P

+[si, sk]). The output matrixP∙ is the
lower bounding matrix for all Markov chains in
the intervalℳ(P−,P+) with probability transition
matrix P. Thus from Eq. 7,∀si ∈ S1 :

1 ≤ j ≤ n,

j
∑

k=1

P
∙[si, sk] ≥

j
∑

k=1

P[si, sk]

3.3. The monotone lower bounding matrix for all the
Markov chains in the intervalℳ(P−,P+) is com-
puted through Algorithm 4 and denoted byP★.
The input parameter of the algorithm is matrixP∙

obtained in the previous step.
We have the following inequalities for each statesi ∈
S1, for all power matrices (t ≥ 1) of any Markov

chain in the intervalℳ(P−,P+) with probability
transition matrixP:

1 ≤ j ≤ n,

j
∑

k=1

(P★)t[si, sk] ≥

j
∑

k=1

(P)t[si, sk]

(10)
These inequalities still hold, if we multiply both part
of the inequality for a statesj by (r+[sj]−r

+[sj+1])
(the n+ 1tℎ entry for vectorsr andr+ is assumed
to be0). Then by summing all inequalities overj =
{1, ⋅ ⋅ ⋅n}, we can deduce that

n
∑

k=1

(P★)t[si, sk]r
+[sk] ≥

n
∑

k=1

(P)t[si, sk]r
+[sk]

(11)
This inequality can be rewritten as

(P★)t ⋅ r+ ≥el (P)t ⋅ r+

where ≤el denotes the component (element)-wise
ordering.
Let r be the column vector computed for a given
P ∈ ℳ(P−,P+) in the interval.∀si ∈ S1 :

r[si] =
∑

sk∈S2

P[si, sk] = P[si,S2]

Obviously, r+ provides the maximal vector for all
vectorsr computed from any matrixP in the interval
ℳ(P−,P+):

r
+ ≥el r

Combining this inequality with 11, we have

(P★)t ⋅ r+ ≥el (P)t ⋅ r+ ≥el (P)t ⋅ r (12)

where power0 for a matrix is the identity matrix.
Let us remark that(P)tr represents the probabilities
to reachS2 states withint+ 1 steps.

3.4. We check if the upper bound to reachS2 states in
time interval[�, �] remains less or equal top. Thus
we consider maximal probabilities to reachS2 states
at time t (see Eq. 12), that means to reach a state
within t−1 steps by the powert−1 of matrixP★ and
then within 1 step from this state to a stateS2 by r.
Therefore we sum over in time intervalt = (�−1)+

to �−1 1 where(�−1)+ = max(0, �−1). For each
states ∈ S1, if the following inequality is satisfied
2 thens.� = ∀+

⎛

⎝(

�−1
∑

t=(�−1)+

(P★)t) ⋅ r+

⎞

⎠ [s] ≤ p (13)

4. We now see if we can label with∀−. We define two sets:
S

′

2 = {s ∣ s. 2 = ∀+}. S
′

1 = {s ∣ s. 2 ∕= ∀+ ∧ s. 1 =

1The case where both� = � = 0 will not be considered, since
 1 U [0,0] 2 ≡ 2.

2When� = ∞, the sum is infinite, this case at the end of the section.

∀+}. Let S
′

1 = {s1,2 , ⋅ ⋅ ⋅ , s
′
n}. States out ofS

′

1 will be
absorbing. First we construct a column vectorr

− of size
n′ to compute minimal transition probabilities from states
S

′

1 to the set of absorbingS
′

2 states.∀si ∈ S
′

1 :

r
−[si] = max(

∑

sk∈S
′

2

P
−[si, sk], 1−

∑

sk ∕∈S
′

2

P
+[si, sk])

(14)
We consider the lower bounding case, thus we consider
P

− instead ofP★ of the former case. Obviously we have
the following inequalities for all power matrices(t ≥ 1)
of any chain restricted toS

′

1 in the intervalℳ(P−,P+)
with probability transition matrixP:

