
Towards Designing Secure Virtualized Systems
Hedi Benzina

LSV, ENS Cachan, CNRS, INRIA
61 avenue du Président Wilson, 94230 CACHAN, France

Email: benzina@lsv.ens-cachan.fr

Abstract—Virtual machine technology is rapidly gaining ac-
ceptance as a fundamental building block in enterprise data
centers. It is most known for improving efficiency and ease of
management. However, it also provides a compelling approach
to enhancing system security, offering new ways to rearchitect
todays systems and opening the door for a wide range of future
security technologies. While this technology is meant to enhance
the security of computer systems, some recent attacks show that
virtual machine technology has many weaknesses and becomes
exposed to many security threats. In this paper we present some
of these threats and show how we protect these systems through
intrusion detection and security policies mechanisms.
Keywords: Virtualized systems, security, virtual networks.,

security policies.

I. INTRODUCTION

Virtualization refers to the creation of a virtual machine that
acts like a real computer with an operating system. Software
executed on these virtual machines is separated from the
underlying hardware resources. For example, a computer that
is running Microsoft Windows may host a virtual machine that
looks like a computer with Ubuntu Linux operating system;
Ubuntu-based software can be run on the virtual machine. A
hypervisor, also called virtual machine manager (VMM), is the
software doing virtualization, e.g. Xen [1], VirtualBox [2], and
VMWare [3].

In recent years, virtualization has been seen by several as
an opportunity for enforcing better security. The fact that two
distinct VMs indeed run in separate sandboxes was indeed
brought forward as an argument in this direction. However,
many security threats apperead recently since

A virtual network can be built between VMs, this allows
them to communicate by simple network primitives. This kind
of networks can be seen as a solution to the complexity of
building physical networks, on the other hand, most of the
security threats we face in a non-virtualized environment exist
in virtualized environments as well. Furthermore, virtual net-
works have other security weaknesses related to the the archi-
tecture of the network, since everything is located in the same
machine. This needs serious defence and rigourous security
policies. We propose in this paper a multi-level security policy
that covers common network operations and administrative
actions. We take into consideration the constraints that must be
satisfied during the communication between VMs and propose
the policy model and discuss its implementation.

This work was supported by grant DIGITEO No2009-41D from Région
Ile-de-France.

II. RELATED WORK

A body of existing work has already examined the issues
arised by virtualized architectures [5][6][7]. The introduction
of the Xen Security Modules (XSM) framework enables the
enforcement of comprehensive control over the resources of
the hypervisor. The XSM policy model is based on SELinux
[8], so VMM policies will be comprehensive, but determining
whether a security goal is enforced correctly seems to be non-
trivial for beginning users due to the complexity of policy rules
organization.

sHype [10] is one of the best-known security architecture for
hypervisors : its primary goal was to control the information
flows between VMs. sHype is based on the Xen hypervisor
and does not protect other virtualized architecture.

In [11] [12], a role-based access control policy was intro-
duced to VMMs by Hirano et al. This policy focuses only on
the access between guest VMs and the VMM layer, and does
not treat inter-VM communication.

III. SECURING VIRTUAL MACHINES

A. An autoprotection mechanism for administrators

In [16] we present an approach where we give the admin-
istrator of the virtualized system the mean to write security
policies and compile them into attack signatures that can be
fed up to our Intrusion Prevention System (IPS) called Orchids
[13] [14]. Our point is that signatures, i.e., specifications
of attack patterns, are best expressed in a logic including
temporal connectives to express ordering of events. This
allows one to describe attacks in a declarative way, free
of implementation decisions. As in programming languages,
using a declarative language allows one to focus on what
to monitor instead of how to monitor. This caters for easier
writing and easier understanding of signatures, and improves
maintainability of signature files. We have implemented a tool
: RuleGen [15], which takes as input a security policy written
in temporal logic and translates it into Orchids’ automata i.e.
attack signature[16]. This approach is efficient against Denial
of Service and local attacks executed in an isolated virtual
machine, but shows its limits when the system faces complex
network attacks or remote attacks, hence the need of a security
policy taking into consideration all possible actions performed
by system users. In the rest of the paper, we present our
security policy model dedicated to inter-VMs communications.
We will present the model and briefly give some security
requirements and constaraints that must be respected by users.

