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We consider simulation games played between Spoiler and Duplicator on two Büchi automata in
which the choices made by Spoiler can be buffered by Duplicator in two different buffers before she
executes them on her structure. Previous work on such games using a single buffer has shown that
they are useful to approximate language inclusion problems. We study the decidability and complex-
ity and show that games with two buffers can be used to approximate corresponding problems on
finite transducers, i.e. the inclusion problem for rational relations over infinite words.

1 Introduction

Simulation is a pre-order between labelled transition systems T and T ′ that formalises the idea that “T ′

can do everything that T can”. Formally, it relates the states of the two transition systems such that each
state t′ in T ′ that is connected to some t in T can mimic the immediate behaviour of t, i.e. it carries the
same label, and whenever t has a successor then t′ has a matching one, too.

Simulation relations have become popular in the area of automata theory because they can be used to
efficiently approximate language inclusion problems for automata on finite or infinite words and trees and
to minimise such automata [9, 13, 14, 1]. Simulation relationship is usually computable in polynomial
time whereas language inclusion problems are PSPACE-complete for typical (finite, Büchi, parity, etc.)
automata on words and EXPTIME-complete for such automata on trees. Approximation is to be under-
stood in this context as follows: a positive instance of simulation yields a positive instance of language
inclusion but not necessarily vice-versa.

Games played between two players – usually called Spoiler and Duplicator– on the state spaces of
two automata yield a very intuitive characterisation which can be used to reason about simulations. It is
very easy to construct examples of pairs of automata such that language inclusion holds but simulation
does not, i.e. the game makes Duplicator too weak. This has led to the study of several extensions of
simulation relations and games with the aim of making Duplicator stronger or Spoiler weaker whilst
retaining a better complexity than language inclusion. Two examples in this context are multi-pebble
simulation [12] and multi-letter simulation [18, 7].

• In multi-pebble simulation [12], Duplicator controls several pebbles and can therefore act in fore-
sight of several of Spoiler’s later moves. This kind of simulation is still computable in polynomial
time for any fixed number of pebbles. It forms a hierarchy of more and more refined simulation
relations that approximate language inclusion.

• In multi-letter simulation [18, 7], Spoiler is forced to reveal more than one transition of the run
that he constructs in the limit. Again, these relations are computable in polynomial time for any
fixed look-ahead, that is the number of symbols that Spoiler advances in the construction of his
run ahead of Duplicator’s. In fact, all are computable in time linear in the size of each underlying
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automaton – unlike multi-pebble simulations –, and polynomial of a higher degree only in the size
of the underlying alphabet. They also form a hierarchy between ordinary simulation and language
inclusion.

In multi-letter simulations Spoiler is forced to reveal more than one transition in each round. This look-
ahead can be realised using a bounded FIFO buffer which is filled by Spoiler and emptied by Duplicator.
This has led to another extension of simulation.

• In buffered simulations [19], the letters chosen by Spoiler get stored in an unbounded FIFO buffer,
and Duplicator consumes them to form her moves. These games show a limit of what is possible in
terms of approximating language inclusion: buffered simulation is in general EXPTIME-complete
[19], i.e. even harder than language inclusion, yet there are pairs of Büchi automata on which
Spoiler wins the buffered simulation game even though language inclusion holds. This is only
true for ω-languages, though. On finite words, buffered simulation captures language inclusion
because Duplicator can simply wait for Spoiler to produce an entire word before she makes any
moves.

This may raise the question of why buffered simulation is EXPTIME-complete when it captures a
PSPACE-complete problem in this case. There is in fact a natural restriction of buffered simulation
which is only PSPACE-complete [19]; it requires Duplicator to always flush the entire buffer
when she moves. Note that simulation games on automata on finite words can be played with
this restriction since they degenerate to games with no proper alternation: first Spoiler produces a
word, then Duplicator consumes it entirely from the buffer.

