
Synthesis and Analysis of Product-form

Petri Nets

S. Haddad1, J. Mairesse2, H-T. Nguyen2

1 ENS Cachan, LSV, CNRS UMR 8643, INRIA, Cachan, France
haddad@lsv.ens-cachan.fr

2 Université Paris 7, LIAFA, CNRS UMR 7089, Paris, France
{mairesse,ngthach}@liafa.jussieu.fr

Abstract. For a large Markovian model, a “product form” is an explicit
description of the steady-state behaviour which is otherwise generally
untractable. Being first introduced in queueing networks, it has been
adapted to Markovian Petri nets. Here we address three relevant issues
for product-form Petri nets which were left fully or partially open: (1)
we provide a sound and complete set of rules for the synthesis; (2) we
characterise the exact complexity of classical problems like reachability;
(3) we introduce a new subclass for which the normalising constant (a
crucial value for product-form expression) can be efficiently computed.

Keywords: Petri nets, product-form, synthesis, complexity analysis,
reachability, normalising constant

1 Introduction

Product-form for stochastic models. Markovian models of discrete events
systems are powerful formalisms for modelling and evaluating the performances
of such systems. The main goal is the equilibrium performance analysis. It re-
quires to compute the stationary distribution of a continuous time Markov pro-
cess derived from the model. Unfortunately the potentially huge (sometimes
infinite) state space of the models often prevents the modeller from computing
explicitly this distribution. To cope with the issue, one can forget about exact
solutions and settle for approximations, bounds, or even simulations. The other
possibility is to focus on subclasses for which some kind of explicit description
is indeed possible. In this direction, the most efficient and satisfactory approach
may be the product-form method: for a model composed of modules, the sta-
tionary probability of a global state may be expressed as a product of quantities
depending only on local states divided by a normalising constant.

Such a method is applicable when the interactions between the modules are
“weak”. This is the case for queueing networks where the interactions between
queues are described by a random routing of clients. Various classes of queueing
networks with product-form solutions have been exhibited [11, 3, 12]. Moreover
efficient algorithms have been designed for the computation of the normalising
constant [18].

Product-form Petri nets. Due to the explicit modelling of competition and
synchronisation, the Markovian Petri nets formalism [1] is an attractive mod-
elling paradigm. Similarly to queueing networks, product-form Markovian Petri
Nets were introduced to cope with the combinatorial explosion of the state space.
Historically, works started with purely behavioural properties (i.e. by an analy-
sis of the reachability graph) as in [13], and then progressively moved to more
and more structural characterisations [14, 10]. Building on the work of [10], the
authors of [9] establish the first purely structural condition for which a product
form exists and propose a polynomial time algorithm to check for the condition,
see also [15] for an alternative characterisation. These nets are called Π

2-nets.

Open issues related to product-form Petri nets.

– From a modelling point of view, it is more interesting to design specific types
of Petri nets by modular constructions rather than checking a posteriori
whether a net satisfies the specification. For instance, in [7], a sound and
complete set of rules is proposed for the synthesis of live and bounded free-
choice nets. Is it possible to get an analog for product-form Petri nets?

– From a qualitative analysis point of view, it is interesting to know the com-
plexity of classical problems (reachability, coverability, liveness, etc.) for a
given subclass of Petri nets and to compare it with that of general Petri
nets. For product-form Petri nets, partial results were presented in [9] but
several questions were left open. For instance, the reachability problem is
PSPACE-complete for safe Petri nets but in safe product-form Petri nets it
is only proved to be NP-hard in [9].

– From a quantitative analysis point of view, an important and difficult issue
is the computation of the normalising constant. Indeed, in product-form
Petri nets, one can directly compute relative probabilities (e.g. available
versus unavailable service), but determining absolute probabilities requires
to compute the normalising constant (i.e. the sum over reachable states
of the relative probabilities). In models of queueing networks, this can be
efficiently performed using dynamic programming. In Petri nets, it has been
proved that the efficient computation is possible when the linear invariants
characterise the set of reachable markings [6]. Unfortunately, all the known
subclasses of product-form nets that fulfill this characterisation are models
of queueing networks!

Our contribution. Here we address the three above issues. In Section 3, we
provide a set of sound and complete rules for generating any Π2-net. We also
use these rules for transforming a general Petri net into a related product-form
Petri net. In Section 4, we solve relevant complexity issues. More precisely, we
show that the reachability and liveness problems are PSPACE-complete for safe
product-form nets and that the coverability problem is EXPSPACE-complete for
general product-form nets. From these complexity results, we conjecture that
the problem of computing the normalising constant does not admit an efficient
solution for the general class of product-form Petri nets. However, in Section
5, we introduce a large subclass of product-form Petri nets, denoted Π3-nets,
for which the normalising constant can be efficiently computed. We emphasise

that contrary to all subclasses related to queueing networks, Π3-nets may admit
spurious markings (i.e. that fufill the invariants while being unreachable).

The above results may change our perspective on product-form Petri nets. It
is proved in [15] that the intersection of free-choice and product-form Petri nets
is the class of Jackson networks [11]. This may suggest that the class of product-
form Petri nets is somehow included in the class of product-form queueing net-
works. In the present paper, we refute this belief in two ways. First by showing
that some classical problems are as complex for product-form Petri nets as for
general Petri nets whereas they become very simple for product-form queueing
networks. Second by exhibiting the class of Π3-nets, see the above discussion.

A version of the present paper including proofs can be found on arXiv.

Notations. We often denote a vector u ∈ RS by
∑

s u(s)s. The support of vector
u is the subset S′ ≡ {s ∈ S ∣ u(s) ∕= 0}.

2 Petri nets, product-form nets, and Π
2-nets

Definition 2.1 (Petri net) A Petri net is a 5-tuple N = (P, T,W−,W+,m0)
where:
– P is a finite set of places;
– T is a finite set of transitions, disjoint from P ;
– W−, resp. W+, is a P × T matrix with coefficients in N;
– m0 ∈ NP is the initial marking.

Below, we also call Petri net the unmarked quadruple (P, T,W−,W+). The
presence or absence of a marking will depend on the context.

