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Abstract. Implementations of cryptographic protocols, such as OpenSSL for ex-
ample, contain bugs affecting security, which cannot be detected by just analyz-
ing abstract protocols (e.g., SSL or TLS). We describe how cryptographic proto-
col verification techniques based on solving clause sets can be applied to detect
vulnerabilities of C programs in the Dolev-Yao model, statically. This involves
integrating fairly simple pointer analysis techniques with an analysis of which
messages an external intruder may collect and forge. This also involves relating
concrete run-time data with abstract, logical terms representing messages. To this
end, we make use of so-called trust assertions. The output of the analysis is a
set of clauses in the decidable class � � , which can then be solved independently.
This can be used to establish secrecy properties, and to detect some other bugs.

1 Introduction

Cryptographic protocol verification has come of age: there are now many ways of ver-
ifying cryptographic protocols in the literature (see [12] for a sampler). They all start
from a fairly abstract specification of the protocol. However, in real life, what you use
when you type ssh or when you connect to a securized site on your Web browser is
not a 5-line abstract protocol but a complete program. While this program is intended
to implement some protocol, there is no guarantee it actually implements it in any way.
The purpose of this paper is to make a few first steps in the direction of analyzing
cryptographic protocols directly from source code.

To make things concrete, here is a specification of 1. �
	�� : 
��������������������� 
2. �
	�� : 
�������� � ��������� �  
3. �
	�� : 
�� � ���������!�� 

Fig. 1. The NS protocol

the public-key Needham-Schroeder protocol in standard
notation (right). The goal is for � and � to exchange
their secret texts ��� and � � while authenticating them-
selves mutually [19]. It is well-known that there is an
attack against this protocol (see [17]). This attack also
makes � � available to the intruder, although � � was meant to remain secret.

Figure 1 reads as follows: any agent implementing � ’s role will first create a fresh
nonce ��� , typically by drawing a number at random, then build the pair "#�$���%�'& where
� is taken to be � ’s identity (some string identifying � uniquely by convention), then
encrypt the result using � ’s public key (*),+-".�'& . The encrypted text 
/�$���%�0�1�%�����!�� is then
sent out. If traffic is not diverted, this should reach � , who will decrypt this using his2

Partially supported by the ACI jeunes chercheurs “Sécurité informatique, protocoles cryp-
tographiques et détection d’intrusions” and the ACI cryptologie “Psi-Robuste”. Work done
while the second author was at LSV.



private key (43,56".�'& , and send back 
/�7����� � �1�%����� �  to � . � waits for such a message
at step 2., decrypts it using her private key ('3*56".�'& , checks that the first component is
indeed ��� , then sends back 
�� � �1�%�����!�� at step 3. for confirmation.

Compare this specification (Figure 1) with excerpts from an actual C implementa-
tion of � ’s role in it (Figure 2). First, the C code is longer than the specification (although
Figure 2 only implements message 1 of Figure 1). Difficulties in analyzing such a piece
of C code mainly come from other, less visible, problems:

1 int create_nonce (nonce_t *nce)
2 {
3 RAND_bytes(nce->nonce,SIZENONCE);
4 /* % *nce rec nonce(CTX) | context(CTX). % */
5 return(0);
6 }
7
8 int encrypt_mesg(msg1_t *msg, BIGNUM *key_pub,
9 BIGNUM *key_mod, BIGNUM *cipher)

10 {
11 BIGNUM *plain;
12 int msg_len;
13 BN_CTX *ctx;
14 ctx = BN_CTX_new();
15 msg_len = sizeof (msg1_t);
16 plain = BN_bin2bn((const unsigned char *)msg, msg_len, NULL);
17 BN_CTX_init(ctx);
18 BN_mod_exp(cipher, plain, key_pub, key_mod, ctx);
19
20 /* % *cipher rec crypt(M,K) | *msg rec M, *key_pub rec K. % */
21
22 return (0);
23 }
24
25 int create_mesg1(msg1_t *mesg, nonce_t *n1, int *id, int *dest)
26 {
27 /* First copy nonce. */
28 memcpy (&msg->nonce_msg1, n1, sizeof(nonce_t));
29
30 /* copy id... */
31 msg->id_1[0] = id[0]; msg->id_1[1] = id[1];
32 msg->id_1[2] = id[2]; msg->id_1[3] = id[3];
33 /* ... and dest. */
34 msg->dest_1[0] = dest[0]; msg->dest_1[1] = dest[1];
35 msg->dest_1[2] = dest[2]; msg->dest_1[3] = dest[3];
36
37 /* % *msg -> nonce_msg1 rec U and
38 *msg -> is_1 rec V and
39 *msg -> dest_1 rev W | *n1 rec U, *id rec V,
40 *dest rec W. % */
41 return(0);
42 }
43
44 int write(int fd, const void *buf, int count)
45 {
46 write (fd, buf, count);
47 /* % knows rec B | *buf rec B. % */
48 return(0);
49 }

50 int main(int argc, char *argv[])
51 {
52 int conn_fd; // The communication socket.
53 msg1_t mesg1; // Message
54 nonce_t nonce;
55 BIGNUM * cipher1; // Cipher Message
56 BIGNUM * pubkey; // Keys
57 BIGNUM * prvkey; // Keys
58 BIGNUM * modkey; // Keys
59 unsigned int ip_id[4]; // A’s name
60 unsigned int ip_dest[4]; // B’s name as seen from A.
61
62 /* Init ip_id and ip_dest. */
63 ip_id[0] = 192; ip_id[1] = 100;
64 ip_id[2] = 200; ip_id[3] = 100;
65 ip_dest[0] = 192; ip_dest[1] = 100;
66 ip_dest[2] = 200; ip_dest[3] = 101;
67 /* % ip_id rec CTX(Agent(A)). % */
68 /* % ip_dest rec CTX(Agent(B)). % */
69 // Open connection to B
70 conn_fd = connect_socket(ip_dest, 522);
71
72 init_keys(&pubkey, &prvkey, &modkey, PUBALICESERV,
73 MODALICESERV, PRIVALICESERV);
74 /* % *pubkey rec pub(Y) | ip_dest rec Y. % */
75 /* % *prvkey rec priv(X) | ip_id rec X. % */
76
77 /*** 1. A -> B : {Na, A}_pub(B) ***/
78 create_nonce (&nonce);
79 create_mesg1(&mesg1, &nonce, ip_id, ip_dest);
80 cipher1 = BN_new();
81 encrypt_mesg(&mesg1, pubkey, modkey, cipher1);
82 write(conn_fd, cipher1, 128);
83
84 /** ...Remaining code omitted... **/
85 }

Fig. 2. A piece of code of a sample C implementation of the NS protocol

– First, C is a real programming language, with memory allocation, aliasing, pointer
arithmetic; all this is absent from protocol specifications, and must be taken into
account. E.g., in Figure 2, line 80, the pointer cipher1 is set to the address allo-
cated by BN_new(); at line 81, the encryption function encrypt_mesg expects
to encrypt its first argument with the key in second and third arguments, putting the
result at the address pointed to by its fourth argument cipher1.

