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Abstract

Petri net unfoldings are a useful tool to tackle state-space explosion in verifica-
tion and related tasks. Moreover, their structure allows to access directly the
relations of causal precedence, concurrency, and conflict between events. Here,
we explore the data structure further, to determine the following relation: event
a is said to reveal event b iff the occurrence of a implies that b inevitably occurs,
too, be it before, after, or concurrently with a. Knowledge of reveals facilitates
in particular the analysis of partially observable systems, in the context of di-
agnosis, testing, or verification; it can also be used to generate more concise
representations of behaviours via abstractions. The reveals relation was previ-
ously introduced in the context of fault diagnosis, where it was shown that the
reveals relation was decidable: for a given pair a, b in the unfolding U of a safe
Petri net N , a finite prefix P of U is sufficient to decide whether or not a reveals
b. In this paper, we first considerably improve the bound on ∣P ∣ and show that
the new bounds are optimal for the method presented. We then show that there
exists an efficient algorithm for computing the relation on a given prefix. We
have implemented the algorithm and report on experiments.

Keywords: Structure and behaviour of Petri Nets, partial-order theory of
concurrency, automatic analysis

1. Introduction

Petri nets (see e.g. [1, 2]) and their partial-order unfoldings [3, 4, 5] have
long been used in model checking. Their crucial feature is the partial-order
representation of concurrency, allowing to escape from the state-space-explosion
problem that is brought about by the use of interleaving semantics [6].

In this paper, we will focus on the problem of determining the following
relation: an event a is said to reveal another event b iff, whenever a occurs,
the occurrence of b is inevitable. This does not imply that a and b are causally
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Figure 1: Left – an indirect dependency in Sokoban exhibiting a reveals-relation. Right – a
safe Petri net model of the Sokoban situation on the left.

related (though they may be); in fact, b may have occurred before a, lie in the
future of a, or even be concurrent to a.

Consider the Sokoban situation in Figure 1. In this game, agents A, B and
C are allowed to move on the white squares only, each allowed step leading from
their square to an adjacent square (horizontally or vertically), pushing any box
X, Y or Z from the target square to the next white square in the direction
of the move, unless that square is occupied by a block or an agent. Hatched
squares are forbidden. With the coordinate system of the figure, we have that

∙ Agent A can move from �1 to �2, pushing X to �3; call this transition x;

∙ Agent C can move from �5 to �4, pushing Z to �3; this is transition z;

∙ finally, agent B can move to 
3 and push Y to �3 (transition y1), and
then move on to �3, pushing Y to �3 in transition y2.

The right hand side of Figure 1 shows the example modeled in the form of a
safe Petri net, on which we will build the formal analysis below. Note that for
simplicity, the example was chosen such that every action can be executed at
most once. What we are interested in is the dependency between actions and
how their occurrences can be inferred from partial observation. Note first that
action y2 blocks action x and vice versa, and similarly y1 and z exclude one
another. Now, suppose the actions of agent A are unobservable, but we have
information confirming that z has occurred. Then we cannot say whether x has
occurred or is yet to occur; however, it is certain that x is now inevitable since no
obstacles can be put in its way anymore. That is, occurrence of x is revealed by
the observation of z. In the context of a large multi-agent system (warehousing,
traffic coordination, ...) such indirect dependencies abound. In our opinion,
supervision of large systems – across application contexts – should be enabled
to exploit them via formal tools, for inference purposes, reduction of exploration
space, etc. The present paper intends to contribute to the development of such
tools.

To some degree, the reveals relation we study here is complementary to the
well-known conflict relation: a and b are in conflict if the occurrence of a implies
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that the occurrence of b is impossible. Notice however that the conflict relation
is symmetric while reveals is not.

We further emphasize that the reveals relation is essentially a non-temporal
relation, as opposed to temporal properties or the synchronic distance of e.g.
[7, 8, 9]. The latter measures the quantitative degree of independency in the
repeated occurrences of two net transitions, whereas a ⊳ b holds if and only if
event a implies event b.

The reveals relation was first introduced in [10]; more properties and discus-
sions of its applications are given in [11]. An important motivation for studying
reveals lies in the partial observability of many systems in applications such as
those related to fault diagnosis. The idea is that a ⊳ b implies that it suffices to
observe a to infer occurrence of b; conversely, b does not have to be observable
itself, provided a or any other event that reveals b is observable.

This binary relation is the topic of the present article. Recently, [12] gave
generalizations that include a reveals relation connecting pairs of sets of events;
however, even in this general setting the binary relation turns out to play a
central role. Its exploration and effective computation remains therefore an
important task, not only for the structural theory. In fact, ⊳ is relevant in
general for opacity-related properties and tasks concerning concurrent systems;
potential and actual applications include verification diagnosability (see [11, 13])
and other properties, conformance testing, synthesis of controllers and adaptors.

Concerning the task at hand, note that it was shown in [11] that the reveals
relation can be effectively computed for unfoldings of safe nets. For each pair of
events (a, b), a suitable finite prefix whose height exceeds that of a and b by at
most a uniform bound, is sufficient to verify if a reveals b. Here, we make the
following contributions:

∙ We considerably improve the bound on the size of the finite prefix needed
to decide whether a reveals b. While the previous bound seemed to make
this decision impracticable, the new bound gives much more hope to de-
termine the relation in practice. A class of examples shows that the new
bound is tight. Moreover, we show that deciding the reveals relation is
PSPACE-complete.

∙ Motivated by this, we discuss an efficient algorithm that computes the
entire reveals relation within a given prefix. The algorithm can be imple-
mented completely with bitset operations.

∙ We have implemented the algorithm and report on experiments, notably
on the following questions: how big is the prefix necessary to determine
the reveals relation, and how much time does it take to compute said
relation on a given prefix? Concerning the second question, the algorithm
turns out to be suitably fast; it works on prefixes with tens of thousands
of events in a few seconds, and usually takes less time than the actual
construction of the prefix.

We proceed as follows: Section 2 introduces Petri nets, their unfoldings, the
reveals relation, and some of its salient properties. Section 3 gives the new
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bound on the size of the prefix. Section 4 presents an algorithm for computing
reveals on a given prefix, and Section 5 presents the experiments. We conclude
in Section 6.

2. Definitions

This section introduces central definitions and facts about Petri nets, their
unfoldings, and the reveals relation. While most definitions and some results
would be valid in the case of Petri nets that are bounded, but not 1-bounded,
our main interest is in 1-bounded (aka safe) nets. Moreover, lifting to non-safe
nets brings little additional insight but makes arguments much more technical
and cumbersome; we therefore chose to focus on safe nets.

