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Abstract—We consider model checking of Discrete Time
Markov Chains (DTMC) with transition probabilities which a re
not exactly known but lie in a given interval. Model checking
a Probabilistic Computation Tree Logic (PCTL) formula for
interval-valued DTMCs (IMC) has been shown to be NP hard

and co-NP hard. Since the state space of a realistic DTMC is

generally huge, these lower bounds prevent the applicationf
exact algorithms for such models. Therefore we propose to gy
the stochastic comparison method to check an extended veosi
of PCTL for IMCs. More precisely, we first design linear time
algorithms to quantitatively analyze IMCs. Then we developan
efficient, semi-decidable PCTL model checking procedure fo
IMCs. Furthermore, our procedure returns more refined answeas
than traditional ones: YES, NO, DON'T KNOW. Thus we may
provide useful partial information for modelers in the ‘DON'T
KNOW'’ case.

I. INTRODUCTION

Specification.Markovian models have been largely used in

performance, dependability and reliability analysis ofneo

puter and communication systems. Modeling a quantitative®
stochastic system by a DTMC requires the specification of an

initial distribution and a transition probability matri¥iow-

ever, sometimes it may be impossible or unrealistic to eeter

mine precisely these probabilities. First of all, tramsitirates
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Model checking of uncertain model$n order to specify
expected behavior, [16] introduces IMCs and checks whether
an IMC conforms to the model of the system w.r.t. different
relations. In [18], the authors show how to obtain paranseter
of an IMC. Model checking of IMCs has been investigated first
in [23] where it is shown that PCTL model checking of IMCs
is in PSPACE and it is NP hard and co-NP-hard. The results
have been generalized ¢86PCTL logic in [7]. Both [23], [7]
also study interval-valued Markov decision processes.

Our contribution.In this paper, we provide an efficient semi-
decision algorithm for model checking of PCTL formulas over
interval-valued DTMCs (IMCs) based on stochastic compar-
isons. We first design (or improve) linear time algorithms to
guantitatively analyze IMCs.

« For any fixed states and every subset of state®, we
compute the minimal and maximal cumulative probability
to go froms to S’ in one step.

[13] establishes the existence of the greategt mono-
tone and lower bounding transition probability matrix for
a set of substochastic Markov chains specified by an IMC.
Furthermore they design a linear time algorithm to build
such a chain and state a structural characterization w.r.t.

are estimated through statistical experiences which geovi
intervals of values (bounds) but not exact values. Moreover
these models are the abstraction of complex interactions or
dependence of system parameters thus interval values for

the IMC of finiteness of mean sojourn time in this chain.
We refine this last result by building the subset of (initial)
states for which this sojourn time starting from them is
finite.

transition probabilities would be more appropriate thagcime

The model checking procedure is performed as usual by

ones. Furthermore substituting a reduced Markov chairhier t2 bottom-up evaluation of subformulas and corresponding

original one naturally leads to interval values. Intervalued

labelling of states. However due to the fact that we rely on

Markov chains for which transition probabilities are suppe @ semi-decision procedure, the labels of states are 6dalue

to lie within a range of values have been introduced to captusatisfied for all(v+), satisfied for nongv ™), exists satisfied
such uncertainties [18]. and exists not satisfie(i* ), exists satisfieqd™), exists not

Verification.In quantitative model checking, one first specifie§at'3f'ed(3_)_' don’t know(?). The three f'rSt_ cases are exact
a complex performability or safety guarantee by a temporﬁpswerS while the last three ones are partial ones.

logic formula and then checks its satisfiability based on the Contrary to [23], [7] our variant of PCTL includes the
transition graph. Different languages have been proposed §€an reachability time operatoD). This operator is useful
pending on the considered stochastic model and propeitiesfor performability studies e.g. the mean time to failure can
DTMCs, PCTL [15] has been first proposed and then extend@@ expressed with this operator [24]. Moreover the stoahast
with more complex operators (e.g. [7]). In CTMCs, a similagomparison approach is the key point to handle both this
logic, Continuous Stochastic Logic [3] and its extensiazis [ OPerator and the (time bounded) until operator.

[10] also adapt CTL logic (defined for discrete-event system Organization. The remaining of the paper is organized as
PCTL is also adequate for Markovian Decision Processes [Hllows. Section Il is devoted to IMC (definitions and algo-



rithms). We present the syntax and semantic of the consldere So we introduce a set of sub-stochastic matrices in order to
PCTL in section Ill. Model checking of PCTL is developednainly study the strict sub-stochasticity, i.e. with prbiisy

in section IV. Related work is discussed in section V. Finalll, the additional absorbing state is reached. This explai@s
we conclude and give some perspectives for this approachasymmetry of the next definition regarding to definition 2.
section VI. Definition 3: An interval valuedn x n sub-stochastic matrix
M(P~,PT, out) is defined by am x n sub-stochastic matrix
P~, ann x n positive matrixP*, and a positive vector of
size nout that fulfill;

Il. INTERVAL MARKOV CHAINS
A. Definitions

Definition 1: A labelled time-homogeneous DTM@®1 is
a 3-tuple (S,P, L) where S is a finite set ofstates P is 0< P [5,] P[5, A Y P [s,¢'] +outfs] <1
the transition probability matrix (a stochastic matrixhdal : t'es
S — 247 is thelabelling function which assigns to each state
s € S, the setL(s) of atomic propositions: € AP that are PHs,t] <1-Y P [s,t] — out]s]
valid in s, AP denotes the finite set of atomic propositions. £t
Following (with slight changes) the definition in [23], WeA <ub-stochasticn x n matrix P is said to belong to

define the interval-valued, labelled DTMCs as follows : ~ bt ~ et . .
Definition 2: A labelled interval-valued time homogeneoué\/l(P P, out) (denotedP € M(P~, P, out)), if Vs,