978-1-4673-0734-5/12/$31.00 ©2012 IEEE 250

Fig. 1. The RuleGen tool

IV. COMMUNICATION IN VIRTUAL ENVIRONMENTS

In [16] we showed that virtual networks can be very
useful for intrusion detection by proposing a decentralized
supervision architecture on a single physical host based on
the Xen hypervisor. This architecture is based on a virtual net-
work allowing the communication between ordinary VMs, the
surveillance VM and the administration VM called domain0.
See Figure 2, which is perhaps more typical of Xen than other
hypervisors.

On the other hand, the rapid scaling in virtual networks
can tax the security system. In fact, the fast and unpredictable
growth that can occur with VMs can exacerbate management
tasks and significantly multiply the impact of catastrophic
events, e.g. worm attacks where all machines should be
patched, scanned for vulnerabilities, and purged of malicious
code.

Collections of specialized VMs give rise to a phenomenon
in which large numbers of machines appear and disappear
from the network sporadically. While conventional networks
can rapidly anneal into a known good configuration state, with
many transient machines getting the network to converge to a
known state can be nearly impossible.

For example, when worms hit conventional networks they
will typically infect all vulnerable machines fairly quickly.
Once this happens, administrators can usually identify which
machines are infected, then cleanup infected machines and
patch them to prevent re-infection, rapidly bringing the net-
work back into a steady state. Besides, in an unregulated
virtual environment, such a steady state is often never reached.
Infected machines appear briefly, infect other machines, and
disappear before they can be detected, their owner identified,
etc. Vulnerable machines appear briefly and either become
infected or reappear in a vulnerable state at a later time. Also,
new and potentially vulnerable virtual machines are created
on an ongoing basis, due to copying, sharing, etc. As a result,
worm infections tend to persist at a low level indefinitely,
periodically flaring up again when conditions are right. The re-
quirement that machines be online in conventional approaches
to patch management, virus and vulnerability scanning, and
machine configuration also creates a conflict between security
and usability. VMs that have been long dormant can require
significant time and effort to patch and maintain. This results

Sensor SensorSensor
Orchids

Surveillance
OS

Hypervisor

Dom 0
...

Guest
OS

Hardware

Guest
OS

Drivers

Network

Fig. 2. Decentralized Supervision based on a virtual network

in users either forgoing regular maintenance of their VMs,
thus increasing the number of vulnerable machines at a site,
or losing the ability to spontaneously create and use machines,
thus eliminating a major virtue of VMs.

For instance, rolling back a machine by the checkpoint
and restore mechanism can re-expose patched vulnerabilities,
reactivate vulnerable services, re-enable previously disabled
accounts or passwords, use previously retired encryption keys,
and change firewalls to expose vulnerabilities. It can also
reintroduce worms, viruses, and other malicious code that had
previously been removed.

A subtler issue can break many existing security protocols.
Simply put, the problem is that while VMs may be rolled back,
an attacker’s memory of what has already been seen cannot.
For example, with a one-time password system like S/KEY
where a user’s real password is combined in an offline device
with a short set of characters and a decrementing counter
to form a single-use password. In this system passwords are
transmitted in the clear and security is entirely reliant on
the attacker not having seen previous sessions. If a machine
running S/KEY is rolled back, an attacker can simply replay
previously sniffed passwords.

A more subtle problem arises in protocols that rely on the
freshness of their random number source e.g. for generating
session keys or nonces. Consider a virtual machine that has
been rolled back to a point after a random number has been
chosen, but before it has been used, then resumes execution. In
this case, randomness that must be fresh for security purposes
is reused.