2.1. Petri nets

A Petri net is a triple N = (P, T, F,M0), where P and T are disjoint sets
of places and transitions, respectively, and F ⊆ (P × T ) ∪ (T × P ) is the flow
relation. Any function M :P → IN is called a marking, and M0 is the initial
marking. By node, we shall mean an element from the set P ∪ T .

In figures (e.g., the left-hand side of Figure 2), circles represent places, rect-
angular boxes represent transitions, and directed edges represent F . A marking
M is represented by black tokens.

For a node x, call ∙x := {x′ ∣ (x′, x) ∈ F } the preset, and x∙ := {x′ ∣
(x, x′) ∈ F } the postset of x. Moreover, for any set X ⊆ P ∪ T , set

∙X :=
∪
x∈X

∙x and X∙ :=
∪
x∈X

x∙.

Transitions induce a firing relation among markings, as follows: Let M,M ′ be

markings and t a transition. Then we write M
t−→ M ′ iff M(p) ≥ 1 for every

p ∈ ∙t and M ′(p) = M(p) − 1 if p ∈ ∙t ∖ t∙, M ′(p) = M(p) + 1 if p ∈ t∙ ∖ ∙t,
and M ′(p) = M(p) otherwise. In words, we also say that t is enabled in M , and
that firing it leads to M ′.

A finite sequence � := t1 . . . tk of transitions is a run iff M0
t1−→ M1 ⋅ ⋅ ⋅ tk−→

Mk for some markings M1, . . . ,Mk; if such a run exists, then Mk is said to be
reachable. The set of reachable markings is denoted R(N). A net is said to
be safe if no reachable marking puts more than one token into any place. As
explained above, all the nets we are interested in will be safe. Thus, we shall
henceforth treat markings as subsets of P .

The Sokoban example of Figure 1, left, can be modeled as the safe Petri net
shown on the right hand side of Figure 1: the transitions are x, y1, y2 and z
as described above, and the places describe positions, such that C�5 stands for
”agent C on �5”, 0�3 stands for ”�3 is empty” etc.

Returning to semantics, the notion of run extends to infinite sequences: call
infinite sequence t1t2 . . . a run if every prefix of it is one. A run � is fair iff

∙ either � is finite, and in the marking reached by �, no transition is enabled;
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∙ or � = t1t2 . . . is infinite, where M1,M2, . . . are the markings generated
by firing �, and there exists no pair t ∈ T and i ≥ 1 such that t is enabled
in all Mk, k ≥ i and t ∕= tk for all k > i.

In other words, a fair run cannot delay firing an enabled transition forever.

2.2. Occurrence nets

Occurrence nets are a specific type of acyclic Petri net. Keeping with tradi-
tion, we shall call the places of an occurrence net conditions and its transitions
events. Fix a safe Petri net O = (C,E, F,C0) for the rest of this subsection.
We let < denote the transitive closure of F and ≤ the reflexive closure of <;
further, if e ∈ E is an event, let ⌈e⌉ := { e′ ∈ E ∣ e′ ≤ e } be the cone of e, and
⌊e⌋ := ⌈e⌉ ∖ {e} the pre-cone of e.

Two nodes x, x′ are in conflict, written x # x′ if there exist e, e′ ∈ E such
that (i) e ∕= e′, (ii) ∙e ∩ ∙e′ ∕= ∅, and (iii) e ≤ x and e′ ≤ x′.

O is called an occurrence net if it satisfies the following properties:

1. no self-conflict: ∀x ∈ C ∪ E:¬(x # x);

2. < is acyclic, i.e. ≤ is a partial order;

3. finite cones: all events e satisfy ∣⌈e⌉∣ <∞;

4. no backward branching: all conditions c satisfy ∣∙c∣ ≤ 1;

5. C0 ⊆ C is the set of ≤-minimal nodes.

Example 1. The right hand side of Figure 2 shows an occurrence net. The
events a and c are both in conflict with b, yet not with one another; in fact, they
are concurrent (neither ordered nor in conflict).

Let O = (C,E, F,C0) be an occurrence net. We call O′ = (C ′, E′, F ′, C0) a
prefix of O if

∙ C ′ ⊆ C, E′ ⊆ E, F ′ = F ∩ (C ′ ∪ E′)2, and moreover C ′ ⊇ C0 ∪ (E′)
∙
;

∙ C ′ and E′ are downward-closed, i.e. for any x ∈ C ′ ∪ E′ and y < x we
have y ∈ C ′ ∪ E′.

A prefix is called finite if C ′ and E′ are finite sets. Notice that each prefix is
uniquely determined by its set of events. We denote by O[E′] the unique prefix
of O whose set of events is E′.

Let C ⊆ E be a downward-closed and conflict-free set of events, that is,
e ∈ C and e′ < e imply e′ ∈ C, and e, e′ ∈ C implies ¬(e # e′). Then we
call C a configuration of O. Given a configuration C, we define Cut(C) to be
the set of ≤-maximal conditions of O[C]. Moreover we define the postfix O/C
to be the occurrence net (C ′′, E′′, F ′′, C ′′0 ), where C ′′ = C ∖ ∙C, E′′ = E ∖ C,
F ′′ = F ∩ (C ′′ ∪ E′′)2, and C ′′0 = Cut(C).

If C is a finite configuration and e ∈ E ∖ C an event such that ∙e ⊆ Cut(C).
In this case, C′ := C ∪ {e} is a configuration, and we write C e

↝ or C e
↝ C′.

By extension, for a finite configuration C and a set A = {e1, . . . , en} of events,
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Figure 2: A Petri net (left) and a prefix of its unfolding (right)

we write C A
↝ C′ iff there exist C0, . . . , Cn such that C0 = C, Cn = C′, and for

all i = 1, . . . , n, Ci−1 ei
↝ Ci. We write C ⊑ C′ if there exists a set A such that

C A
↝ C′.

The following facts are well-known, see e.g. [14, 4]:

∙ A downward-closed set C ⊆ E is a configuration iff the elements of C can
be arranged to form a run � of O. We have that � can be chosen fair iff
C is maximal. Moreover, if C is finite, then � leads from C0 to Cut(C).

∙ For every event e, ⌈e⌉ and ⌊e⌋ are configurations.

∙ Let c, c′ ∈ C be a pair of distinct conditions. Then exactly one of the
following three statements holds:

– c and c′ are causally related, i.e. c < c′ or c′ < c;

– c and c′ are in conflict, i.e. c # c′;

– c and c′ are called concurrent, written c co c′, i.e. there exists a
configuration C such that {c, c′} ⊆ Cut(C).