In this paper we consider a natural extension of simulation games played with FIFO buffers, namely
two-buffer simulations. Again, Spoiler and Duplicator each move a pebble along the transitions of two
Büchi automata, forming runs, and Duplicator wins a play if her run is accepting or Spoiler’s is not.
The letters chosen by Spoiler get put into one of two buffers from which Duplicator takes letters to
form her run. Note that two-buffer games do not approximate language inclusion on Büchi automata
because the availability of more than one buffer introduces a commutativity property between alphabet
symbols. Since this commutativity is based on a partition of the alphabet, it matches the commutativity
in the direct product of two free monoids. Consequently, as an application, we obtain polynomial-time
computable approximation procedures for the otherwise undecidable inclusion problem between rational
relations over infinite words.

The paper is organised as follows. Section 2 recalls necessary definitions etc. on Büchi automata,
simulation games and buffered simulation games. In Section 3 we introduce and study two-buffer sim-
ulations. We show that they are potentially interesting from a point of efficiency: they can be decided
in polynomial time for any fixed number of bounded buffers and any fixed buffer capacity. We also
examine when undecidability occurs: it is not surprising that using two unbounded buffers leads to unde-
cidability since problems involving two unbounded FIFO buffers are typically undecidable, for instance
the reachability problem for a network of finite state machines communicating through unbounded per-
fect FIFO channels is undecidable for various set-ups [4, 6]. In Section 4 we present our application of
two-buffer simulation games which features the aforementioned partial commutativity to the inclusion
problem between rational relations over infinite words.



M. Hutagalung, N. Hundeshagen, D. Kuske, M. Lange & E. Lozes 29

2 Preliminaries

Automata.

A Büchi automaton is a tupleA= (Q,Σ,qI , δ,F) where Q is a finite set of states with a designated starting
state qI ∈Q, Σ is the underlying alphabet, δ⊆Q×Σ×Q is the transition relation and F ⊆Q is a designated
set of accepting states.

The language L(A) of a Büchi automaton is, as usual, the set of all infinite words for which there is
a run starting in qI that visits some states in F infinitely often. It is known that single-buffer simulation
games, as recalled below, can be used to approximate Büchi language inclusion problems [19]. However,
the simulation games introduced in Section 3 lead away from the problem of language inclusion between
Büchi automata. Hence, we are not particularly concerned with Büchi automata as acceptors of ω-
languages. Instead it suffices at this point to simply see them as directed graphs with labelled edges, a
designated starting state and some marked states that will be used to define winning conditions in games
played on these graphs. We will therefore rather write q a

−−→ p than (q,a, p) ∈ δ when the underlying
transition relation is clear from the context. We will also simply speak of automata rather than Büchi
automata to take away the focus from plain language inclusion problems.

Buffered simulation.

The buffered simulation game [19] is played between Spoiler and Duplicator on two automata A =

(QA,Σ,qI , δ
A, FB) andB= (QB,Σ, pI , δ

B,FB) on configurations of the form (q,β, p) with q ∈QA, p ∈QB

and β ∈ Σ∗. This additional component acts like a buffer through which the alphabet symbols chosen by
Spoiler get channelled before Duplicator can use them. Such a buffer has a capacity k ∈N∪{ω}. If k ∈N
then the buffer is called bounded, for k = ω it is called unbounded.

Any play of that game starts in the configuration (qI , ε, pI). Any round that has reached a configura-
tion (q,β, p) proceeds as follows.

1. Spoiler chooses a q′ ∈ QA and a ∈ Σ such that q a
−−→q′. Let β′ := aβ.

2. Duplicator can either skip her turn in which case the play proceeds in the configuration (q′,β′, p).
Or we have β′ = β′′b for some b ∈ Σ. In this case she can choose a p′ ∈ QB such that p b

−−→ p′, and
the play proceeds with (q′,β′′, p′).

A play (q0,β0, p0), (q1,β1, p1), . . . is won by Duplicator iff

• |βi| ≤ k for all i ∈ N , i.e. the buffer never exceeds its capacity, and

• either

– there are only finitely many i such that qi ∈ FA, or
– Duplicator moves infinitely often, and there are infinitely many i such that pi ∈ FB.

Otherwise Spoiler wins. We writeAvkB to state that duplicator has a winning strategy for the buffered
simulation game onA and B with buffer capacity k.