A Petri net is represented in Figure 1. The following graphical conventions
are used: places are represented by circles and transitions by rectangles. There
is an arc from p ∈ P to t ∈ T (resp. from t ∈ T to p ∈ P) if W+(p, t) > 0
(resp. W−(p, t) > 0), and the weight W+(p, t) (resp. W−(p, t)) is written above
the corresponding arc except when it is equal to 1 in which case it is omitted.
The initial marking is materialised: if m0(p) = k, then k tokens are drawn
inside the circle p. Let P ′ ⊂ P and m be a marking then m(P ′) is defined by
m(P ′) ≡

∑
p∈P ′ m(p).

The matrix W = W+ −W− is the incidence matrix of the Petri net. The
input bag ∙t (resp. output bag t∙) of the transition t is the column vector of
W− (resp. W+) indexed by t. For a place p, we define ∙p and p∙ similarly. A
T-semi-flow (resp. S-semi-flow) is a Q-valued vector v such that W.v = 0 (resp.
v.W = 0).

A symmetric Petri net is a Petri net such that: ∀t ∈ T, ∃t− ∈ T, ∙t =
(t−)∙, t∙ = ∙t−. A state machine is a Petri net such that: ∀t ∈ T, ∣∙t∣ = ∣t∙∣ = 1.

Definition 2.2 (Firing rule) A transition t is enabled by the marking m if

m ≥ ∙t (denoted by m
t

−→); an enabled transition t may fire which transforms

the marking m into m− ∙t+ t∙, denoted by m
t

−→ m′ = m− ∙t+ t∙.

p1

p2

t1 t2 t3 t4

2

2 2

2

W =

„

−2 −1 1 2
2 1 −1 −2

«

.

m0 = (2, 0) .

Fig. 1. Petri net.

A markingm′ is reachable from the markingm if there exists a firing sequence

� = t1 . . . tk (k ≥ 0) and a sequence of markings m1, . . . ,mk−1 such that m
t1−→

m1
t2−→ ⋅ ⋅ ⋅

tk−1

−−−→ mk−1
tk−→ m′. We write in a condensed way: m

�
−→ m′.

We denote byℛ(m) the set of markings which are reachable from the marking
m. The reachability graph of a Petri net with initial marking m0 is the directed

graph with nodes ℛ(m0) and arcs {(m,m′)∣∃t ∈ T : m
t
−→ m′}.

Given (N ,m0) and m1, the reachability problem is to decide if m1 ∈ ℛ(m0),
and the coverability problem is to decide if ∃m2 ∈ ℛ(m0),m2 ≥ m1.

A Petri net (N ,m0) is live if every transition can always be enabled again,

that is: ∀m ∈ ℛ(m0), ∀t ∈ T, ∃m′ ∈ ℛ(m), m′ t
−→. A Petri net (N ,m0) is

bounded if ℛ(m0) is finite. It is safe or 1-bounded if: ∀m ∈ ℛ(m0), m(p) ≤ 1.

2.1 Product-form Petri nets

There exist several ways to define timed models of Petri nets, see [2]. We consider
the model of Markovian Petri nets with race policy. Roughly, with each enabled
transition is associated a “countdown clock” whose positive initial value is set
at random according to an exponential distribution whose rate depends on the
transition. The first transition to reach 0 fires, which may enable new transitions
and start new clocks.

Definition 2.3 (Markovian PN) A Markovian Petri net (with race policy)
is a Petri net equipped with a set of rates (�t)t∈T , �t ∈ R+ ∖ {0}. The firing
time of an enabled transition t is exponentially distributed with parameter �t.
The marking evolves as a continuous-time jump Markov process with state space
ℛ(m0) and infinitesimal generator Q = (qm,m′)m,m′∈ℛ(m0), given by:

∀m, ∀m′ ∕= m, qm,m′ =
∑

t:m
t−→m′

�t, ∀m, qm,m = −
∑

m′ ∕=m

qm,m′ . (2.1)

W.l.o.g., we assume that there is no transition t such that ∙t = t∙. Indeed,
the firing of such a transition does not modifiy the marking, so its removal does
not modify the infinitesimal generator. We also assume that (∙t1, t

∙
1) ∕= (∙t2, t

∙
2)

for all transitions t1 ∕= t2. Indeed, if it is not the case, the two transitions may
be replaced by a single one with the summed rate.

An invariant measure is a non-trivial solution � to the balance equations:
�Q = 0. A stationary measure (distribution) � is an invariant probability mea-
sure: �Q = 0,

∑
m �(m) = 1.

Definition 2.4 (Product-form PN) A Petri net is a product-form Petri net
if for all rates (�t)t∈T , the corresponding Markovian Petri net admits an invari-
ant measure � satisfying:

∃(up)p∈P , up ∈ R+, ∀m ∈ ℛ(m0), �(m) =
∏

p∈P

ump
p . (2.2)

The existence of � satisfying (2.2) implies that the marking process is irre-
ducible (in other words, the reachability graph is strongly connected). In (2.2),
the mass of the measure, i.e. �(ℛ(m0)) =

∑
m �(m), may be either finite or in-

finite. For a bounded Petri net, the mass is always finite. But for an unbounded
Petri net, the typical situation will be as follows: structural conditions on the
Petri net will ensure that the Petri net is a product-form one. Then, for some
values of the rates, � will have an infinite mass, and, for others, � will have a
finite mass. In the first situation, the marking process will be either transient or
recurrent null (unstable case). In the second situation, the marking process will
be positive recurrent (stable or ergodic case).

When the mass is finite, we call �(ℛ(m0)) the normalising constant. The
probability measure �(⋅) = �(ℛ(m0))

−1�(⋅) is the unique stationary measure
of the marking process. Computing explicitly the normalising constant is an
important issue, see Section 5.

The goal is now to get sufficient conditions for a Petri net to be of product-
form. To that purpose, we introduce three notions: weak reversibility, deficiency,
and witnesses.

Let (N,m0) be a Petri net. The set of complexes is defined by C = {∙t ∣ t ∈
T} ∪ {t∙ ∣ t ∈ T}. The reaction graph is the directed graph whose set of nodes is
C and whose set of arcs is {(∙t, t∙)∣t ∈ T}.

