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. Introduction

A Web  service essentially denotes an application (or program)
ccessible via Internet standard protocols [3]. The basic protocol
sed to access Web  services is SOAP (Simple Object Access Protocol),
n XML  (eXtensible Markup Language) based protocol that allows a
ervice customer to invoke services [6]. The Web  services, called
lementary Web  services, such as described by WSDL (Web  Service
escription Language), are conceptually limited to relatively simple

unctionalities modeled through a collection of simple operations
ithout control flow. For certain types of applications, it is neces-

ary to combine a set of elementary Web  services to obtain more
omplex one, called aggregated or composite Web  services, in order
o meet customer requirements [4,1]. This aggregation is possible
sing for example BPEL (Business Process Execution Language For
eb  Services) standard which is the result of merging previous com-

osition languages such like WSFL (Web  Service Flow Language) and
LANG (XML  Business Process Language) [5].

The Web  services are executable on more platforms than the
revious technologies such like CORBA (Common Object Request
roker Architecture) and RMI  (Remote Method Invocation), however
hey raise new requirements like the dynamic adaptability and the
nsurance of QoS (Quality of Service). The latter criterium is defined

s a combination of several attributes which can be qualitative (e.g.
ecurity) and quantitative (e.g. response time [9,10]). Their increas-
ng complexity requires the development of methods and tools in

∗ Corresponding author.
E-mail address: lynda.mokdad@univ-paris12.fr (L. Mokdad).

877-7503/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.jocs.2011.11.003
order to monitor and evaluate their QoS. In fact, the QoS degra-
dation can lead to serious consequences including a significant
economic impact.

In this paper, we focus on the composite Web  service (CWS)
response time computation, where the requests are decomposed
into sub-queries to different elementary Web  services and then
merged into a final result. In our previous study [11], we have con-
sidered the BPEL constructors directly supported by this standard.
The control patterns considered here are not directly supported by
BPEL:

• parallel invocation of a constant number of elementary Web  ser-
vices merged by a federation component (see Fig. 1),

• parallel invocation of a variable number of elementary Web  ser-
vices merged by a federation component.

Under the assumption of Markovian elementary service and
merging times, the modeling of a composite Web  service yields a
Markov chain with O(n2) states, where n is the number of invoked
elementary Web  services. The particular structure of this Markov
chain allows us to establish recurrence equations which lead to a
computational complexity time of order O(n2). It is because of the
structure of the obtained Markov chain (see Section 4). In the open
systems such as peer to peer environment, the number of invoked
services can lie between 103 and 106. So, their exact analysis
becomes difficult and often intractable. Using the stochastic com-

parison [7,8] and more precisely the coupling process technique,
we propose a generic transformation of the studied Markov chain
which guarantees that the response time of the new Markov chain
is an upper bound of the initial Markov chain response time. We

dx.doi.org/10.1016/j.jocs.2011.11.003
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
mailto:lynda.mokdad@univ-paris12.fr
dx.doi.org/10.1016/j.jocs.2011.11.003
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Fig. 1. Data processing in a 

nstantiate this transformation in three ways, where each obtained
ew Markov chain is parameterized by a “quantitative” parame-
er. Otherwise stated, we propose three families of the bounding

odels. By an appropriate choice of the parameter, the recurrence
quation systems can be resolved with an algorithm with O(n) and
(n

√
n) respectively space complexity and time complexity.

Moreover, we show by empirical studies that depending on the
umerical values of the original Markov chain, the bound provided
y any of the three bounding families can be better than the two
ther ones. We  also characterize the three cases w.r.t. these numer-
cal values.

We  generalize our work as follows. Assume that an elementary
eb  service can be invoked with a constant probability. Thus the

esponse time of a given composite Web  service can be computed
s a weighted sum of the elementary Web  services response times
here the computational cost is of order O(n3). To handle this case,
e combine the upper bounds proposed for the first pattern and

he Chernoff bounds in order to limit the study only to two cases:
he case where all services are invoked and a probabilistic “worst
ase” i.e. a constant number of invoked services with a very small
robability to exceed this threshold. This approach allows us to
eep the same computational cost as in the first case (i.e. when the
umber of elementary Web  services is constant). Note that Cher-
off bounds give bounds on the tail distributions of the sums of

ndependent random variables (more details are given in Section
).