Note that according to these winning conditions, the buffer capacity is only checked after Duplica-
tor’s moves. Hence, it is possible to play on a buffer of capacity k = 0; this just means that Duplicator
has to consume the alphabet symbol chosen by Spoiler immediately. We also remark that in this def-
inition of buffered simulation game, Duplicator only ever consumes a single alphabet symbol in each
of her moves. One could equally allow her to consume several symbols from the buffer. This has no
immediate advantage for her; if she has a winning strategy then she also has one in which she only ever
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makes moves on one symbol. The reason for this is the simple fact that the buffer gives her a look-ahead
on the choices made by Spoiler in an ordinary simulation game, and winning is monotone in the amount
of information available about the opponent’s future moves.

For two automataA and B, we writeAvB if Duplicator has a winning strategy in the ordinary fair
simulation game [13].

Proposition 1 ([18, 19]). We have

a) v = v0,

b) vk ( vk+1 for any k ∈ N,

c)
⋃

k≥0v
k ( vω,

d) AvωB implies L(A) ⊆ L(B) for any Büchi automata A and B. The converse does not hold in
general.

3 Two-Buffer Simulations

3.1 Simulation Games Using Two Buffers

We fix two automataA = (QA,Σ,qI , δ
A, FB) and B = (QB,Σ, pI , δ

B,FB) and develop the theory of two-
buffer simulation games with respect to these two automata.

We assume a mapping σ : Σ→ {1,2} which assigns a buffer index to each input symbol. Hence, the
buffer that a symbol is put into is determined by the symbol itself, not by one of the players.

Definition 2. Let (k1,k2) ∈ (N∪ {ω})2 be a pair of buffer capacities, i.e. buffers can have bounded or
unbounded capacity. The two-buffer simulation game with capacities (k1,k2), denoted Gk1,k2(A,B), is
played between players Spoiler and Duplicator onA and B using two FIFO-buffers, of capacities k1,k2
and initially empty, and two tokens which are initially placed on qI and pI . A configuration is denoted
by (q,β1,β2, p), consisting of the two states which currently carry the tokens on the left and right and
the contents of the two buffers written as finite words over Σ in between. The initial configuration is
(qI , ε,ε, pI). A round consists of a move by player Spoiler followed by a move by Duplicator. In a
configuration of the form (q,β1,β2, p),

1. Spoiler selects a q′ ∈ QA and an a ∈ Σ such that q a
−−→q′. Let i = σ(a) and update the buffers as

follows: βi := aβi, i.e. a gets appended to the i-th buffer.

2. Duplicator repeats the following step k times for some k with 0 ≤ k ≤ |β1|+ |β2|.

• She selects a j ∈ {1,2} such that β j = γb for some b ∈ Σ, as well as a p′ ∈ QB with p b
−−→ p′.

Then she updates the buffers as follows: β j := γ, i.e. b gets removed from the j-th buffer. She
proceeds with (q′,β1,β2, p′), i.e. with the new state p′ instead of p.

A play is a sequence (q0,β
0
1,β

0
2, p0), (q1β

1
1,β

1
2, p1), . . . of configurations. It is won by Duplicator iff

• |βi
j| ≤ k j for all i ∈ N and j ∈ {1,2}, i.e. no buffer ever exceeds its capacity, and

• either

– there are only finitely many i such that qi ∈ FA, or
– every alphabet symbol that gets put into one of the buffers also gets removed from it eventu-

ally, and there are infinitely many i such that pi ∈ FB.

Otherwise Spoiler wins.
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Definition 3. Given k1,k2 as above, we say that B (k1,k2)-simulates A, written Avk1,k2 B if player
Duplicator has a winning strategy for the game Gk1,k2(A,B).

Example 4. Consider the following two NBAA (left) and B (right) over the alphabet Σ = {a,b,c,d} with
σ(a) = 1, σ(b) = σ(c) = σ(d) = 2.

b

a
c,d

a b

b

c

d

a

a

We haveAvω,1B, since Duplicator has a winning strategy: skipping her turn until Spoiler reads c or d.
Duplicator then consumes the entire content of the two buffers and reaches the accepting loop.