Definition 2.5 (Weak reversibility: Π-nets) A Petri net is weakly reversible
(WR) if every connected component of its reaction graph is strongly connected.
Weakly reversible Petri nets are also called Π-nets.

The notion and the name “WR” come from the chemical literature. In the
Petri net context, it was introduced in [4, Assumption 3.2] under a different
name and with a slightly different but equivalent formulation. WR is a strong
constraint. It should not be confused with the classical notion of “reversibility”
(the marking graph is strongly connected). In particular, WR implies reversibil-
ity! Observe that all symmetric Petri nets are WR.

The notion of deficiency is due to Feinberg [8].

Definition 2.6 (Deficiency) Consider a Petri net with incidence matrix W
and set of complexes C. Let ℓ be the number of connected components of the
reaction graph. The deficiency of the Petri net is defined by: ∣C∣ − ℓ− rank(W).

The notion of witnesses appears in [9].

Definition 2.7 (Witness) Let c be a complex. A witness of c is a vector wit(c) ∈QP such that for all transition t:
⎧
⎨
⎩

wit(c) ⋅W (t) = −1 if ∙t = c

wit(c) ⋅W (t) = 1 if t∙ = c

wit(c) ⋅W (t) = 0 otherwise ,

where W (t) denotes the column vector of W indexed by t.

Examples. Consider the Petri net of Figure 1. First, it is WR. Indeed, the set
of complexes is C = {p1, p2, 2p1, 2p2} and the reaction graph is:

p1 ↔ p2 , 2p1 ↔ 2p2 ,

with two connected components which are strongly connected. Second, the defi-
ciency is 1 since ∣C∣ = 4, ℓ = 2, and rank(W) = 1. Last, one can check that none
of the complexes admit a witness.

Consider now the Petri net of Figure 3. It is WR and it has deficiency 0.

Proposition 2.8 (deficiency 0 ⇐⇒ witnesses, in [15, Prop. 3.9]) A Petri
net admits a witness for each complex iff it has deficiency 0.

Next Theorem is a combination of Feinberg’s Deficiency zero Theorem [8]
and Kelly’s Theorem [12, Theorem 8.1]. (It is proved under this form in [15,
Theorem 3.8].)

Theorem 2.9 (WR + deficiency 0 =⇒ product-form) Consider a Marko-
vian Petri net with rates (�t)t∈T , �t > 0, and assume that the underlying Petri
net is WR and has deficiency 0. Then there exists (up)p∈P , up > 0, satisfying
the equations:

∀c ∈ C,
∏

p:cp ∕=0

ucpp
∑

t:∙t=c

�t =
∑

t:t∙=c

�t

∏

p:∙tp ∕=0

u
∙tp
p . (2.3)

The marking process has an invariant measure � s.t.: ∀m, �(m) =
∏

p∈P u
mp
p .

Checking the WR, computing the deficiency, determining the witnesses, and
solving the equations (2.3), all of these operations can be performed in polynomial-
time, see [9, 15].

Summing up the above, it seems worth to isolate and christen the class of
nets which are WR and have deficiency 0. We adopt the terminology of [9].

Definition 2.10 (Π2-net) A Π2-net is a Petri net which is WR and has defi-
ciency 0.

3 Synthesis and regulation of Π2-nets

The reaction graph, defined in Section 2.1, may be viewed as a Petri net (state
machine). Let us formalise this observation. The reaction Petri net of N is the

Petri net A = (C, T,W
−
,W

+
), with for every t ∈ T :

– W
−
(∙t, t) = 1 and ∀u ∕= ∙t, W

−
(u, t) = 0

– W
+
(t∙, t) = 1 and ∀u ∕= t∙, W

+
(u, t) = 0

3.1 Synthesis

In this subsection, we consider unmarked nets. We define three rules that gen-
erate all the Π2-nets. The first rule adds a strongly connected state machine.

Definition 3.1 (State-machine insertion) Let N = (PN , TN ,W
−
N ,W

+
N) be

a net and ℳ = (Pℳ, Tℳ,W−
ℳ,W+

ℳ) be a strongly connected state machine
disjoint from N . The rule S-add is always applicable and N ′ = S-add(N ,ℳ) is
defined by:
– P ′ = PN ⊔ Pℳ, T ′ = TN ⊔ Tℳ;
– ∀p ∈ PN , ∀t ∈ TN , W

′−(p, t) =W−
N (p, t), W ′+(p, t) =W+

N (p, t);
– ∀p ∈ Pℳ, ∀t ∈ Tℳ, W ′−(p, t) =W−

ℳ(p, t), W ′+(p, t) =W+
ℳ(p, t);

– All other entries of W ′− and W ′+ are null.

The second rule consists in substituting to a complex c the complex c+ �p.
However in order to be applicable some conditions must be fulfilled. The first
condition requires that c(p) + � is non-negative. The second condition ensures
that the substitution does not modify the reaction graph. The third condition
preserves deficiency zero. Observe that the third condition can be checked in
polynomial time, indeed it amounts to solving a system of linear equations in Q
for every complex.

Definition 3.2 (Complex update) Let N = (P, T,W−,W+) be a Π2-net, c
be a complex of N , p ∈ P , � ∈ Z∗. The rule C-update is applicable when:
1. �+ c(p) ≥ 0;
2. c+ �p is not a complex of N ;
3. For every complex c′ there exists a witness wit(c′) s.t. wit(c′)(p) = 0.
The resulting net N ′ = C-update(N , c, p, �) is defined by:
– P ′ = P , T ′ = T ;
– ∀t ∈ T s.t. W−(t) ∕= c, W ′−(t) = W−(t), ∀t ∈ T s.t. W−(t) = c, W ′−(t) = c+�p

– ∀t ∈ T s.t. W+(t) ∕= c, W ′+(t) = W−(t), ∀t ∈ T s.t. W+(t) = c, W ′+(t) = c+�p.

The last rule “cleans” the net by deleting an isolated place. We call this
operation P-delete.