– C programs are meant to be linked to external libraries, whose code is usually
unavailable (e.g., memcpy, strcpy, strncmp, read, write in Figure 2) and
cannot be analyzed. More subtly, low-level encryption functions should not be an-
alyzed, simply because we do not know any way to recognize that some given



bit-mangling code implements, say, RSA or DES. We shall take the approach that
such functions should be trusted to do what they are meant to do.

– Even without looking at the intricacies of statically analyzing C code, we usually
only have the source code of one role at our disposal. For example, the code of
Figure 2 implements � ’s role in the protocol of Figure 1, not � ’s, not anyone else’s
either. So we shall analyze C code modulo an abstract description of the world
around it. This so-called external trust model will state what malicious intruders
can do, and what honest agents are trusted to do (e.g, if � is assumed to be honest,
he should only be able to execute the corresponding steps in Figure 1).
Alternatively, we could also analyze the source code of two or more roles. But we
would still need an external trust model, representing malicious intruders, and hon-
est agents of other protocols which may share secrets with the analyzed programs.

What we do in this paper. We analyze reachability properties of C code implementing
roles of cryptographic protocols. Amongst all reachability properties, we shall con-
centrate on (non-)secrecy, i.e., the ability for a malicious intruder to get hold of some
designated, sensitive piece of data. All problems considered here are undecidable: we
therefore concentrate on upper approximations of behaviors of programs, i.e., on repre-
sentations that contain at least all behaviors that the given program may exhibit—in a
given external trust model, and a given execution model (see below). In particular, we
aim at giving security guarantees. When none can be given by our techniques, just as
in other static analyses, it may still be that the analyzed program is in fact safe.

What we do not do. First, we do not infer cryptographic protocols from C code, i.e.,
we do not infer Figure 1 from Figure 2. This might have seemed the most reasonable
route: when Figure 1 has been reconstructed, use your favorite cryptographic proto-
col verifier. We do not believe this is practical. First, recall that we usually only have
the source code of some of the roles. Even is we had code for all roles, real imple-
mentations use many constructs that have no equivalent in input languages for cryp-
tographic protocol verification tools. To take one realistic example, implementations
of SSL [10] such as ssh use conditionals, bindings from conventional names such
as SSL_RSA_WITH_RC4_128_MD5 to algorithms (i.e., records containing function
pointers, initialized to specific encryption, decryption, and secure hash functions), which
are far from what current cryptographic protocol verification tools offer.

Second, we do not guarantee against any arbitrary attack on C code. Rather, our
techniques are able to guarantee that there is no attack on a given piece of C code in
a given trust model, stating who we trust, and in a given execution model, i.e., assum-
ing a given, somewhat idealized semantics of C. In this semantics, writing beyond the
bounds of an array never occurs. If we did not rely on such idealized semantics, essen-
tially every static analysis would report possible security violations, most of them fake.
It follows that buffer overflow attacks will not be considered in this paper. While buffer
overflows are probably the most efficient technique of attack against real implementa-
tions (even not of cryptographic protocols; for hackers, see [11]), they can be and have
already been analyzed [25, 24]. On programs immune to buffer overflows, we believe
our idealized semantics to be a fair account of the semantics of C. Programs should be



checked against buffer overflows before our techniques are applied; we consider buffer
overflows as an important but independent concern.

Outline After reviewing related work in Section 2, we introduce the subset of C we
consider in Section 3, augmented with trust assertions—the cornerstone of our way of
describing relations between in-memory values and Dolev-Yao-style messages. Its con-
crete semantics is described in Section 4, including trust assertions and the external trust
model. We describe the associated abstract semantics in Section 5, which approximates
C programs plus trust models as sets of Horn clauses, and describe our implementation
in Section 6. We conclude in Section 7.

2 Related Work

Analyzing cryptographic protocols directly from source code seems to be fairly new.
As far as we know, the only previous attempts in this direction are due to El Kadhi and
Boury [16, 6], who propose a framework and algorithms to analyze leakage of confi-
dential data in Java applets. They consider a model of cryptographic security based on
the well-known Dolev-Yao model [8], just as we do. While we use Horn clauses as a
uniform mechanism to abstract program semantics, intruder capabilities, and security
properties alike, El Kadhi and Boury use a dedicated constraint format, and use a special
constraint resolution calculus [16].

Analyzing cryptographic programs is not just a matter of analyzing cryptographic
protocols. El Kadhi and Boury analyze Java applets (from bytecode, not source), and
concentrate on a well-behaved subset of Java, where method calls are assumed to be
inlined. Aliasing in Java is simpler to handle in Java than in C: the only aliases that may
occur in Java arise from objects that can be accessed through different access paths (e.g.,
different variables); in C, more complex aliases may occur, such as through pointers to
variables (see &mesg1 for example in Figure 2). The StuPa tool [6] uses different static
analysis frameworks to model the Dolev-Yao intruder and to analyze information flow
through the analyzed applet; we use a uniform approach based on Horn clauses.

Finally, the security properties examined in [6] are models of leakage of sensitive
data: sensitive data are those data stored in specially marked class fields, and are tracked
through the program and the possible actions of the intruder; data can be leaked to the
Dolev-Yao intruder, or more generally to untrusted classes in the programming envi-
ronment. The aim of [6] is to detect whether some sensitive piece of data can be leaked
to some untrusted class. Because we use Horn clauses, any property which can be ex-
pressed as a conjunction of atoms can be checked in our approach (as in [7]), in partic-
ular secrecy or leakage to some untrusted part of the environment.