The rest of the paper is organized as follows. Section 2 presents
ome related works. Section 3 recalls some definitions and results
elated to the process coupling technique and the Chernoff bounds.
n Section 4, we study the control pattern parallel invocation where
he number of elementary Web  services is constant. Section 5 sum-

arizes the obtained numerical results in this case. In Section 6,
e study the control pattern parallel invocation where the num-

er of elementary Web  services is variable. Section 7 summarizes
he obtained numerical results in this case. Section 8 summarizes
he contributions of this paper and gives some perspectives to this
ork.

. Related work
In the framework of Web  services performance evaluation, two
pproaches are generally used: benchmarking and modeling meth-
ds. In the following, we present some studies using the two
pproaches.
osite Web  service platform.

As far as performance measurement of Web  services is con-
cerned, XML  specification and SOAP protocol have been studied
in [21–23] by testing and measuring of SOAP-based Web  services
response time. A comparative study on response time and through-
put with existing protocols, like RMI, RMI/IIOP or CORBA/IIOP, is
presented in [21]. A critical study of XML-based protocols for Web
services is presented and binary encoded protocol has been pro-
posed instead of text XML-based ones in [22]. In [24], information
about past workflow executions is collected in a log. Starting from
this log a continuous Markov chain is derived, in order to compute
the execution response time and the cost of this workflow.

In [10], the composite Web  service response time is considered
as a response time of fork and join model. This model states that a
single Internet application can invoke in parallel a set of elementary
Web  services and gather their responses from all these launched
services in order to return the results to a client. In this considered
study, authors analyze the effects of exponential response times
based on earlier work in [12]. An exact analysis of fork and join
system is possible when the system is significantly simplified. This
is the case for example when the job arrival process in the system
follows a Poisson distribution with execution task having expo-
nential distribution and the number of queues is equal to two. The
exact computation response time of a such system can be found in
[13–15]. An approximation technique has been proposed in the case
where the number of servers is greater than two and the servers
are homogeneous [15]. This last study is extended in [16]. General
arrival process and services times are considered in [17]. The most
general case is considered in [18]. In this work, upper and lower
bounds are proposed by assuming that the response times in each
queue are mutually independent. Two approximation techniques
are presented: one is based on a decomposition approach and the
other is based on an iterative solution method.

In order to overcome the limitations of these studies and par-
ticularly the one presented in [10], we have proposed a general
model taking into account the fact that elementary Web  services are
heterogenous and the number of invoked services can be variable
(this is the case when we use for example the BPEL multi-choice
constructor) [11]. More recently, the problem of computing the
distribution of the throughput time in workflow nets has been stud-
ied in [20]. In this paper, authors consider workflow with transition
execution time having exponential distributions and formulas have

been proposed for each refinement rule (sequence, parallel, syn-
chronization and loop execution pattern). Response time of a Web
service middleware is considered in [19], which follows a fork and
join model of execution. The author proposes that while performing
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 join operation, servers with slow response times can be elimi-
ated to maximize the performance. The work is more oriented
oward studying fork and join model in order to understand how
o optimally merge the results from various servers.

. Coupling of Markov chains and Chernoff bounds

A continuous time Markov chain (CTMC) M is defined by:

a finite space state S,
a real matrix Q : S × S −→ R  called infinitesimal generator such
that:
1. ∀s /= s′ ∈ S, Q[s, s′] ≥ 0,
2. ∀s ∈ S,

∑
s′∈SQ [s, s′] = 0

and an initial distribution denoted M(0).

A coupling of two Markov chains is a “product” chain where the
et of states is a subset of the product of the initial sets and such
hat by only observing the behavior of a component of the state,
ne obtains the corresponding chain.

efinition 1. Let M = (S, Q, M(0)) and M′ = (S′, Q ′, M(0)) be
wo CTMCs. Then a coupling of M and M′ is a CTMC M∗ =
S∗, Q ∗, M∗(0)) such that:

S* ⊆ S × S′

∀s ∈ S, M(0)[s] =
∑

(s,s′)∈S∗M∗(0)[s, s′]
∀s′ ∈ S′, M′(0)[s′] =

∑
(s,s′)∈S∗M∗(0)[s, s′]

∀s /= s1 ∈ S, ∀(s, s′) ∈ S∗, Q [s, s1]=
∑

(s,s′),(s1,s′
1

)∈S∗ Q ∗[(s, s′), (s1, s′
1)

∀s′ /= s′
1 ∈ S′, ∀(s, s′) ∈ S∗, Q ′[s′, s′

1] =∑
(s,s′),(s1,s′

1
)∈S∗ Q ∗[(s, s′), (s1, s′

1)]

The coupling technique is related to the properties of the state
pace S*. The following proposition whose proof is a direct conse-
uence of Definition 1, is sufficient for our purposes.

roposition 1. Let M∗ a coupling of M and M′.
Let sf ∈ S and s′

f
∈ S′ such that:

(s, s′) ∈ S∗, s′ = s′
f ⇒ s = sf

e  denote TM(sf ) (resp. TM′ (s′
f
)) the expected first passage time

etween an initial state si and a final state sf (resp. s′
f
) in M (resp.