We describe a second example in order to explain a possibly apparent difference in the definitions
of the single- and the two-buffer games: in single-buffer games we let Duplicator consume at most one
symbol per round only because allowing her to consume more than one does not make her stronger.
There are two-buffer games, though, which she can only win when she is allowed to consume more than
one symbol at a time. In such games at least one buffer must be bounded; if both buffers are unbounded
then Duplicator can defer her moves for any finite number of times at any point and can never be forced
by Spoiler to consume a letter in order to not exceed a buffer capacity. Now if there are two buffers then
in order to consume an element from one that is close to overflow she may have to first consume one
from the other buffer, hence consume more than one letter in a round.

Example 5. Consider the following two NBA A (left) and B (right) over the alphabet Σ = {a,b} with
σ(a) = 1, σ(b) = 2, and the play Gω,1(A,B).

q0 q1 q2 q3

q4

q5

a a b
b

b

a

b

p0

p1 p2 p3 p4

p5 p6 p7 p8

a

a

b a b a

b a b
b

Duplicator’s winning strategy for the first three rounds is to store the three symbols chosen by Spoiler
resulting in buffer contents (aa,b). Note that then the second buffer is full. Hence, when Spoiler chooses
a b now in state q3, Duplicator must consume it in this round but in her current state p0 she only has
a-transitions available. Hence, she must consume the first a, advance to p1 or p5 depending on whether
Spoiler has moved to q4 or q5. Say it was q4 so Duplicator has moved to p1 and the current buffer
content is (a,bb). She then needs to move over to p2 creating the buffer content (a,b) and can end the
round. She could also consume the next buffered a and move to p3 with buffers (ε,b) but this does not
help her, neither in this case nor in general.

The hierarchy of buffered simulations stated in Proposition 1 easily carries over to two-buffer sim-
ulations. The total order ≤ on N∪ {ω} extends to the usual partial order of point-wise comparisons on
pairs from N∪{ω}. I.e. we have (78,6) ≤ (ω,6) but (3,4) 6≤ (5,2).

Theorem 6. For any k1,k2, `1, `2 ∈ N∪ {ω} with (k1,k2) ≤ (`1, `2) we have vk1,k2 ⊆ v`1,`2 . Moreover, if
(`1, `2) 6≤ (k1,k2) then there are automataA and B such thatA@k1,k2 B butAv`1,`2 B.
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Proof. We immediately get vk1,k2 ⊆ v`1,`2 for (k1,k2) ≤ (`1, `2) since any winning strategy for Duplicator
in Gk1,k2(A,B) is also a winning strategy for her in G`1,`2(A,B). Note that she is not required to use the
additional buffer capacities.

For the strictness part suppose w.l.o.g. that `1 > k1 which implies k1 ∈N. Then consider the two NBA
A (left) and B (right) over Σ as follows, and let Σ1 = {a ∈ Σ | σ(a) = 1}.

· · ·
Σ1 Σ1 Σ1

Σ2

· · ·
Σ1 Σ1 Σ1

Σ2

k1 + 1 k1 + 1

It should be clear that we haveAv`1,`2 B butA@k1,k2 B. �

3.2 Reductions to Ordinary Simulation

The following theorem shows that bounded buffers can be eliminated at the cost of a blow-up in Dupli-
cator’s state space. In fact, the buffer can be incorporated into Duplicator’s automaton, resulting in an
effective capacity of 0 for this buffer. The structure needs to be defined such that Duplicator can react
immediately to any alphabet symbol that would have been put into that buffer, rather than consuming the
older buffer content first and thus advancing in the automaton to a different state.

Theorem 7. Let k1 ∈N∪{ω} and k2 ∈N. For any automaton B of size n there is an automaton B′ of size
≤ 2n · (|Σ|k2+1−1) such that for any automatonA we have thatAvk1,k2 B iffAvk1,0B′.

Proof. Intuitively, we save the content of the buffers in the state space of B′. Formally, let ∆ := {a ∈
Σ | σ(a) = 2} be the set of all letters that get stored in the buffer of capacity k2 which is to be reduced
down to size 0. We write ∆≤k to denote {ε} ∪∆1 ∪ . . .∪∆k. Let B = (Q,Σ,qI , δ,F). Then define B′ :=
(Q×∆≤k2 ×{0,1},Σ, (qI , ε,0), δ′,F ×∆≤k2 ×{0}) with

δ′((q,w,d),a) =


{(q,aw,1)}∪ {(p,v,0) | aw = vb, p ∈ δ(q,b)} , if a ∈ ∆ and |w| < k2,

{(p,av,0) | w = vb, p ∈ δ(q,b)} , if a ∈ ∆ and |w| = k2,

{(p,w,d) | p ∈ δ(q,a)} , if a ∈ Σ \∆.