Cryptographic Protocol Analysis. If we are just interested in cryptographic protocols,
not programs, there are now many methods available: see [12] for an overview. One of
the most successful models today is the Dolev-Yao model [8], where all communication
channels are assumed to be rerouted to a unique intruder, who can encrypt and decrypt
any message at will—provided it knows the inverse key in the case of decryption. Every
message sent is just given to the intruder, and every message received is obtained from
the intruder. This is the basis of many papers. One of the most relevant to our work is



Blanchet’s model [3], where a single predicate 8*9�:<;0= (called >�?*?'>'@/8'AB3 in op.cit.) is
used to model what messages may be known to the intruder at any time. The abilities
of the intruder are modeled by the following Horn clauses (in our notation):

C/DFE�G*HBIJD*KML<N
Intruder can (1)C/DBE�G*HBIPO/E�D*HBIRQ
S�TUNVNXWYC/DBE�G*HFIRQZN�S#C/DFE�GFHBI[TUN

build lists. (2)C/DFE�G*HBIRQ\NXW]C/DFE�G*HBIPOME�D,HBIRQ
S�TUNVN
Intruder can read (3)C/DFE�GFHBI[TUN^WYCMDFE�G*HBIPO/E1D,HBIRQ
S�TUNVN

all elements of a list. (4)C/DFE�G*HBIPO�_�`Ma�b4IRQ
S�TcNVN^WYC/DBE�G*HBIRQZN�SdCMDFE�G*HBI[TUN
Intruder can encrypt. (5)C/DFE�G*HBIRQZNXWYC/DBE�G*HBIPO�_�`�a�b4IRQ
S#a�e�fgI[TcNVNVN�SdCMDFE�G*HBIJa�_/h4I[TUNVN
Intruder can decrypt (6)C/DFE�G*HBIRQZNXWYC/DBE�G*HBIPO�_�`�a�b4IRQ
S#a�_�h4I[TcNVNVN�SdCMDFE�G*HBIJa�e/fgI[TUNVN

provided he knows (7)C/DFE�G*HBIRQ\NXW]C/DFE�G*HBIPO�_�`Ma�b4IRQ
S�HiC'I[T^S�jkNVNVN�SdCMDFE�G*HBI#H1C4I[T^S%jkNVN
the inverse key. (8)C/DFE�G*HBIJa�e�f'IRQ\NVN

Intruder knows public keys.(9)

We shall use a Prolog-like notation throughout: identifiers starting with capital letters,
such as l or m , are universally quantified variables; 96nFo is a constant, @B:<96= and @�3,pB(4?
are function symbols. Clause (5), for example, states that whenever the intruder knows
(can deduce) l and m , then he can deduce the result @�3,pB(4?q".lr��ms& of the encryption
of l with key m . Clauses (6) through (8) state that he can deduce the plaintext l from
the ciphertext @�3*pF(4?6".lr�1t4& whenever he knows the inverse of key t ; (43,56"Pu�& is meant
to denote u ’s private key, (*)*+X"Pu�& is u ’s public key, and =�8q"Pu$��vs& is some symmetric
key to be used between agents u and v .

Most roles in cryptographic protocols are sequences of rules w x wzy (not to
be confused either with implication { or the arrows 	 shown in Figure 1), meaning
that the role will wait for some (optional) message matching w , then (optionally) send
w y . For example, role � in Figure 1 implements the rules x|
��7���%�0�1�%�����!�� (step 1.)
and 
����B��� � ��������� �  }x~
�� � �����%������ . This is easily compiled into Horn clauses. A rule
w�x�w�y is simply compiled as the clause 8F9�:<;0='"#w�y[&�{�8F9�:<;0='"#w�& , modulo some
details. For example, and using Blanchet’s trick of coding nonces as function symbols
applied to parameters in context (e.g., �7� will be coded as 9�>g"#v�& , in any session where
� talks to some agent v ), the role of � in Figure 1 may be coded as:

8F9�:<;0='"�@�3,pB(4?6"�@B:<96='"R9�>'"#vs&1��@B:<96=4"d>'��96nBo*&�&1��(*)*+-"#vs&�& (10)
8F9�:<;6=4"�@<3*pB(4?6"#�r���V(*)*+X"#vs&�&�&�{�8F9�:<;6=4"�@<3*pB(4?6"�@F:�96=4"R9�>�"#v�&1��@F:�96=4"#�r�/��96nBo,&�&1�(11)

(*)*+X"d>*&�&�&
Finally, secrecy properties are encoded through negative clauses. For instance, given
a specific agent + , that ��� remains secret when � is talking to + will be coded as� {�8*9�:<;0=4"R90>g"R+�&�& . More complicated queries are possible, e.g.,

� {�8F90:<;0='"R9�>g"#vs&�&1�� :�9gA'=<?6"#vs& asks whether �}� remains secret whatever agent � is really talking to, pro-
vided this agent is honest, for some definition of honesty (see [7] for example). We
won’t explore all the variants, and shall be content to know that we can use at least one.
Note that the encodings above are upper approximations of the actual behavior of the
protocol; this is needed in any case, as cryptographic protocol verification is undecid-
able [9, 1].



Program analysis. There is an even wider literature on static program analysis. Our
main problem will be to infer what variables contain what kind of data. As these vari-
ables are mostly pointers to structures allocated on the heap, we have to do some kind
of shape analysis. The prototypical such analysis is due to Sagiv et al. [22]. This anal-
ysis gives very precise information on the shape of objects stored in variables. It is also
rather costly. A crucial observation in [22] is that store shapes are better understood as
formulae. We shall adapt this idea to a much simplified memory model.

At the other end of the spectrum, Andersen’s points-to analysis [2] gives a very
rough approximation of what variables may point to what others, but can be com-
puted extremely efficiently [14]. (See [15] for a survey of pointer analyses.) We shall
design an analysis that is somewhere in between shape analysis and points-to anal-
ysis as far as precision is concerned: knowing whether variable x may point to y is
not enough, e.g. we need to know that once lines 77–82 of Figure 2 have been ex-
ecuted, cipher1 points to some allocated record containing � ’s identity as ip_id
and that the field mesg1.msg.msg1.nonce contains � ’s nonce �7� . (This is al-
ready non-trivial; we also need to know that this record actually denotes the term
@�3*pB(4?q"�@B:<96=4"R9�>g"#vs&1��@B:<96=4"d>'��96nBo*&�&1��(*)*+-"#vs&�& when seen from the cryptographic pro-
tocol viewpoint.) While this looks like what shape analysis does, our analysis will be
flow-insensitive, just like standard points-to analyses.

One of our basic observations is that such pointer analyses can be described as
generating Horn clauses describing points-to relations. Once this is done (Section 5), it
will be easier to link in the cryptographic protocol aspects (e.g., to state that cipher_1
denotes @�3*pB(4?q"�@B:<96=4"R9�>g"#vs&1��@B:<96=4"d>'��96nBo*&�&1��(*)*+-"#v�& , as stated above).