Definition 3.3 (Place deletion) Let N = (P, T,W−,W+) be a net and let p
be an isolated place of N , i.e. W−(p) =W+(p) = 0. Then the rule P-delete is
applicable and N ′ = P-delete(N , p) is defined by:

– P ′ = P ∖ {p}, T ′ = T ;
– ∀q ∈ P ′, W ′−(q) =W−(q), W ′+(q) =W+(q).

Proposition 3.4 shows the interest of the rules for synthesis of Π2-nets.

Proposition 3.4 (Soundness and Completeness) Let N be a Π2-net.
– If a rule S-add, C-update or P-delete is applicable on N then the resulting

net is still a Π2-net.
– The net N can be obtained by successive applications of the rules S-add,

C-update, P-delete starting from the empty net.

Fig. 2. How to synthetise a Π
2-net.

We illustrate the synthesis process using our rules on the net numbered 5
in Figure 2. We have also indicated on the right upper part of this figure, the
four complexes and their witnesses. Since the reaction Petri graph of this net
has two state machines, we start by creating it using twice the insertion of a
state machine (net 1). Then we add the place p1 (a particular state machine).
We update the complex c1 (the single one where p1 appears in the original net)
by adding 3p1 (net 2). The new complex cannot appear elsewhere due to the
presence of c1. Iterating this process, we obtain the net 3. Observe that this
net is a fusion (via T the set of transitions) of the original net and its reaction
Petri net. We now iteratively update the complexes. The net 4 is the result of
transforming c1 + 3p1 into 3p1. This transformation is applicable since all the

complexes are witnessed by witnesses of the original net. For instance, c1 + 3p1
is witnessed by (1/3)p1. Once c1 is isolated, we delete it. Iterating this process
yields the original net.

For modelling purposes, we could define more general rules like the refinement
of a place by a strongly connected state machine. Here the goal was to design a
minimal set of rules.

3.2 From non Π
2-nets to Π

2-nets

Below we propose a procedure which takes as input any Petri net and returns
a Π2-net. The important disclaimer is that the resulting net, although related
to the original one, has a different structural and timed behaviour. So it is up
to the modeller to decide if the resulting net satisfies the desired specifications.
In case of a positive answer, the clear gain is that all the associated Markovian
Petri nets have a product form.

Consider a Petri net N = (P, T,W−,W+,m0) with set of complexes C.
Assume that N is not WR. For each transition t, add a reverse transition t−

such that ∙t− = t∙ and (t−)∙ = ∙t (unless such a transition already exists). The
resulting net is WR. In the Markovian Petri net, the added reverse transitions
can be given very small rates, to approximate more closely the original net.

Now, to enforce deficiency 0, the idea is to compose a general Petri net with
its reaction graph as in the illustration of Proposition 3.4.

Definition 3.5 Consider a Petri net N = (P, T,W−,W+,m0). Let m0 be an
initial marking for the reaction Petri net A. The regulated Petri net associated
with N is defined as follows:

A⊙N =
(
P ⊔ C, T, W̃−, W̃+, (m0,m0)

)
, W̃− =

[
W−

W
−

]
, W̃+ =

[
W+

W
+

]
.

Proposition 3.6 The regulated Petri net A ⊙ N is WR iff N is WR. The
regulated Petri net A⊙N has deficiency 0.

p1

p2

“p1”

“p2”

“2p1”

“2p2”

t1 t2 t3 t4

2

2

2

2

Fig. 3. Regulated Petri net associated with the Petri net of Fig 1.

The behaviours of the original and regulated Petri nets are different. In par-
ticular, the regulated Petri net is bounded, even if the original Petri net is un-
bounded. Roughly, the regulation imposes some control on the firing sequences.
Consider the example of Figures 1 (original net) and 3 (regulated net). The tran-
sitions t1 and t4 belong to the same simple circuit in the reaction graph. Let w
be an arbitrary firing sequence. The quantity ∣w∣t1 − ∣w∣t4 is unbounded for the
original net, and bounded for the regulated net.

4 Complexity analysis of Π2-nets

All the nets that we build in this section are symmetric hence WR. For every
depicted transition t, the reverse transition exists (sometimes implicitly) and is
denoted t−. It is well known that reachability and liveness of safe Petri nets
are PSPACE-complete [5]. In [9], it is proved that reachability and liveness are
PSPACE-hard for safe Π-nets and NP-hard for safe Π2-nets. Next theorem and
its corollary improve on these results by showing that the problem is not easier
for safe Π2-nets than for general safe Petri nets.

Theorem 4.1 The reachability problem for safe Π2-nets is PSPACE-complete.

Proof. Our proof of PSPACE-hardness is based on a reduction from the QSAT

problem [17]. QSAT consists in deciding whether the following formula is true
' ≡ ∀xn∃yn∀xn−1∃yn−1 . . .∀x1∃y1

where is a propositional formula over {x1, y1 . . . , xn, yn} in conjunctive normal
form with at most three literals per clause.

Observe that in order to check the truth of ', one must check the truth of
w.r.t. the 2n interpretations of x1, . . . , xn while the corresponding interpretation
of any yi must only depend of the interpretation of {xn, . . . , xi}.

Counters modelling. First we design a Π2-net Ncnt that “counts” from 0 to
2k − 1. This net is defined by:
– P = {p0, . . . , pk−1, q0, . . . , qk−1};
– T = {t0, . . . , tk−1};
– For every 0 ≤ i < k, ∙ti = pi +

∑
j<i qj and t∙i = qi +

∑
j<i pj ;

– For every 0 ≤ i < k, m0(pi) = 1 and m0(qi) = 0.

Fig. 4. A 3-bit counter (without the reverse transitions).

Observe that for every reachable marking m and every index i, we have m(pi)+
m(qi) = 1. Therefore m can be coded by the binary word ! = !k−1 . . . !0 in
which !i = m(qi). The word ! is interpreted as the binary expansion of an
integer between 0 and 2k − 1. We denote by val(!) the integer value associated
with w. Consider w ∕∈ {0k, 1k}, there are two markings reachable from w which
are w+ and w− such that val(w−) = val(w)− 1 and val(w+) = val(w) + 1.

The figure below represents the reachability graph of the 3-bit counter. For a
k-bit counter, the shortest firing sequence from 0k to 1k is �k defined inductively
by: �1 = t0 and �i+1 = �iti�i.