A set of pairwise concurrent places is called a co-set.

2.3. Unfoldings

Let N = (P, T, F,M0) be a safe Petri net. Intuitively, an unfolding of N is
an acyclic version of N where loops of N are “unrolled”; an unfolding is usually
infinite even if N is finite.
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Formally, U = (C,E,G,C0) is called an unfolding of N if U is an occurrence
net equipped with a mapping f : (C ∪ E) → (P ∪ T ), which we extend to sets
and sequences in the usual way. We shall write f :A↔ B if the restriction of f
to A yields a bijection between A and B. Then U is the unfolding of N if the
following properties hold:

∙ f(C) ⊆ P , f(E) ⊆ T , and f :C0 ↔M0;

∙ for every co-set D ⊆ C and transition t ∈ T such that f :D ↔ ∙t, there is
exactly one event e ∈ E with f(e) = t and ∙e = D;

∙ if f(e) = t for some event e, then f : ∙e↔ ∙t and f : e∙ ↔ t∙.

With every configuration C of U we associate the marking Mark(C) :=
{ f(c) ∣ c ∈ Cut(C) }.

Example 2. Figure 2 shows a net N on the left and prefix of its unfolding on
the right; the function f is reflected in the inscriptions. It is well-known [14, 4]
that M is a reachable marking in N iff there exists a configuration C of U such
that Mark(C) = M . Moreover, if � is a run corresponding to C, then f(�) leads
from M0 to M in N . It is in this sense that U mimics the behaviour of N .

A prefix U ′ of U is called complete if it “contains” every marking of N , i.e.
for every reachable marking M ∈ R(N) there exists a configuration C of U ′ such
that Mark(C) = M . It is well-known that for any configuration C, the postfix
U/C is isomorphic to the unfolding of the net (P, T, F,Mark(C)).

2.4. The “reveals” relation

To illustrate “reveals” we shall study the occurrence net in Figure 3. We
are interested in finding relations between events of the form ’if x occurs, then
y has already occurred, or will occur eventually’, in the sense that any fair run
that contains x also contains y. In other words, this means that y is inevitable
given x.

In the context of Figure 3, it is obvious that, for any fair run �,

k ∈ � =⇒ e ∈ � =⇒ b ∈ �,

where we use k ∈ � etc informally to mean that k occurs somewhere in �. In
fact, the statement above simply reflects the causal relationship; if k happens,
then surely its cause e must have happened before.

But one also obtains the following facts in Figure 3, again for fair runs �:

a ∈ � ⇐⇒ ¬(b ∈ �) ⇐⇒ c ∈ � and c ∈ � ⇐⇒ g ∈ �.

In fact, a, c are a pair of independent transitions which can happen concurrently,
whereas c is a causal predecessor of g and yet allows to determine that g will
eventually happen. The reader is invited to check that these relations follow
from the fairness of runs. We thus define our desired relation as follows:
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Figure 3: Example of an occurrence net

Definition 1. Let O be an occurrence net and e, e′ be two of its events. We say
that e reveals e′, written e ⊳ e′, iff for all fair runs � of O e ∈ � implies e′ ∈ �.
The revealed range of event e is ⊳[e] := { e′ ∣ e ⊳ e′ }.

Notice that the definition immediately implies that ⊳ is reflexive and tran-
sitive. Moreover, there is a reveals relationship along causal successors, i.e. if
a < b, then b⊳a. The relation ⊳ is not symmetric in general: in fact, in Figure 3
we have ℎ ⊳ e but ¬(e ⊳ ℎ). On the other hand, ⊳ is not a partial order: consider
e ⊳ f and f ⊳ e in Figure 3.

One might therefore suspect that, to obtain the above facts one would have
to explore the entire set of configurations. However, the following is known:

Lemma 1 ([10, 11]). For an event e, its conflict set is defined as #[e] := { e′ ∣
e # e′ }. We have that e ⊳ e′ iff #[e] ⊇ #[e′].

Coming back to the introductory example of Figure 1, we have that the occur-
rence net is isomorphic to the net itself; it yields the four-element event structure
depicted in Figure 4, for which we have

#[z] = {y1, y2}
#[x] = {y2} ⊆ #[z].

We therefore see that z reveals x (note that z is impossible after y1 occurred).
In the light of the above, we see that all it takes - in principle - to check if

e ⊳ e′ holds is to verify whether no witness against it exists for (e, e′); we call g
a witness for the tuple (e, e′) if ¬(e # g) and e′ # g. However, notice that this
does not provide us with an effective procedure because the conflict sets can be
infinite in general (see [11]). In Section 3 we shall show that e⊳e′ can effectively
be decided.
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Figure 4: The event structure (conflict and causality relations) obtained from the unfolding
of the Petri net in Figure 1

2.5. Discussion

Relation to temporal logics. The reveals relation has similarities and differences
when compared to temporal properties such as, e.g., A(Fa → Fb) in CTL∗,
when the latter is interpreted on occurrence nets. Consider the example given

u v

a b

x

u v

a b

x

x

[...]

1

2

Figure 5: Fa → Fb versus a ⊳ b

in Figure 5. The occurrence net on the right hand side sketches the unfolding of
the 1-safe net depicted on the left; occurrences of transitions x are numbered,
all other events are unique occurrences and are therefore labelled by their cor-
responding transition. Now, we clearly have a ⊳ b. However, A(Fa→ Fb) is not
satisfied since the run � = uax∗ does not contain b.

This is due to the fact that typical temporal logics operate on the interleaved
semantics of the net whereas the reveals operator operates naturally on its
concurrent semantics and considers only maximal, i.e. fair, runs. Indeed, a ⊳ b
becomes equivalent to the above-mentioned formula when the semantics of the
latter is restricted to fair runs. However, extending temporal logics with fairness
conditions typically causes significant overhead for verification algorithms, and
for the specific case of occurrence nets, one might have to add one fairness
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condition per event. By contrast, as we shall see, computing reveals works
without such overhead, and the relation can be efficiently obtained for all pairs
of events. We therefore argue that the reveals relation

1. is complementary to temporal logics;

2. characterizes, for a given concurrent system, properties of the partial order
semantics with fairness assumptions, as opposed to interleavings;

3. is not concerned with particular temporal regions (past, present, future).

Potentially, exploring and exploiting the ⊳-relation may turn out valuable in the
context of local logics [15, 16, 17]; this lead has yet to be explored.