′). Then:

M(sf ) ≤ TM′ (s′
f )

The Chernoff bounds provide an accurate bound of the deviation
robability of a random variable, defined as a sum of independent
andom variables and taking their values in {0, 1}.

roposition 2 (Chernoff bounds). Let X1, . . .,  Xn be independent ran-
om variables with values in {0, 1} such that P(Xi = 1) = pi, X ≡

∑
i≤nXi,

 ≡ E(X) and 0 ≤ ı < 1, then:

(X ≥ (1 + ı)�) ≤ e−�ı2/3 and P(X ≤ (1 − ı)�) ≤ e−�ı2/2

. Study of the parallel invocation pattern and constant
umber of elementary Web  services

.1. Specification of the problem
We  consider a distributed application where the data is stored
n databases and can be accessed by XML-based protocols. When a
omposite Web  service is started, it is decomposed into elementary

eb  services allocated to servers s1, s2, . . .,  sn while in parallel with
ional Science 4 (2013) 232–241

the still working servers, the partial responses are integrated into a
single result (merge) which is the response to the client. The system
under study in this paper is given in Fig. 1.

We assume, in the rest of this paper, that the response time of the
servers si(i = 1, . . .,  n) are independent and identically distributed
following an exponential distribution with mean 1/�.  The merging
time is also exponential random variable with mean 1/�. n denotes
the number of elementary Web  services that are invoked.

For completeness, we  distinguish two  cases of a composites Web
services:

• Simple case. The federation component starts the merging after
all of the elementary Web  service results have been received.

• Main case. The federation component proceeds (sequentially) to
the merging on receipt of elementary Web  service results.

Observe that the response time of the simple case is an upper bound
to the response time of the main case.

In the simple case, the average response time of such composite
Web  service is given by:

E(Tn
fix) = E(Tn

syn) + n� (1)

where the average response time E(Tn
syn) of the local servers is given

by Lemma 1.

Lemma  1. If the elementary Web  services are homogenous and their
service times are exponentially distributed with rate �, the overall local
servers response time is given by:

E(Tn
syn) = 1

�

n∑
i=1

1
i

Proof. The average time for a first elementary Web  service to han-
dle its request is 1/n�, the average time for the two  first elementary
Web  services to complete their requests is (1/n�) + (1/(n − 1)�), and
so forth. By iterating, we obtain:

E(Tn
syn) = 1

n�
+ 1

(n − 1)�
+ · · · + 1

2�
+ 1

�
= 1

�

n∑
i=1

1
i

�

In the main case, the considered model can be described by a
continuous Markov chain M(t). To describe this chain, we define
the state si,j where i indicates the responses that are queued in the
federation component and j the elementary Web  services that are
still to respond. The transition graph of the Markov chain for n = 6
is given in Fig. 2.

Observe that the average response time of the composite Web
service is the average absorption time by the state s0,0 starting from
the state s0,n, noted T(s0,n). It is given by:

T(si,j) = Soj(si,j) +
∑

si,j−→si′,j′

P[si,j, si′,j′ ]T(si′,j′ )

where Soj(si,j) is the sojourn time in the state si,j and P[si,j, si′,j′ ] the
probability transition from the state si,j to the state si′,j′ , deduced
from the infinitesimal generator Q.

Thus, the response time of such composite Web  services can be
computed with a O(n2) time complexity (i.e. the number of equa-
tions) and with a O(n) complexity space (because the terms T(s.,j)
are enough to compute the terms T(s.,j+1)).
4.2. General bounding models

In this section, we propose bounding models and prove that
the response time in these models provides an upper bound of the
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riginal model response time. These models are obtained by redi-
ection of some arcs in the original Markov chain. Let M be the
arkov chain corresponding to the original model. We  redirect A,

 set of arcs of M. MA denotes the new Markovian process obtained
y this redirection. We  distinguish two kinds of redirections:

redirection of an arc (si,j, si+1,j−1) (with rate j�) which becomes a
loop (si,j, si,j),
redirection of an arc (si,j, si−1,j) (with rate �)  which becomes a
loop (si,j, si,j).

