
Chapter 2
Languages, Decidability, and Complexity

Stefan Haar and Tomáš Masopust

2.1 Introduction

Control problems for discrete-event systems or hybrid systems typically involve
manipulation of languages that describe system behaviors. This chapter introduces
basic automata and grammar models for generating and analyzing languages of the
Chomsky hierarchy, as well as their associated decision problems, which are nec-
essary for the understanding of other parts of this book. Notions of decidability of
a problem (that is, is there an algorithm solving the given problem?) and of com-
putational complexity (that is, how many computation steps are necessary to solve
the given problem?) are introduced. The basic complexity classes are recalled. This
chapter is not intended to replace a course on these topics but merely to provide
basic notions that are used further in this book, and to provide references to the
literature.

In the following, we introduce the basic terminology, notation, definitions, and
results concerning the Chomsky hierarchy of formal languages to present the nec-
essary prerequisites for understanding the topic of this chapter, that is, the devices
recognizing and generating languages. As this is only an introductory material, not
all details and proofs are presented here. Usually, only the basic ideas or sketches
of proofs are presented. Further details can be found in the literature, see, e.g.,
[4, 5, 10, 12, 13, 15].

Stefan Haar
INRIA/LSV, CNRS & ENS de Cachan, 61, avenue du Président Wilson,
94235 CACHAN Cedex, France
e-mail: Stefan.Haar@inria.fr

Tomáš Masopust
Institute of Mathematics, Academy of Sciences of the Czech Republic, Žižkova 22,
616 62 Brno, Czech Republic
e-mail: masopust@math.cas.cz

C. Seatzu et al. (Eds.): Control of Discrete-Event Systems, LNCIS 433, pp. 23–43.
springerlink.com c© Springer-Verlag London 2013

24 S. Haar and T. Masopust

2.2 Regular Languages and Automata

This section introduces the simplest type of languages and automata. First, however,
let us define the fundamental concepts. The cardinality of a set A is denoted by |A|.
For two sets A and B, we write A⊆ B to denote that A is a subset of B. If A⊆ B and
A
= B, we write A � B. The notation 2A denotes the set of all subsets of A.

2.2.1 Words and Languages

An alphabet (also called an event set) is a finite, nonempty set Σ of abstract ele-
ments, which are called symbols or letters. Let Σ = {a1,a2, . . . ,an} be an alphabet.
A word or string over Σ is a (finite or infinite) concatenation w= a1a2a3 . . . of letters
ai ∈ Σ . For instance, a and ccbc are words over {a,b,c}. The empty word is a word
consisting of zero letters, denoted by ε . It holds that ε ·w=w·ε =w, for any word w.
The set of all finite words over Σ is denoted by Σ∗ � {a1a2a3 . . .an | n∈N, ai ∈ Σ}.
The set of all nonempty words over Σ is denoted by Σ+ � Σ∗ \ {ε}. A set L is
a language over Σ if L ⊆ Σ∗. The length of a word w is denoted |w|, that is,
|a1a2 . . .an| = n. Let |w|a denote the number of a’s in w. For instance, |ccbc| = 4
and |ccbc|b = 1. Write wR for the mirror image (or reversal) of w defined so that
for w = a1a2a3 . . .an, wR = anan−1an−2 . . .a1; ccbcR = cbcc. Word u∈ Σ∗ is a prefix
of v ∈ Σ∗ if there exists u′ ∈ Σ∗ such that v = uu′. Dually, u is a suffix of v if there
exists u′ ∈ Σ∗ such that v = u′u. Furthermore, u is an infix or factor of v if there exist
u′,u′′ ∈ Σ∗ such that v = u′uu′′, and a sub-word of v if there exist ui,vi ∈ Σ∗ such
that v = v0u1v1u2 . . .unvn with u = u1u2 . . .un.

For two languages K,L ⊆ Σ∗, we have the set theoretic operations K ∪L, K ∩L,
K \L, Kc = Σ∗ \K, etc. Define the concatenation of K and L as

K ·L � {u · v | u ∈ K, v ∈ L} .

The powers of a language L are defined as follows: L0 � {ε}, Ln+1 � Ln ·L = L ·Ln,

L∗ �
⋃

n�0

Ln and L+ �
⋃

n>0

Ln .

Finally, we have the quotient languages

K−1 ·L � {v ∈ Σ∗ | ∃u ∈ K : u · v ∈ L} and L ·K−1 � {u ∈ Σ∗ | ∃v ∈ K : u · v∈ L} .

A substitution is a mapping σ : Σ∗ → 2Γ ∗ such that σ(ε) = {ε} and σ(xy) =
σ(x)σ(y), where x,y ∈ Σ∗. A (homo)morphism is a substitution σ such that σ(a)
consists of exactly one string, for all a ∈ Σ . We write σ(a) = w instead of σ(a) =
{w}, i.e., σ : Σ∗ → Γ ∗. A projection is a homomorphism σ : Σ∗ → Γ ∗ with Γ ⊆ Σ
such that for all a ∈ Σ , σ(a) ∈ {a,ε}.

2 Languages, Decidability, and Complexity 25

2.2.2 Regular Languages

The above language operations can be abstracted into a class RE(Σ) of regular
expressions over an alphabet Σ as follows.

1. /0 and a, for a ∈ Σ , are in RE(Σ);
2. if E,F ∈ RE(Σ), then (E +F), (E ·F), (E∗) ∈ RE(Σ);
3. nothing else is in RE(Σ).