Facets. To complete the discussion of applications, let us recall here that the
reveals relation can also be used to reduce the size of occurrence net by the con-
traction of the strongly connected components of ⊳, called facets [11, 12]. These
components form equivalence classes of event occurrence in the sense that any
run ! that contains any event of a facet must contain all of its events. In Fig-
ure 6, the decomposition of the occurrence net from Figure 3 into its facets is
shown. The facets are {a, d, c, g}, {b, e, f}, {ℎ}, {k}; the right hand side shows
the occurrence net obtained by abstracting every facet into a single event. In
general, quotienting an occurrence net into its facets and their boundary condi-
tions yields an occurrence net whose set of maximal runs is in bijection with that
of the initial occurrence net; this procedure (for details see [11]) can reduce the
model size for analyses of any properties regarding maximal behaviours. In [12],
we focus on reduced nets, i.e. where the contraction of facets has been carried
out, and every event is a facet; in this framework, behavioural properties can
be specified in a dedicated logic ERL, for which the synthesis problem is solved
in [12]; the occurrence nets obtained in a canonical way from a logical formula
belong to a distinguished subclass of reduced occurrence nets, the tight nets.
For more traditional applications, the facet decomposition can in general yield
fast sufficient criteria for verifying properties. Consider observability-related
properties of Petri nets : if � : T → A is a partial labelling in some alphabet
A, how can one quickly decide whether some unobservable transition t - i.e. on
which � is undefined - has occurred1? By pre-computing the reveals-relation
and thus the facets on a sufficient finite prefix of the unfolding, online reason-
ings of the following type become available : If � is such that every facet in
which some instance of t occurs contains an occurrence of a distinctive label a
that t free facets do not produce, then detection of a allows to infer occurrence
of t with certainty. Given that the facet decomposition and contraction can
be computed offline, see below, and reduces the size of unfoldings dramatically,
such improvements are valuable in monitoring and supervising large distributed
networks, in particular in telecommunications [6, 18, 19].

1see [10, 13] for a detailed discussion on diagnosability
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occurrence net obtained from the left hand one through facet abstraction

3. A bound for deciding the reveals relation

Let N = (P, T, F,M0) be a safe Petri net, where P and T are finite, for the
rest of the section, and let U = (C,E,G,C0) be its unfolding, where f is the
mapping between U and N .

In this section, we shall consider the following problem: Given two events
x and y, does x reveal y? As pointed out in Lemma 1, this requires to decide
whether a witness exists. We shall show that the height of a witness is bounded,
i.e. it suffices to search a finite prefix of U to find a witness. The existence of
a finite bound, albeit a much higher one, was first pointed out in [11], and we
start by re-stating that result.

Definition 2. Associate to each event e a marking of N by taking Me :=
Mark(⌈e⌉). We shall define a sequence (Li)i≥1 of sets of events, the so-called
level-i cutoffs, and a sequence of prefixes (Ui)i≥1, the so-called level-i prefixes.

We let e ∈ L1 if Me = M0 or there exists an event e′ such that e′ < e and
Me′ = Me. For i > 1, we let e ∈ Li iff there exists an event e′ ∈ Li−1 such that
e′ < e and Me′ = Me. For i ≥ 1, let Lmin

i be the ≤-minimal events of Li. We
let Ui := U [L′i], where L′i :=

∪
e∈Lmin

i
⌈e⌉ is the downward-closure of Lmin

i .

Intuitively, the prefix U1 contains all reachable markings and unrolls each
loop in the Petri net exactly once; notice that the events L1 are exactly those
events that return the net to a marking that was reached before. The prefix U2

unrolls each loop once more and so on. The following result is shown in [11]:

Theorem 1. [11] Let m be the the minimal index such that Um contains event x,
and let n be the corresponding index for y. Moreover, let KM be the number of

11



reachable markings of the net N . Then, if ¬(x ⊳ y), there exists a witness in
UKM+max{m,n}−1.

KM is guaranteed to be finite for safe nets, hence Theorem 1 establishes the
decidability of ⊳. However, KM is difficult to determine exactly and in general
very large, not to mention the size of UKM+max{m,n}−1. We shall see that this
bound can be improved. Formalizing the discussion after Lemma 1, we define,
for events x, y, z, the witness predicate wit(x, y, z):

wit(x, y, z) :⇐⇒ (z # y) ∧ ¬ (z # x) .

To prepare the main result, let us first define the height function ℋ. Let O be
an occurrence net and e one of its events. Then

ℋ(e) := 1 + max
e′∈∙(∙e)

ℋ(e′), where max ∅ := 0.

For a condition c we define ℋ(c) := ℋ(e), where {e} = ∙c, or ℋ(c) := 0 if
c ∈ C0. Moreover, for a finite prefix whose events are E′, we define:

ℋ(O[E′]) := max
e∈E′

ℋ(e)

Let M be a reachable marking of N and N (M) = (P, T, F,M), i.e. N with M
as the initial marking. Moreover, let UM be the unfolding of N (M) and UMi
the analogous prefixes according to Definition 2. Let K(M) := ℋ(UM1 ), and

K := max
M∈R(N)

K(M). (1)

Lemma 2. The value of K is bounded above by the height ℋ(U2) of the level-2
prefix of N .

Proof: We first show that U1 is a complete prefix. Indeed, in [3] an event e is
called a cut-off of U if Me = M0 or there exists an event e′ such that Me′ = Me

and ∣⌈e′⌉∣ < ∣⌈e⌉∣. It is shown in [3] that a prefix that contains all minimal
cutoffs is complete. Evidently, e′ < e implies ∣⌈e′⌉∣ < ∣⌈e⌉∣ and is a stronger
condition, therefore our prefix U1 contains all such minimal cutoffs and is also
complete.

Let M ∈ R(N). By completeness of U1, there exists a configuration C in U1

such that Mark(C) = M . Now, by construction of U2, the postfix U2/C contains
an isomorphic copy of UM1 . □

We now state the main result of this section:

Theorem 2. Let N be a safe Petri net, U its unfolding, and let K as defined in
Equation 1. For any two events x, y such that ¬(x ⊳ y), there exists an event z
such that

1. wit(x, y, z) and

2. ℋ(z) ≤ n+K − 1, where n := max(ℋ(x),ℋ(y)).
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Figure 7: Rough sketch of the proof of Theorem 2; there exists a condition b in the preset
of both u and z; moreover, u < y and n = max(ℋ(x),ℋ(y)). From Cuxz we construct the
smaller configuration C.