3 C Programs, and Trust Assertions

We assume that C programs are represented as a set of control flow graphs �
� , one
for each function � . We assume that the source code of each function � is known—at
least all those that we don’t want to abstract away, such as communication and cryp-
tographic primitives. We also consider a restricted subset of C, where casts are absent,
and expressions are assumed to be well-typed. We do definitely consider pointers, and
in particular pointer arithmetic, one of the major hassles of C semantics.

Formally, we define a C program as a map from function names � to triples ".�#���4��[�<� �4�i�7�*& , where �d�^� is the list of � ’s formal parameters,
�.�<� � is the list of � ’s local

variables, and �$� is � ’s control flow graph. We assume that the node sets of each control
flow graph �$� are pairwise disjoint.

A control flow graph (CFG) is a directed graph � with a distinguished entry node� "#�$& and a distinguished exit node ��"#�7& . Edges are labeled with instructions. The
set of instructions in Figure 3 will be enough for our purposes, where � , � , � , . . . ,
range over names of local variables,

�
ranges over integer and floating-point constants,

� over function names, � over struct field names, and
���

ranges over primitive opera-
tions (arithmetic operations, bitwise logical operations, comparisons): The instructions
�����U�-  �<¡ and �����U��	¢� implement pointer arithmetic. The first adds the integer �
to the pointer � , yielding � . The second adds the offset of field � to the pointer � . More
complex instructions can be broken down to sequences of instructions as above. For ex-
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¥/¦0§i¨P©�ª�ª «­¬7«¯®
variable copy° ¬7«²±
storing constant

±
into

¬° ¬7«´³
storing the address of function

³
into

¬° ¬7«²µ¶®
storing the address of variable

®
into

¬° ¬7«­·�®
reading from a pointer° ·�¬7«²®
storing into a pointer° ¬7«²µ¶®'¸ ¹�º
taking the address of entry

¹
of array

®° ¬7«²µ¶®}»½¼
taking the address of field

¼
in struct

®° ¬7«¿¾ I ¬ � SiÀ1À�ÀiS ¬,Á N calling function
¾° ¬7« I ·�® N�I ¬ � SiÀ�ÀiÀ1S ¬4Á N indirect call° ¬7«²Â�Ã I ¬ � SiÀiÀiÀiS ¬,Á N primitive call°´Ä ¬7«¶«´Å

zero test°´Ä ¬ÇÆP«\Å
non zero test° b�_�e,H�bUÈ²WÉÈ � S�ÀiÀ1À�S�È Á trust assertionÈ ¤ È ¨#Â�Ê½ª�ª «­¬ _�Ë<O ¨ ¬

is trusted to denote
¨°²Ì I ¨ N

term
¨

is trusted to obey property
Ì

Fig. 3. Syntax of core C

ample, msg->id_1[0] = id[0] can be translated to the sequence of instructions
����Í , � � �Î� id   ��¡ , � � �zÏM� � , �0ÐÑ��� msg 	 id_1, ��Ò}�Î�U�0Ð*  �<¡ , Ï/��Ò��Ó� � . This
of course presumes a given scheduling of elementary instructions; to verify output from
a given C compiler, the same scheduling should be used. The test instructions Ô��Õ�}�ÖÍ
and Ô��7×V�ØÍ do nothing, but can only be executed provided � is zero, resp. non-zero;
they are used to represent if and while branches.

The only non-standard instruction above is the trust assertion. This is one of the
main ingredients we use to link concrete C data with abstract Dolev-Yao style messages
that they are meant to denote. A trust assertion ?,3B)6=�?Ù�Ó34Ag@¿Ú\{~� � 3'A'@¿Ú � �MÛ�ÛMÛ��
��Ü¯34A'@ÝÚVÜ relates the value of C variables ( � , � � , . . . , ��Ü ) to terms (messages; Ú , Ú � ,
. . . , ÚVÜ ) that they are meant to denote. Intuitively, this states that the value of � denotes
the term Ú , as soon as � � denotes Ú � , and . . . and �0Ü denotes ÚVÜ . While atomic formulae
�Z34A'@ÑÚ state that the value of � denotes Ú , other atomic formulae Þ
".Ú�& (e.g., 8F9�:<;6=4".Ú�& ,
see Section 2) will be defined by the external trust model (see Section 4.2).

We have chosen to let the programmer state trust relations in the C source code
using special comments; they are enclosed between /* % and % */ in Figure 2. For
example, the comment at line 20 translates to the trust statement ?*3B)q=�?Ø@*nM( � AB3Õ34A'@
@�3*pB(4?q"#wÎ�ißØ&r{áà-=�â�34A'@ãwÎ�%8'ABp _ (*)*+�3'A'@ãß , and states that, if msg points to
a memory zone where message w is stored, and if key_pub points to some zone
containing ß , then cipher will be filled with the ciphertext @�3*pB(4?q"#wÎ�ißØ& ; in other
words, encrypt_mesg computes the encryption of *msg using key *key_pub and
stores it into *cipher.

We do require trust assertions. Otherwise, there is no way to recognize statically that
the call to BN_mod_exp on line 18 actually computes modular exponentiation on arbi-
trary sized integers (“bignums”, of type BIGNUM), and much less that this encrypts its
second argument plain using the key given as third and fourth arguments key_pub,



key_mod, storing the result into the first argument cipher. In fact, there is no way
to even define a sensible map from bignums to terms that would give their purported
meaning in the Dolev-Yao model.

We need such trust assertions for two distinct purposes. The first is to describe the
effect of functions in the API in terms of the Dolev-Yao model; in particular, to ab-
stract away the effect of low-level cryptographic functions that are used in the analyzed
program (e.g., the OpenSSL crypto lib), or of the standard C library (see the comment
on line 47, which abstracts away the behavior of the write function, stating that any
message sent to write through the buffer buf will be known to the Dolev-Yao in-
truder). The second purpose of trust assertions is to state initial security assumptions:
see the comment on line 67, which states that the array ip_id is trusted to contain u ’s
identity, initially. (The notation CTX(Agent(A)) refers to u ’s identity as given in a
global context CTX; we shall not describe this in detail here.)