DTMC M(P~,P") is defined by a 4-tupl¢S,P~,P*, L), P [s,{] < P[s,t] < Pt[s,t] A ZP[S’t] < 1-out[s] (5)

where § and L are defined as in a labelled DTMC. The - - -

interval-valued DTMC is defined b~ (resp.P™) which

is a substochastic matrix, ie. the row sums may be less Br Structural Properties of IMC

equal to 1 (resp. superstochastic matrix, ie. the row suny ma given an IMC, a state and a subset of state¥, we first

be greater or equal to 1). - ~ characterize the maximal and minimal value to re&¢tfirom

For all s,t € S, the following inequalities are satisfied jn gne step.

betweenP~ and P : Lemma 1:Let M(P~,P*) be a labelled interval-valued
time homogeneous DTMGS’ C S be a subset of states and

0 <P [s, 1] <PT[s,t] A Z Ptls,t']>1> Z P [s,#/] s€ S be astate. Then:

teS

t'es t'es 1) e min(}_, 5 P[s,t] [P € M(P~,P)}
— —+ / = maX(ZtGS’ P_[87t]7 1- Ztgs’ P+[S,tD
P ls,t] >1— ZP [s,1] (2 e max{Y,.q P[s,#] | P € M(P~,P"))
v = min(ZteS’ P+[Sa t]a 1- Zt¢8' P_[Sa t])
Pts,t] <1-— Z P [s,t] (3) Proof. We only prove the first assertion since the proof of the
t'#t second one is similar. Let us denate = min (), s PJs,t] |
A DTMC with transition probability matrixP is said to P € M(P~,PT)). It follows from Equation (4) that
belong toM(P~,P*) (denotedP € M(P~,P1)), if any P ¢ M(P—,P") fulfills for any subsetS’ € S
: e Pls,t] > >, o, P7[s,t]. Moreover, sinceP is
+ tes tes
VS’t7 P [S,t] S P[S,t] S P [S,t] (4) StOChaSticzteS/ P[S,t] Z 1 — thSl P+[8,t]. Thus M Z

Remark. Observe that the set of inequalities (1) is anax(>_,cs P7[s,t],1 — 3,5 P*[s,?]). In order to prove
necessary and sufficient condition faM(P~,P*) to equality, we exhibit som@® € M(P~,P¥) that reaches this
be non empty. Furthermore one can always chaiije Vvalue. We observe that we only have to sped#is, . We
and Pt in order to satisfy inequalities (2) and (3)order the states of such that any state &’ occurs before
without modifying M(P~,PT). Transformations consistthe states out of8’. We fill row s to minimize the sum of
in P[s,7] = max(P[s,],1 — >, ,P"[s,¢]) and probabilities for a given set (the first case) with Algoritlim
P*[s,t] ;= min(P*[s,t],1 = >, P~ [s,t']).

In the sequel, we denote byt (resp.P) a DTMC (resp. a ~Algorithm 1: Filling algorithm to minimize rows of an
transition probability matrix) belonging to the set of Mawk |MmC with respect to partial sums
chainsM(P~—,Pt).

o . Input : row s of P~ P*;S = {s1,s2, - Sn};
Verifying PCTL formulas requires to transform the Markov Output : row s of P € M(P—,P+) ;

chain and in particular to build sub-stochastic chains.sThu sum — 0-

we simultaneously deal with stochastic and sub—stochasticfor i: 17to n do

matrices. A sub-stochastie x n matrix P can also be

considered as afn+ 1) x (n+ 1) stochastic matrix by adding P'[S s;] = max(P~[s, s;], 1 - sum—",_, P[s, s,]);
an additional absorbing state such thatP[s,s] = 1 and 2 sum — sum—b—P[S’ S%]i 7= e
Vs' # 5,Pls',s] = 1 =3 ., P[s,s"]. In the sequel we g T

interchangeably use these two representations.




We prove by induction that at the beginning of each iteratiod 1 — (1 — 3", , P¥[s,s;]) = >=._; PT[s,s;] = PT[s, 5]
i (including the case = n + 1 meaning that the algorithm The inequality follows from the first hypothesis of Case 3.

exits the loop), the following equations are satisfied: After instruction 2,
sum =
sum =Y _P[s, s)] YoiciPlsis]+1=30 P s s5] = 32,0, P s, sy
j<i = 1_Zj>i P+[575j]'
Using the third inductive assertion with= n + 1 and
Vi <i, P7[s,s;] <P[s,s;] <PT[s,s] inequation 1, we obtairp_,_, ., P[s,s;] = 1. Using again

the third inductive assertion withthe index of the first state
notinS’, we obtainy _, s P[s, t] = max(}_, s P~ [s,1],1—
P[s, s;] = max P [s,5;],1 - ) PT[s,s; Yigs Ps,t]). O

; 5.5 (; 5255, ; (5:550) Itﬁsthe second case to maximize the sum of probabilities,
we fill row s by Algorithm 2. Let us remark here that if one
is interested in minimizing or maximizing of a partial sum
of probabilities over a subset of staté5 € S, it would be
sufficient to perform the loop of these algorithms only fasth
subset since they occur first in the enumeration of states.