We  formalize these redirections as follows.

efinition 2. Let A  be a set of arcs. Then function suiv� : S −→ S is
efined by:

si,j ∈ S, suiv�(si,j) =
{

si,j if (si,j, si+1{j>0},j−1{j>0} ) ∈ A,

si+1{j>0},j−1{j>0} , otherwise.

unction suiv� : S −→ S is defined by:

si,j ∈ S, suiv�(si,j) =
{

(si, sj) if (si,j, si−1{i>0},j) ∈ A,

si−1{i>0},j, otherwise.

The following theorem is the basis for the particular family of
ounding models described in Section 4.3.

heorem 1. Let M be the Markov chain associated with the initial
odel and M′ be the Markov chain obtained by redirection of the set

f arcs A. Thus, there exists a coupling M∗ of M and M′ such that the
et of states S* is defined by:

∗ = {(si,j, si′,j′ ) | j ≤ j′ ∧ i ≤ i′ + (j′ − j)} (2)

roof. We  define the output transitions from (si,j, si′,j′ ) ∈ S∗, by
istinguishing four cases:

. i = i′ and j = j′. The outgoing transitions from state (si,j, si,j) are:
(a) if i > 0 a transition with rate � toward state (si−1,j, suiv�(si,j))

(b) if j > 0 a transition with rate j� toward state (si+1,j−1, suiv�(si,j))
(c) a transition with rate (n − j)� + 1{i=0}� toward state (si,j, si,j)

. j = j′ and i < i′. Thus i′ > 0. The outgoing transitions from state
(si,j, si′,j′ ) are:
or the case n = 6.

(a) a transition with rate � toward state (si−1,j, suiv�(si′,j)) if i > 0,
toward state (si,j, suiv�(si′,j)) otherwise

(b) If j > 0 a transition with rate j� toward state
(si+1,j−1, suiv�(si′,j))

(c) a transition with rate (n − j)� + 1{i=0}� toward state (si,j, si′,j)
3. j < j′ and i + j = i′ + j′. Thus i > 0 and j′ > 0. The outgoing transitions

from state (si,j, si′,j′ ) are:
(a) a transition with rate � toward state (si−1,j, suiv�(si′,j′ )).
(b) If j = 0 a transition with rate j′� toward state (si,j, suiv�(si′,j′ ))
(c) If j > 0

- a transition with rate j� toward state (si+1,j−1, suiv�(si′,j′ ))
- and a transition with rate (j′ − j)� toward state

(si,j, suiv�(si′,j′ ))
(d) a transition with rate (n − j)� + 1{i=0}� toward state (si,j, si′,j′ )

4. j < j′ and i + j < i′ + j′. Thus i′ > 0 and j′ > 0. The outgoing transitions
from state (si,j, si′,j′ ) are:
(a) a transition with rate � toward state (si−1,j, suiv�(si′,j′ )) if

i > 0, toward state (si,j, suiv�(si′,j′ )) otherwise
(b) If j = 0 a transition with rate j′� toward state (si,j, suiv�(si′,j′ ))
(c) If j > 0

- a transition with rate j� toward state (si+1,j−1, suiv�(si′,j′ ))
- and a transition with rate (j′ − j)� toward state

(si,j, suiv�(si′,j′ ))
(d) a transition with rate (n − j)� + 1{i=0}� toward state (si,j, si′,j′ )

One checks that M∗ is indeed a coupling by comparing the two
marginal rates with the ones of M and M′. �

The following corollary is an immediate consequence of
Theorem 1.

Corollary 1. Let (si,j, si′,j′ ) ∈ S∗, then:

T(si,j) ≤ T ′(si′,j′ )

And in particular, T(s0,n) ≤ T′(s0,n).

Proof. Observe that for every (s, s′) ∈ S* s′ = s0,0 implies s = s0,0 and
apply Proposition 1. �

Let be A1 ⊆ A2 be two  sets of redirected arcs and MA1 , MA2
the two  corresponding Markov chains. Theorem 2, whose proof is
similar to the one of the Theorem 1 shows that absorbing time
obtained by redirection is “increasing” w.r.t. to the (partial) order
defined by set inclusion.
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Table 1
Computational cost vs. accuracy.