4 Concrete Semantics

We first describe the memory layout. Let uUä*äBå be a denumerable set of so-called ad-
dresses. A store æèçêé�Ú � åBë is any map from adresses to zones. Intuitively, addresses are
those memory addresses returned by memory allocation functions, e.g., malloc. (As a
technical aside, we assume that declaring a local C variable x in a C function has the ef-
fect of allocating some memory, too, for holding x’s value, at an address that is usually
written &x in C. We do this because, contrarily to, say, Java, you can take the address of
variables in C, and modify them through pointer operations.) Zones describe the layout
of data stored at given addresses, and are described by the following grammar:

�
ìíì��z@B:Bî,A�� code for function �ï nM94?$� integer �ïñð o*:*>�?�� floating-point value �ï (4?*37ò pointer, pointing to location òï =�?*3B)6@<?Z
 � �,� � �Ó� � �MÛ�Û�Û�� � �4�iÜ�����Ü6� structure, with labels
� �4�1ó , ô}õö��õÙ�ï >�3*3'>�pq"#� � ��ÛMÛ�Û�����Ü�& array of � sub-zones

Let ÷ � �Xë be the set of all zones. Locations ò , as used in pointers, are strings
��Û�ø/ë � � ÛMÛ�ÛMÛ�Û�ø/ë �[ù , where ��çúuUäFäFå , and ø/ë �íû , ôÙõýü�õ�t , are selectors, namely ei-
ther labels

� �,�Uçêþ��,� or integers �¿ç�ÿ . For example, in Figure 4, if � is the address of
x, �0Û data Û t Û 2 is the location of the cell shown in red.

Let þ �<� be the set of all locations. Let é Ú � åBëÕ�ÉuUä*äBår	 ÷ � �Xë be the set of all
stores. Any store æ extends in a unique way to a map

�æ from locations to zones: if
��çØuUäFäFå , then

�æ "P�'& ��æ�"P�'& ; �æ�"[ò�Û � �4�ióV& ����ó provided
�æ�"[òM& is defined and of the form

=�?*3B)6@<?²
 � �4� � �É� � ��ÛMÛ�Û�� � �4��Ü²�½��Üq� , ô�õ �7õ � ; and
�æ�"[ò�Û ü4&��½� û provided

�æ�"[òM& is
defined and of the form >�3*3g>�pq"#� � ��ÛMÛ�Û����MÜ�& , ô�õñüêõ�� . E.g., x.data has a location,
namely �0Û data, mapped by

�æ to the zone shown in Figure 4, top right.
Given a C program mapping each function � to ".�d� �4� � � Ú��'�i�7�F& (Section 3), we

define its semantics as a transition system. Transitions (inside �s� ) are defined by judg-

ments �,���0�%æ ó� 	���y#���*y#�%æqy , one for each edge � ó� 	���y in �7� , where � and �*y are en-



1 typedef enum { RSA, DES } Myenum;
2
3 typedef struct Mystruct1 {
4 int m;
5 char t[4];
6 void *next;
7 } Mystruct1;
8
9 typedef struct Mystruct2 {

10 Myenum cryptfun;
11 Mystruct1 data;
12 } Mystruct2;

m t next

Start of location

cryptfun data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x.data.t[2]

Fig. 4. Sample memory zone
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Fig. 5. Concrete semantics



vironments mapping variables to their addresses. This is shown in Figure 5. The no-
tation �q  �ji	 �<¡ denotes the map sending � to � , and every other �Yçlk�monp� to
�0".�'& . Similarly for æ   �qi	 ��¡ , where �ýç uUä*äBå and �Yç�÷ � �Xë . To model writ-
ing into arbitrary locations ò , not just addresses, we extend this notation by letting
æ   ò�Û � �4��ó;i 	 �<¡Ø� æ   òri	 =�?*3B)6@<?ý
 � �4� � � � � ��Û�ÛMÛ�� � �4��ó²� �'��Û�ÛMÛ�� � �4�iÜý� ��Üq��¡
whenever

�æ�"[òM&
��=�?,3B)6@�?Ö
 � �,� � � � � ��Û�ÛMÛ�� � �4��Üã� ��Üq� , and æ   ò<Û � i	 ��¡�� æ   òsi	
>�3*3'>�pq"#� � ��ÛMÛ�Û����'��Û�ÛMÛ��i��Ü�&d¡ with � at position � , whenever

�æ�"[ò/&���>�3*3g>�p6"#� � �MÛ�ÛMÛ��i��Ü�&
and ô$õã� õã� . (This is then partially defined.) This extension is used in the semantics
of Ï/���ã� .

The rules deserve some explanation. E.g., the semantics of �Ý�Ö� consists in fetch-
ing the address �6".�'& at which the contents of variable � is stored in memory (the address
usually referred to as �Ñ� in C code), and copying it into the address �6".�q& at which � is
stored. In effect, ���ã� in C really means Ï,"#�Ñ�q&��ÎÏ,"#�U�g& . To lighten up the semantics,
we agree that mentioning any expression entails that it is defined. In other words, the
mere fact that we are writing æ   �6".�q& i	 æ�"Q�0".�'&�&d¡ in the semantics of ÏM�Ó� � really
means that we must first check that �Õçtk�mMnu� and �0".�'& çvk�mon æ and �rçvk�monw� and
�0".�q&kçtk�mMn æ .

The semantics of �Ó� � presumes that there is an address at which the code for
the function � is stored; whichever such � is then stored into � . This is taken care of
by starting the program in a store that contains such a mapping from addresses to code
fragments (and similarly contains storage for string constants).

Most other entries are self-explanatory. In the semantics of primitive calls �Y���� ".� � �MÛ�ÛMÛ�����Ü�& , we assume that the semantic x��� of
���

is given separately.
Figure 5 leaves out the semantics for function calls �]�zy6".� � ��ÛMÛ�Û��%��Ü�& . We let

�,���0�%æ
{�|N} � { G � ~C~ ~�� { K  �o�o�M�o�o�o�o�M�o� 	;��yd���*yP��æqy if and only if

� "#� } &1���&����æ�� � 	�����"#� } &1���&�¶��æ�� , where
æ�� is obtained by allocating one new structure for formal parameters, one for local vari-
ables, and one for the return value (i.e., æ��c�ãæ   �*óJÜ�i	 =�?*3B)q@�?Z
��=� � �Ó� � �MÛ�ÛMÛ��i�=�*Ü\�
��Ü6�F���[�4�h�.i	á=�?*3B)6@<?ñ
��Up � � �<y� ��ÛMÛ�Û����Ñp���� �<y� �F�����P�
��i	á=�?*3B)6@<?ñ
��U3'AB?B)43B9Ö�
�,��¡ , where �*óJÜ , �&�U�h� , and ���P�
� are distinct fresh addresses, � � , . . . , �*Ü are the formal
parameters, p � , . . . , p[� are the local variables, and � � �MÛ�ÛMÛ��i��Ü-���<y� ��Û�ÛMÛ����<y� ��� are appro-
priate zones, considering the types of variables), where ��� maps each �*ó to �*óJÜ-Û ���*ó ,
each p û to �&�4�I�MÛ �Ñp û , and the fresh variable 34AB?B)'3B9 (used to actually return a value
from y ) to �����
�iÛ �Ñ34AB?B)43F9 , where æ-y is æ�� restricted to k�mon æ��s��
M�*óJÜq���&�U�h�������P�
��� , and
where �*y ���q  ��i	 �æ���"P���P�
��Û �U3'AB?B)43B90&d¡ . Note that we encode 34AB?B)43F9�� as an assign-
ment 34AF?B)43B9\��� . We deal with indirect calls �Õ��"VÏ/�'&�".� � ��ÛMÛ�Û��%��Ü�& similarly: the only
change is that we check that æ�"Q�0".�'&�&���@F:Bî,A�y for some function y .