The basis casé = 1 is straightforward except for the;
last assertion which follows fromd_,., P*[s,s;] > 1.
Assume that the above inequalities are satisfiedifer 1.
Instruction 2 and the inductive hypothesis ensure that =
> i<iPls.sj]l+Pls,si] =3, ;41 Pls, s;]. Instruction 1 en-
sures thaP[s, s;] > P~ [s, s;]. Furthermore before instruction

Algorithm 2: Filling algorithm to maximize rows of an

i'_ sum — 3. P+[s, ;] IMC with respect to partial sums

=1-3 Pj[;zs.]_’zj P*[s,s;] Input : rows of P~ P*; 8 = {s1, 92, sn};
A > R Output :row s of P € M(P~,PT) ;

<1—(1=305,;PTls,s5]) = 22,5 PTs, 8] n O.' ; ;

=Pt[s, s sum = 0;

Thus after instruction 5] < P*[s, 5] (we also use the for i =1t ndo
IPls, si] < Pls, si] ( P[s,s;] = min(P*[s, 5,], 1 —sum —3>"._, P~ [s, 55]);

inequality P~ [s, s;] < P*][s, s4]).

sum = sum + P[s, s;];
In order to establish the last inequality, we perform a casegpg
study.
Case li_Z:jSiP_[slsj] >1-3>..;Pt[s, sl
Y j<i Pl 8]+P s, 8] 2 1= P¥[s, 5]+ P[s,s:]  C. Algorithms for Stochastic Bounds
Hence before instruction 1,
sum+P7[s,8]>1— Zj>i Pt[s, s;]
P~ [s,s)] >1—sum— Zj>iP+[s 5]
then after instruction 1P[s, s;] = P~ [s,

In this subsection, we present algorithms to construct deun
ing matrices in the sense of,; ordering for a given IMC.
We first give the basic definitions and theorems for stocbasti

. . 5 comparison and we refer to [20] for further informations.
and after instruction Zsum = ZJ<2 “ls, 55 1) Stochastic ComparisonThe following is the generic
Case 2.3, P [s,55] <1-32,5, P*[s,s] definition for the<,, ordering which is known also as strong
Using the flrst and the last mductlve assertions, we deduggiering or sample-path ordering.
thatsum =1 -3, P*[s,s]. Definition 4: Let X andY be two random variables taking
Hence before instruction 1, values on a totally ordered spaSe

L—sum =3, PF[s,s;] =PTF[s,si] > P [s, 5]
Then after instruction 1, X<aY <= Ef(X)<Ef(Y)

il

P[s,s;] = P*[s, s;] for all increasing functiong : S — R whenever expectations
and after instruction 2sum =1 -3, P*[s, s,} exist.
Moreoverzj< “[s,85] < ZJQP [s, 5] + PT[s, 5] In the case of finite state spaces, the comparison of random

<(1=30,5:PT[s,55]) + P*[s, 5] variables are defined through the following inequalities.
=1- Z]>z P (s, s;]. Property 1: Let X andY be two random variables taking
Case 3:y; ;P [s,s;] > 1— ZjZiPﬂs,sj] values onS = {s1, s3,...,sn}, andp = [p1...pi...pn], ¢ =
ANY i PTs,s5] <1 =3, PT[s, 5] [q1.-.¢i-..qn] be probability vectors respectively denoting
Thus before instruction Tyum — > P Is, 5. distributions of X andY" (p; = Prob(X = s;), and ¢ =
1— %m Z[g>z ; [Sfj] _ , ] Prob(Y = s;)). X <4 Y is equivalent to
1- P s, s . PTls; s, n n i i

7 <1 J 7> 2] . .

>—Zj<iP_[S,Sj]+zj<iP_[8,8j]:P_[S,SZ‘]. Vi, Zkaqu & Vi, Zpkzz:qk (6)
Here we have used the second hypothesis of Case 3. k=i k=i k=1 k=1
Therefore after instruction 1, The first part follows from Def. 4 since increasing functions

Pls,si] =1 —sum— 3, P¥[s, 3] are positive linear combinations of indicator function$ieT



second is directly deduced from the first part and will be 2) Bounding Algorithms:We now present algorithms to
applied in the sequel since they are straightforwardly ggne construct bounding algorithms for IMC with one absorbing
izable for sub-stochastic vectors thus more appropriatedo state proposed in [13], [14].

goals. Let us notice here that we interchangeablyXis€,; Y Algorithm 3 builds the greatest lower bounding matrix in
andp <, ¢. We apply the following definition to comparethe sense oK, ordering for matrices in the given interval

Markov chains.

Definition 5: Let  {X(¢;)}i>o0
a DTMC. We say {X(ti)}izo
Vi, X(t;) <st Y(t;).
Intuitively, this means that the probability to be statesihg
a higher number than a fixed one is greater or equdl iat
every instant:. The following folk theorem provides sufficient

(resp. {Y(t:;)}i>0) be
<g A{Y(t:)}iso, If

conditions to establish the comparison of DTMCs that will bﬁ]

used in the sequel.