(P−)t ⋅ r− ≤el (P)t ⋅ r− ≤el (P)t ⋅ r

We check if the upper bound to reachS
′

2 states in time
interval [�, �] exceedsp. Thus for each states ∈ S

′

1, if
the following inequality is satisfied, thens.� = ∀−

⎛

⎝(

�−1
∑

t=(�−1)+

(P−)t) ⋅ r−

⎞

⎠ [s] > p (15)

5. We now see if we can label∃+. The setsS1 andS2 are
defined as in case 3.

5.1. Define a column matrixrm of sizen for the lower
bounding reaching probability toS2 states fromS1

states :

r
m[s] = max(

∑

sk∈S2

P
−[s, sk], (1−

∑

sk ∕∈S2

P
+[s, sk]))

5.2. Reorder this vector in the decreasing order. State
spaceS1 will be also ordered in this order. Let
us remark here that this reordering is not required
contrary to the previous case but it is heuristic.

5.3. We guess a matrixPm restricted to the setS1 =
{s1, ⋅ ⋅ ⋅ , sn} belonging toℳ(P−,P+) by applying
Algorithm 1 to construct each row.

5.4. We check if formula� is checked by considering
matrix Pm and the vectorrm. For each states ∈ S,
If the following inequality is satisfied thens.� = ∃+

(

�−1
∑

t=(�−1)+

(Pm)
t) ⋅ rm[s] ≤ p

6. We now see if we can label∃−. The setsS
′

1 andS
′

2 are
defined as in case 4.

6.1. Define a column matrixrM of sizen′ for the upper
bounding reaching probability toS

′

2 states fromS
′

1

states :

rM [s] = min(
∑

sk∈S
′

2

P
+[s, sk], 1−

∑

sk ∕∈S
′

2

P
−[s, sk])

6.2. Reorder this vector in the increasing order. The set
S

′

1 will be also ordered with respect to this order.

6.3. Similiar to the former case, we construct a matrix
PM restricted to the set of statesS

′

1 = {s1, ⋅ ⋅ ⋅ , sn′}
by applying Algorithm 2 to construct each row.

6.4. We now check if formula� is checked by consid-
ering matrixPM and the vectorrM . For each state
s ∈ S

′

, if the following inequality is satisfied then
if s.� = ∃+ thens.� = ∃+− elses.� = ∃−

(

�−1
∑

t=(�−1)+

(PM)t) ⋅ rM [s] > p

7. In the case� = 0, for all states yet already labelled
– s. 2 = ∃+− =⇒ s.� = ∃−

– s. 2 = ∃+ =⇒ s.� = ∃−

8. We assigns.� =? to all the states which have not already
labelled.

� = D⊲r()

Principle. Once has been evaluated, the standard method
consists to merge states fulfilling in an absorbing state and
to study the behaviour of the transformed chain during the
interval [0,∞[. More precisely, let us recall that given a subset
of statesS

′

, the vector indexed byS − S
′

corresponding to
the mean time to reachS

′

is given by the formula:

(
∑

t≥0

(P)t)1m (16)

whereP is the transition probability matrix restricted toS−S
′

states of cardinalitym and1m is a column vector of sizem
with all entries equal to1. This is the starting point of our
method which substitutes in the equation (16) a matrix forP.
As for the case of “until” operator the choice of the matrix
depends on the information one looks for: case 1 involves the
stochastic comparison, case 2 usesP

− for a pointwise lower
bounding and cases 3 and 4 construct anad hocmatrix.

As in the former cases, we consider here the case⊲ =≤.
1. We first see if we can labels.� = ∀+. We defineS1 =

{s ∣ s. ∕= ∀+}. Our goal is to provide an upper bound
on the mean reaching time to states for which is surely
satisfied(S − S1). Thus the states out ofS1 are made
absorbing. We construct first the lower bounding matrix
P

∙ restricted toS1 = {s1, ⋅ ⋅ ⋅ , sn} states from Algorithm
3. The input parameterout (the minimal transition prob-
abilities to the absorbing state) is computed as follows:
∀si ∈ S1, out[si] = max(

∑

sk ∕∈S1
P

−[si, sk], 1 −
∑

sk∈S1
P

+[si, sk]). The monotone version is built by
Algorithm 4. Thus for any chainℳ ∈ ℳ(P−,P+) with
probability transition matrixP:

(
∑

t≥0

(P★)t)1n ≥el (
∑

t≥0

(P)t)1n

For each state inS1, if the following inequality is satisfied
thens.� = ∀+

⎛

⎝(
∑

t≥0

(P★)t)1n

⎞

⎠ [s] ≤ r

Observe that some components of this computed vector
could be infinite. However we apply beforehand algo-
rithm 5 that determines the subset ofS1 that corresponds
to states with finite value. Then we only compute the
above infinite sum for this subset of states.