For every complex c ≡ pi +
∑

j<i qj (resp. c ≡ qi +
∑

j<i pj), a possible witness

is wit(c) ≡ pi +
∑

j>i 2
j−i−1pj (resp. wit(c) ≡ qi +

∑
j>i 2

j−i−1qj). Thus this
subnet has deficiency 0.

To manage transition firings between the update of counters, we duplicate the
counter subnet and we synchronize the two subnets as indicated in the figure
below. For a duplicated k-bit counter, the shortest firing sequence from the
marking with the two counters set to 0k and place go marked to the marking
with the two counters set to 1k and place go marked is obtained by: �1 = t0 and
�n+1 = �ntn�n where ti = tit

′
i.

This net has still deficiency 0 since the complexes are just enlarged by the places
go or go′ and their witnesses remain the same.

Variable modelling. For reasons that will become clear later on, the two
counter subnets contain n+ 3 bits indexed from 0 to n+ 2. The bits 1, . . . , n of
counter cnt correspond to the value of variables x1, . . . , xn. Managing the value
of variables y1, . . . , yn is done as follows. For every variable yi, we add the subnet
described below on the left (observe that si = r−1

i) and modify the two counter
subnets as described on the right.

When place yi (resp. nyi) is marked, this corresponds to interpreting variable
yi as true (resp. false). Changes of the interpretation are possible when place
ui is marked. This is the role of the modification done on the counter subnet:
between a firing of ti and t

′
i places {uj}j≤i are marked. With this construction,

we get the expected behaviour: the interpretation of a variable yi can only be
modified when the interpretation of a variable xj with j ≥ i is modified. The
complexes of the counter subnet are enlarged with places ui and their witnesses
remain the same since places in the support of these witnesses are not modified
by transitions si and ri. The new complex yi+ui (resp. nyi+ui) has for witness
yi (resp. nyi). Thus the new net has still deficiency 0.

Modelling the checking of the propositional formula.We now describe the
subnet associated with the checking of propositional formula ≡

⋀
j≤m Cj where

we assume w.l.o.g.: (1) that every clause Cj ≡ lj,1 ∨ lj,2 ∨ lj,3 has exactly three
literals (i.e. variables or negated variables); and (2) that every variable or negated
variable occurs at least in one clause. The left upper part of Figure 5 shows the
Petri net which describes clause Cj of the formula . Places ℓj,k(k = 1, 2, 3)
represent the literals while places nℓj,k represent the literal used as a proof of
the clause, the place mutexj avoids to choose several proofs of the clause (and
thus ensuring safeness), and finally place successj can be marked if and only if
the evaluation of the clause yields true for the current interpretation and one of
its true literal is used as a proof.

The complexes of this subnet are mutexj + ℓj,k (resp. successj + nℓj,k) with
witness −nℓj,k (resp. nℓj,k). So the subnet has deficiency 0.

We now synchronise the clause subnets with the previous subnet in order to
obtain the final net. Observe that in the previous subnet, transition t0 (and t′0)
must occur after every interpretation change. This is in fact the role of bit 0 of
the counter. Thus we constrain its firing by requiring the places successj to be
marked as presented in the right upper part of Figure 5. Adding loops simply
enlarges the complexes associated with t0 and does not modify the incidence
matrix. So the net has still deficiency 0.

It remains to synchronise the value of the variables and the values of the literals
where the variables occur either positively or negatively. This is done in two
steps. First ℓj,k is initially marked if the interpretation of the initial marking
satisfies ℓj,k. Then we synchronize the value changes as illustrated in the lower
part of Figure 5. Once again the complexes are enlarged and the witnesses are
still valid since the places ℓj,k do not belong to the support of any witness.

Fig. 5. Clause Cj (left), synchronisation with t0 (right) and with variables (below)

Choice of the initial and final marking for the net. Let us develop a bit the
sequence �n+3 in the two counter subnet in order to explain the choice of initial
marking for this subnet: �n+3 = �n+1tn+1t

′
n+1�n+1tn+2t

′
n+2�n+1tn+1t

′
n+1�n+1

We want to check all the interpretations of xi’s guessing the appropriate values of
yi’s (if they exist). We have already seen that changing from one interpretation to
another one (i.e. a counter incrementation or decrementation) allows to perform
the allowed updates of yi. However given the initial interpretation of the xi’s
we need to make an initial guess of all the yi’s. So our initial marking restricted
to the counter subnet will correspond to the marking reached after �n+1tn+1,
i.e. corresponding to cnt = 2n+1 (i.e. word 010 . . . 0), cnt′ = 2n+1 − 1 (i.e. word
001 . . . 1) with in addition places go′, ui’s,mutexj ’s and yi’s 1-marked; places ℓj,k
are marked according to the initial marking of places xi’s and yi’s as explained
before. All the other places are unmarked. This explains the role of bit n+ 1.

Furthermore, if we have successfully checked all the interpretations of the xi’s,
the counters will have reached the value 2n+2 − 1 (corresponding to a firing
sequence obtained from t′n+1�n+1 with possible updates of yi during change of
interpretations). However we do not know what is the final guess for the yi’s. So
firing transition tn+2 allows to set the yi’s in such a way that the final marking
will correspond to cnt = 2n+2 (i.e. word 10 . . . 0), cnt′ = 2n+2 − 1 (i.e. word
01 . . . 1) with in addition places go′, ui’s mutexj ’s and yi’s 1-marked; places ℓj,k

are marked accordingly. All the other places are unmarked. This explains the
role of bit n+ 2.

By construction, the net reaches the final marking iff the formula is satisfied.
Observe that the checking of clauses can be partially done concurrently with the
change of interpretation. However as long as, in the net, a clause Cj is “certified”
by a literal ℓj,k (i.e. marking place successj and unmarking place ℓj,k) the value
of the variable associated with the literal cannot change, ensuring that when
t0 is fired, the marking of any place successj corresponds to the evaluation of
clause Cj with the current interpretation. ⊓⊔

Corollary 4.1. The liveness problem for safe Π2-nets is PSPACE-complete.