Theorem 1:Let P (resp.P’) be the probability transition
matrix of the time-homogeneous Markov chaiX (¢;)}i>o
(resp. {Y'(¢;),i > 0}). The comparison of Markov chains
is established{(X (¢;)}i>0 <st {Y (t:)}i>0), if the following
conditions are satisfied :

. X(to) Sst Y(tO)'

with an additional information specified (minimal transiti
probabilities to reach the absorbing state). Thus it fodrem
Eq. 6 thatvP € M(P~,P*):
J

1<i<n,1<j5<n, ZP.[Si,Sk

k=1
Given an input matrix, Algorithm 4 produces the greatest
onotondower bounding matrix in the sense gf,; ordering.
MoreoverVt, (P*)! is monotone and provides a lower bound-
ing matrix for all transition probability matrices in thet@mval.
ThusVP € M(P~,P*):

J J

Vi, V7, Z(P*)t[si,sk] > Z(P)t[snsk]

k=1 k=1

J
> Plsisi] (7)
k=1

(8)

. at least one of the probability transition matrices is mond-nese inequalities yield indeed the upper bounds to reach

tone, that is, eitheP or P’ (sayP) is <,; monotone, if
for all probability vectors andg,

p Sst q - PP Sst qP
which is equivalent to
1<i<n-1, P[s;, *] <q P[sit1, %]

whereP|s;, x| denotes the row of matri® for states;.

<4 order :

P< P << 1<i<n, Pls;x] <s P[s;,#]

Algorithm 3: Construction of the greatest lower bounding
matrix P*

Input : P~,PT :n x n matrices;out: a vector of
sizen representing the minimal transition
probabilities to reach the absorbing state;

Output : P* e M(P~,P*);

P* <, VP e M(P~,PT);
for i=1ton do
for j=1tondo
P?[s;, s;] = min( i:l Pt[si,sk),1 —
ZZ=j+1 P~ [s4, s1]) — out][d]);
(Ih) if (: <j) and P*[s;,s;] == 1) then
halt;

end
P.[Si, 1] = Pa[Si, 1]
for j =2ton do
P'[Si,sj] P“[si,sj} — Pa[Si,Slj_l];
end
end

)

the transition matrices are comparable in the sense of the

statess; - - - s; in ¢ steps beginning from statg, in the case
P~ is strictly substochastic.

Algorithm 4: Construction of monotone lower bounding
matrix P*
Input : P°, see Algorithm 3;
Output : P* <, VP € M(P~,P™); P* is monotone;
P*[sn,.] = P*[sn, .];
for i =n — 1 downto 1 do
xz =0;
for j =1ton do
P*[SZ‘, Sj.] =

max (7

Ty Polsi, sk], S0y P¥lsita, sk]) —
T =T+ P*[sia Sj];
end
end

A fundamental issue related to a sub-stochastic maRix,
is the following one: which components of the vector given

below are finite?
> (P,
t>0

where1l,, is the unit vector (all entries are 1) of size This
guestion can be solved in the general case by the consmuctio
of the strongly connected components of the underlyinglgrap
related toP and then by local summations related to this
decomposition. In the particular case when the matrix is
monotone a quick criterion whether the set of infinite values
is empty has been established in [13].

Property 2. The following statements are equivalent:

« P* is strictly substochastic which is equivalent to the

convergence of the seriés,- , (P*)’,
o Vi ngi P'[SZ‘,SJ‘] <1,
o Vi ngi P+[Si,8j] <1lor Zj>i Pf[si,Sj] >0,



« Condition (Ih) of Algorithm 3 is never satisfied. o Algorithms 3 and 4 are given separately for the sake of
Here we refine this criterion for monotone matrices by the readability, however it is possible to build the greates
determining the subset of states with finite values by an lower bounding, monotone matrix by parsing once every
efficient algorithm that simply parses once every entry. entry starting from the greatest row. Thus the worst-case

complexity forn x n matrices isO(n?).

Algorithm 5: Determination of states that reach the

absorbing state with probability 1 in a monotone sub- . PCTL
stochastic matrix A. PCTL for MCs
Input  : P~*, see Algorithm 4; We give here the syntax of PCTL close to [15] but extended
Output : set of states; by a duration operator (see [19]). Lat 3 be integersp <
reach = true; iprec = 0; [0,1] be a probability,r € Ry be a positive realg be an
for i=1ton do atomic proposition, and be a comparison operater{<, >}.
if (reach) and (Z _, P*[si, s,] == 1) then The syntax of PCTL is defined by:
reach = alse iprec = i;
else if (3! flP [s“ps]] == 1) or P (§¢):| guiLaLﬁg]?;‘@ @)
(35521 P*[si, 53] > 0) then P P 2T
iprec = 1i; The path formulaX¢ asserts that the second state of
elsereach = true; the path satisfies the state formuta The path formula
end o1 U*Ply, asserts that there exists anc [a, ] s.t. the
return {iprec+1,...,n} ith state satisfies the state formula while all preceeding

states satisfyp. Pq,(p) asserts that the probability measure

Property 3: Given an input sub-stochastim x n) matrix 7 of random paths satisfying the path formuyleulfills = <p.
P*, Algorithm 5 returns the set of states that reach witRP«-(¢) asserts that the expected timeto reach a state
probability 1 the additional absorbing state (indexednby1) ~ satisfying ¢ fulfills p <r. In the sequel we call ithe mean
Proof. Assume that a statefulfills >’ P*[s;,s;] == 1, reachability time operator
Let us present the formal semantics of these formulas. We
otes = ¢, the satisfaction of a state formutaby s and
= {s | s = ¢} is the subset of states that satigfyA path
o = sps1 ... IS an infinite sequence of states of the Markov
chain. We denote |~ ¢, the satisfaction of a patp formula