Proof: The idea of the proof is illustrated in Figure 7. Let f be the mapping
between N and U . If ¬(x ⊳ y) then some event z satisfying wit(x, y, z) exists;
it remains to determine the maximal height of z. If x # y, we are done imme-
diately, taking z := x. Otherwise, Cxy := ⌈x⌉ ∪ ⌈y⌉ is a configuration. Choose
z ∈ E such that wit(x, y, z) holds, and such that z′ < z implies ¬wit(x, y, z′).
By assumption we have ¬(x # z), thus Cxz := ⌈x⌉ ∪ ⌈z⌉ is also a configuration.
Further, let u be such that u # z and u ≤ y and such that u′ < u implies
¬(u′ # z). We claim that

Cuxz := ⌊u⌋ ∪ ⌈x⌉ ∪ ⌊z⌋

is a configuration: if this were not the case, then there would be events e, e′ ∈
Cuxz such that e # e′. Since Cxy and Cxz are configurations, it would follow
w.l.o.g. that e ∈ ⌊u⌋ and e′ ∈ ⌊z⌋, so e < u and e′ < z. But then e # z and
e′ # y, both of which contradict the minimality assumptions on u and z. We
thus have

Cuxz z
↝ and Cuxz u

↝ . (2)

For n = max{ℋ(x),ℋ(y)}, let Cuxzn := { e ∈ Cuxz ∣ ℋ(e) ≤ n }. Then x ∈ Cuxzn ,

and Cuxzn
u
↝. Suppose that z satisfiesℋ(z) ⩾ n+K, and letH := ℋ(z)−n. Then

13



there exist e0, . . . , eH ∈ ⌈z⌉ such that ℋ(e0) = n and e0 < e1 < . . . < eH = z.
Set Ci := ⌈ei⌉ ∪ Cuxzn and let M i := Mark(Ci). Notice that all Ci, i = 0, . . . ,H,
are configurations since Ci ⊆ Cuxz, and that C0 = Cuxzn and M0 = Mark(Cuxzn ).

Now, a causal chain isomorphic to e1, . . . , eH exists in UM
0

, and the choice of K
implies the existence of 0 ⩽ i < j ⩽ H such that M i = M j . That is, we have
two distinct configurations C1 := Ci and C2 := Cj of U such that

1. Cuxzn ⊑ C1 ⊑ C2 ⊑ Cuxz,
2. ℋ(C1) < ℋ(C2), and

3. Mark(C1) = Mark(C2).

Mark(C1) = Mark(C2) implies that U/C1 and U/C2 are isomorphic, and there

exist sets A1, A2 with f(A1) = f(A2) such that C2 A2
↝ Cuxz and C1 A1

↝ C for
some C. Now, Mark(C) = Mark(Cuxz), so there exists an event e such that

f(e) = f(z), ℋ(e) < ℋ(z), and C e
↝. Thus, C∪{e} is a configuration containing

both x and e, so ¬(x # e).
From u # z and (2) it follows that u and z compete directly for a token, i.e.

there exists a condition b ∈ ∙u∩∙z. Since f(e) = f(z) holds, there is a condition
b′ ∈ ∙e with f(b) = f(b′). We shall prove that y # e holds by examining the
possible relationships between b and b′. Note that in the following, we shall
loosely say that some condition c is contained in some configuration C′ to mean
that c is contained in the prefix U [C′].

Conditions b and b′ are both contained in C so ¬(b # b′). Moreover, b co b′

cannot hold because N is safe. Thus, one of the following statements holds:
b = b′, b < b′ or b > b′. Before treating these cases, we first show two auxiliary
claims: (i) u /∈ C, and (ii) f(u) ∕= f(z).

(i) Remember that C1 ⊑ Cuxz, u /∈ Cuxz, and C = C1 ∪A1. Thus, if u were in
C, then u ∈ A1, and – because of f(A1) = f(A2) – there exists u′′ ∈ A2

with f(u′′) = f(u). Conditions b′′ ∈ ∙u′′ and b ∈ ∙u, with f(b′′) = f(b),
are contained in Cuxz. Hence, via the same argument as before, we obtain
¬(b′′ co b) and ¬(b′′ # b). Notice that we have ¬(u # u′′) since u′′ ∈ Cuxz
and Cuxz u

↝. However, we shall show that for the remaining cases b < b′′,
b = b′′, and b > b′′, we obtain u # u′′, a contradiction.

(a) If b < b′′, then b is consumed by u and some event t < u′′, hence
t ∈ Cuxz, t ∕= u, and u # u′′.

(b) If b = b′′, then the same holds with t = u′′.
(c) If b′′ < b, then b′′ is consumed by u′′ and some t < u. Now, ℋ(t) <
ℋ(u) ≤ n. But u′′ ∈ Cuxz ∖ C2, hence also u′′ ∈ Cuxz ∖ Cuxzn , so in
particular ℋ(u′′) > n, so t ∕= u′′ and again, u # u′′.

(ii) By contradiction, assume f(u) = f(z). Since ℋ(z) ≥ n + K, there must
be some condition c ∈ ∙z with ℋ(c) = ℋ(z) − 1 and some c′ ∈ ∙u with
f(c′) = f(c), where clearly ℋ(c′) < ℋ(u) ≤ n. Recall that c, c′ are in
Cuxz, so as above we can exclude c co c′ and c # c′. The height of c and
c′ excludes the cases c < c′ and c = c′. If c′ < c, then there must be
an event t < c < z that consumes c′. Moreover, t ∕= u because u # z.
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Figure 8: Possible situations for b′ and b.

Hence wit(x, y, t) and t < z, which contradicts our minimality assumption
about z.

We now study the remaining situations for b and b′ separately.

∙ Assume b > b′ holds (see Figure 8, left). Then there exists an event t such
that b′ ∈ ∙t and t < b. Assume e = t. Then e < b, but with that e ∈ Cuxzn

holds which is not the case. So e ∕= t holds and we conclude that e # y.

∙ Assume b < b′ holds (see Figure 8, middle). Then there exists an event t′

such that t′ < b′ and b ∈ ∙t′. As t′ ∈ C (because of t′ < e) and u ∕∈ C , we
have t′ ∕= u with b ∈ ∙t′ ∩ ∙u, hence e # y.

∙ Assume b = b′ (see Figure 8, right). By definition, b ∈ ∙e ∩ ∙u. We know
that f(u) ∕= f(z) = f(e). So clearly e ∕= u, hence e # y.

This concludes the proof that in each case for b and b′ we have e # y.
We thus obtain wit(x, y, e), and the height of e is strictly less than that of z.