At the level of zones and pointers which we consider in this section, trust assertions
just do nothing. We shall extend this semantics in the next section to properly handle
trust assertions.

4.1 Semantics of Trust Assertions

The purpose of trust assertions is to define the denotation of concrete C data as Dolev-
Yao style messages. A given piece of C data � may have one such denotation, or zero



(e.g., if � just denotes, say, some index into a table, with no significance, security-
wise), or several (e.g., if only for cardinality reasons, there are infinitely many terms
but only finitely many 128-bit integers; concretely, even cryptographic hash functions
have collisions.) Therefore we model the semantics of trust assertions as generating a
trust relation � —a binary relation between C values and ground first-order terms—
together with a trust base � —a set of ground first-order atoms. Let �cë�åV��� be the set
of all ground terms, ucÚ � �v� be the set of ground atoms, and �}� � the set of C values, so
a trust relation � is a subset of �}� � �cë�åV�s� , and a trust base � is a subset of ucÚ � �s� .

A difficulty here is in defining what a C value is. Typically, an integer � should be
a C value, and two integers should be equal as values if and only if they are equal as
integers. In general, it is natural to think that zones should somehow represent C values.
This implies that a zone of the form (4?,36"[ò/& , i.e., a pointer, should also represent a C
value. This is needed: in Figure 2, we really want to understand the pointer cipher1
(l.55) as denoting a message. But only the contents of the zone pointed to by cipher1
should be relevant, not the location ò .

The irrelevance of ò is best handled through the notion of bisimilarity, which we de-
fine by imitation from [18]. A bisimulation is a binary relation � on þ �<� é Ú � åBë , together
with a binary relation (again written � ) on ÷ � �Xë/é Ú � åBë , such that:

– if "[ò<��æ^&t� "[ò1yd�%æqy[& then either ò¡ çwk�mon �æ and ò�yv çwk�mon �æqy , or òöç¢k�mMn �æ ,
ò1yXçtk�mon �æqy and " �æ�"[ò/&1�%æ^&]��" �æqyd"[ò1y.&1�%æqy[& ;

– if "#�'�%æ^&£�ú"#��yP��æqy[& then either �
����y is of the form @B:Bî4A�� or nM94?
� or
ð o*:*>�?�� ;

or � is of the form (4?*3q"[òM& , ��y is of the form (4?,36"[ò�yR& , and "[ò<��æ^&¤� "[ò�y#�%æqy[& ; or
�Z�]=�?*3B)q@�?r
 � �4� � � � � ��ÛMÛ�Û�� � �4��Ür���MÜ6� , �<y �ú=<?*3B)6@�?Ø
 � �4� � ����y� �MÛ�ÛMÛ�� � �,�iÜr�
�<yÜ � , and "#��ó���æ^&¥�¢"#��yó �%æqy[& for every � , ô¯õÉ�\õÉ� ; or �´� >B3*3'>�pq"#� � �MÛ�Û�Û��i��Ü�& ,
�<yq��>�3*3'>�pq"#��y� ��ÛMÛ�Û�����yÜ & , and "#�Mó��%æ^&]��"#�<yó ��æqy[& for every � , ô}õö� õö� .

Let �� (bisimilarity) be the largest bisimulation, with respect to inclusion of binary re-
lations. A pair "[ò<��æ^& of a location and a store æ describes a rooted graph in memory,
whose root is ò , and whose edges are given by following pointers. Then, each rooted
graph can be unfolded to yield an infinite tree. It is standard that bisimilarity relates
"[ò<�%æ^& to "[ò1yd�%æqy[& if and only if the unfolded infinite trees corresponding to each graph
are isomorphic. It is natural to equate C values with such unfolded infinite trees (up
to isomorphism), hence to pairs "[ò��%æ^& up to bisimilarity: we therefore let �7� � be the
quotient "#þ �<� é Ú � åBë�&I¦ �� . We let   ò��%æ6¡ be the equivalence class of "[ò<�%æ^& under �� .

We need to modify our semantics of C so that it takes into account trust assertions.
For each instruction � in function � , except trust assertions, define the new transition
relation �,���0�%æ��I�ê�I� ó� 	�� y �I� y �%æ y ��� y �I� y (which now deals additionally with �r��� y9§
�}� � �cë�åV�t� and �c���ky § ucÚ � �v� ) by: �,���0�%æ ó� 	;��yd���*yP��æqy as defined in Figure 5, and
��y��¨� and �ky��¨� . That is, ordinary C instructions do not modify the trust relation
or the trust base, and otherwise behave in the standard way.

When � is the trust assertion ?*3B)6=�?�uÎ{ u � �MÛ�ÛMÛ���ucÜ , do the following. First, fix a
set of definite clauses © . (For now, just imagine © is empty. © is the external trust
model, which we shall explain in Section 4.2.) The trust assertion simply adds to �
and � all the new consequences deducible from the current � and � , using the clauses
uÓ{ u � ��ÛMÛ�Û���ucÜ and the clauses in © .



Formally, given any atom uUy , say that ����æ����r��� ï �Éucy if and only if ucy is of the
form �ã3'A'@èÚ and "�  �6".�q&1�%æ6¡d�%Ú�&\çª� , or uUy is of the form Þ
".Ú�& and Þ
".Ú�&\çr� . For
each definite clause « of the form u { u � ��ÛMÛ�Û���ucÜ , let �­¬ � ®¯ "Q�r���¶& be the smallest
pair "Q�ZyP�I� y[& in the componentwise subset ordering such that, for every substitution °
such that u=° , u � ° , . . . , uUÜ�° are ground and such that ����æ����r��� ï �ýuÑó±° for each � ,
ô�õö� õö� , then ����æ����Zy#���ky ï �Öu=° . For every set © of definite clauses, let �=¬ � ®² "Q�r���Ç&
be the sup over all «½ç�© of �³¬ � ®¯ "Q�r���¶& . (This is the familiar ��´ operator of Prolog
semantics.) Let µ+¶�·¥�­¬ � ®² "Q�r���¶& be the least fixpoint of �³¬ � ®² above "Q�r���Ç& .