Regular expressions correspond to languages. To show this relation, we define the
operation L : RE(Σ)→ 2Σ∗ by L(/0)� /0, L(a)� {a}, for all a ∈ Σ , and

L(E +F)� L(E)∪L(F) , L(E ·F)� L(E) ·L(F) , L(E∗)� (L(E))∗ .

The class Reg(Σ∗) of regular (also called rational) languages over Σ is the smallest
class of languages over Σ that (i) contains the empty language /0 and all singletons
{a}, for a ∈ Σ , and (ii) is closed under the operations ∪, ·, and ()∗.

Example 2.1. The regular expression a + ba∗b represents the language L(a +
ba∗b) = {a}∪L(ba∗b) = {a}∪{baib | i � 0}. �

2.2.3 Automata

We now define the first model of dynamical systems to generate languages through
their behaviors.

Deterministic Automata

Deterministic automata are finite-state machines, where the input changes the cur-
rent state of the system. These machines have only finite memory.

Definition 2.1. A deterministic finite automaton (DFA, for short) over alphabet Σ is
a quintuple A = (Q,Σ , f ,q0,Qm), where Q is a finite set of states, f : Q×Σ → Q is
a transition function (total or partial), q0 ∈Q is an initial state, and Qm ⊆Q is a set
of final or marked states.

DFAs are associated to languages via the following central notions.

Definition 2.2. For q1,q2 ∈Q, and a∈ Σ , write q1
a−→ q2 if f (q1,a) = q2. A accepts

word w = a1a2 . . .an ∈ Σ∗ if there exist qi ∈ Q such that

q0
a1−→ q1

a2−→ . . .
an−→ qn ∈Qm;

26 S. Haar and T. Masopust

write q0
w−→ qn. Using this definition, we can extend f to be a function from Q×Σ∗

to Q so that f (q0,w) = qn if q0
w−→ qn, where q

ε−→ q for all q ∈ Q. The language
accepted (or recognized) by A is defined as the set

L(A) � {w ∈ Σ∗ | ∃q ∈Qm : q0
w−→ q}.

The class Rec(Σ∗) of recognizable languages in Σ is formed by those languages
L⊆ Σ∗ for which there exists a DFA A over Σ such that L = L(A).

Fig. 2.1 presents a simple example of a DFA which accepts or recognizes a language
described by the regular expression ba∗b+ a.

Fig. 2.1 A DFA A = ({1,2,3},{a,b}, f ,1,{3}) which accepts the language ba∗b+a, where
f is defined by the arrows

Nondeterministic Automata

It is often convenient or natural to work with nondeterministic models in the sense
of the following definition, cf. state 2 in Fig. 2.2.

Definition 2.3. A nondeterministic finite automaton (NFA, for short) over Σ is a
quintuple A = (Q,Σ ,T,I,Qm), where Q is a finite set of states, T ⊆ Q×Σ ×Q is
a set of transitions, I ⊆ Q is a set of initial states, and Qm ⊆ Q is a set of final or
marked states. For q1,q2 ∈Q, and a∈ Σ , write q1

a−→ q2 if (q1,a,q2)∈ T. A accepts

word w = a1a2 . . .an ∈ Σ∗ if there exist qi ∈ Q such that q0 ∈ I and q0
a1−→ q1

a2−→
. . .

an−→ qn ∈ Qm; write q0
w−→ qn. The language accepted (or recognized) by A is

defined as the set L(A)� {w ∈ Σ∗ | ∃q0 ∈ I, q ∈Qm : q0
w−→ q}.

We shall see below that the classes of DFAs and NFAs are equivalent in terms of
the recognized languages. First, however, we extend the notion of NFAs so that ε-
transitions are allowed. This corresponds to a situation where the automaton changes
the state, but reads no input letter.

ε-Automata

Definition 2.4. An NFA A = (Q,Σ ,T,I,Qm) such that T ⊆ Q× (Σ ∪{ε})×Q is
called an ε-automaton, or an NFA with ε-transitions.

2 Languages, Decidability, and Complexity 27

Similarly as for the deterministic automata, we can extend T so that T ⊆Q×Σ∗×Q.
Fig. 2.2 presents a simple example of an NFA with ε-transitions which accepts
the language a∗b+ a. The following theorem shows that we can always remove
ε-transitions from the automaton.

Fig. 2.2 An NFA with ε-transitions that accepts the language a∗b+a

Theorem 2.1. For every ε-automaton A there exists an ε-free automaton A′ such
that L(A) = L(A′).

Proof. The proof can be sketched as follows, see Fig. 2.3:

1. For every q
ε−→ q′

a−→ q′′, where a ∈ Σ , add q
a−→ q′′;

2. For every q
ε−→ q′ with q′ ∈ Qm, add q to Qm;

3. Remove all ε-transitions. �

Fig. 2.3 Removing ε-transitions: The NFA of Fig. 2.2 and the ε-free NFA that accepts a∗b+a

Determinizing NFAs

The disadvantage of the nondeterminism is that we can have two or more choices
how to continue from a state. In the right automaton of Fig. 2.3, this situation hap-
pens in state 1 for letter a. The following theorem shows that we can always elimi-
nate the nondeterminism by transforming an NFA to a DFA.

Theorem 2.2. For every NFA (with ε-transitions) A = (Q,Σ ,T,I,Qm) there exists a
DFA A′ = (Q′,Σ , f ,q0,Qm

′) such that L(A) = L(A′).

28 S. Haar and T. Masopust

Proof. The key idea to obtaining the determinized version of A is the following
powerset construction.