Either ℋ(e) ≤ n+K − 1, and we are done; or we replace z by e and repeat the
surgery above, obtain another witness with strictly lesser height etc, until we
end up with a witness that has the desired height. □

Theorem 2 in connection with Lemma 2 implies that for any pair x, y of

concurrent events, it suffices to inspect U
Mxy

2 to determine whether x⊳y, where
Mxy := M(⌈x⌉ ∪ ⌈y⌉). Notice that this bound is much lower than the one
given by Theorem 1; in fact, contrary to the previous bound it provides hope
to actually compute the relation.

The reader will observe that in the proof of Theorem 2 we exploit the fact
that a suffix of Cuxzn with height K contains two marking-equivalent causally
related events. To find two such events, it actually suffices to search an isomor-
phic copy of the level-1 prefix starting at the marking associated with Cuxzn . It
is thus tempting to think that Lemma 2 unfolds “one level too much”. How-
ever, for a given candidate z as witness for x and y, there may be many possible
events u for which one would have to search the suffix of Cuxzn , therefore limiting
the candidates in this manner would not at all be straightforward. The value of
Lemma 2 is in bounding the set of candidates for z in a simple, effective manner.

We are not in a position to say whether there might exist another verifica-
tion method, different from the above, that provides faster decisions on reveals
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relations. However, we shall give two results showing lower bounds for the prob-
lem. First, Theorem 3 shows that deciding the ⊳ relation is PSPACE-complete.
Secondly, Proposition 4 shows that the bound on the height of the witnesses
given by Theorem 2 is tight.

Theorem 3. Given a safe Petri net N and two events x, y of its unfolding U ,
it is PSPACE-complete to decide whether x ⊳ y holds.

Proof: We assume that the N = (P, T, F,M0) is given as a list of its places,
transitions, and arcs. As for events x and y, we note that inductive definitions
of unfoldings, e.g., in [4], typically identify events by their presets and labels and
conditions by their generating event. Thus, the “canonic name” of each event
is its entire cone. The size of the input is therefore ∣P ∣+ ∣T ∣+ ∣F ∣+ ∣⌈x⌉ ∪ ⌈y⌉∣.
Let n = max{ℋ(x),ℋ(y)}.

We first show that the problem is contained in PSPACE. Given the cones of
x and y, it is easy to check whether y ≤ x (in which case x ⊳ y) or x # y, hence
we may assume ¬(x ⊳ y). For the other cases, bearing in mind that NPSPACE
= PSPACE = co-PSPACE, we shall propose a non-deterministic algorithm that
decides the existence of a witness proving ¬(x⊳y) using polynomial space. This
algorithm will non-deterministically explore some configuration C, starting with
⌈x⌉ and successively adding events to it. All that it needs to remember about
C is its cut and some information about the conditions contained in it. Since N
is safe, the number of these conditions is bounded by ∣P ∣. For every condition
c ∈ Cut(C) the algorithm remembers its label f(c) ∈ P , its height ℋ(c), and a
pointer ptr(c). Here, ptr(c) remembers whether c is part of ⌈y⌉ (that is, ptr(c)
points to that condition in ⌈y⌉ or has value ⊥ if c /∈ ⌈y⌉). Thanks to Theorem 2,
we can abort the search when the height of our configuration reaches n + K.
For our ends, it is sufficient to overapproximate K by 2∣P ∣. Storing ℋ(c) thus
takes ∣P ∣+ log n bits.

The algorithm initializes by taking C = ⌈x⌉ and obtaining the set D =
Cut(C). For each c ∈ D, it remembers its label, computes its height and checks
whether c ∈ ⌈y⌉. Then in each iteration, it non-deterministically chooses some
transition t ∈ T enabled by the marking f(D). Firing t corresponds to an event
e of U with preset D′ ⊆ D. Conceptually, C now becomes C ∪ e. The algorithm
carries out the following steps:

∙ It checks whether e ∈ ⌈y⌉. This is the case if ptr(c) ∕= ⊥ for all c ∈ D′
and ⌈y⌉ contains a t-labelled event with preset D′.

∙ If e = y, the algorithm aborts with the answer ‘no’ (the chosen configura-
tion does not contain a witness).

∙ If e /∈ ⌈y⌉ but ptr(c) ∕= ⊥, i.e. c ∈ ⌈y⌉, for some c ∈ D′, then the algorithm
answers ‘yes’ (it has found a witness).

∙ The algorithm computes H = ℋ(e) = 1 + max{ℋ(c) ∣ c ∈ D′ }. If
H = n+K, it aborts with answer ‘no’.
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∙ Otherwise, D is updated to (D ∖ D′) ∪ e∙. For each c ∈ e∙, we obtain
f(c) from t∙ and ℋ(c) = H. If e ∈ ⌈y⌉, then ptr(c) is moved to the
corresponding condition in e∙. Otherwise, ptr(c) = ⊥.

Notice that no deadlock can occur in the iteration: the algorithm will always
find at least one enabled transition in Cut(C). This is because ¬(x # y) and
⌈y⌉ ∕⊆ ⌈x⌉. Moreover, we abort as soon as we fire an event that conflicts with y,
or y itself. Thus, as long as the algorithm has not aborted, at least some event
of ⌈y⌉ is enabled. The (non-deterministic) algorithm thus uses polynomial space
and terminates in all instances, proving containment in PSPACE.

For PSPACE-hardness, we reduce the problem of single-place coverability in
safe Petri nets to the problem of checking a reveals-relation. It is known that,
given a safe net N and a place p, it is PSPACE-complete to decide whether
there exists a marking that puts a token onto p (see, e.g., [20]). Given N =
(P, T, F,M0), we produce a net N ′ = (P ′, T ′, F,M ′0), where

∙ P ′ = P ∪ {p0, p1} and M ′0 = {p0}, where p0, p1 are fresh places;

∙ T ′ = T ∪ {tx, ty, tz}, where tx, ty, tz are fresh transitions;

∙ F ′ extends F as follows:

– ∙tx = {p0}, tx∙ = M0 ∪ {p1};
– ∙ty = {p1}, ty∙ = ∅;
– ∙tz = {p, p1}, tz∙ = ∅;

Thus, N ′ may fire tx, then simulate N . At any moment it may fire ty unless
p becomes marked and tz can fire, disabling ty. The unfolding of N ′ contains
exactly one occurrence of tx and one occurrence of ty; call those events x and
y. Now, x ⊳ y iff p is not coverable. Note that ∣N ′∣ = O(∣N ∣) and that the size
of ⌈x⌉ ∪ ⌈y⌉ is constant. □

Proposition 4. For all values of m ⩾ 2 there exists a safe Petri net Nm =
(Pm, Tm, Fm,M0), transitions x, y ∈ Tm and events x, y of the unfolding Um =
(Cm, Em, Gm, C0) of Nm such that

1. f(x) = x and f(y) = y,

2. ¬(x ⊳ y), and

3. for every z ∈ Em such that wit(x, y, z),

ℋ(z) = max (ℋ(x),ℋ(y)) +Km − 1, (3)

where Km := maxM∈R(Nm)K(M) (cf. (1)).