2. We now see if we can labels.� = ∀−. We consider lower
bounding case to reach states satisfying . Thus we define
S

′

1 = {s ∣ s. = ∀−}, which is the set of states for which
 is surely not satisfied. If the infinite sum (see Eq. 16)
is greater thanr for the lower bounding case, one can
conclude that the mean reaching time is always greater
than r. Hence for each states ∈ S

′

1, if the following
inequality is satisfied thens.� = ∀−

⎛

⎝

∑

t≥0

(P−)t)1n′

⎞

⎠ [s] > r

3. We now see the case for labels.� = ∃+. We con-
sider the set of statesS1 as in case 1 and guess a
matrix Pm ∈ ℳ(P−,P+) restricted toS1. Each row
is constructed by Algorithm 1 in order to minimize the
transition probabilities. Thus for each state inS1, if the
following inequality is satisfied thens.� = ∃+

⎛

⎝

∑

t≥0

(Pm)
t)1n

⎞

⎠ [s] ≤ r

4. Similar to the previous case, we guess a matrixPM ∈
ℳ(P−,P+) restricted to the set of statesS

′

1 (defined
in case 2.) The rows are constructed by Algorithm 2 in
order to maximize the transition probabilities. For each
states ∈ S

′

1, if the following inequality is satisfied then
if s.� = ∃+ thens.� = ∃+− elses.� = ∃−

⎛

⎝(
∑

t≥0

(PM)t)1n′

⎞

⎠ [s] > r

5. For all states which are not already labelled we assign?.

Remarks. Observe that the convergence of infinite sums
involved in the algorithms related to theD and theU op-
erators can be checked before starting the computation. This
is performed either by standard graph analysis when the
substochastic matrix is arbitrary (based on the decomposition
in strongly connected components) or by algorithm 5 when the
matrix is monotone. In both cases, the algorithms determine
the subset of initial states for which the computation is nec-
essary and transform the matrix (depending on the considered
operator) in such a way that the convergence is ensured.
As usual, the convergence is exponentially quick (since the
sum is geometric). Therefore for a reasonable precision, a
finite approximating sum is efficiently computed. In summary,
when dealing with fixed precision computations, the number
of operations for model checking is polynomial w.r.t. both the
formula and the model. Furthermore since we deal with fixed
precision, this bound leads to polynomial time complexity.

V. RELATED WORK

A. Interval-valued Markov chains

In [16] IMCs are introduced to specify the expected behav-
ior of a model under uncertainties. Obtaining the parameters
of an IMC is considered in [18]. Following another approach,
in [25], algorithms are proposed to build extremal monotone
chains for an IMC. These results have been applied in the
framework of the bounding aggregation for Near Complete
Decomposable Markov chains [25], [22]. In [13], IMC sub-
chains are considered and polynomial time algorithms are
designed to compute the maximal monotone lower bound both
in continuous and discrete time settings. These results have
been applied to study different reliability and performance
problems [14].

While the bounds developed in [25], [13] can be applied to
analyze the transient and the steady-state behaviour, in [6],
P. Buchholz only focused on the steady-state analysis and
built optimal bounds for steady-state distributions basedon
the polyhedra theory initially proposed by [9].

The model checking of interval valued Markov chains has
been investigated in [23]. The authors showed that the proba-
bility to satisfy a PCTL formula are specified by polynomial
inequalities (rather than linear ones in the case of DTMC)
which leads to a PSPACE algorithm. They also established
that PCTL model checking is NP-hard and co-NP-hard. In
[7], these results have been generalized to!-PCTL logic.