V. MULTILEVEL NETWORK SECURITY

Multi-level security was formalized by Bell and La- Padula
[17] in order to control how information is allowed to flow
between subjects in a system. These subjects are given a
sensitivity level, or security clearance, and objects are also
given a similar security classification. MLS policies attempt
to restrict how information may flow between designated
sensitivities. As an example, consider a military application
with 4 sensitivities, ordered from least to most sensitive:
Unclassified (UC), Confidential (CO), Secret (S), and Top
Secret (TS). In this case, TS dominates S. Note that in this
example the sensitivites form a total ordering; each sensitivity
is either higher, lower, or equal to another. This is not always
the case.

978-1-4673-0734-5/12/$31.00 ©2012 IEEE 251

However, constraining how information may flow within a
system is at the heart of many protection mechanisms and
many security policies have direct interpretations in terms
of multilevel security style controls. These include: Chinese
Walls [18][19]; separation of duties and well formed transac-
tions [20][21] and Role-Based Access Control [22].

Let us assume that we have a collection of trusted and
untrusted VMs and we would like to connect them to form
a secure virtual network. A network is said to be multilevel
secure if it is able to protect multilevel information and
users. That is the information handled by the network can
have different classifications and the network users may have
varying clearance levels.

VI. THE SECURITY POLICY MODEL

In developing the security policy, we combine certain fea-
tures of some well computer security models such as the
Bell-LaPadula model together with issues relevant to network
security. Informally, the network discretionary and mandatory
access control policy can be described as follows : we assume
that the information required to provide discretionary access
control resides within each network component, rather than in
a centralized access control centre. The network discretionary
access control policy is based on the identity of the net-
work components, implemented in the form of an authorized
connection list. This list determines whether a connection
is allowed to be established between two network entities.
The individual components may in addition impose their own
controls over their users - e.g. the controls imposed when there
is no network connection.

The network mandatory security policy requires appropriate
labelling mechanisms to be present. One can either explicitly
label the information transferred over the network or associate
an implicit label with a virtual circuit connection. In our model
we have the following scheme :
(a) Each network component is appropriately labelled. A
mandatory policy based on the labels of the network com-
ponents is imposed and it determines whether a requested
connection between two entities is granted or not.
(b) Information transferred over the network is appropriately
labelled. A mandatory security policy is used to control the
flow of information between different subjects and objects,
when performing different operations involving information
transfer over the virtual network.

A. Modelling approach

The network security policy model we describe here is a
state-machine based model. Essentially a state machine model
describes a system as a collection of entities and values. At
any time, these entities and values stand in a particular set of
relationships. This set of relationships constitutes the state of
the system. Whenever any of these relationships change the
state of the system changes. The common type of analysis
that can be carried out using such a model is the reachabitity
graph analysis. The reachability graph analysis is used to
determine whether the system will reach a given state or not.

For instance, we may identify a subset of states W which
represent ”insecure” states and if the system reaches a state
within this subset W, then the system is said to be insecure.
In describing such a state machine based security model, we
need to perform the following steps :

• Define security related state variables in the network
system.

• Define the requirements of a secure network state.
• Define the network operations which describe the system

state transitions.

We make the following assumptions :

1) Reliable user authentication exists within each VM.
2) Only a user with the role of Admin can assign security

classes to network subjects and network components,
and assign roles to users.

3) Reliable transfer of information across the network.

B. Model Representation

In order to be generic, our model needs to take into
consideration the recent development in virtualized systems
area, thus we will deal with Input/Output devices as separated
VMs : in fact VMware, Xen and many other hypervisors tend
to dedicate a whole VM for I/O [3], and sometimes for the
processor (see Figure ??), which reduces consequently the
overhead for communicating the I/O and processor commands.

We define a network security model, MODEL, as follows :

MODEL =< S, O, s0 >

where S is the set of States, O is the set of system Operations
and s0 is the initial system state.