The third component in the states of B′ is used to indicate whether or not something has been put into
the buffer. It is not difficult to transform Duplicator’s winning strategies between the games Gk1,k2(A,B)
and Gk1,0(A,B′). Suppose Avk1,k2 B. Then, by [16], Duplicator has a positional winning strategy
σ in the game Gk1,k2(A,B). Then we can define a positional winning strategy σ′ for her in the latter
via σ′(q, (β1, ε), (p,w,d)) := σ(q, (β1,w), p) in case of |w| = k2. If |w| < k2 then she simply follows the
deterministic transitions in B′ which amount to waiting for the buffer to be filled. The transformation of
positional winning strategies in the other direction works in the same way. Note that there is no choice
for her with respect to the value of d; its value is determined by the value of the other components and
the history of a play. �

Clearly, the same argument can be used to reduce (k1,k2)-simulation to (0,k2)-simulation when k1 ∈

N.
The following result should be obvious given that two buffers of capacity 0 do not introduce any

partial commutativity between input symbols since they always have to be consumed by Duplicator
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AL

u1

un

]]̄

]]̄
v̄1

v̄n

u1

un

BL

0

1

1̄, ]̄
0̄

0̄, 1̄

0̄, ]̄
Σ

1̄

0

1

]

Figure 1: AutomataAL and BL used in the proof of Theorem 10.

immediately after Spoiler has produced them. Hence, the order of consumption remains the same as the
order in which they are produced.

Lemma 8. v0,0 = v0.

3.3 Decidability and Complexity

By applying Theorem 7 twice we can transform the input automata for a two-buffer simulation game with
bounded buffers into a pair of automata on which we need to check the relation v0,0 which, by Lemma 8
and Proposition 1 (a) is the same as ordinary fair simulation. It is known [13] that fair simulation games
can be solved in polynomial time because they are special cases of parity games of index 3, and parity
games of fixed index can be solved in polynomial time [11, 20].

Corollary 9. For every fixed k1,k2 ∈ N , the relation vk1,k2 is decidable in polynomial time.

For unbounded buffers the situation is different. Decision problems involving two unbounded buffers
typically become undecidable as stated in the introduction. Here we adapt the argument used for the
reachability problem for communicating finite state machines [4, 6], and show the undecidability of vω,ω

by a reduction from Post’s Correspondence Problem [22]. The reduction basically constructs a pair of
automata, such that to win the game Spoiler is required to produce a possible solution for the PCP and
store it in the two unbounded buffers. Duplicator’s role is to check whether this is indeed a correct
solution.

Theorem 10. The relation vω,ω is undecidable.

Proof. Let L = {(u1,v1), . . . , (un,vn)} be an input for the PCP where ui and vi are non-empty finite words
over {0,1}. We construct two automataAL andBL over Σ = {0,1, ], 0̄, 1̄, ]̄}. We write w̄ to denote ā1 . . . ām ∈

{0̄, 1̄, ]̄}∗ for w = a1 . . .am. We define σ : Σ→{1,2}, where σ(x) = 1 for x ∈ {0,1, ]}, and σ(x) = 2 otherwise.
LetAL and BL be the automata depicted in Figure 1. We abbreviate a sequence of transitions with letters
a1, . . . ,ak inAL with a single arrow.

An infinite word is accepted byAL iff it is of the form u1v̄1 . . .unv̄n(]]̄)ω. An infinite word is accepted
by BL if it starts with balanced pairs (aā)∗, a ∈ {0,1}, and at one point contains an unbalanced pair xȳ
with x,y ∈ {0,1, ]} and x , y.