then for all?’ <, 3" _1P*[sz,sj] == 1 by monotonicity.
Consequently the subcham reduced to states 1 to i is a Mar
chain and there is a null probability to reach the absorbi
state. There are two cases: there is no suchThenVi <
n s Plsisj] > 0and} ., Pls,,s;] < 1. This means
that in the graph deduced th|s chain, there is a path from a

state to the absorbing state. Thus with probability 1, etate s g ): Xo ?ff 51 = _
reaches the absorbing state. o = prtl*Plgy  iff 3 a<i<BAsifE b
Otherwise, let us calimax the greatest state that fulfills AVj <isjf=d
Z”f‘lm P*[Simaz, 5;] == 1. After iteration imax, reach Let ¢ be a state formula and be a sequence then

becomes false am;brec = imaz. We distinguish two cases: £'1ime(o,¢) = min{i | s; | ¢} Observe that it is never
« reach is false at the end of the algorithm. Sgrec = Salisfied then'I'ime(o, ¢) =
andVi > imax Z;;ll P*[s;,s;] > 0) . The inequality LetMM be a Markov cham_and; be a path formula. _Then
means that in the graph there is an edge fromp a 700" (s,) is the probability that a random path i
smaller state. And by induction, there is a path to the rting froms satisfiesp. E denotes the expectation operator.

{1,...,imaz}. There is a non null probability to never® (s) is a random path inV starting froms (i.e. a random
reach the absorbing state. variable).
« reach becomes true at iteratiopmin (and remains true s = true forallse S
until the end of the algorithm). By the same reasoning, $ F @ iff a € L(s)
the set of state§imaz + 1,...,jmin — 1}, thereisa S ¢ iff s = o
non null probability to never reach the absorbing state. s = ¢1 /A &2 iff s =¢1AskE ¢
By monotonocity ,V;' > jmin, ngm 1P[sj,sk] = s | Pap(X9) iff Prob™ (s, X¢) <p
0. This means that the state§jmin,n} may be 5 | Pap(pr U*Plgy)  iff Prob™M(s, g1t *Flgy) ap
considered in isolation. By definition ofimaz, s | Dar () iff E(FTime(o™(s),))<r
Z”’“l“” P*[Simaaz, 5] == 1 is never satisfied. Thus with
probablllty 1, these states reach the absorbing sfate. B. PCTL for IMCs
Remarks As an IMC is a set of Markov chains, different semantics

« Algorithm 3 can be also applied for the cases withowtre possible. In [23], the authors propose a “boolean” usale
any absorbing state. In such a caset vector must be semantics, i.e.:
taken as 0. MP~,PT),sE¢iff YM e MP~,PT) M,s E ¢



Combining the universal satisfiability @f and the one of-¢, We can labels.¢ = V', by considering the upper bound-

one obtains three cases: ing case: if the one-step transition probability from state
1) YM e M(P~,Pt), M,s = ¢ remains less thap with maximal transition probabilities to
2) YM e M(P~,Pt), M,s = —-¢ states where) is possibly satisfied, then condition 1 of the

3) IM, M e M(P~,Pt), M,sl=pAM,s = —¢ satisfability is ensured. We label a statevith s.¢p = VT if
However if we apply a semi-decision procedure for the iy Z Pt[s,s'],1— Z P [s,s]) <p
model checking, the number of cases increases. Elaborating o Y- o v
this idea, this leads to six semi decision cases described/be . )
, by considering the lower bounding

In order to concisely represent them we denote the result ofVe can labek.¢ = v~ 2. >
checkings on a states, s.¢ € {¥+,v—, 3+, 3+, 3,7} case: if the one-step transition probability from staexceeds
1 . ) Y Y Y y

p with minimal transition probabilities to states wheteis
surely satisfied, then condition 2 of the satisfability isemd.
We label a state with s.¢p =V~ if

« 5.0 =V" ensures thats, ¢) belongs to case 1.
e 5.0 =V~ ensures thats, ¢) belongs to case 2.
o 5.9 = 3T~ ensures thats, ¢) belongs to case 3.

« s.p = 3" ensures thats, ¢) belongs to cases 1 or 3. max( Y P7[s,s]1— > PTs,s])>p
e s.¢ =3~ ensures thats, ¢) belongs to cases 2 or 3. s ap=y+ s AV
« s.¢ =7 all cases are possible. For all states not yet labelled, we compute two reals

The three first answers fully characterize the situationlevhiand A7, by means of the filling algorithms given in the
the next two ones partially characterize it and the last oRgevious section. To compute,,, we first apply Algorithm
provides no conclusion. 1 with input parameteS’ = {s' | s".¢ # ¥V~ }, to determine
IV. M ODEL CHECKING PCTL the output parameteP|s, x] with s € S and then compute
ms = Y gcg Pls,s’]. Similarly, M, is computed from
Given an interval valued DTMQV and a PCTL formula, Algorithm 2 with input paramete§” = {s' | s".¢ = v*}
the verification algorithm proceeds by a bottom-up evatuati @d M; is computed from the obtained vector for the set
of sub-formulae of¢ in the syntactic tree of the formulaS’ = {s' [ s".¢ =V"}: My =3, s P[s,s]). Then the not
¢. From leaves to the root, each state is labelled with §tlabelled states are labelled as followsuif < pA M, > p
assignment of a value to the sub-formula. Hence, every st@§ns.¢ = 3t~ else ifm, < pthens.¢ = 3" else if M, > p
of the algorithm evaluates a formulae viewing the operarids §ens.¢ = 3~ elses.¢ =7.
the mo_st externa_ll operator as values assigned by the peevioy — Pap(th Ul>Blyy)
evaluations. Let in the sequel, ¢, ¥5 denote already evalu-
ated state formula. This leads us to study each operatdreln
sequel, the assignment of the state by labet is implicit and

cc_)rrespondf to cases where the state is SucceSSiVeIyemxaoehaviour of the transformed substochastic cheithout the
with both 37 and 37 absorbing state during the intenjal o — 1] and the behaviour