• Q′ ⊆ 2Q;
• initial state q0 is given by the set of initial states I and those states that are

ε-reachable from some initial state: q0 � {s ∈ Q | ∃s′ ∈ I : s′
ε−→ s};

• ∀U ⊆ Q and a
= ε : f (U,a)� {q ∈Q | ∃qu ∈U : qu
aε−→ q};

• Qm
′ = {U ⊆ Q | U ∩Qm
= /0}. �

Fig. 2.4 demonstrates the previous theorem. It should be noted that the automaton
A′ has, in general, a state space whose size is of the order of 2|Q|, that is, exponential
with respect to the state space of A. There exist examples of NFAs for which it can
be shown that any language-equivalent DFAs must be at least of this size, see [6]
and the references therein. Determinization should therefore be used moderately.

Fig. 2.4 Determinization: The NFA with ε-transitions of Fig. 2.2 and its DFA which accepts
the language a∗b+a

2.2.4 Closure Properties of Regular Languages

The algebraic properties considered here for regular languages – and below for other
language classes – are important results for testing whether or not a given language
belongs to a given class.

Theorem 2.3. Rec(Σ∗) is closed under the set operations union, intersection, and
complement.

Proof. Let K,L ∈ Rec(Σ∗) with DFAs AK , AL such that L(AK) = K and L(AL) = L.
An NFA to accept K ∪L is obtained by combining AK and AL via fusion of initial
states. Language K∩L is accepted by a DFA obtained as a synchronized product of
AK and AL. In this product automaton, the state set is QK ×QL, and the transition
function fprod : (QK×QL)×Σ → (QK×QL) is constructed componentwise so that

fprod((qK ,qL),a) = (q′K ,q
′
L) if fK(qK ,a) = q′K and fL(qL,a) = q′L .

Finally, to obtain a DFA for Kc, it suffices to replace Qm by Q\Qm in AK . �

Theorem 2.4. Rec(Σ∗) is closed under concatenation, iteration, substitutions, and
projection to subalphabets.

2 Languages, Decidability, and Complexity 29

Proof. Let K,L ∈ Rec(Σ∗) with DFAs AK , AL such that L(AK) = K and L(AL) = L.
An automaton AK·L such that L(AK·L) = K · L is obtained by combining AK and
AL via extra ε-transitions from QmK to q0L. For AL∗ , add to AL a new state for
recognizing ε , plus ε-transitions from QmL to q0L. If σ : Σ → 2Γ ∗ is a substitution,
replacing all a-transitions in AL by a copy of automaton Aσ(a) yields Aσ(L). Finally,

for any Γ ⊆ Σ and a ∈ Σ \Γ , replace q
a−→ q′ by q

ε−→ q′. �

2.2.5 Regularity and Recognizability

The following theorem (Kleene 1936) summarizes the relation between regular ex-
pressions and recognizable languages.

Theorem 2.5. Reg(Σ∗) = Rec(Σ∗).
Proof. To prove Reg(Σ∗) ⊆ Rec(Σ∗), we have /0 ∈ Rec(Σ∗) and {a} ∈ Rec(Σ∗),
for a ∈ Σ (construct the DFAs). The closure of Rec(Σ∗) under ∪, ·, and ()∗ then
implies Reg(Σ∗)⊆ Rec(Σ∗). To prove the converse inclusion, Reg(Σ∗)⊇ Rec(Σ∗),
we need to convert DFAs to regular expressions. The idea, depicted in Fig. 2.5, is to
construct a regular expression by a step-by-step fusion of transitions. �

Fig. 2.5 Converting a DFA to a regular expression: The DFA on the left is transformed to the
regular expression a∗b(a+b)∗

2.2.6 Criteria for Regularity

We now ask how to identify the limits of regularity. Is it true that all languages
are regular? The answer is negative; for instance, the following languages are not
regular:

• L1 = {anbn | n � 0},
• L2 = {u ∈ Σ∗ | |u|a = |u|b},
• L3 = {w ∈ Σ∗ | w = wR}.

To prove the nonregularity of these and other languages, a very important tool
is the use of results of the following type, which are called pumping lemmas or
star/iteration lemmas in the literature. Of course, one may have a choice to apply
one or the other result in cases where several such lemmas can be applied.

30 S. Haar and T. Masopust

Lemma 2.1 (Pumping Lemma). For every L ∈ Reg(Σ∗) there exists N � 0 such
that for all x ∈ L

• If |x|� N, then x = u1u2u3 with ui ∈ Σ∗, u2
= ε , |u1u2|� N, and u1u∗2u3 ∈ L.
• If x = w1w2w3 with |w2| � N, then x = w1u1u2u3w3 with ui ∈ Σ∗, u2
= ε , and

w1u1u∗2u3w3 ∈ L.

Proof. The idea for the proofs of this and similar results is as follows. Take a DFA
AL that accepts L. Since the number of states of AL is finite, every path of length
greater than some N that depends on AL has a loop. Iterating this loop allows to
construct the sublanguages whose existence is claimed in Lemma 2.1. �

Example 2.2. To use Lemma 2.1 to show that L1 = {anbn | n � 0} is not regu-
lar, assume for contradiction that L1 is regular. Then there exists N as claimed in
Lemma 2.1. Consider the word w = aNbN . Then, by Lemma 2.1, w = u1u2u3 with
u1u∗2u3 ∈ L1. There are three possibilities: u2 ∈ a∗, u2 ∈ b∗, or u2 ∈ aa∗bb∗. In all
cases, however, u1u2u2u3 /∈ L1, which is a contradiction. �
For proving that a given language L is non-recognizable, one often uses a pumping
lemma and the established closure properties of Reg(Σ∗). For instance, for L2 =
{u ∈ Σ∗ | |u|a = |u|b}, we have L2∩a∗b∗ = L1, hence L2
∈ Reg(Σ∗).