We claim thatAL@
ω,ωBL iff there is a solution for L. Suppose such a solution i1, . . . , im exists. Then

Spoiler wins by producing an accepting word ui1 v̄i1 . . .uim v̄im(]]̄)ω. By Lemma 11, Duplicator has to
find a run on some word of the form x1ȳ1x2ȳ2x3ȳ3 . . . with x1x2x3 · · · = ui1ui2 . . .uim#ω = vi1vi2 . . .vim#ω =

y1y2y3 . . . , i.e., without a mismatch. Hence she cannot win the play.
On the other hand, if there is no solution for L, then no matter which path Spoiler chooses in his

automaton it will either not reach the accepting loop or it will have to contain a mismatch in the sense
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that the concatenation of the u-parts and the concatenation of the v-parts differ in one digit at some
position. Duplicator’s winning strategy consists of skipping her turn until such a mismatch is being
produced which enables her to go to the accepting loop. Otherwise she waits forever but Spoiler does
not produce an accepting run so she also wins such plays. �

3.4 The Relationship to Language-Like Inclusion Problems

Note that so far we have considered automata as finite-state devices with no particular semantics other
than that provided by the two-buffer games. Clearly, these automata are Büchi automata but we have
avoided this analogy because two-buffer games, unlike single-buffer games, lead away from the problem
of language inclusion. We end this section on two-buffer games with a lemma that relates winning
strategies in two-buffer games with a language-theoretic problem that boils down to language inclusion
in the case of a single buffer only. It is the analogy of case (d) of Proposition 1 for games with two
buffers.

Suppose the alphabet Σ and a distribution function σ : Σ→ {1,2} is given. Let Σi := {a ∈ Σ | σ(a) = i}
for any i ∈ {1,2}. For a word w ∈ Σω and an i ∈ {1,2} we write w↓i for the projection of w onto Σi. Note
that w↓i ∈ Σ∗i ∪Σωi .

Remember that L(A) is used to denote the language of A seen as a Büchi automaton, i.e. the set of
all words w ∈ Σω for which there is an infinite path labelled by w that visits final states infinitely often.

Lemma 11. LetA,B be two automata over an alphabet Σ with distribution function σ : Σ→ {1,2}. Let
k1,k2 ∈ (N∪{ω}). IfAvk1,k2 B then for every word w ∈ L(A) there is a v ∈ L(B) such that for all i ∈ {1,2}
we have w↓i = v↓i.

Proof. LetA = (QA,Σ,qAI , δ
A,FB) and B = (QA,Σ,qAI , δ

A,FB). Suppose there is a word w = a0a1 . . . ∈

L(A), i.e. there is an infinite path ρ = q0,a0,q1,a1, . . . such that qi ∈ FA for infinitely many i. Sup-
pose furthermore that we have Avk1,k2 B, i.e. player Duplicator has a winning strategy ζ for the game
Gk1,k2(A,B). We remark that the values of k1 and k2 are irrelevant for what follows; only their existence
is needed.

So suppose that Spoiler chooses the run ρ. Following ζ, player Duplicator will construct – possibly
in chunks – an infinite path ρ′ = p0,b0, p1,b1, . . . through B. Since the resulting play is winning for
Duplicator, this path must contain infinitely many states in FB. Thus, we have v := b0b1 . . . ∈ L(B). It
remains to be seen that for every i ∈ {1,2} we have w↓i = v↓i. This is a simple consequence of three facts.

1. Duplicator can only choose transitions with symbols that have been put into one of the buffers by
Spoiler. Hence, for every j there is a j′ such that b j = a j′ .

2. Every symbol that gets put into the buffer is eventually removed from it. Hence, for every j there
is a j′ such that a j = b j′ .

3. The buffers make sure that the order of two symbols from the same Σi is being preserved.

Thus, we get w↓i = v↓i for every i. �

Note that in the case of the single buffer simulation game, we necessarily have v = w in the formu-
lation of this lemma which says nothing more than L(A) ⊆ L(B). In cases with two buffers, this lemma
predicts language inclusion of the two automata modulo partial commutativity between alphabet symbols
of different σ-index. The following section shows cases of problems in which such partial commutativity
occurs naturally and shows how two-buffer games can be used to characterise such problems.
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4 Application: Approximating Inclusion of ω-Rational Relations

The main motivation for studying single-buffer games played on two Büchi automata is derived from
the fact that such enhanced simulations approximate language inclusion between Büchi automata, an
important problem in the specification and verification of reactive systems [10]. Remember that simu-
lations based on a single bounded buffer (vk for some k ∈ N) provide polynomial-time approximations
to a problem that is PSPACE-complete. Using an unbounded buffer defeats the purpose here because
vω still only provides an approximation to language inclusion but additionally it is EXPTIME-complete
[19], i.e. even harder than Büchi inclusion.