The algorithm labels a statewith s.¢p = VT (resp. of the transformed substochastic chaiith the absorbing
Sp=VY,s¢p=3" s5¢=3" s.¢0=3,s¢=0)ifitis state during the intervale, 5]. In the framework of IMC,
labelled withs.i) = V= (resp.s.i) = V*, s.p = 3t~ s.p = the probability to stay in a subset of states and then reach
37, sap =37, s.9p =7). some absorbing state can be lower bounded u¥tng(see

] ) below case 4). However usiig™* for the upper bound does
The algorithm labels a state depending on ot hrovide accurate results (since for instance the pisetw
valuess.¢, 5.4, as presented in the table below. For instancgpner hounding often transforms a substochastic matrix in a

when s.¢y = 3% and s4p, = 37, we know that there is a gperstochastic one!) and this is where stochastic cosgari
model such that does not fulfilly»;. So this model does not 15yes place (see case 3). Other cases are simpler.

fulfill ¢ and this is the only information that can be deduced ag in the case of the former operator, we consider here the

Frinciple. Oncey; andvy, have been evaluated, the standard
method consists to eliminate states fulfillingv; V 1) to
merge states fulfilling), in an absorbing state and to study the

thus leading tos.¢ = 3™ cased =< and there are 6 possible answers that we can assign
sapp \sp  WH v- It I - 7 to a state.
A MR EEET 1. In the caseax = 0, some immediate conclusions are
V- VT OIVT YT | VYT YT YT possible from the label of.
3= EiR N EN N ES — if s.apy = VT, formula¢ is satisfied with probability
3t Ei R EEEEN 1, thus these states are labelled with = V.
= A ENENED — if sy = V-, somme immediate conclusions de-
? RN pending on the label fos.1), are possible:
*¥ sapp = V- = s.¢ = V. Formula¢ is not
We handle the case=< wherep < 1. The satisfied with probability 1, thus these states are

other caseX) is omitted as it is similar. labelled withs.¢p = V.



2.

In the case.y; =

¥ sapp = 17 = s.¢ = IT. Formula¢ is not
satisfied with probabilityl for some chains of the
interval, thus these states are labelled with =
I+,

* sy = 3T = 5.¢ = I~. Formulag¢ is satisfied
for some chains of the interval with probability 1
thus these states are labelled witkp = 3.

* sahy = AT = s.¢ = I*~. Formula¢ is
satisfied for some chains and it is not satisfied
for other chains of the interval.

v—, anda > 0, formula ¢ is satisfied

with probability 0. Thus these states are labelled with
5.0 =VT.

. We now see if we can label wititt. We define two sets:

S1={s|ste =V Asp1 £V}, Sa = {s|s1p2 #
vV~ }. The statesS — S; are made absorbing. We consider
the upper bounding case to reach absorbing s&té®m

S, states. First we reorder states&fwith respect to the
maximal transition probabilities t8, states (the matrices
are reordered by row and column permutations). Then
we build lower bounding matrix restricted to stat8g
and make it monotone by means of algorithms given in
section II-C.

3.1.

3.2.

3.3.

Construct a column vectar! of sizen for maximal
transition probabilities to the absorbing, states
from S; states. The maximal transition probability
from a states; € S; to S, for all possible Markov
chains in the intervat M(P~,P™) is defined by
rt[s;] :

rt(si] = min( Y P¥si,se], 1= > P [si, i)

s5EES2 SkES2
9)

We reorder this vector in the decreasing order
(rt[s1] > rF[sa] -+ > ¥ [sa)).

ConstructP® through Algorithm 3 by consider-
ing the set of statesS;. In the sequel, we de-
note this set by{si,ss2,---s,} The input pa-
rameters of Algorithm 3 areéP~ and P™ ma-
trices of sizen; vector out is defined by sum-
ming the probabilities oveS — S, states:Vs; €
S, out[s;] = max(d_, 45 P [si, 80,1 —
> enes, PT[si;sx]). The output matrixP* is the
lower bounding matrix for all Markov chains in
the interval M (P~,P) with probability transition
matrix P. Thus from Eq. 7¥s; € Sy :

j j
1<j<n, ZP'[si,sk] > ZP[si,sk]
k=1 k=1

The monotone lower bounding matrix for all the
Markov chains in the intervaM(P~,P™) is com-
puted through Algorithm 4 and denoted ®*.
The input parameter of the algorithm is mati¢
obtained in the previous step.

Sy, for all power matricest#(> 1) of any Markov

3.4.