2.2.7 Minimality

In general, there are infinitely many DFAs and NFAs that accept a given language
(for instance, aa∗). We shall see that one can find a canonical DFA which is minimal
(up to isomorphism) in the number of states. This is not true for NFAs (construct
two non-isomorphic two-state automata for the language aa∗).

Definition 2.5. For u ∈ Σ∗ and L⊆ Σ∗, the residual language of L with respect to u
is the quotient u−1L = {v ∈ Σ∗ | uv ∈ L}. The residual automaton for L is R(L) =
(QL,ΣL, fL,q0L,QmL) such that QL = {u−1L | u ∈ Σ∗}, fL(u−1L,a) = a−1(u−1L) =
(ua)−1L, q0L = L = ε−1L, QmL = {u−1L | ε ∈ u−1L}= {u−1L | u ∈ L}.
Theorem 2.6. Language L ⊆ Σ∗ is recognizable if and only if it has finitely many
residuals. Moreover, any DFA A with L(A) = L allows to inject R(L) into A by a
morphism (a fortiori, R(L) has minimal size among those automata that accept L).

However, for the construction, a more convenient algorithm is depicted in the fol-
lowing example.

Example 2.3. Consider a slightly modified automaton of Fig. 2.4. In the first step,
we add the dead state, d, to make the automaton complete, i.e., to complete the
transition function of the automaton. This is done by replacing all the transitions of
the form f (q,a) = /0 with f (q,a) = d. Then, in Step 1, we distinguish only final and
non-final states. In Step 2, we distinguish any two states of the same class for which
there exists a letter leading them to states from different classes. Step 2 is repeated
until no new class is constructed, see Fig. 2.6. �

2 Languages, Decidability, and Complexity 31

Fig. 2.6 Minimization: A modified DFA of Fig. 2.4 with the dead state d to be minimized,
computation of the states, and the minimal automaton without the dead state d

2.3 Chomsky Grammars

Formal languages do not stop at the boundary of Reg; the concept of grammars
for generating languages allows to classify a larger variety of language families in
which Reg will be embedded.

2.3.1 Type 0 Grammars and Languages

We begin with the most general type of grammars.

Definition 2.6. A type 0 grammar is a tuple G = (Σ ,V ,S,P), where Σ is the termi-
nal alphabet, V is the nonterminal alphabet (set of variables), S ∈ V is the axiom
(initial variable), P ⊆ (Σ ∪V)∗V (Σ ∪V)∗ × (Σ ∪V)∗ is a finite set of rules (pro-
ductions) where at least one nonterminal appears on the left-hand side. A sentential
form β ∈ (Σ ∪V)∗ is derived from a sentential form α ∈ (Σ ∪V)∗, written α⇒ β ,
if there exists (α2,β2) ∈ P such that α = α1α2α3 and β = α1β2α3.

Rules (α,β) ∈ P are also written as α→ β (read α is rewritten by β).

Definition 2.7. For a type 0 grammar G = (Σ ,V ,S,P) and a sentential form α ∈
(Σ ∪ V)∗, let

∗⇒ denote the reflexive and transitive closure of ⇒. The language
generated by α is the set LG(α) = {u∈ Σ∗ | α ∗⇒ u}. The language generated by G,
denoted L(G), is defined as the set LG(S). A language is type 0 if it is generated by
a type 0 grammar.

Example 2.4. The following type 0 grammar G = ({a},{S,D,X ,F,Y,Z},S,P) with
P defined as follows generates the language {a2n | n > 0}.

S → DXaF Xa→ aaX XF → Y F XF → Z
aY → Ya DY → DX aZ → Za DZ → ε

Note that the alphabet and the set of variables can be extracted from the productions,
so the set of productions characterizes the whole grammar. One possible derivation
of this grammar is S⇒DXaF⇒ DaaXF⇒ DaaZ⇒ DaZa⇒DZaa⇒ aa. �

32 S. Haar and T. Masopust

2.3.2 Type 1: Context-Sensitive

We move ”up” in the hierarchy by restricting the productions to be monotonic in the
length of the sub-words, that is, the generated word can never be shortened.

Definition 2.8. A grammar G = (Σ ,V ,S,P) is context-sensitive (or type 1) if for
all (α,β) ∈ P, |α| � |β |. A language is context-sensitive (type 1 or in Cse) if it is
generated by a type 1 grammar.

Example 2.5. The following is a type 1 grammar that generates the language {xx |
x ∈ {a,b}∗} :

S → aAS | bBS | T Aa→ aA Ba→ aB Ab→ bA
Bb→ bB BT → T b AT → Ta T → ε

A derivation chain for abab is

S⇒ aAS⇒ aAbBS⇒ aAbBT ⇒ abABT ⇒ abATb⇒ abTab⇒ abab . �
Definition 2.9. A context-sensitive grammar G = (Σ ,V ,S,P) is in normal form
(NF) if every rule is of the form α1Xα2→ α1β α2 with X ∈ V and β
= ε .

Theorem 2.7. Every type 1 language can be generated by a context-sensitive gram-
mar in NF.

Example 2.6. A type 1 NF grammar for {a2n | n > 0}:

S → aTa T → XA XY → Xa Xa → AAa ZY → ZX
S → aa T → AA XY → ZY ZA → AAA aA → aa �

2.3.3 Type 2: Context-Free Languages and Pushdown Automata

Note that a context-sensitive grammar in NF rewrites a variable X by a nonempty
word β according to contexts α1 and α2. The next level is reached by loosing the
information about these contexts.