B. Semi-Decision procedures for Model Checking

Abstraction is a useful technique in order to analyze systems
with huge state spaces. It consists in grouping states and
producing an abstract system which can be an ”under” or
”over” approximation of the original system. It has been first
applied in the framework in the discrete event systems and
has been recently generalized for probabilistic systems. In [11]
the abstraction of a DTMC naturally yields a continuous time
interval valued Markov chain. Then using three-valued seman-
tic (YES, NO, DON’T KNOW) the authors apply a method
based on resolution of an associated Markov Decision Process
(MDP). [17] handles the case of CTMCs by uniformising the
CTMC then applying the abstraction procedure as in [11]. A
different view of abstraction is proposed in [8] whose goal
is to obtain a ”purely” stochastic system excluding the non
determinism induced by the intervals.

All previous approaches are based on the bounds for state
probabilities. In this context it must be observed a generalthe-
ory exists: stochastic comparison [20]. Bounding methods are
suitable to apply in model checking, since we need to check
if some constraints are satisfied or not without considering
exact values. The stochastic comparison approach providesan
interesting alternative for model checking since this approach
lets us provide the bounds on transient distributions as well as
the stationary distribution of the underlying Markovian model.
Indeed, the stochastic comparison of distributions provides
the inequalities on the partial sum of probabilities. In model
checking, given a formulaℱ , the verification is resumed to

compute the sum of probabilities of states satisfyingℱ in
a transient or the stationary distribution. We call this setof
statesSΣ. Thus we must first reorder the state space in order
to put SΣ states at the end or in the beginning of the state
space. This is necessary in order to extract the inequalities on
the sum of the probabilities of these states from the bounding
distributions.

The second step is the verification step. LetBinf andBsup
be the bounds on the probabilities forSΣ states. If⊲ is ≤:

∙ if Bsup ≤ p then we can decide that formulaℱ is checked
(YES).

∙ if Binf > p then we can decide that formulaℱ is not
checked (NO).

∙ otherwise it is not possible to decide with these bounding
values (DON’T KNOW).

This approach has been applied in order to reduce the
complexity of the underlying Markov chains. In [21], the state
space is reduced by applying bounded aggregations to study
PCTL state formulas. In [4], bounding models which have
closed-form solutions to compute transient and the steady-state
distributions to check CSL formulas have been considered.
Since the underlying formulas are checked by means of closed-
form solutions for underlying distributions, the complexity is
largely reduced.

VI. CONCLUSION

Stochastic comparison has demonstrated its usefulness to
overcome the complexity of state based performance evalua-
tion methods. Here we have proposed to apply it for model
checking PCTL formulas over IMCs. To this aim, we have
designed a semi-decision procedure. This procedure has three
advantages: its efficiency (the complexity of known exact
algorithms is in PSPACE), its scope (previous algorithms do
not deal with the mean reachability time operator) and the
kinds of answers (it includes the partial answers∃+, ∃−).

The main practical problem for methods based on stochastic
comparison is the appropriate choice of the order over states.
In our case the order may be different during every operator
evaluation step and thus is the critical factor for accuracy
of the bounds. So we plan to develop a prototype for high
level models of IMCs (SANs, Stochastic Petri nets, etc.) and
experiment heuristics that rely on the structure of this model.
The specification of intervals associated with an IMC are
usually derived from the uncertainty about transitions of the
high level model. So the number of different intervals in the
IMC is very small w.r.t. the size of the chain. We want to take
into account this feature in order to improve the efficiency
and/or the accuracy of our method.

ACKNOWLEDGEMENT

This work is partially supported by French ANR project
ANR06-SETIN-002, CheckBound.

REFERENCES

[1] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model Checking
Continuous Time Markov Chains.ACM Trans. on Comp. Logic, 1(1),
pages 162-170, 2000.

[2] C. Baier, L. Cloth, B. R. Haverkort, M. Kuntz, M. Siegle. Model Checking
Action- and State-Labelled Markov Chains. InDSN 2004:, pages 701-710,
2004.

[3] C. Baier, B. Haverkort, H. Hermanns, and J.P. Katoen. Model-Checking
Algorithms for Continuous-Time Markov Chains. InIEEE Trans. Soft-
ware Eng.29(6), pages 524-541, 2003.

[4] M. Ben Mamoun, N. Pekergin and S. Younès. Model checking of
continous-time Markov chains by closed-form bounding distributions. In
QEST2006, pages 199-211, 2006.