1The case where botlw = =
We have the following inequalities for each states  ,, 7400.0]y, = g

chain in the intervalM(P~,P*) with probability
transition matrixP:
J

1<j<n, Y (P*

J
817 Sk > § 817 Sk
k=1 k=1

(10)
These inequalities still hold, if we multiply both part
of the inequality for a state; by (r*[s;]—r*[s;11])
(the n + 1th entry for vectorsr andr™ is assumed
to be0). Then by summing all inequalities ovgr=

{1,---n}, we can deduce that
> (P [si, selrTsk] = > (P) [si, sk]r [si]
k=1 k=1
(11)
This inequality can be rewritten as
(P vt > (P) -t
where <.; denotes the component (element)-wise

ordering.
Let r be the column vector computed for a given
P € M(P~,P*) in the interval.vs; € S; :

i1=Y_ Plsi si] = P[s;, 5]
s ESa
Obviously, r* provides the maximal vector for all
vectorsr computed from any matri® in the interval
M(P~,PT):
I‘+ Zel r

Combining this inequality with 11, we have
Pt > (P) vt >, (P) -1

where power0 for a matrix is the identity matrix.
Let us remark thatP)‘r represents the probabilities
to reachS, states withint + 1 steps.

We check if the upper bound to reaSh states in
time interval|«, 5] remains less or equal @ Thus
we consider maximal probabilities to reash states
at timet (see Eq. 12), that means to reach a state
within t—1 steps by the power—1 of matrix P* and
then within 1 step from this state to a stadlg by r.
Therefore we sum over in time intervak= (a—1)*

to 3—1 1 where(a—1)* = max(0,a—1). For each
states € S, if the following inequality is satisfied
2 thens.p =+

(12)

B—1

(Y @®))rt

t=(a—1)"*

[s] <p (13)

4. We now see if we can label witfi-. We define two sets:
Sy = {5 | 5.9

=Vt S, = {s| sty £V Asapy =

0 will not be considered, since

Pa.

2When 8 = oo, the sum is infinite, this case at the end of the section.



vt} LetS; = {s1,2,---,s,}. States out of5; will be
absorbing. First we construct a column veator of size

n/ to compute minimal transition probabilities from states

S, to the set of absorbing, statesVs; € S; :

r~[s;] = max( Z P~ [si, sx],1 — Z P [si,51])
sKES, sLES,
(14)

We consider the lower bounding case, thus we consider
P~ instead ofP* of the former case. Obviously we have

the following inequalities for all power matricég > 1)
of any chain restricted t&; in the intervalM (P, P)
with probability transition matrixP:

PH) v <P -r <y (P)r
We check if the upper bound to readj states in time
interval [«, 3] exceedsp. Thus for each state € S, if

the following inequality is satisfied, thesng =V~

B—1

(Y @®))r|lsl>p

t=(a—1)+

(15)

5. We now see if we can labélt. The setsS; andS, are
defined as in case 3.

5.1. Define a column matrix,,, of sizen for the lower
bounding reaching probability t§, states fromsS;
states :

r"[s] = max( Z P [s, sx), (1— Z P*s,s1]))
SLES2 SkESa

5.2.

6.3. Similiar to the former case, we construct a matrix
P, restricted to the set of statéé ={s1,",Sn}
by applying Algorithm 2 to construct each row.
We now check if formulap is checked by consid-
ering matrixPj,; and the vector,,. For each state
s € &, if the following inequality is satisfied then
if s.0p=3" thens.¢p =37~ elses.¢p =3~
B—1
(Y. ®w)) ruls]>p
t=(a—1)*
In the casex = 0, for all states yet already labelled
— sy =TT = 5.9 =37
— sy =TT = 5.0 =37
8. We assigns.¢ =7 to all the states which have not already
labelled.

¢ = D<1r (w)
Principle. Oncev has been evaluated, the standard method
consists to merge states fulfilling in an absorbing state and
to study the behaviour of the transformed chain during the
interval [0, oo[. More precisely, let us recall that given a subset
of statesS’, the vector indexed by — S' corresponding to
the mean time to reacH is given by the formula:

(@)L,

t>0

6.4.

7.

(16)

whereP is the transition probability matrix restricted $-S’
states of cardinalityn and1,, is a column vector of sizen
with all entries equal tal. This is the starting point of our
method which substitutes in the equation (16) a matrixior
As for the case of “until” operator the choice of the matrix

Reorder this vector in the decreasing order. Staj@pends on the information one looks for: case 1 involves the

spaceS, will be also ordered in this order. Letstochastic comparison, case 2 uis for a pointwise lower
us remark here that this reordering is not requirei§ounding and cases 3 and 4 construciadrhocmatrix.

contrary to the previous case but it is heuristic.
We guess a matri®,, restricted to the sef; =
{s1,---,sn} belonging toM (P~ ,P*) by applying
Algorithm 1 to construct each row.

We check if formulap is checked by considering
matrix P,,, and the vector,,. For each state € S,

If the following inequality is satisfied them¢ = 3T

5.3.

5.4.

B—1

( Z (Pn)") rms] <p

t=(a—1)*

6. We now see if we can labél. The setsS; andS, are
defined as in case 4.
6.1. Define a column matrix,; of sizen’ for the upper
bounding reaching probability t6, states froms,
states :

ra[s] = min( Z P*[s, s1],1 — Z P~ [s, sk])

sKES, sKES,

6.2. Reorder this vector in the increasing order. The set

S, will be also ordered with respect to this order.

As in the former cases, we consider here the gase<.