Proof. Observe that the transitions of the net of the previous proof are fireable
at least once (and so live by weak reversibility) iff ' is true. ⊓⊔

Let us now consider general (non-safe) Petri nets. Reachability and cover-
ability of symmetric nets is EXPSPACE-complete [16]. In [9], it is proved that
both problems are EXPSPACE-complete for WR nets (which include symmetric
Petri nets). Next proposition establishes the same result for the coverability of
Π2-nets.

Proposition 4.1. The coverability problem for Π2-nets is EXPSPACE-complete.

The complexity of reachability for Π2-nets remains an open issue (indeed the
proof of EXPSPACE-hardness does not work for reachability).

5 The subclass of Π3-nets

In this section, we introduce Π3-nets, a subclass of product-form Petri nets for
which the normalising constant can be efficiently computed. The first subsection
defines the subclass; the second one studies its structural properties and the
third one is devoted to the computation of the normalising constant.

5.1 Definition and properties

Definition 5.1 (Ordered Π-net) Consider an integer n ≥ 2. An n-level or-
dered Π-net is a Π-net N = (P, T,W−,W+) such that:

1. P =
⊔

1≤i≤n

Pi , T =
⊔

1≤i≤n

Ti and Pi ∕= ∅ for all 1 ≤ i ≤ n,

2. ℳi = (Pi, Ti,W
−
∣Pi×Ti

,W+
∣Pi×Ti

) is a strongly connected state machine,

3. ∀1 ≤ i ≤ n , ∀t ∈ Ti , ∀p ∈ P , ∙t(p) > 0 implies p ∈ Pi or p ∈ Pi−1 (P0 = ∅),
4. ∀2 ≤ i ≤ n , ∃t ∈ Ti , ∃p ∈ Pi−1 s.t. ∙t(p) > 0,
5. ∀1 ≤ i ≤ n , ∀t, t′ ∈ Ti, (

∙t ∩ ∙t′) ∩ Pi ∕= ∅ implies ∙t = ∙t′.

We call ℳi the level i state machine. The elements of Pi (resp. Ti) are level
i places (resp. transitions). The complexes ∙t with t ∈ Ti are level i complexes.

By weak reversibility, the constraints 3, 4, and 5 also apply to the output
bags t∙. An ordered Π-net is a sequence of strongly connected state machines.
Connections can only be made between a level i transition and a level (i − 1)
place (points 1, 2, 3). By construction, an ordered Π-net is connected (point 4).
Each level i place belongs to one and only one level i complex (point 5).

Lemma 5.2 The reaction net of N is isomorphic to the disjoint union of state
machines ℳi. So a T -semi-flow of ℳi is also a T -semi-flow of N . If a transition
of Ti is enabled by a reachable marking then every transition of Ti is live.

An ordered Π-net may be interpreted as a multi-level system. The transitions
represent jobs or events while the tokens in the places represent resources or
constraints. A level i job requires resources from level (i− 1) and relocates these
resources upon completion. Conversely, events occurring in level (i − 1) may
make some resources unavailable, hence interrupting activities in level i. The
dependency of an activity on the next level is measured by potentials, defined as
follows.

Definition 5.3 (Interface, potential) A place p ∈ Pi, 1 ≤ i ≤ n − 1, is an
interface place if p ∈ t∙ for some t ∈ Ti+1. For a place p ∈ Pi, 2 ≤ i ≤ n, and a
place q ∈ Pi−1, set:

pot(p, q) =

{
t∙(q) if p and q have a common input transition t ∈ Ti

0 otherwise.

The potential of a place p ∈ Pi, 2 ≤ i, is defined by: pot(p) =
∑

q∈Pi−1
pot(p, q) .

By convention, pot(p) = 0 for all p ∈ P1 .

By the definition of ordered Π-nets, the quantity t∙(q) does not depend on
the choice of t, so the potential is well-defined.

Example. The Petri net in Figure 6 is a 3-level ordered Π-net. The potentials
are written in parentheses. To keep the figure readable, the arcs between the
place p1 and the level 2 transitions are omitted.

p3(2)

q3(1)

r3(0)

p2(2)

q2(2)

r2(1) p1

2

2

level 3 level 2 level 1

Fig. 6. Ordered Π-net.

The behaviour of the state machines ℳi is embedded in the behaviour of
N , in the sense that the marking stripped off of the potentials evolves like a
marking of the state machines.

Definition 5.4 (Effective marking) The effective marking of a marking m,
denoted by m̃, is defined as follows. For all i ≤ n and p ∈ Pi,

em(p) = m(p) +

n−i
X

j=1

`

(−1)j
X

r1∈Pi+1
...

rj∈Pi+j

m(rj)
`

j−1
Y

k=1

pot(rk+1, rk)
´

pot(r1, p)
´

. (5.1)

Remark. Note that an effective marking is not necessarily non-negative. It can
be showed by induction that:

∀p ∈ Pn , em(p) = m(p) and ∀p ∈ Pi , i < n , em(p) = m(p)−
P

r∈Pi+1
em(r)pot(r, p)

Lemma 5.5 Let m, m′ be two vectors such that m′ = m + W (t) for some
t ∈ Ti (1 ≤ i ≤ n). Let p1 and p2 denote the input place and the output place of
t in Pi, respectively. Then for every place p:

m̃′(p) = m̃(p)− 1 if p is p1, m̃(p) + 1 if p is p2, m̃(p) otherwise. (5.2)

The above lemma applies in particular when m and m′ are markings such

thatm
t

−→ m′. Eqns (5.2) look like the equations for witnesses. Since each level i
complex contains exactly one level i place, one guesses that every complex admits
a witness, i.e. that N is a Π2-net. This is confirmed by the next proposition.

Proposition 5.6 Let B denote the P ×P integer matrix of the linear transfor-
mation m 7→ m̃ defined by (5.1). For p ∈ Pi, the line vector B(p) is a witness
for the i-level complex containing p. In particular, N is a Π2-net.

Lemma 5.5 allows to derive the S-invariants of N induced by S-semi-flows.

Corollary 5.7 Let m0 be the initial marking of N . We have:
∀m ∈ ℛ(m0), ∀i ∈ {1, . . . , n}, m̃(Pi) = m̃0(Pi)

More generally, for all i, the vector vi =
∑

p∈Pi
B(p) is a S-semi-flow of N .