Let us first define the basic sets used to describe the model:

• Sub : Set of all network subjects. This includes the set of
all Users (Users) and all Processes (Procs) in the network.
That is : Sub = Procs ∪ Users

• Obj : Set of all network objects. This includes both the
set of Network Components (NC) and Information Units
(IU). That is : Obj = NC ∪ IU .
Typically, the set of Network Components includes vir-
tual machines (V Ms), Input-Output Devices (IOD) and
Output Devices (OD) whereas Information Units include
files and messages. That is : NC = V Ms∪ IOD ∪OD

• SCls : Set of Security Classes. We assume that a partial
ordering relation ≥ is defined on the set of security
classes.

• Rset : Set of user roles. This includes for instance the
role Admin dedicated to the administrator of the network
who is typically the administrator of the whole virtualized
architecture.

We use the notation xs, to denote the element x at state s.

1) System State: We only consider the security relevant
state variables. Each state s ∈ S can be regarded as a 11-
tuple as follows :
s =< Subs, Objs, authlist, connlist, accset, subcls, objcls,
curcls, subrefobj, role, currole, curvm >

978-1-4673-0734-5/12/$31.00 ©2012 IEEE 252

Let us now briefly describe the terms involved in the state
definition :
- Subs and Objs defines respectively the sets of subjects and
objects at the state s.
- authlist is a set of elements of the form (sub, nc) where
sub ∈ Subs and nc ∈ Objs. The existence of an element
(sub1, nc1) in the set indicates that the subject sub1 has an
access right to connect to the network component nc1.
- connlist is again a set of elements of the form (sub, nc).
This set gives the current set of authorized connections at that
state.
- accset is a set of elements of the form (sub, iuobj), where
sub ∈ Subs, and iuobj ∈ Objs. The existence of an element
(sub1, iuobj1) in the set indicates that the subject sub1 has an
access right to bind to the object iuobj1.
- subcls : Sub → SCls, is a function which maps each subject
to a security class.
- objcls : Obj → SCls, is a function which maps each object
to a security class.
- curcls : Sub → SCls, is a function which determines the
current security class of a subject.
- subrefobj : Sub → PS(Obj), is a mapping which indicates
the set of objects referenced by a subject at that state.
- role : Users → PS(Rset), gives the authorized set of roles
for a user.
- currole : Users → Rset, gives the current role of a user.
- curvm : Users → NC, is a function which gives the VM
in which a user is logged on.
- view : Sub → Obj, is a function that determines the objects
that can be viewed by a subject.
2) Secure State: To define the necessary conditions for a

secure state, we need to consider the different phases gone
through by the system during its operation, we focus on typical
network operations :
Login Phase : We require that if the user is logging through

a VM, he must have appropriate clearance with respect to the
VM. That is, the security class of the user must be above the
security class of the VM in which the user is attempting to
log on. In addition, the current security class of the user must
be below the maximum security class of that user and the role
of the user must belong to the authorized role set allocated to
that user. So we have the following constraint:
- Proposition 1 : Login Constraint :
A state s satisfies the Login Constraint if ∀x ∈ Users :
• subcls(x) ≥ objcls(curvm(x))
• subcls(x) ≥ curcls(x)

Connect Phase : Having logged-on to the virtual network, a
user may wish to establish a connection with another network
component (VM or I/O VM). In determining whether such a
connection request is to be granted, both network discretionary
and mandatory security policies on connections need to be
satisfied. The discretionary access control requirement is spec-
ified using the authorization list which should contain an entry
involving the requesting subject and the network component.
If the network component in question is a VM then the current
security class of the subject must at least be equal to the lowest

security class of that VM. On the other hand, if the network
component is an output device, then the security class of the
subject must be below the security class of that component.
Hence we have the following constraint:
Proposition 2 : Connect Constraint :
A state s satisfies the Connect Constraint if ∀(sub, nc) ∈
connlist :

• (sub, nc) ∈ authlist
• if nc ∈ V Ms, then curcls(sub) ≥ objcls(nc)
• if nc ∈ OD then objcls(nc) ≥ curcls(sub)