Definition 2.10. A grammar G = (Σ ,V ,S,P) is context-free or type 2 if P ⊆ V ×
(Σ ∪V)∗. The class of languages generated by context-free grammars is denoted
Cfr. A language is linear if it is generated by a context-free grammar with P ⊆
V × (Σ∗ ∪Σ∗V Σ∗).

Lemma 2.2 (Fundamental Lemma). If G = (Σ ,V ,S,P) is context-free, then for
all α1,α2,β ∈ (Σ ∪V)∗, and n � 0

α1α2
n⇒ β ⇐⇒

{
α1

n1⇒ β1

α2
n2⇒ β2

,

with β = β1β2 and n = n1 + n2.

2 Languages, Decidability, and Complexity 33

Example 2.7. The languages L = {anbn | n� 0} and the nth Dyck language of well-
formed expressions with n brackets are in Cfr. �

Definition 2.11. For a context-free grammar G = (Σ ,V ,S,P), a derivation tree is a
tree labeled by V ∪Σ such that every interior node is V -labeled, and if the sons of
a node labeled x are labeled α1, . . . ,αk, then (x,α1 . . .αk) is a rule in P.

Example 2.8. Consider the language {anbn | n � 0} generated by a context-free
grammar with rules S→ ASb, A→ a, and S→ ε . A derivation tree of the derivation
S⇒ ASb⇒ aSb⇒ ab is shown in Fig. 2.7. �

Fig. 2.7 Derivation tree of the word ab

Lemma 2.3. If G = (Σ ,V ,S,P) is a context-free grammar, then (i) for all x
∗⇒ α

there exists a derivation tree with root x and yield α; (ii) if t is a derivation tree of
G, then there exists a derivation root(t)

∗⇒ yield(t).

The class Cfr of context-free languages satisfies the following property of the same
type as Lemma 2.1 for regular languages.

Lemma 2.4 (Pumping Lemma). For every L ∈ Cfr there exists N � 0 such that
for all w ∈ L with |w|� N, w = αuβ vγ , with |uv|> 0 and |uβ v|� N, and ∀n ∈ N :
αunβ vnγ ∈ L.

As in the regular case, the pumping lemma allows to show non-inclusion of a lan-
guage in Cfr; for instance, one can immediately see that L1 = {anbncn | n � 0} is
not context-free.

Closure Properties of Cfr: From the fact that L1 is not context-free, we obtain
that neither Cfr nor linear languages are closed under ∩; in fact, consider languages
{anbncp | n, p � 0} and {apbncn | n, p � 0} whose intersection is the language L1.
On the other hand, Cfr is closed under · and ()∗, as we will see below.

Pushdown Automata

As for regular languages, there exists a system model to recognize context-free
languages.

34 S. Haar and T. Masopust

Definition 2.12. A pushdown automaton (PDA) is a tuple A = (Q,Σ ,Z,T,q0,Qm),
where Q is a finite state set, Σ is an input alphabet, Z is a stack alphabet, T ⊆ ZQ×
(Σ ∪{ε})× Z∗Q is a finite set of transitions, q0 ∈ ZQ is the initial configuration,
and Qm ⊆Q is the set of final states. The pushdown automaton A is called real-time
if it is ε-free. The configurations of A are the words hqw ∈ Z∗QΣ∗, where h is the
content of the stack, q is the current state, and w is the unread part of the input.

Example 2.9. Consider the configuration β pw = Aγ pax from the first part of
Fig. 2.8. After the execution of transition (Ap,a,αq), the new configuration is αγqx.
We denote this transition by Aγ pax

a−→ αγqx. �

Fig. 2.8 Pushdown automaton executing (Ap,a,αq)

We have several notions of K-acceptance, with different values for K. Let L(A) =
{w ∈ Σ∗ | ∃q0

w−→ h, h ∈ K}, where

• K = Z∗Qm: final state acceptance.
• K = Q: empty stack acceptance.
• K = Qm: empty stack and final state acceptance.

Proposition 2.1. Let L⊆ Σ∗.

1. If L is K-accepted by a PDA A, there exists another PDA A′ that accepts L by
final state.

2. For every PDA A, the empty stack language LA can be generated by a context-free
grammar G that can be effectively constructed from A.

3. Conversely, for any context-free grammar G, a PDA A can be constructed that
accepts L(G) with empty stack.

The closure for · and ()∗ can be shown by combining the accepting automata.

2 Languages, Decidability, and Complexity 35

2.3.4 Type 3 Languages

Finally, on the last level, we find regular languages as a subclass of Cfr by further
restrictions of context-free rules so they cannot generate more than one nonterminal
at a step which is always the last (resp. the first) symbol of any sentential form.

Definition 2.13. A grammar G = (Σ ,V ,S,P) is left-linear if P⊆ V × (Σ∗ ∪V Σ∗),
and right-linear if P⊆ V × (Σ∗ ∪Σ∗V).

Proposition 2.2. A language is regular if and only if it is generated by a left-linear
(or right-linear) grammar.

Example 2.10. There are linear languages that are not regular; in fact, languages
{anbn | n � 0} and {anbncp | n, p � 0} are linear. �

2.3.5 The Chomsky Hierarchy

The following chain of inclusions summarizes the hierarchical relations between the
language classes introduced here:

Reg � Cfr � Cse� REN . (2.1)

Here, we use REN to denote the class of type 0 languages, for reasons given below.