Example. Consider the ordered Π-net in Figure 6 with the initial markingm0 =
p3+q3+r3+4p1. The effective marking ofm0 is m̃0 = p3+q3+r3−2p2−q2+10p1.
Any reachable marking m satisfies the invariants:

m(P3) = 3
m(P2)− 2m(p3)−m(q3) = −3

m(p1)− 2m(p2)− 2m(q2)−m(r2) + 4m(p3) + 2m(q3) = 10
It can be shown that {vi, 1 ≤ i ≤ n} is a basis of the S-semi-flows of N .

Proposition 5.8 Let v be an S-semi-flow of N , i.e. v.W = 0. There exist ra-
tional numbers a1, . . . , an such that v =

∑n

i=1 aivi.

The independence of the set {vi , 1 ≤ i ≤ n} follows from the fact that the
vectors viB

−1 have non-empty disjoint supports.

We now consider only ordered Π-nets in which the interface places in Pi have
maximal potential among the places of Pi. From the technical point of view, this
assumption is crucial for the reachability set ananlysis presented later. From the
modelling point of view, it is a reasonable restriction. Consider the multi-level
model, the assumption means that during the executions of level i jobs, the level
(i− 1) is idle, therefore the amount of available resource is maximal.

Definition 5.9 (Π3-net) An ordered Π-net N is a Π3-net if:
∀i, ∀p ∈ Pi : p ∈ ∙Ti+1 =⇒ pot(p) = max{pot(q), q ∈ Pi} .

5.2 The reachability set

From now on, N is a n-level Π3-net with ℳ1, . . . ,ℳn its state machines.

Definition 5.10 (Minimal marked potential) Consider i ∈ {2, . . . , n}. The
level i minimal potential marked by m is:

'i(m) =

{
max{pot(p), p ∈ Pi} if m(Pi) = 0 ,

min{pot(p), p ∈ Pi,m(p) > 0} if m(Pi) > 0 .

Next lemma gives a necessary condition for reachability.

Lemma 5.11 If 'i(m) ≤ m(Pi−1) then 'i(m
′) ≤ m′(Pi−1) for all m′ ∈ ℛ(m).

For our purposes, we now define the partial liveness and partial reachability.

Definition 5.12 (i-reachability set, i-liveness) Let m be a marking. The i-
reachability set of m, denoted by ℛi(m), is the set of all markings reachable
from m by a firing sequence consisting of transitions in

∪
1≤j≤i Tj. We say that

m is i-live if for any transitions t in
∪

1≤j≤i Tj, there exists a marking in ℛi(m)
which enables t. By convention, ℛ0(m) = {m} and every marking is 0-live.

The i-live markings are characterised by the following proposition.

Proposition 5.13 A marking m is i-live if and only if it satisfies the following
inequalities, called the i-condition:

m(Pi) > 0 ∧ ∀2 ≤ j ≤ i : m(Pj−1) ≥ 'j(m) (5.3)

If m satisfies the i-condition then for every p, q ∈ Pi such that p ∕= q, m(p) > 0
and pot(p) ≤ m(Pi−1), there exists m′ ∈ ℛi(m) such that:

m′(p) = m(p)− 1 , m′(q) = m(q) + 1 , ∀r ∈ Pi ∖ {p, q}, m
′(r) = m(r) . (5.4)

A marking is live if and only if it satisfies the n-condition.

Example: The ordered Π-net in Figure 6 is a Π3-net. Consider two markings:
m1 = p3 + q3 + r3 + 4p1 and m2 = 3q3 + 4p1. These markings agree on all the
S-invariants, but only m1 satisfies the 3-condition. It is easy to check that m1 is
live while m2 is dead.

We conclude this subsection by showing that the reachability problem for
Π3-nets can be efficiently decided as well.

Theorem 5.14 Suppose that the initial marking m0 is live. Then the reach-
ability set ℛ(m0) coincides with the set S(m0) of markings which satisfy the
n-condition and agree with m0 on the S-invariants given by Corollary 5.7.

5.3 Computing the normalising constant

The normalising constant of a product-form Petri net (see Section 2.1) is G =∑
m 1m∈ℛ(m0)

∏
p∈P u

m(p)
p . It is in general a difficult task to compute G, as can

be guessed from the complexity of the reachability problem. However, efficient
algorithms may exist for nets with a well-structured reachability set. Such algo-
rithms were known for Jackson networks [18] and the S-invariant reachable Petri
nets defined in [6]. We show that is is also the case for the class of live Π3-nets
which is strictly larger than the class of Jackson networks (which correspond
to 1-level ordered nets) and is not included in the class of S-invariant reachable
Petri nets.

Suppose that m0 is a live marking. Suppose that the places of each level
are ordered by increasing potential: Pi = {pi1, . . . , piki

} such that ∀1 ≤ j < ki,
pot(pij) ≤ pot(pi(j+1)).

Let V denote the n × P -matrix the i-th row of which is the S-invariant vi
defined in Corollary 5.7. For 1 ≤ i ≤ n, set Ci = vim0 = m̃0(Pi). Then the
reachability set consists of all n-live markings m such that V m = t(C1, . . . , Cn).

For 1 ≤ i ≤ n, 1 ≤ j ≤ ki and c1, . . . , ci ∈ Z, define E(i, j, c1, . . . , ci) as the
set of markings m such that

⎧
⎨
⎩

m(pi�) = 0 for all � > j

V m = t(c1, . . . , ci, 0 . . . , 0)

'�(m) ≤ m(P�−1) for all 2 ≤ � ≤ i .

The elements of E(i, j, c1, . . . , ci) are the markings which satisfy the second part
of the i-condition and the S-invariants constraints (c1, . . . , ci, 0, . . . , 0) and con-
centrate tokens in P1, . . . , Pi−1 and {pi1, . . . , pij}.

With each E(i, j, c1, . . . , ci) associate

G(i, j, c1, . . . , ci) = �(E(i, j, c1, . . . , ci)) =
∑∏

p∈P u
m(p)
p

the sum being taken over all m ∈ E(i, j, c1, . . . , ci).