We consider the situation for rational relations1. Let Σin and Σout be finite alphabets, usually referred
to as input and output alphabets. We write Σ∞ for Σ∗ ∪Σω. An infinitary rational relation is an R ⊆
Σ∞in ×Σ∞out that is recognised in the following sense.

Definition 12 (see, e.g., [15]). A 2-head Büchi transducer is a T = (Q,Σin,Σout,qI , δ,F) where Q is a
finite set of states with a designated starting state qI ∈ Q and a designated set of final states F ⊆ Q; Σin

and Σout are two finite alphabets and δ ⊆ Q×Σ∗in×Σ∗out×Q is a finite set of transitions.
A run is an infinite sequence q0,u0,v0,q1,u1,v1, . . . over Q×Σ∗in×Σ∗out such that for all i ∈ N we have

(qi,ui,vi,qi+1) ∈ δ. The run is accepting if q0 = qI and there is some q ∈ F such that q = qi for infinitely
many i. In that case, we say that the pair (u,v) ∈ Σ∞in ×Σ∞out with u = u0u1u2 . . . and v = v0v1v2 . . . is accepted
or recognised by T .

The relation recognised by T is R(T ) := {(u,v) | (u,v) is recognised by T }.

The equivalence problem for infinitary rational relations – given T , T ′, decide whether or not R(T ) =

R(T ′) – and, hence, the inclusion problem is undecidable [2], even for deterministic transducers in the
sense above. The latter can easily be shown by a reduction from the infinitary PCP. Equivalence becomes
decidable for Büchi transducers that read a pair of exactly one input and one output symbol in each step
and, hence, can be seen as Büchi-automata over the alphabet Σin×Σout.

Transducers operating on infinite words have important applications. For instance, they are used to
represent components of infinite structures, namely ω-automatic ones [3] where decidability results are
obtained for model-checking like problems; they are used in concurrency to specify the synchronisation
behaviour of parallel processes [21]; they can represent functions and relations on real numbers [5]; etc.

Given the undecidability of the inclusion problem for infinitary rational relations on one hand and
their applications on the other, it is fair to ask whether or not there are possibilities to approximate re-
lation inclusion in the form of algorithms that are sound but incomplete for instance. Such a possibility
is given by the two-buffer simulations developed in the previous section: just like single-buffer simu-
lation games approximate language inclusion between Büchi automata, two-buffer games approximate
inclusion between infinitary rational relations, as is shown in the following.

Definition 13. A 2-head Büchi transducer T = (Q,Σin,Σout,qI , δ,F) is normalised if its transition relation
is of the form

δ ⊆ (Q×Σin×{ε}×Q)∪ (Q×{ε}×Σout×Q) .

It should be clear that every 2-head Büchi transducer can be normalised preserving the relation that
it recognises, and that this involves a linear blow-up at most: every transition that consumes the input-
output pair (a1 . . .an,b1 . . .bm) can be simulated by n+m transitions, each of which consumes exactly one
letter from either input or output. Moreover, w.l.o.g. we can assume Σin ∩Σout = ∅, i.e. every symbol is

1Here we only consider the case of binary relations. The generalisation to relations between a larger number of words is
straight-forward.
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either input or output but not both. Then the transition relation of such a normalised transducer can be
seen as of type Q× (Σin ∪Σout)×Q and, syntactically, this is nothing more than a Büchi automaton as
used in Section 2.

Theorem 14. Let T and T ′ be two normalised 2-head Büchi transducers over inputs Σin and outputs
Σout with Σin ∩Σout = ∅. Let Σ := Σin ∪Σout with the alphabet mapping function σ(a) = 1 if a ∈ Σin and
σ(a) = 2 otherwise. Then we have: if T vω,ωT ′ then R(T ) ⊆ R(T ′).