2.4 Turing Machines and Decidability

We now leave the realm of grammar generated languages and turn to the most fun-
damental model of computation, that of Turing machines or TMs. A TM consists of
k � 1 two-way infinite tapes, each of whose cells are Z-indexed. Every cell contains
a symbol which is either blank ($) or a letter from an auxiliary alphabet Σ . The
k read/write heads (one for each tape) controlled by its internal state and the tape
content move along the tapes. Formally, we have:

Definition 2.14. A k-tape Turing machine (TM) is a tuple M = (Q,Σ ,$,T,q0,Qm),
where (i) Q is a finite state set, (ii) Σ is an alphabet of tape symbols, (iii)
$ ∈ Σ is the blank symbol; set Σ̃ � Σ \ {$}; (iv) q0 ∈ Q is the initial state, (v)
Qm ⊆ Q is the set of final states, and (vi) T ⊆ Q×Σ k × Σ̃ k ×{L,R,S}k×Q is a
set of instructions (q,s,s′,m,q′) for reading from/writing to the tapes, moving the
k heads (left, right, stay) and state change. The TM M is deterministic (DTM)
if (q1,s1,s′1,m1,q′1),(q2,s2,s′2,m2,q′2) ∈ T with (s′1,m1,q′1)
= (s′2,m2,q′2) implies
(q1,s1)
= (q2,s2).

There exist several structurally different definitions for TMs in the literature. In par-
ticular, there may be k > 1 tapes, one-sided tapes (i.e., the indices are restricted

36 S. Haar and T. Masopust

to N), etc. All these models can be shown to be equivalent in the sense that the com-
putability/decidability notions they define coincide. Of course, the concrete con-
structions proving each of these equivalences involve non-trivial modifications of
alphabets, state spaces, etc., and produce very different machines.

The dynamics of TMs are illustrated in Fig. 2.9.

Fig. 2.9 One-Tape Turing Machine executing (q,a,b,R,q′)

Definition 2.15 (TM Languages). Let M = (Q,Σ ,$,T,q0,Qm) be a Turing ma-
chine. A global state/configuration (q,w,z) of M consists of the current state q,
the content w of the tape cells that are not $, and the index z ∈ Z

k of the current
positions of heads. The input is the non-$ tape content in the initial configuration.
Computation M (x) of M on input x halts if it is finite and ends in a final state. Input
x is accepted if M (x) halts in an accepting state, and rejected if M (x) halts in a
non-accepting (rejecting) state. The set T(M)⊆ Σ̃∗ of inputs accepted by M is the
language accepted by M . Languages accepted by TMs are called recursively enu-
merable; denote the class of recursively enumerable languages by REN. A language
L such that there exists a TM ML which always halts when given a finite sequence
of symbols from the alphabet of the language as input, and such that T(ML) = L, is
called recursive or decidable; the class of these languages is denoted REC.

The following is a small selection of results from a vast collection.

1. L ⊆ Σ∗ is type 0 if and only if it is recursively enumerable (and therefore REN
appears rightfully in (2.1) above).

2. Cse� REC� REN
= 2Σ∗ .
3. For any multi-tape machine M there exists a single-tape machine M ′ that simu-

lates M , i.e., L(M) = L(M ′), using only quadratically more computation time.

2 Languages, Decidability, and Complexity 37

4. Many more equivalences hold; e.g., every DTM can be simulated by a DTM
having only two states.

The following definition establishes TMs as a model for computation.

Definition 2.16 (Computability). For an input x such that M (x) halts, denoted by
fM (x) the tape content on halting. Any function f : Σ̃∗ → Σ̃∗ for which there exists
a TM M with f (w) = fM (w), for all w ∈ Σ̃∗, is called computable.

Theorem 2.8 (Decidability). A language L⊆ Σ∗ is decidable if and only if its char-
acteristic function χL : Σ∗ → {0,1} is computable.

We can now state the celebrated Church-Turing-Rosser Thesis.

EVERYTHING COMPUTABLE CAN BE COMPUTED BY A TM.

This thesis is not a claim about a mathematical object, and hence cannot have a
proof. Instead, it postulates that the computability notion defined via the TM model
is the “right” model. The reader willing to follow the thesis is therefore invited to
continue with the remainder of the chapter.

2.4.1 Universal Turing Machine

One can see the TM-based computational model as a “programmable machine”,
in the sense that one strives to find a universal TM U whose inputs consist of a
description 〈M ,x〉 of a TM M and an input x such that M (x) is simulated on U .

Such a construction is actually possible: Σ̃U encodes the i th symbol of Σ̃M by
the binary description of i; similarly for QM and x; L, R, S are 00,01,10; parts of the
encoding are separated by special symbols, e.g. “;”. Three tapes are needed: one for
the description of M and x, one for simulating M ′s tape, and one for the description
of M ′s current state and the symbol read by M ′s tape head. If M halts, then U
halts with the final state of M . If the input is not a valid description of a TM and an
input, U never halts.

Again, we give a selection of results on the halting problem.

Theorem 2.9. The universal language LU = {〈M ,w〉 | w ∈ L(M)} is recursively
enumerable.

Proof. Proof by construction of a universal TM. �

Let 〈M 〉 denote a string encoding of M . The following theorem says that there
exists a TM which can construct a description of M from its encoding.

Theorem 2.10. The function 〈M 〉 �→ 〈M ,〈M 〉〉 is computable.

Theorem 2.11. If L and Lc are recursively enumerable, then L and Lc are recursive.