Other Conditions We require two additional conditions :
(1) The classification of the information that can be ”viewed”
through an I/O device must not be greater than the classifica-
tion of that device.
(2) The role of the users at a state belong to the set of
authorized roles. Now we can give the definition of a secure
state as follows :
- Definition : A state s is Secure if :

• s satisfies the Login Constraint
• s satisfies the Connect Constraint
• ∀z ∈ (IODs ∪ ODs), ∀x ∈ IUs,

x ∈ view(z) ⇒ objcls(z) ≥ subcls(x).

We assume that the initial system state s0 is defined in such
a way that it satisfies all the conditions of the secure state
described above.

VII. OPERATIONS AND THEIR SECURITY REQUIREMENTS

In this section we will present the security constraints that
must be satisfied by the different operations performed by the
user of the virtual network : this includes vitual machines man-
agement operations done by the administrator (create/remove
a VM, checkpoint/restore a VM), network operations such as
connect and bind operations and finally operations related to
the policy management (assign a security class to an object,
assign a role to a user, etc).

A. Virtual machines managment operations

Create a new VM : Only the administrator of the virtual
network is allowed to create new virtual machines. Once
created, a new VM must be labelled by a security class which
should be dominated by the security class of the Dom0. This
leads to the following constraints : if a subject sub wants to
create a new virtual machine newVM then:

• Admin ∈ role(sub) and currole(sub) = Admin
• objcls(Dom0) ≥ objcls(newV M)
• NC′

s
= NCs ∪ {newV M}

Remove a VM : Only a user with the role Admin
is allowed to remove virtual machines. The only VM that
cannot be removed is the administration VM, even by the
administrator of the system (this is the normal case, but when
we have other sensitive VMs such as the surveillance VM in
our architecture, we can add restriction concerning the removal
of this VM). This leads us to define the set sensitiveVMs which
includes the Dom0 in the case of Xen, the surveillance VM
and may include other important VMs that cannot be removed.

978-1-4673-0734-5/12/$31.00 ©2012 IEEE 253

We have the following constraints : if a user sub wants to
remove a virtual machine VM then:

• currole(sub) = Admin
• V M /∈ sensitiveV Ms
• authlist′

s
= authlists � (x, V M), where x ∈ Sub.

• connlist′
s

= connlists � (x, V M), where x ∈ Sub.

After removing the VM the lists authlist and connlist are
updated by removing the pairs where the deleted VM occurs.
Checkpoint and restore a VM : These functionalities are

offred by most modern hypervisors. By creating checkpoints
for a virtual machine, one can restore the virtual machine to
a previous state. A typical use of checkpoints is to create a
temporary backup before applying updates to the VM. The
restore operation enables to revert the virtual machine to its
previous state if the update fails or adversely affects the virtual
machine. Any user can checkpoint and restore his own VM,
the user with the role Admin can do this with any VM. To
make sure that these two operations do not represent security
threats, we need the following constraints.

If a user sub wants to checkpoint a virtual machine vm1
then:

• curvm(sub) = vm1 or currole(sub) = Admin
• V M �= Dom0

In addition to these constraints, when restored, a VM must
keep the same security class as before the checkpoint. Let s
and z be respectively the states of the system bebore and after
the checkpoint, we should have :

• objclsz(vm1) = objclss(vm1)

B. Network operations

Connect operation : The operation connect(sub, nc) al-
lows a subject sub to connect to a remote network entity nc.
From the Connect Constraint given earlier, for this operation
to be secure, we require that :

• (sub, nc) ∈ authlist
• if nc ∈ V Ms, then curcls(sub) ≥ objcls(nc)

or
if nc ∈ OD then objcls(nc) ≥ subcls(sub)

After the operation is performed we should have : (sub, nc) ∈
connlist′ and nc ∈ subrefobj(sub).