Then, when � is the trust assertion ?*3B)6=<?�uÓ{¢u � ��Û�ÛMÛ���ucÜ , we define �,���0�%æ��I�ê�I�ó� 	;��y#���*y#�%æqy#�I��y#���ky if and only if � ó� 	;��y is an edge of �$� , �¿�¸�Fy , æÖ�Yæqy (so trust
statements behave as no-operations in the standard C semantics), and

"Q� y �I� y &���µe¶�· �­¬ � ®² "Q�­¬ � ®¹�º»¹ G � ~C~ ~�� ¹ K "Q�r���Ç&�& (12)

To simplify things a bit, imagine that © is empty. So "Q�\y#���kyR& �¼�­¬ � ®¹�ºA¹ G �C~ ~C~ � ¹ K "Q�ê�I�¶& .
In particular, if � is ?,3B)6=�?���34Ag@UÚ�{�� � 34Ag@UÚ � �MÛ�ÛMÛ�����Ü�3'A'@UÚVÜ , then �ky6��� and

� y ���¢½ê
*"�  �6".�q&1�%æ6¡d�%Ú¾°^& ï "�  �6".� � &1�%æ6¡d�%Ú � °^&kçv� and . . . and "�  �6".�0Ü�&1�%æ6¡d�%ÚVÜ�°X&i�
where ° ranges over all substitutions such that Ú¾° , Ú � ° , . . . , Ú�Ü�° are ground terms. In
other words, remembering that the C value of a variable � is   �6".�'&1��æ6¡ , this states that
we trust that the C value of � should denote any message that is a ground instance Ú¾° of
Ú , as soon as the C value of � � denotes Ú � ° and . . . and the C value of �6Ü denotes Ú�Ü�° .

Trust assertions are given as special C comments. E.g., the trust assertion on line 20
of Figure 2 states that encrypt_mesg really encrypts: we trust that, at the end of
encrypt_mesg, cipher points to the encryption crypt(M,K) of the plaintext
pointed to by msgwith key pointed to by key_pub. Line 47 states that we trust write
to make anything the contents of the buffer buf available to the Dolev-Yao intruder.

4.2 The External Trust Model

As we have already said in the introduction, programs such as SSL or the one of Figure 2
cannot be analyzed in isolation. We have to describe how the outside world, i.e., the
other programs with which the analyzed programs communicates, behaves. This is in
particular needed because the canonical trust statement for write is to declare that
8F9�:<;0='".Ú�& holds whenever its input argument is trusted to denote message Ú ; and the
canonical trust statement for read is to declare that the contents of the buffer given as
input will denote any message Ú such that 8F9�:<;0='".Ú�& . (This is the standard assumption in
the Dolev-Yao model, that all communication is to and from an all powerful intruder.)

Concretely, in particular, we have to describe the semantics of the 8F9�:<;0= predicate,
meant to represent all messages that a Dolev-Yao intruder may build. We do this by
providing clauses such as (1)–(9), but also such as (10)–(11) to describe an abstract
view of the roles of honest principals participating in the same or other protocols, and
which are believed to share secrets with the analyzed program. Such clauses can be built
from spi-calculus terms for example, following either Blanchet’s [3] or Nielson et al.’s
[20] approaches. (We tend to prefer the latter for pragmatic reasons: the output clauses
are always in the decidable class ¿ � ; more detail later.)



In any case, we parameterize our analysis by an external trust model, which is just a
set © of definite Horn clauses given in advance. The concrete semantics of programs is
defined relatively to © , see (12). The effect of applying µ+¶b· ��¬ � ®² is to close all facts in
� and � under any finite number of applications of intruder and honest principal rules
from the outside world.

5 Abstract Semantics

Let uÑ��ø/é Ú � åBë and uÑ��ø�À}�Á� be the set of abstract stores and abstract environments. It
does not matter much really how we represent these. Any static analysis of C code that is
able of handling pointer aliases would probably do the job. We choose one that matches
the simplicity of points-to analysis as much as we can. We associate an abstract zone
with each variable (local or global), and with each memory allocation site, in the form
of a fresh constant, taken from a finite set. An atomic formula Â4".Ú1�%Ú�y[& , where Ú is a term,
states that Ú is a location that may point to zone Ú%y . The abstract semantics is then given
as Horn clauses stating what new possible values may be found at what abstract zones.

Following the spirit of points-to analyses, we only include y4ë�� equations, and no
tF� �.� ; this considerably simplifies the abstract semantics. We define the abstract seman-
tics Ã.�±ÄFÅ/�&Å of instruction � in the abstract environment ��Å , mapping variable names to
abstract zones, a.k.a., constants, as sets of Horn clauses. The semantics of a function,
resp. a whole program, is just the union of the semantics of all instructions in the given
control flow graphs.

Æ ¬$«¯®MÇIÈ 	 ÈØ« @�ÉBI�Ê � S�QZNXWËÉ�I�Ê � SVQZN�B where
Ê � « 	 È I ¬ N�S
Ê � « 	 È I ® NÆ ¬$«²±IÇIÈ 	 ÈØ« @�ÉBI�Ê � S ± N�BÆ ¬$«´³[ÇIÈ 	 ÈØ« @�ÉBI�Ê � S�OME���ËFI ³ NVN�BÆ ¬$«´µ ®MÇIÈ 	 ÈØ« @�ÉBI�Ê � Sda<b�_4I�Ê � NVN�BÆ ¬$«­·�®MÇIÈ 	 ÈØ« @�ÉBI�Ê � S�QZNXWËÉ�I�Ê � S#a�b/_UTUN�ShÉ�I[T^SVQZN�BÆ ·�¬$«¯®MÇ È 	 È « @�ÉBIRQ
S�TUNXWËÉ�I�Ê � S#a�b�_�QZN�ShÉ�I�Ê � S�TUN�BÆ ¬7«²µ¶®'¸ ¹�º+ÇIÈ 	 ÈØ« @�ÉBI�Ê � Sda<b�_4IRQ=Ì¾Í � NVNXWËÉ�I�Ê � Sda<b�_4I[TcNVN�SÉ�I[T^S : _�_ : `'IRQ � SiÀiÀiÀiSVQ Á SVQ Á Í � NVN° 3 ¤ Æ ¹�Ç ÈÎ Á�Ï B if