Figure 9 illustrates a family (Nm)m⩾2 that satisfy the properties given by
Proposition 4, and therefore proves its correctness. The left-hand side shows the
safe net Nm = (Pm, Tm, Fm,M0) for m ⩾ 2. The net executes a series of loops
that return it to its initial marking: x and y fire in parallel with t1, . . . , tm−1, and
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Figure 9: Illustration of Proposition 4

then a choice arises between either y and z. Note that all reachable markings
of Nm have the following form, for i ∈ {0, . . . ,m− 1}:

Mi = {px, py, pi},

The right-hand side shows, for an arbitrary i ∈ {0, . . . ,m − 1}, the complete
prefix of the unfolding of Nm,i = (Pm, Tm, Fm,Mi), where

∙ the conditions bik are instances of tokens on pi,

∙ bxk and byk instances of tokens on px and py, respectively,

∙ the events ej are occurrences of tj ,

∙ and occurrences of x, y, z are labeled by the same name x, y, z, with primes
when necessary.

For any value of m ⩾ 2 and i ∈ {0, . . . ,m − 1}, the longest causal chain in
this prefix is formed by events ei+1, . . . , em−1, z, e1, . . . , ei, hence Km = m. For
Nm = Nm,0, the first occurrences of x and y clearly satisfy max(ℋ(x),ℋ(y)) = 1,
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and the first occurrence of z satisfies ℋ(z) = m. Moreover, we have wit(x, y, z),
and no other witness for ¬(x ⊳ y) has lower height than z. This gives the bound
claimed by Proposition 4:

ℋ(z) = m = max{H(x), H(y)}+Km − 1,

4. Algorithms for computing the reveals relation

In this section, we exploit the results of Sections 2 and 3 to exhibit two
concrete algorithms for determining the reveals relation. The main contribution
is in Section 4.1, where we show how to compute the relation between all events
in a given prefix. In Section 4.2 we discuss the question how to decide x ⊳ y for
a single pair x, y.

4.1. Computing reveals on a given prefix

For the rest of this section, let us fix a finite occurrence net O, which should
be a finite prefix of some safe Petri net, where E is the set of events. We are
going to compute the relation ⊳ between all pairs in E.

An algorithm for this purpose can be useful if either the underlying net is
free of loops (and hence the unfolding is finite), or if one wants to compute the
relation for all events of height up to n (in which case the prefix should contain
the events of height n+K − 1).

Our algorithm consists of three passes over the occurrence net that compute,
in turn, the causality relation <, the conflict relation #, and finally the reveals
relation ⊳. We assume that events in E are available in topologically sorted
order, i.e. an order ≺ where e < e′ implies e ≺ e′. Such an order can be easily
established while scanning O: e.g., one first identifies the minimal conditions
(those having no incoming arcs) and then traverses the unfolding with a standard
worklist algorithm.

For the three passes that compute <, #, and ⊳, we exploit certain causal
inheritance properties. It turns out that most operations can be implemented
with simple bitset operations.

1. In the first pass, we compute for each event e a set of events post(e) :=
{ e′ ∣ e ≤ e′ } containing its successors (and e itself). Initially, that set is
empty for all e; we then traverse E in inverse topological order, exploiting
the fact that the causal relationship is obviously transitive: e ≤ e′ iff e = e′

or there exists e′′ such that e′′ ∈ (e∙)
∙

and e′′ ≤ e′.
2. In the second pass, we compute for each event e the set conf (e) := { e′ ∣
e # e′ }, i.e., the set of events with which e is in conflict. Here, we
exploit that the conflict relation is inherited by causal successors: e # e′

iff ∙e∩∙e′ ∕= ∅ or there exists f ,f ′ such that f ≤ e, f ′ ≤ e′, and ∙f∩∙f ′ ∕= ∅.
We traverse E in topological order; each event e inherits the conflicts of its
(direct) causal predecessors and obtains new conflicts with the set post(e′)
for all events e′ with which it directly competes for some condition.
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3. In the third pass, we finally compute a set rev(e) for each event e such that
rev(e) := { e′ ∣ e ⊳ e′ }. Here, we mainly exploit two facts: e cannot reveal
any events with which it is in conflict, and it reveals all events revealed by
its causal predecessors: if e′′ ⊳ e′ and e′′ < e, then e ⊳ e′. We thus traverse
E in topological order; at each event, all known conflicts are discarded,
and events from direct causal predecessors inherited. This leaves some
events e′ for which the status is unknown (concurrent events and causal
successors), and for these we check directly whether conf (e) ⊇ conf (e′)
(compare Lemma 1).

Algorithm 1 Computing the reveals relation

post(e) := {e}; conf (e) := ∅; rev(e) := {e} for all e ∈ E
for all e ∈ E in inverse ≺-order do

for all e′ ∈ e∙∙ do
post(e) := post(e) ∪ post(e′)

end for
end for
for all e ∈ E in ≺-order do

for all e′ ∈ ∙∙e do
conf (e) := conf (e) ∪ conf (e′)

end for
for all e′ s.t. ∙e ∩ ∙e′ ∕= ∅ do

conf (e) := conf (e) ∪ post(e′)
end for

end for
for all e ∈ E in ≺-order do

for all e′ ∈ ∙∙e do
rev(e) := rev(e) ∪ rev(e′)

end for
E′ := E ∖ (rev(e) ∪ conf (e));
for all e′ ∈ E′ do

if rev(e) ⊇ rev(e′) then
rev(e) := rev(e) ∪ {e′}

end if
end for

end for

Figure 1 shows a version of the algorithm in pseudo-code. Notice that if
post(⋅), conf (⋅), and rev(⋅) are stored as bitsets (containing one bit for every
event in E), then almost all operations can be implemented using basic logical
operations on bitsets. In the first two passes, the number of such operations is
bounded by the number of arcs in U . In the third pass, the number of operations
is bounded by the pairs (e, e′) such that e′ /∈ (rev(e) ∪ conf (e)), that is by ∣E∣2
in the worst case. However, it turns out that in most cases the number of such
checks is comparatively small.
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4.2. Computing reveals for a single pair

We briefly discuss the question of how to decide x ⊳ y for a single pair of
events x, y. If one is interested in individual pairs, such a procedure may well
be more efficient than the one from Section 4.1 because it allows to limit the
events one has to consider.