We propose to compute G(n, kn, C1, . . . , Cn) by dynamic programming. It
consists in breaking each G(i, j, c1, . . . , ci) into smaller sums. This corresponds
to a partition of the elements of E(i, j, c1, . . . , ci) by the number of tokens in pij .

Proposition 5.15 Let be given E = E(i, j, c1, . . . , ci). If ci < 0 then E = ∅. If
ci ≥ 0 then for every non-negative integer a:

1. If a > ci then E ∩ {m∣m(pij) = a} = ∅.
2. If a < ci and j = 1 then E ∩ {m∣m(pij) = a} = ∅.
3. If a < ci and j ≥ 2 then E∩{m∣m(pij) = a} = E(i, j−1, c1−v1(apij), . . . , ci−

vi(apij)):
4. If a = ci and i = 1 then E ∩ {m∣m(pij) = a} = {c1p1j}.
5. If a = ci and i > 1 then E ∩ {m∣m(pij) = a} = E(i − 1, ki−1, c1 −

v1(apij), . . . , ci−1 − vi−1(apij)):

Proposition 5.15 induces the following relations between the sumsG(i, j, c1, . . . , ci).

Corollary 5.16 If ci < 0 then G(i, j, c1, . . . , ci) = 0. If ci ≥ 0 then:
– Case 2 ≤ i ≤ n, 2 ≤ j ≤ ki:

G(i, j, c1, . . . , ci) =

ci−1
X

�=0

u
�
pij

G(i, j − 1, c1 − v1(�pij), . . . , ci − vi(�pij))

+ u
ci
pij

G(i− 1, ki−1, c1 − v1(cipij), . . . , ci−1 − vi−1(cipij)) .

– Case 2 ≤ i ≤ n, j = 1:

G(i, 1, c1, . . . , ci) = u
ci
pi1

G(i− 1, ki−1, c1 − v1(cipi1), . . . , ci−1 − vi−1(cipi1)) .

– Case i = 1, j ≥ 2: G(1, j, c1) =
Pc1−1

�=0
u�
p1j

G(1, j − 1, c1 − �) + uc1
p1j

.

– Case i = 1, j = 1: G(1, 1, c1) = uc1
p11

.

Complexity. Since i ≤ n, j ≤ K = max{k1, . . . , kn}, the number of evaluations
is bounded by n×K×, where upper bounds the ci’s. Let � denote the global
maximal potential. From (5.1), we obtain = O(m0(P)K

n�n). So the complex-
ity of a dynamic programming algorithm using Cor. 5.16 is O(m0(P)nK

n+1�n),
i.e. pseudo-polynomial for a fixed number of state machines.

6 Perspectives

This work has several perspectives. First, we are interested in extending and
applying our rules for a modular modelling of complex product-form Petri nets.
Then we want to validate the formalism of Π3-nets showing that it allows to
express standard patterns of distributed systems. Finally we conjecture that
reachability is EXPSPACE-complete for Π2-nets and we want to establish it.

Acknowledgements. We would like to thank the anonymous referess whose
numerous and pertinent suggestions have been helpful in preparing the final
version of the paper.

References

[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, G. Franceschinis. Modelling

with Generalized Stochastic Petri Nets. John Wiley & Sons, 1995.
[2] F. Baccelli, G. Cohen, G.J. Olsder, and J.P. Quadrat. Synchronization and Lin-

earity. John Wiley & Sons, New York, 1992.
[3] F. Baskett, K. M. Chandy, R. R. Muntz, F. Palacios. Open, closed and mixed

networks of queues with different classes of customers. Journal of the ACM,
22(2):248–260, April 1975.

[4] R. J. Boucherie, M. Sereno. On closed support T-invariants and traffic equations.
Journal of Applied Probability, (35): 473–481, 1998.

[5] J. Esparza and M. Nielsen. Decidability issues for Petri nets - a survey. Journal

of Informatik Processing and Cybernetics, 30(3):143-160, 1994.
[6] J.L. Coleman, W. Henderson, P.G. Taylor. Product form equilibrium distributions

and a convolution algorithm for stochastic Petri nets. Performance Evaluation,
26(3):159–180, September 1996.

[7] J. Esparza. Reduction and Synthesis of Live and Bounded Free Choice Petri Nets.
Information and Computation, 114(1):50–87, 1994

[8] M. Feinberg. Lectures on chemical reaction networks. Given at the

Math. Research Center, Univ. Wisconsin, 1979. Available online at
http://www.che.eng.ohio-state.edu/∼feinberg/LecturesOnReactionNetworks.

[9] S. Haddad, P. Moreaux, M. Sereno, M. Silva Product-form and stochastic Petri
nets: a structural approach. Performance Evaluation, 59: 313-336, 2005.

[10] W. Henderson, D. Lucic, P.G. Taylor. A net level performance analysis of stochas-
tic Petri nets. Journal of Australian Mathematical Soc. Ser. B, 31:176–187, 1989.

[11] J. R. Jackson. Jobshop-like Queueing Systems. Management Science, 10(1): 131–
142, 1963.

[12] F. Kelly. Reversibility and Stochastic Networks. Wiley, New-York, 1979.
[13] A. A. Lazar, T. G.Robertazzi. Markovian Petri Net Protocols with Product Form

Solution. Proc. of INFOCOM 87, pp. 1054–1062, San Francisco, CA, USA, 1987.
[14] M. Li, N. D. Georganas. Parametric Analysis of Stochastic Petri Nets, Fifth In-

ternational Conference on Modelling and Tools for Computer Performance Eval-

uation, Torino, Italy, 1991,
[15] J. Mairesse, H-T. Nguyen. Deficiency Zero Petri Nets and Product Form. Petri

Nets 2009, LNCS 5606, 103-122, 2009.
[16] E. Mayr, A. Meyer. The complexity of the word problem for commutative semi-

groups an polynomial ideals. Advances in Math, 46 (1982), 305-329.
[17] C. Papadimitriou. Computational Complexity. Addison Wesley, 1994.
[18] M. Reiser, S.S. Lavenberg. Mean Value Analysis of Closed Multichain Queueing

Networks. Journal of the ACM, 27(2): 313-322, 1980.