Aggregation level (h) Ratio Upper bound Relative error

0 0.02% 390.47 36.84%
100 1.01% 338.62 18.52%
500 4.95% 322.58 12.90%

1000 9.76% 315.66 10.49%
1200 11.65% 313.83 9.85%
1400 13.52% 312.29 9.30%
36 S. Haddad et al. / Journal of Com

heorem 2. Let be M the original Markov chain and MA1 (resp.
A2 ) a Markov chain obtained by the redirection of the set of arcs A1

resp. A2) where A1 ⊆ A2. Then, there exists a coupling M∗ of MA1

nd MA2 such that the set of states S* is defined by:

∗ = {(si,j, si′,j′ ) | j ≤ j′ ∧ i ≤ i′ + (j′ − j)}

.3. Particular bounding models

We  propose, in this section, three particular families of bounding
odels obtained by a specific choice of the redirected set of arcs.

hese families correspond to redirections called in the sequel �-
ggregation, initial �-aggregation and final �-aggregation. It may
eem surprising that we obtain a reduction of the computational
omplexity, although the space states of the bounded model are the
ame as that of the initial model. The key point of this reduction lies
n the fact that the bounding Markov chains allows us to “merge”

any equations into a single one, according to the parameter of
ggregation for each particular family of the bounding models.

.3.1. Upper bound by �-aggregation
These bounding models are parameterized by an integer m,

ith 0 ≤ m ≤ n − 2, called aggregation level. Intuitively, it consists
o “stop” the elementary Web  services execution when there is at
east one request in the federation component until either there is
o request or m + 1 requests are processed. We  present below two
ounding models obtained by �-aggregation for n = 6 and m ∈ {1, 2}
see Fig. 3).

.3.2. Upper bound by initial �-aggregation
These bounding models are parameterized by an integer m,

here 0 ≤ m ≤ n − 2 called aggregation level. It consists to “stop”
he component processing while it remains at least m running ele-

entary Web  services. We  present below two bounding models
btained by �-aggregation for n = 6 and m ∈ {1, 2} cases (see Fig. 4).

.3.3. Upper bound by final �-aggregation
These bounding models are parameterized by an integer h called

he aggregation level. It consists to “stop” the federation processing
hile there are more than h running elementary Web  services.

. Numerical results for the “fork merge” pattern

We  present now a summary of the numerical results obtained
or the bounding models presented above. It is clear that if � � �
resp. � � n�) the upper bounds obtained by �-aggregation are bet-
er than those obtained by �-aggregation and vice versa. So, the

ost interesting case, studied in the following, is the one where
 ≤ � ≤ n�.

The quantitative behavior of the studied Markov chain is deter-
ined by the ratio between � and n�, thus without loss of

enerality, we fix the parameter � at 0.1 and we let the federation
ate � vary.

.1. Comparison between �-aggregation and initial
-aggregation

We  present the upper bounds for composite Web  services where
he number of elementary Web  services n is equal to 5000, 10,000,
5,000 and 20,000. The aggregation level m = O(n − √

n). So the
umber of recurrence equations required to compute the absorp-√

ion by the state s0,0 from the state s0,n is O(n n). Figs. 5 and 6 show
he absorption time evolution and the upper bounds obtained by
-aggregation and initial �-aggregation. Thus, according to these
esults, we conclude that:
1600 15.38% 310.96 8.84%
1800 17.21% 309.78 8.43%

• the �-aggregation models are better than the models with �-
aggregation,

• the best upper bounds are obtained by �-aggregation models
when the federation rate � is not very large compared to the
rate server �.

5.2. Comparison between �-aggregation and final �-aggregation

We  present the upper bounds obtained by �-aggregation and
final �-aggregation for composites Web  services where the num-
ber of elementary Web  services number n is equal to 5000, 10,000,
15,000 and 20,000. Thus, according to the obtained results (see
Figs. 7 and 8), we  observe that the upper bounds obtained by final
�-aggregation are better that the ones obtained by �-aggregation
when the difference between the federation rate � and the server
rate � is important.

5.3. Tradeoff between the upper bound quality and the
computational cost

We  now analyze the tradeoff between computational cost and
the accuracy of the upper bounds, in the case where the final �-
aggregation is better than the �-aggregation. Table 1 shows the
tradeoff between the computational cost and the accuracy of the
upper bounds with a relative error and a ratio. The relative error
is defined as the absolute error divided by the exact response
time value. The ratio is defined as the ratio between the num-
ber of recurrence equations when we consider the Markov chain
M and the number of recurrence equations when we consider
the Markov chain M′. The value of the parameters are: n = 20,000,
� = 0.1 and � = 70. The exact response time of this composite Web
service is 258.70 and the number of recurrence equations is around
2 × 108. We  emphasize two  facts. On the one hand, the accuracy
increases with the level aggregation h. On the other hand, the num-
ber of recurrence equations required to compute absorption time
increases with the level aggregation h.