Assume that x, y are events of some unfolding U , of which at least the prefix
⌈x⌉ ∪ ⌈y⌉ is known. (We assume that neither x#y nor x > y hold, otherwise
the solution is trivial.) Denote by #�[y] := { z ∣ z ∈ #[y] ∧ ∀z′ : (z′ < z →
z′ /∈ #[y] } the set of <-minimal conflicts of y, its so-called root conflicts. Due
to results from [11] we know that x ⊳ y iff #[x] ⊇ #�[y]. To find a witness, it
suffices therefore to find an event z that is not in conflict with x, but a root
conflict of y; the latter implies that ∙z ∩ ⌊y⌋ ∕= ∅.

We propose the following: First, mark the conditions in ⌊y⌋ as ‘goals’. Sec-
ondly, mark all conditions and places in conflict with x as ‘useless’ (they cannot
produce a witness), as well as all elements of ⌊x⌋ (which can equally not pro-
duce a witness by assumption). One then regards the remaining non-‘useless’
events up to the height given by Lemma 2, either by unfolding them on-the-fly
or by following them on a pre-computed prefix. A witness is found if one such
‘non-useless’ events consumes a ‘goal’ condition.

5. Experiments

We implemented the theoretical and algorithmical results of the preceding
sections and evaluated them experimentally. The problems we wanted to address
were the following:

∙ What is the value of K (as given by Lemma 2) for medium-sized nets?

∙ Provided a prefix is available, how efficiently can one determine ⊳, using
Algorithm 1?

The purpose of the experiments is thus to establish whether reveals can be
efficiently computed, even on large prefixes. In an application scenario, the
results of such a computation would then help in subsequent analyses such as
diagnosis (see Section 2).

As inputs, we chose the safe Petri net examples supplied by the PEP tool [21].
Table 1 provides some statistics on the nets we used, such as the number of places
and transitions, as well as the boundK according to Lemma 2 for each particular
net. We obtained K by modifying the Mole unfolding tool [22]. Normally, Mole
is used to compute finite complete prefixes; for our experiments, we modified
its cutoff criterion so that it would compute the unfolding prefix U2. We also
give the time, in seconds, to compute the said prefix in the rightmost column.

To make the experiments more interesting, we excluded non-cyclic examples,
where K would be obvious. For the rest, the computation of K succeeded except
in one case (mutual, more than 10 minutes). To give some indications, the size of
a complete prefix in these cases was between several dozen and a few thousand
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Table 1: Net statistics and computation of K

Petri net ∣P ∣ ∣T ∣ K Time/s

buf100 200 101 201 2.1
elevator 59 74 80 0.3
gas station 30 18 18 0.1
mutual 62 67 – t/o
parrow 77 54 91 1.6
peterson 27 31 34 0.1
reader writer 2 53 60 29 2.3
sdl arq deadlock 202 183 37 0.1
sdl arq 208 234 129 0.2
sdl example 323 471 71 0.1
sem 26 25 35 0.1

events, whereas the size of U2 was between several hundred and several ten
thousands of events. By contrast, the computation of K failed for another set
of larger benchmarks provided by Mole, whose complete prefixes already have
a size of 10,000 and more events.

To answer the second question, we implemented Algorithm 1 in Java. Our
program took a pre-computed prefix and computed the relation ⊳ on it, using
the BitSet class for most operations. The results are summarized in Table 2.
As one can see, the algorithm works well even for several tens of thousands of
events, usually computing the relation in a matter of seconds.

We detail the time for the three passes of the algorithm (all times are in
seconds); in almost each case, we have the same ordering of computation times.
The computation of the causal relation (post) takes hardly significant time, the
second pass for the computation of the conflict relation (conf ) takes a little
more time, and the third pass for the computation of the reveals relation (rev)
slightly dominates the computation time.

6. Conclusion

We presented theoretical and algorithmic contributions towards the compu-
tation of the reveals relation. The analysis in [11] had only provided the proof
that a ⊳ b could be decided on some bounded prefix of the unfolding; but the
bound (see Theorem 1) was prohibitively large, and an efficient procedure for
computing ⊳ was lacking. The present paper closes this theoretical and practical
gap. Our results give sharp bounds on the size of the prefix needed for verifying
whether or not x ⊳ y with the proposed method, and show that with a suitable
cutoff-criterion, the complete finite prefix U2 is sufficient to obtain the ⊳-relation
on U1. Moreover, an efficient algorithm for computing ⊳ on finite occurrence
nets has been proposed and tested; the experimental results clearly show that
⊳ can be obtained and used in practice.

The theory of reveals can be further developed in the lines of [12], where
a dedicated logic (called ERL) is introduced for expressing generalized reveals
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Table 2: Running times of Algorithm 1

Petri net Events post conf rev
(Time/s) (Time/s) (Time/s)

bds 1.sync 12900 0.13 0.19 0.30
buf100 17700 0.17 0.12 0.25
byzagr4 1b 14724 0.18 0.19 0.68
dpd 7.sync 10457 0.11 0.15 0.24
dph 7.dlmcs 37272 0.56 0.91 2.10
elevator75 234879 15.84 22.58 97.47
elevator 5586 0.05 0.05 0.13
elevator 4 16856 0.17 0.27 0.38
fifo20 100696 2.92 3.72 22.88
ftp 1.sync 83889 2.08 3.61 6.78
furnace 3 25394 0.29 0.47 0.95
gas station 2861 0.01 0.01 0.01
key 4.fsa 67954 1.40 2.19 4.62
parrow 85869 2.47 4.17 9.51
peterson 72829 1.60 2.54 5.23
q 1.sync 10722 0.11 0.15 0.30
q 1 7469 0.08 0.09 0.17
reader writer 2 20229 0.24 0.37 0.53
rw 12.sync 98361 2.36 5.14 6.36
rw 12 49179 0.68 1.25 1.70
rw 1w3r 15401 0.15 0.22 0.50
rw 2w1r 9241 0.10 0.11 0.25
sdl arq 2691 0.03 0.03 0.09
sem 19689 0.20 0.23 0.61

relations of the form “if all events from set A occur, then at least one event
from set B must eventually occur”, and the problem of synthesizing occurrence
nets from ERL formulas is solved. The study of further variants of logics for
concurrency in the light of the recent results has only just begun.

In addition, we intend to extend reveals-based analysis to other Petri net
classes such as Time nets and contextual nets, and to exploit it in applications
that include diagnosis and testing.
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