Proof. This follows immediately from Lemma 11 with the observation that R(T ) ⊆ R(T ′) iff for every
word w ∈ Σω: if (w↓in,w↓out) ∈ R(T ) then (w↓in,w↓out) ∈ R(T ′). �

Combining this with Thm. 6 and Cor. 9 we obtain polynomial-time computable approximations for
the inclusion problem between infinitary recognisable relations.

Corollary 15. Let k1,k2 ∈ N. We have that

• it is decidable in polynomial time whether or not T vk1,k2 T ′ holds for arbitrary 2-head Büchi
transducers, and

• if T vk1,k2 T ′ holds then we have R(T ) ⊆ R(T ′).

The approximation is indeed not complete as the following example shows.

Example 16. Consider the normalised transducers T (left) and T ′ (right) over the alphabets Σin = {a}
and Σout = {b,c}.

a

b

b a

c

a

b

b
a

a

b

a
c

a

Both recognise the infinitary relation described by (aω,bω)∪ (aω,b∗cω). Thus, relation inclusion is given
between them. On the other hand, it is not difficult to see that Spoiler has a winning strategy for
Gk1,k2(T ,T ′) for all k1,k2 ∈ N∪ {ω}: he cycles on the left loop until Duplicator leaves her left cycle
(which she has to eventually since it contains no final states) and then, depending on where Duplicator
went, either continues cycling there or moves over to his right cycle so that he produces symbols that
Duplicator cannot consume anymore.

5 Conclusion and Further Work

We have studied simulation games that use two FIFO buffers to store Spoiler’s choices for a limited
amount of time before Duplicator has to respond to them. We have shown how the correspondence
between (single-)buffered simulation games and the language inclusion problem for Büchi automata nat-
urally extends to two-buffer simulations and inclusion problems for rational relations over infinite words.
The fact that games with bounded capacities can be solved in polynomial time, and that higher buffer
capacities do not make Duplicator weaker yields polynomial-time approximations to such inclusion
problems with underlying partial commutativity.

Our results are closely related to the theory of (infinite) Mazurkiewicz traces (see [8] for a general
overview on this theory). The reason is that relations in Σω1 ×Σω2 can be seen as languages of real traces
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over particular independence alphabets (namely, complete bipartite ones). More precisely: Fix a mapping
σ : Σ→ {1,2} and let Σi = {a ∈ Σ | σ(a) = i}. Furthermore, let A and B be two Büchi-automata with
Avk1,k2B. Then, for any word w ∈ L(A), there exists a word v ∈ L(B) with w↓i = v↓i for i = 1,2. In trace-
theoretic terms, this means that the trace closure of L(A) is contained in the trace closure of L(B) (where
the underlying independence relation is I = (Σ1×Σ2)∪ (Σ2×Σ1), i.e., complete bipartite). Hence, for such
special independence relations, we obtain polynomial-time computable approximations for the inclusion
problem of trace closures of ω-regular languages (which is undecidable). It is possible to extend the
results of this paper to m ≥ 2 buffers, which allows similar polynomial-time computable approximations
to be obtained in case of complete m-partite independence relations. In our ongoing work [17], we
extend σ and the multi-buffer simulation game in a way that allows arbitrary independence relations to
be captured (not just complete m-partite ones).

Regarding decidability, we show that vω,0 is highly undecidable (i.e., not arithmetical) [17]. This is
in sharp contrast with the decidability result for vω from [19] and the fact that bounded buffers can be
encoded in the control state.

An idea for further work is the following. Recall that vω is EXPTIME-complete and it has a
PSPACE-complete variant in which Duplicator may never consume an element from the buffer and
leave others in, i.e. she always has to flush the buffer whenever she moves [19]. One can study such
a variant for two-buffer simulations as well. This becomes technically a little bit more tedious but not
conceptually problematic; one could require her to flush both buffers or just one, etc. The same reduction
of PCP shows that the simulation remains undecidable if two buffers are unbounded. However, it would
be interesting to determine the status of vω,k: is it highly undecidable as vω,0 [17], arithmetical or even
decidable and, if so, what is its precise complexity.
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EPTCS 151, pp. 286–300, doi:10.4204/EPTCS.151.20.
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