[5] A. Bianco, L. de Alfaro. Model Checking of Probabilisticand Nondeter-
ministic Systems. InFST TSC95, LNCS 1026, pages 499-513, Springer
1995.

[6] P. Buchholz. An improved method for bounding stationarymeasures of
finite Markov Processes.Performance Evaluation, 62(1-4) pages 349-365,
2005

[7] K. Chatterjee, K. Sen and T. A. Henzinger. Model-Checking omega-
Regular Properties of Interval Markov Chains. InProc. FoSSaCS08, LNCS
4962, pages 302-317, Springer 2008.

[8] R. Chadha, M. Viswanthan and R. Viswanthan. Least upper bounds for
probability measures and their applications to abstractions. In CONCUR
2008 - 19th International Conference on Concurrency Theory, LNCS5201,
pages 264-278. Springer, 2008.

[9] P.J. Courtois and P. Semal. Computable bounds on conditional steady-
state probabilities in large Markov chains and queueing models. IEEE
Journal on Selected Areas in Communications, 4(6), pages 926-937, 1986.

[10] S. Donatelli, S. Haddad, J. Sproston. CSLTA: an Expressive Logic for
Continuous-Time Markov Chains. InQEST 2007, pages 31-40, 2007.

[11] H. Fecher, M. Leucker, and V. Wolf. Don’t know in probabilistic
systems. InProceedings of 13th International SPIN Workshop on Model
Checking of Software (SPIN’06) LNCS 3925, pages 71 - 88, Springer
2006.

[12] J.M. Fourneau and N. Pekergin. An algorithmic approachto stochastic
bounds. In LNCS 2459, Performance evaluation of complex systems:
Techniques and Tools, pages 64-88, 2002.

[13] S. Haddad and P. Moreaux. Sub-stochastic matrix analysis for bounds
computationTheoretical results.European Journal of Operational Re-
search, 176(0), pages 999-1015, 2007.

[14] S. Haddad and P. Moreaux. Sub-stochastic matrix analysis and perfor-
mance bounds.Research Reprt RAP-CReSTIC-1, CReSTIC, Universit de
Reims Champagne-Ardenne, France, 2004.

[15] H. Hansson and B. Jonsson. A logic for reasoning about time and
reliability. Formal Aspects of Computing6, pages 512-535, 1994.

[16] B. Jonnson and K.G. Larsen. Specification and refinementof probabilis-
tic processes. InProceedings of the IEEE Symp. on Logic in Computer
Science, pages 266-277, 1991.

[17] J. P. Katoen, D. Klink, M. Leucker, and V. Wolf. Three-valued abstrac-
tion for continuous-time Markov chains. InProc. CAV07, LNCS 4590).
pages 311-324, Springer 2007.

[18] I.O. Kozine and L.V. Utkin. Interval-valued finite Markov chains.
Reliable Computing, 8(2) pages 97-113, 2002.

[19] F. Laroussinie, J. Sproston. Model Checking Durational Probabilistic
Systems. InFOSSACS’05, LNCS 3441, pages 140-154, Springer 2005.

[20] A. Muller and D. Stoyan,Comparison Methods for Stochastic Models
and Risks, Wiley, New York, 2002.

[21] N. Pekergin, S. Youǹes. Stochastic Model Checking with Stochastic
Comparison. InProc. EPEW 2005, LNCS 3670, pages 109-123, Springer
2005.

[22] N. Pekergin, T. Dayar and D. Alparslan. Componentwise bounds for
nearly completely decomposable Markov chains using stochastic com-
parison and reordering.European Journal of Operational Research, 165,
pages 810-825, 2005.

[23] K. Sen, M. Viswanathan, G. Agha. Model-Checking Markovchains in
the presence of uncertainties. InProc. Tacas06, LNCS 3920, pages 394-
410, Springer 2006.

[24] K. Trivedi. Probability and Statistics with Reliability, Queuing and
Computer Science ApplicationsWiley, New York 2002.

[25] L. Truffet. Near Complete Decomposability: Bounding the error by
Stochastic Comparison Method.Advances in Applied Probability, pages
830-855, 1997.