Proof. A new TM to decide L runs TMs for both L and Lc in parallel. As each word
w is either in L or in Lc, the machine always halts. �

38 S. Haar and T. Masopust

Theorem 2.12. Lc
U is not recursively enumerable, so LU is not recursive.

Proof. The proof is by contradiction. Let MN be a TM with L(MN) = Lc
U . Con-

struct a TM D such that L(D) = {〈M 〉 | 〈M 〉
∈ L(M)}. Apply MN to 〈D,〈D〉〉.
Then we have the absurdity 〈D〉 ∈ L(D)⇐⇒ 〈D〉
∈ L(D). �

Theorem 2.13. The halting problem is undecidable, that is, the language Lhalt =
{〈M ,x〉 |M (x) halts} is recursively enumerable but not recursive.

Proof. The proof is by contradiction as in the above. �

2.4.2 Decidable and Undecidable Problems

Reduction is a strategy for showing that a problem P � (D ∈ S) is undecidable. It
consists of two steps:

1. Take an undecidable problem P′ � (D′ ∈ S′);
2. Reduce P′ to P by giving a recursive function f : S′ → S such that for all D′ ∈ S′,

(D′ ∈ S′)⇐⇒ (f (D) ∈ S).

Examples of Decidable Problems

• The word problem for a DFA A: w ∈ L(A)?
• Emptiness problem for a DFA A: L(A) = /0?
• Equivalence of regular expressions.
• Emptiness problem, word problem, finiteness problems for context-free

languages.
• The word problem for context-sensitive languages.

Examples of Undecidable Problems

Rice’s theorem: For Q⊆ REN such that /0
= Q
= REN, the problem P � (L ∈ Q) is
undecidable.
Post’s Correspondence Problem (PCP): Given two sequences of words (u1, . . . ,un),
(v1, . . . ,vn) ∈ (Σ∗)n. The question is whether there exist k > 0 and indices i1, . . . , ik
such that ui1 . . .uik = vi1 . . .vik .

The PCP is a very popular undecidable problem in the literature for its reducibil-
ity to other problems since it often allows for shorter or more elegant proofs than
reducing directly the halting problem. There exist several proofs of undecidability of
the PCP; a reduction of the halting problem goes as follows (see, e.g., [15]): Given
a TM, construct pairs (ui,vi) as blocks, each of which has two fields, with name ui

in the top field and vi in the bottom field so that aligning these blocks, the top and
bottom rows form words that code the moves of the TM, which halts exactly if and
only if the PCP can be solved.

2 Languages, Decidability, and Complexity 39

Turning to other formal languages, the emptiness problem for type 1 grammars
is undecidable. Furthermore, for G1,G2 context-free, and R ∈ Reg, the following
problems are known to be undecidable:

• L(G1) = Σ∗?
• L(G1)∩L(G2) = /0?
• L(G1)⊆ L(G2)?
• L(G1) = L(G2)?

• R⊆ L(G1)?
• L(G1) ∈ Reg?
• Is L(G1)∩L(G2) context-free?
• Is L(G1)

c context-free?

2.5 Complexity Classes

While the previous section asked whether a given problem is possible to decide, we
now ask, for problems known to be decidable, how difficult it is to solve. That is:

• What type of computation is needed (deterministic/nondeterministic TM)?
• What is the time and space required?

Let us formalize this.

Definition 2.17. A non-decreasing function f : N→N is constructible if there exists
a TM M such that for input x with |x|= n, M (x) produces output of length f (x)

• in time (number of transitions) O(n+ f (n))
• and space O(f (n)) (number of cells visited).1

For fixed f , language L is in

• NTIME(f) (TIME(f)) if there exists n0 ∈N and a TM (DTM) M that takes time
f (n) for every x ∈ L such that |x|� n0.

• NSPACE(f) (SPACE(f)) if there exists n0 ∈ N and a TM (DTM) M that takes
space f (n) for every x ∈ L such that |x|� n0.

We have some obvious inclusions:

TIME(f) ⊆ NTIME(f)

SPACE(f) ⊆ NSPACE(f)

∀ k > 0 : TIME(k f) ⊆ TIME(f)

NTIME(k f) ⊆ NTIME(f)

∀ k > 0 : SPACE(k f) ⊆ SPACE(f)

NSPACE(k f) ⊆ NSPACE(f)

1 O(f (n)) denotes the class of functions that do not grow faster than f , i.e., O(f (n)) = {g :
N→ N | ∃c ∈ N,∀n ∈ N : |g(n)|� c · | f (n)|}; see the literature for more details.

40 S. Haar and T. Masopust

Other inclusions require more work, see [8, 15]. For every constructible f ,

NTIME(f) ⊆ SPACE(f)

NSPACE(f) ⊆
⋃

i∈N
TIME

(
i f+log(n)

)

The following list collects the classes most currently used, obtained by taking canon-
ical functions for f , i.e. f (n)≡ log2(n) or f (n)≡ nk.

LOGSPACE � SPACE(log2(n))

NLOGSPACE � NSPACE(log2(n))

P= PTIME �
⋃

k∈N
TIME(nk)

NP= NPTIME �
⋃

k∈N
NTIME(nk)

PSPACE �
⋃

k∈N
SPACE(nk)

NPSPACE �
⋃

k∈N
NSPACE(nk)

EXP= EXPTIME �
⋃

k∈N
TIME(2nk

)

NEXP=NEXPTIME �
⋃

k∈N
NTIME(2nk

).

We have the hierarchy of

LOGSPACE ⊆ NLOGSPACE⊆ PTIME⊆ NPTIME⊆ PSPACE⊆ NPSPACE .

Here, some inclusions may not be proper ones, see below.