1. We first see if we can labely = v+. We defineS; =
{s | s.¢» # ¥*}. Our goal is to provide an upper bound
on the mean reaching time to states for whicks surely
satisfied(S — S1). Thus the states out af; are made
absorbing. We construct first the lower bounding matrix
P restricted taS; = {s1,- -, s, } Sstates from Algorithm
3. The input parametesut (the minimal transition prob-
abilities to the absorbing state) is computed as follows:
Vs; € S, outls;] = mazx(}_;, 45, P [si k)1 —
> ses, PT[si,sx]). The monotone version is built by
Algorithm 4. Thus for any chaitM € M(P~,P™) with
probability transition matrixP:

Q@Y1 20 (O _(P))1,
t>0 t>0

For each state i, if the following inequality is satisfied
thens.¢p = VT

QP | [l <7

t>0



Observe that some components of this computed vector V. RELATED WORK
could be infinite. However we apply beforehand algo/:\
rithm 5 that determines the subset&f that corresponds
to states with finite value. Then we only compute the In [16] IMCs are introduced to specify the expected behav-
above infinite sum for this subset of states. ior of a model under uncertainties. Obtaining the pararseter
2. We now see if we can label¢ = V—. We consider lower of an IMC is considered in [18]. Following another approach,
bounding case to reach states satisfying hus we define in [25], algorithms are proposed to build extremal monotone
S, = {s| sy = V~1}, which is the set of states for whichchains for an IMC. These results have been applied in the
Y is surely not satisfied. If the infinite sum (see Eq. 16yamework of the bounding aggregation for Near Complete
is greater than- for the lower bounding case, one cafP€composable Markov chains [25], [22]. In [13], IMC sub-

conclude that the mean reaching time is always greaféains are considered and polynomial time algorithms are
than r. Hence for each state € S;, if the following designed to compute the maximal monotone lower bound both

inequality is satisfied them.¢ = v~ in continuous and discrete time settings. These results hav
been applied to study different reliability and performanc
problems [14].
Z(P*)t)ln/ [s] >r While the bounds developed in [25], [13] can be applied to
>0 analyze the transient and the steady-state behaviour,]jn [6
P. Buchholz only focused on the steady-state analysis and
built optimal bounds for steady-state distributions basead
%he polyhedra theory initially proposed by [9].
The model checking of interval valued Markov chains has
een investigated in [23]. The authors showed that the proba
bility to satisfy a PCTL formula are specified by polynomial
inequalities (rather than linear ones in the case of DTMC)
which leads to a PSPACE algorithm. They also established
Z(Pm)t)ln [s] <r that PCTL model checking is NP-hard and co-NP-hard. In
>0 [7], these results have been generalized/tBCTL logic.

. Interval-valued Markov chains

3. We now see the case for labelp = 3. We con-
sider the set of state$; as in case 1 and guess
matrix P,, € M(P~,P™) restricted toS;. Each row
is constructed by Algorithm 1 in order to minimize theb
transition probabilities. Thus for each statednp, if the
following inequality is satisfied theg.¢p = 3

4. Similar to the previous case, we guess a/md?'m € B. Semi-Decision procedures for Model Checking
M(P~,PT) restricted to the set of state$ (defined

; - . Abstraction is a useful technique in order to analyze system
in case 2.) The rows are constructed by Algorithm 2 g/ d Y28 5yS

ith huge state spaces. It consists in grouping states and
roducing an abstract system which can be an "under” or
over” approximation of the original system. It has beentfirs
applied in the framework in the discrete event systems and
has been recently generalized for probabilistic system.1]
(Z(PM)t)ln/ [s] > 7 _the abstraction of a DTMC_ naturally y_ields a continuous time
interval valued Markov chain. Then using three-valued sema
tic (YES, NO, DON'T KNOW) the authors apply a method
5. For all states which are not already labelled we as8ignbased on resolution of an associated Markov Decision Psoces
Remarks. Observe that the convergence of infinite sum@IDP). [17] handles the case of CTMCs by uniformising the
involved in the algorithms related to tHB and thel/ op- CTMC then applying the abstraction procedure as in [11]. A
erators can be checked before starting the computatiors. Tdifferent view of abstraction is proposed in [8] whose goal
is performed either by standard graph analysis when tfeeto obtain a "purely” stochastic system excluding the non
substochastic matrix is arbitrary (based on the deconipositdeterminism induced by the intervals.
in strongly connected components) or by algorithm 5 when theAll previous approaches are based on the bounds for state
matrix is monotone. In both cases, the algorithms determipeobabilities. In this context it must be observed a genthe
the subset of initial states for which the computation is-neory exists: stochastic comparison [20]. Bounding methads a
essary and transform the matrix (depending on the consideseiitable to apply in model checking, since we need to check
operator) in such a way that the convergence is ensurddsome constraints are satisfied or not without considering
As usual, the convergence is exponentially quick (since tleeact values. The stochastic comparison approach progiues
sum is geometric). Therefore for a reasonable precision,rderesting alternative for model checking since this apph
finite approximating sum is efficiently computed. In summaryets us provide the bounds on transient distributions at agel
when dealing with fixed precision computations, the numbére stationary distribution of the underlying Markovian ced
of operations for model checking is polynomial w.r.t. bdtlet Indeed, the stochastic comparison of distributions presid
formula and the model. Furthermore since we deal with fixg¢tle inequalities on the partial sum of probabilities. In miod
precision, this bound leads to polynomial time complexity. checking, given a formulaF, the verification is resumed to

order to maximize the transition probabilities. For eac
states € §;, if the following inequality is satisfied then
if 5.0 =3" thens.¢p =3t~ elses.¢p =3~

t>0
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