Having connected to a remote VM, a subject can per-
form operations which allow the manipulation of information
objects. We envisage the information manipulation phase to
consist of two stages : a binding stage and a manipulation
stage. The binding stage involves a subject linking itself
to the VM on which the operation is to be performed. At
the manipulation stage, typically the operations include those
operations defined by the Bell-LaPadula model such as read,
append, write and execute. In our model, we will only
consider one basic manipulation operation which allows the
transfer of an object from one VM to another, as this is
perhaps the most important operation from the network point
of view. This operation causes information to flow from one
entity to another over the network. (In fact, this operation will
form part of other operations as well. For instance, consider

a read operation, whereby a user reads a file stored in a
remote entity. This operation must include the transfer of the
file from the remote network component to the local network
component in which the user resides.) There are also other
operations which modify certain security attributes of objects
and subjects. In the usual computer security model, these
include operations for assigning and changing security classes
to users and information objects and assigning and modifying
access sets for information unit objects. Note that in general
for any operation to be performed, the subject must have
authorized access to the connection with the remote entity.
That is, the Connect Constraint must be satisfied to begin
with.
Bind operation : The operation bind(iuobj, nc) allows a

subject sub to link an information object iuobj in a network
component nc. The constraints that must be satisfied by this
operation are:

• (sub, iuobj) ∈ accset(iuobj)
• curcls(sub) ≥ objcls(iuobj)
• for any sb ∈ Subs, iuobj /∈ subrefobj(sb)

After the operation is performed, we should have iuobj ∈
subrefobj′(sub). Where subrefobj′ refers to the new state
s′.

Note that we have included a simple access control based
on accset at the remote network component. In practice,
a comprehensive access control mechanism is likely to be
provided by a mechanism located in the remote entity. Note
that we could have defined the bind operation as part of
the connect operation, thereby making the connection to a
particular information object at the connect stage rather than
to a network component.
Transfer operation :

The operation transfer(iuobj1,nc1,iuobj2,nc2) allows a subject
sub to append the contents of an information unit object
iuobj1 in a network component object nc1 to the contents
of another information unit object iuobj2 in a network com-
ponent object nc2. For this operation to be secure, we require
that :

• objcls(iuobj2) ≥ objcls(iuobj1)
• curcls(sub) ≥ objcls(iuobj1)

Further both iuobj1 and iuobj2 referenced by the subject sub
must not be referenced by any other object. That is, for any
sb ∈ Subs, sb �= sub, iuobj1 and iuobj2 /∈ subrefobj(sb).
Also iuobj1 and iuobj2 ∈ subrefobj(sub).

After the operation is performed the security classes of the
objects iuobj1 and iuobj2 remain unchanged. That is,

• objcls′(iuobj1) = objcls(iuobj1)
• objcls′(iuobj2) = objcls(iuobj2)

where objcls′ refers to the new state s′.
Unbind : The operation unbind(sub, iuobj) allows a sub-

ject sub to release its link to an information object iuobj. That
is, before this operation iuobj ∈ subrefobj(sub). After the
operation, we have iuobj /∈ subrefobj(sub).

978-1-4673-0734-5/12/$31.00 ©2012 IEEE 254

VIII. CONCLUSION AND FUTURE WORK

The flexibility that makes virtual networks such a useful
technology can also undermine security within organizations
and individual hosts. Current research on virtual machines
has focused largely on the implementation of virtualization
and its applications. But less effort was done for securing
communication under virtualized systems. We proposed in this
paper a security policy model for communication under virtual
networks, this model can be implemented easily under most
virtualized architectures.

Currently, we are extending our security policy to cover
not only local networks, but also wide networks composed of
many virtualized systems involving policy agreements and the
protection of information flows that leave the control of the
local hypervisor. We need to establish trust into the semantics
and enforcement of the security policy governing the remote
hypervisor system before allowing information flow to and
from such a system.