2.5.1 Reduction

Reduction is used to prove that a particular problem belongs to a complexity class.

Definition 2.18. A reduction from f : A→{tt, ff} to f ′ : B→{tt, ff} is a computable
function h : A→ B such that ∀a ∈ A, f ′(h(a)) = f (a).

Complete and Hard Problems

Definition 2.19. A problem P in a class C is complete for C if every P′ in C reduces
to P via a function h computable in C.

2 Languages, Decidability, and Complexity 41

One frequently encounters the notion of NP-hard problems. A problem P is NP-hard
if there exists an NP-hard problem P′ that is polynomial-time Turing reducible to P.
Note that a problem can be NP-hard without being NP-complete; this is the case of
the (undecidable!) halting problem discussed above. Thus, an NP-hard problem is
NP-complete if it in addition belongs to NP.

Finally, the problem “Is P= NP?” is probably the most famous open question in
computer science.

Examples from NP

For more details, the reader is referred to [3].

Satisfiability (SAT)

Let φ be a propositional formula, i.e., connecting atoms pi ∈ At by ¬,∧,∨. The
question is: Is φ satisfiable, i.e., is there ν : At →{tt, ff} such that ν(φ) = tt?

• SAT is in NP: a TM “guesses” ν and computes ν(φ) in polynomial time.
• SAT is NP-complete; to see this, let L ∈ NP and let M be a TM that solves L in

(nondeterministic) polynomial time. One constructs a formula that holds if and
only if M halts and accepts (Cook 1971).

Hamiltonian Circuit (HC)

Take a directed graph G = (V,E) with V = {v1, . . . ,vn}. Does there exist a permu-
tation σ of {1, . . . ,n} such that ∀ 1 � i � n− 1, (vσ(i),vσ(i+1)) ∈ E?

• HC is in NP since a TM can solve HC by trial-and-error in polynomial time.
• HC is NP-complete, which can be shown by reducing SAT to it.

The Knapsack Problem

Given v1, . . . ,vn,w ∈ N. Is there I ⊆ {1, . . . ,n} such that ∑i∈I vi = w?
NP completeness of Knapsack is shown by reduction of (a variant of) SAT to it.

Weighted Path (WP)

In a weighted graph G = (V,E, p) with p : E → N and u,v ∈ V , find a path from u
to v such that the edge weights sum to a fixed value N.
NP-completeness follows here because Knapsack can be reduced to WP.

42 S. Haar and T. Masopust

The Class PSPACE

First of all, we have the following result:

Theorem 2.14. [Savitch 1970] The problem of accessibility in a directed graph with
n vertices can be solved in space O((logn)2).

As a corollary, we have that PSPACE = NPSPACE. The following problems are
from PSPACE:

• Satisfiability of a Boolean formula with quantifiers (∃, ∀).
• Universality of regular languages: L = Σ∗?

Note that L = /0 is in PTIME but L = Σ∗ is not!

2.6 Further Reading

An introduction to automata and formal language theory can be found in [5, 10, 15,
16], and advanced material in [11, 14, 17]. More details on complexity, computabil-
ity, and decidability can be found in [1, 2, 7, 8, 9], and a long list of NP-complete
problems can be found in [3].

References

1. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem, 2nd edn. Springer,
Berlin (2001)

2. Bovet, D.P., Crescenzi, P.: Introduction to the Theory of Complexity. Prentice Hall, New
York (1994)

3. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman & Co., New York (1990)

4. Ginsburg, S.: Algebraic and Automata-Theoretic Properties of Formal Languages.
North-Holland, Amsterdam (1975)

5. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages
and Computation, 3rd edn. Addison Wesley, Boston (2006)

6. Jirásková, G., Masopust, T.: Complexity in union-free regular languages. International
Journal of Foundations of Computer Science 22(7), 1639–1653 (2011)

7. Jones, N.D.: Computability and Complexity from a Programming Perspective. MIT
Press, Cambridge (1997)

8. Kozen, D.C.: Automata and Computability. Springer, Berlin (1997)
9. Papadimitriou, C.: Computational Complexity. Addison Wesley, Boston (1993)

10. Rozenberg, G., Salomaa, A.: Handbook of Formal Languages, pp. 1–3. Springer, Berlin
(1997)

11. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, New York
(2009)

12. Salomaa, A.: Formal Languages. Academic Press, New York (1973)

2 Languages, Decidability, and Complexity 43

13. Salomaa, A.: Computation and Automata. Cambridge University Press, Cambridge
(1985)

14. Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cambridge
University Press, New York (2008)

15. Sipser, M.: Introduction to the Theory of Computation, Course Technology, 2nd edn.,
Boston, MA (2005)

16. Sudkamp, T.: Languages and Machines: An Introduction to the Theory of Computer
Science, 3rd edn. Addison Wesley, Boston (2005)

17. Szepietowski, A.: Turing Machines with Sublogarithmic Space. Springer, Berlin (1994)

	Languages, Decidability, and Complexity
	Introduction
	Regular Languages and Automata
	Words and Languages
	Regular Languages
	Automata
	Closure Properties of Regular Languages
	Regularity and Recognizability
	Criteria for Regularity
	Minimality

	Chomsky Grammars
	Type 0 Grammars and Languages
	Type 1: Context-Sensitive
	Type 2: Context-Free Languages and Pushdown Automata
	Type 3 Languages
	The Chomsky Hierarchy

	Turing Machines and Decidability
	Universal Turing Machine
	Decidable and Undecidable Problems

	Complexity Classes
	Reduction

	Further Reading
	References