6. Study of the parallel invocation pattern and random
number of elementary Web  services

We  consider in this section the case where the invocation of
elementary Web  services is i.i.d. binary random variables with
parameter p. This assumption is reasonable in the framework of
Web  services with more or less equally loaded servers. As in the
previous section, we study the simple case (the merging follows
all the answers) and the main case (the merging is performed in
parallel with the local servers).

In the simple case, the composite Web  service average response
time is given by the following equation:
E(Tn,p
var ) =

n∑
i=1

pi(1 − p)n−i

(
n
i

) i∑
j=1

�

i
(3)
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Fig. 3. �-aggregat

In the main case, we generalize the case where the elemen-
ary Web  services invoked number is constant using the Chernoff
ounds.

.1. Bounding models

We  note p < 1, the elementary Web  service probability invoca-
ion. First, we observe that the composite Web  service response
ime increase with the number of elementary Web  services who
articipate to its composition. This intuitive observation can be eas-

ly proved using Corollary 1, with M′ = M where M is the Markov
hain corresponding to the composite Web  service with the bigger

lementary Web  services. Indeed, the initial state of the Markov
hain corresponding to the smaller number of elementary Web
ervices is paired with the initial state of M in the coupling. So,
he following proposition establishes the reachable upper bound.

Fig. 4. �-aggregation: (
) m = 1; (b) m = 2.

Proposition 3. Let X be the binomial random variable corresponding
to elementary Web  services with parameters (n, p). Let n′ be such that
np < n′ ≤ n and ı = (n′ − np)/np. Thus:

E(Tn,p
var ) ≤ E(Tn′

fix) + e−ı2np/3E(Tn
fix) (4)

Proof. The total probability theorem allows us to write:

E(Tn,p
var ) = E(Tn,p

var | X ≤ n′)P(X ≤ n′) + E(Tn,p
var | X > n′)P(X > n′)

Applying twice the bound obtained in the case of fixed elementary
Web  services, bounding P(X ≤ n′) by 1 and applying the Chernoff

bound, we  obtain:

E(Tn,p
var ) ≤ E(Tn′

fix) + e−ı2np/3E(Tn
fix)

�

a) m = 1; (b) m = 2.
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. Numerical results for the “fork merge” pattern and a
ariable number of invocations

We  present, in this section, the numerical results obtained in
he case where the invoked elementary Web  services are modeled
y a random variable. The curves in Fig. 9 show the ı optimal value
volution as a function of the elementary Web  service invocation

robability p. To obtain the ı optimal value, we have computed for

 given probability invocation p the best value of upper bound and
hen we have deduced the best value of upper bound by varying ı.
ccording to the obtained results, we observe that:
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• when the invocation probability is very small, ı optimal tends to
1,

• the optimal value ı decreases as a function of the invoked ele-
mentary Web  services number.

A summary giving an indication about the upper bounds qual-
ity and the significant gain on the execution cost, is given in

Tables 2 and 3 (note that the upper bound computation is instanta-
neous) in the case respectively of the probability invocation equal
to 0.2 and 0.8. The rate values are � = 0.1 and � = 0.8. Thus the upper
bound values are given by the initial �-aggregation are better than
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Fig. 7. Services number: (a) n = 5000; (b) n = 10,000.

Table 2
Response time computational cost, upper bound value computational cost and
bound accuracy in the case where p = 0.2.

Services number ET EV Bound RE ı-Optimal

5000 1087.69 74.86 76.08 1.6% 0.12
8000 4444.00 79.56 80.57 1.3% 0.10

10,000 8709.96 81.79 82.80 1.2% 0.09
15,000 29,291.6 85.89 88.653 3.2% 0.07

Table 3
Response time computational cost, upper bound value computational cost and
bound accuracy in the case where p = 0.8.