REFERENCES

[1] Xen, 2005–2011. http://www.xen.org/.
[2] VirtualBox, 2011. http://www.virtualbox.org/.
[3] VMware Workstation, 2011. http://www.vmware.com/.
[4] Qemu, 2011. http://www.qemu.org/.
[5] Adrian Baldwin, Chris Dalton, Simon Shiu, Krzysztof Kostienko, Qasim

Rajpoot Providing Secure Services for a Virtual Infrastructure ACM
SIGOPS Operating Systems Review archive Volume 43 Issue 1, January
2009 ACM New York, USA.

[6] Trent Jaeger, Reiner Sailer, Yogesh Sreenivasan. Managing the Risk of
Covert Information Flows in Virtual Machine Systems. In Proceedings
of ACM Symposium on Access Control Models and Technologies (SAC-
MAT), 2007.

[7] Bernhard Jansen, HariGovind V. Ramasamy, Matthias Schunter. Policy
Enforcement and Compliance Proofs for Xen Virtual Machines. In pro-
ceedings of the 2008 ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments.

[8] S. Smalley, C. Vance, and W. Salamon. Implementing SELinux as a
Linux security module. Technical report, NSA, 2001.

[9] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh.
Terra: a virtual machine-based platform for trusted computing. SIGOPS
Operating Systems Review.

[10] Reiner Sailer, Trent Jaeger, Enriquillo Valdez, Ramon Caceres, Ronald
Perez, Stefan Berger, John L. Griffin, and Leendert van Doorn. Building
a macbased security architecture for the xen opensource hypervisor.
In Proceedings of the 21st Annual Computer Security Applications
Conference, pages 276-285, December 2005.

[11] Introducing Role-based Access Control to a Secure Virtual Machine
Monitor: Security Policy Enforcement Mechanism for Distributed Com-
puters. In : IEEE Asia-Pacific Services Computing Conference 2008.

[12] Till Mossakowski, Michael Drouineaud, Karsten Sohr. A temporal-logic
extension of role-based access control covering dynamic separation of
duties. In TIME-ICTL 2003. IEEE Computer Society.

[13] J. Olivain and J. Goubault-Larrecq. The Orchids intrusion detection tool.
In K. Etessami and S. Rajamani, editors, 17th Intl. Conf. Computer Aided
Verification (CAV’05), pages 286–290. Springer LNCS 3576, 2005.

[14] J. Goubault-Larrecq and J. Olivain. A smell of Orchids. In M. Leucker,
editor, Proceedings of the 8th Workshop on Runtime Verification (RV’08),
Lecture Notes in Computer Science, pages 1–20, Budapest, Hungary, Mar.
2008. Springer.

[15] H. Benzina. Logic In Virtualized Systems In ICCANS’11, IEEE
Computer Society.

[16] H. Benzina and J. Goubault-Larrecq. Some Ideas on Virtualized Systems
Security, and Monitors. In DPM/SETOP’10, LNCS 6514, pages 244-258.
Springer, 2010.

[17] Bell, D.E., Padula, L.J.L.: Secure computer system: unified exposition
and MULTICS interpretation. Report ESD-TR-75-306, The MITRE Cor-
poration (1976)

[18] Foley, S.: Aggregation and separation as noninterference properties.
Journal of Computer Security 1(2)(1992) 159-188

[19] Sandhu, R.: Lattice based access control models. IEEE Computer 26(11)
(1993) 9-19

[20] Lee, T.: Using mandatory integrity to enforce ’commerical’ security. In:
Proceedings of the Symposium on Security and Privacy. (1988) 140-146

[21] Foley, S.: The specification and implementation of commercial security
requirements including dynamic segregation of duties. In: ACM Confer-
ence on Computer and Communications Security. (1997) 125-134

[22] Sandhu, R.: Role hierarchies and constraints for lattice-based access
controls. In: ESORICS. (1996)

978-1-4673-0734-5/12/$31.00 ©2012 IEEE 255

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /SABAEN44
 /SAKURAalp
 /Shruti
 /SimSun
 /STSong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