Services number ET EV Bound RE ı-Optimal

5000 1087.69 88.73 97.66 10% 0.06
8000 4444.00 93.84 127.74 36.12% 0.04

10,000 8709.96 103.35 149.16 44.32% 0.04
15,000 29,291.6 150.06 201.89 34.54% 0.03
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Fig. 8. Services number: (a) n = 15,000; (b) n = 20,000.
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Fig. 9. The ı-optimal value evolution as a function of the in

he upper bound values obtained by the �-aggregation. In these
ables, ET represents the execution time expressed in seconds for
he composite Web  service computation exact average response
ime, EV represents the exact value of the composite Web  service, RE
s the relative error between the exact value of the composite Web
ervice response time and the upper bound value and ı-optimal is
he optimal value of the ı-parameter. The optimal value of ı param-
ter is obtained as follows: for a given invocation probability p, we
et the ı-parameter vary by steps 0.001 and select the best upper
ound value obtained (i.e. the smallest value).

. Conclusion

We  have proposed, in this paper, an approach based on the
tochastic process coupling where the objective is to compute
omposite Web  services response time upper bounds. The inter-
st of our approach comes from the computation time reduction.
oreover as our approach is parametrized, it allows to obtain a

radeoff between the numerical computation cost and the accu-
acy of bounds by selecting an appropriate value of the parameter.
ore precisely, we have proposed three families of bounding mod-

ls for the composite Web  service called �-aggregation, initial
-aggregation and final �-aggregation. We  have also proposed the

ombination of these models with the Chernoff bounds in order
o take into account the fact that the number of invoked elemen-
ary Web  services can be variable. Using our approach, in this
ase, we are reducing the analysis to only two fixed number of
nvocations.

We will consider two extensions of the work presented here.
irst, we plan to generalize the study by taking into account more
omplex patterns (e.g. hierarchical composite Web  services). Sec-

ndly, we plan to handle heterogenous elementary Web  services
nvoked in the composition are heterogenous. In this last case, our
ounding models could decrease exponentially the computational
omplexity.

[

[

on probability: (a) n = 5000, n = 8000; (b) n = 6000, n = 1000.

References

[1] F. Curbera, I. Silva-Lepe, S. Weerawarana, On the integration of heterogeneous
Web  service partners, in: OOPSLA Workshop, Tampa, Florida, October 15, 2001,
pp.  1–5.

[3] C. Bussler, D. Fensel, A. Maedche, A conceptual architecture for Semantic Web
enabled Web  services, SIGMOD Record ACM Special Interest Group on Man-
agement of Data 31 (4) (2002) 24–29.

[4] J. Yang, M.P. Papazoglou, Service components for managing the life-
cycle of service compositions, Information Systems 29 (2) (2004)
97–125.

[5] X. Fu, T. Bultan, J. Su, Analysis of interacting BPEL web  services, in: WWW’04:
Proceedings of the 13th International Conference on World Wide Web, ACM
Press, New York, NY, USA, 2004, pp. 621–630.

[6] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, F. Yergeau, J. Cowan (Eds.),
Extensible Markup Language (XML) 1.1, 2nd ed., 2006, http://www.w3.org/
TR/2006/REC-xml11-20060816/, W3C  Recommendation, 16 August 2006,
edited in place 29 September 2006.

[7] D. Stoyan, Comparison Methods for Queue and Other Stochastics Models, J-
Wiley and Son, 1976.

[8] W.A. Massy, Stochastic ordering for Markov processes on partially ordered
space, Mathematics of Operation Research 12 (1986) 350–367.

[9] D.A. Menascé, QoS issues in Web  services, IEEE Internet Computing 6 (6) (2002)
72–74.

10] D.A. Menascé, et al., Response time analysis of composite Web  services, IEEE
Internet Computing 8 (1) (2004, January/February) 90–92.

11] S. Haddad, L. Mokdad, S. Youcef, Response Time Analysis of Composite Web
Services, Communication Systems, Networks and Digital Signal Processing
(CSNDSP), IEEE Computer Society, Graz University of Technology, 2008, July,
pp. 42–49.

12] D.A. Menascé, et al., Static and dynamic processor scheduling disciplines in
heterogeneous parallel architectures, Journal of Parallel and Distributed Com-
puting 28 (1) (1995) 1–18.

13] S. Hahn, L. Fatto, Two parallel queues created by arrivals with two demands,
Applied Mathematics 44 (1984, October) 1041–1053.

14] L. Fatto, Two parallel queues created by arrivals with two demands II, Applied
Mathematics 45 (1985, October) 861–878.

15] R. Nelson, A.N. Tantawi, Approximate analysis of fork/join synchronization in
parallel queues, IEEE Transaction Computer 37 (6) (1998) 739–743.

16] A. Makawski, S. Verma, Interpolation approximations for symmetric fork–join
queues, Perform. Evaluation Journal 20 (1–3) (1994) 245–265.
17] F. Bacelli, A.M. Makowski, Simple computable bounds for the fork–join queue,
Proceeding Information Science (1985, March) 436–441.

18] P. Heidlberg, K.S. Trivedi, Analytic queuing models for programs with
internal concurrency, IEEE Transaction Computer C-32 (1993, November)
73–82.

http://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.w3.org/TR/2006/REC-xml11-20060816/


putati

[

[

[

[

[

[

rently an assistant professor at the Nancy 1 university.
He did his research at the LORIA (Laboratoire Lorrain de
Recherche en Informatiques et ses Appliquations) Labo-
S. Haddad et al. / Journal of Com

19] M.  Sharf, On the response time of the large-scale composite Web  services,
in:  Proceedings of the 19th International Teletraffic Congress (ITC 19), Beijing,
2005, pp. 1807–1816.

20] C.W. Piotr, F. Pawel, W.  Grzegorz, Time distribution in structural workflow nets,
Fundamental Information 85 (1–4) (2008) 67–87.

21] D. Davis, M.P. Parashar, Latency performance of soap implementations, in:
CCGRID’02: Proceedings of the 2nd IEEE/ACM International Symposium on
Cluster Computing and the Grid, Washington, USA, IEEE Computer Society,
2002, pp. 407–415.

22] C. Kohlhoff, R. Steele, Evaluating soap for high performance business applica-
tions: real-time trading systems, in: Proceedings of WWW,  2003, pp. 1–8.

23] P. Sandoz, S. Pericas-Geertsen, K. Kawaguchi, M.  Hadley, E. Pelegri-Llopart,
Fast Web  Services, 2009, http://java.sun.com/developer/technicalarticles/
webservices/fastws/.

24] J. Klingemann, J. Wäsch, K. Aberer, Deriving service models in cross-
organizational workflows, in: Proceedings of RIDE -Information Technology
for  Virtual Enterprises, Sydney, Australia, 1999, pp. 100–107.

Serge Haddad is a former student at the Ecole Normale
Supérieure de Cachan. He receivedthe MSc degree in
mathematics in 1977 from the University of Orsay andthe
MSc  and PhDdegrees in computer science in 1983 and

1987, respectively, from theUniversity of Paris 6.He is cur-
rently a full professor at the Ecole Normale Supérieure
deCachan. His researchinterests include quantitative ver-
ification withemphasis on timed and stochastic systems
andapplications to software engineering.
onal Science 4 (2013) 232–241 241

Lynda Mokdad is a Professor in Computer Science in
the  University of Paris-Est, Créteil. Her research interests
are performance evaluation techniques (Exact, approx-
imate, stochastic methods), Applications in broadband
wired, wireless and mobile networks and QoS in Web  ser-
vices architectures. She has published numerous research
articles in peer-reviewed conferences and journals. She
obtained her PhD from University of Versailles in 1997 on
“techniques and Tools for networks performance evalua-
tion”, and her “Habilitation á diriger des recherches” from
University of Paris-Dauphine in 2008 on “Contributions
to performance evaluation techniques and applications
to  IP networks and software technologies.” She has been

member of several program committees and program chairs of workshops and con-
ferences and she was guest editor for Concurrency and Computation: Practice and
Experience journal, Wiley, and for Cluster computing journal, Springer.

Samir Youcef received PhD degrees in computer science
in 2009 from the university Paris-Dauphine. He is cur-
ratory. His main research interest is about performance
evaluation of Web  services.

http://java.sun.com/developer/technicalarticles/webservices/fastws/
http://java.sun.com/developer/technicalarticles/webservices/fastws/

	Bounding models families for performance evaluation in composite Web services
	1 Introduction
	2 Related work
	3 Coupling of Markov chains and Chernoff bounds
	4 Study of the parallel invocation pattern and constant number of elementary Web services
	4.1 Specification of the problem
	4.2 General bounding models
	4.3 Particular bounding models
	4.3.1 Upper bound by λ-aggregation
	4.3.2 Upper bound by initial μ-aggregation
	4.3.3 Upper bound by final μ-aggregation


	5 Numerical results for the “fork merge” pattern
	5.1 Comparison between λ-aggregation and initial μ-aggregation
	5.2 Comparison between λ-aggregation and final μ-aggregation
	5.3 Tradeoff between the upper bound quality and the computational cost

	6 Study of the parallel invocation pattern and random number of elementary Web services
	6.1 Bounding models

	7 Numerical results for the “fork merge” pattern and a variable number of invocations
	8 Conclusion
	References