®
is an expanded array@�ÉBI�Ê � Sda<b�_4IRQZNVNXWËÉ�I�Ê � S#a�b/_4IRQ\NVN�B if

®
is a shrunk arrayÆ ¬$«²µ ®}»É¼VÇIÈ 	 ÈØ« @�ÉBI�Ê � Sda<b�_4I.jkNVNXWÐÉBI�Ê � S#a�b�_,I[TUNVN�SÉ�I[T^S�H1b�_Me*O�b�@<À�À1ÀiS ¼Ñ« j�SiÀiÀiÀCBMNÆ b/_Me,H�bUÈ²WÉÈ � SiÀiÀ�À1S�È ÁoÇIÈ 	 ÈØ« @<I[È´WÉÈ � SiÀiÀiÀiS�È Á N±	"Ñ
B

Fig. 6. Some abstract semantic equations

In Figure 6, we use the convention that Ò { �l�&Ói".�q& , Ò�Ôr�¸��Ói".�'& . This is recalled
in the first rule, and omitted in later rules. In the second and third clauses, we assume
that constants

�
and functions � can also serve as term constants when used in clauses.

For the sake of precision, integer constants thus recorded are not used in computing



array indices (instructions �ö�½�Ñ�q  �<¡ ); rather an auxiliary analysis is run, based on a
given integral abstract domain, yielding a set of possible integer values Ã#�MÄ ÅóJÜo� for the
variable � : we follow here [4, 5] in that we distinguish expanded array cells (arrays
whose length � is completely known, and are handled much like collections of sepa-
rate global variables) and shrunk array cells (arrays thought of as one single abstract
cell). In �z�¢�U�-  �<¡ and ��� �U��	á� , we assume the types of all variables to be
completely known; this determines the right form of term >�3*3g>�pq".l � ��ÛMÛ�Û���l
Ü6�%l
Ü"Õ � &
or =�?*3B)6@<?Ó
BÛMÛ�ÛM���ñ��÷���ÛMÛ�Û!� in the bodies of clauses (in the first case, it yields the
length � of the expanded array; the fictitious element lZÜ"Õ � is added so as to cope
with the fact that �U�-  �6¡ is legal C code although �-  �6¡ is not a valid element; while
=�?*3B)6@<?Z
FÛ�ÛMÛ����s�Î÷Ç�MÛ�ÛMÛ!� is syntactic sugar for some term where field labels have been
ordered in some way, and ÷ denotes the entry corresponding to the � label).

The abstract semantics for function calls is implemented as in [14]. We leave its
formal expression as a (tedious) exercise. Intuitively, calling the known function y by
�]�Öy6".� � ��ÛMÛ�Û��%��Ü�& works as though the actual parameters were copied, using run-
of-the-mill assignments, into global locations y0Û in Û x � , . . . , y0Û in Û x Ü . A local variable
struct y0Û loc is also used to hold local variables, another y0Û ret to hold the return value,
and the assignment ���Ðy0Û ret Û &return is simulated. (This matches the names of
structs used in the concrete semantics of function calls, see Section 4.) Additional stan-
dard optimizations are added, e.g., keeping track of effective call sites when returning
from functions to avoid spurious, fake control flow.

One advantage of this points-to-like abstract semantics is that the semantic of trust
assertions is as simple as it can be: just add the trust assertion as a clause, replacing all C
variables � by their location � Å ".�q& . Reading � Å as a substitution, this means applying
the substitution �&Å to the entire clause u�{ u � ��ÛMÛ�Û���ucÜ .

This abstract semantics is of course rather coarse. One may improve somehow the
precision of the analysis by renaming local variables after each assignment, in effect
using variants of the SSA form.

5.1 Checking Abstract Properties

Once the abstract semantics of the program has been computed, as a set of Horn clauses,
add the external trust model © , which specifies all intruder capabilities, as well as
behaviors that we trust other honest participants may have on the network. This yields
a set é of Horn clauses.

Confidentiality. Assume we want to check that the value of variable x is always
secret. This can be checked by verifying that é plus the goal clause

� { 8F9�:<;6=4"Pms&1�
Â,"TÒ x �%l¿&1�%l 34A'@Õm is satisfiable. (That security boils down to satisfiability of clause
sets, and more precisely to the existence of a model, was first noticed explicitly by
Selinger [23].) Indeed, our abstract semantics is an upper approximation of all correct
behaviors of our C program in the current trust model. If there is an attack, then there
will be a closed term Ú (denoting the bit-level value of variable x, in the sense of Sec-
tion 4.1) such that Â,"TÒ x �%Ú�& holds, and a closed term � (denoting the message that we
think is one possible reading of the value Ú ) such that Ú¶34A'@ � , and which the intruder
can discover, namely 8F9�:�;0='" � & .



Conformance. We may also check that specific variables may contain values of a
specific form, say values trusted to denote messages matching a given open term Ú .
We can test this by checking whether é plus the goal

� { Â4"TÒ x �%l¿&1�%l 3'A'@öÚ is
unsatisfiable, where l is not free in Ú . This can be used to detect bugs, e.g., when one
variable name was mistyped.

Checking satisfiability of sets of Horn clauses is in general undecidable. How-
ever we notice that all the clauses provided in the abstract semantics are in the de-
cidable class ¿ � , and in fact in the polynomial-time decidable subclass ¿ � [20]. We
prefer clauses in the external trust model © , accordingly, to fall in ¿ � , too. Other-
wise, we can approximate them as follows. We assume without loss of generality that
only monadic predicate symbols occur; e.g., Â," � �I�4& is encoded as Â," � " � �I�4&�& . Given a
Horn clause Þ
".Ú�&${ � � äB� , first linearize Ú by making copies of each variable, copy-
ing the corresponding parts of the body as needed. E.g., transform Þ
"d� ".lr�%l¿&�&Ý{× ".l¿&1�IØs"Pms& into Þ
"d� ".l � ��l � &�&�{ × ".l � &1� × ".l � &1�IØs"Pms& . Then, if Ú is of the form
�^".Ú � �MÛ�ÛMÛ���ÚVÜ�& where some Ú�ó at least is not a variable, replace Þ
".Ú�&�{|� � äF� by the
clauses Þ
"d�^".l � ��ÛMÛ�Û��%l
Ü�&�&k{ × � ".l � &1��Û�ÛMÛ�� × Ü-".lsÜ�& and

× ói".ÚVóV&k{ � � äB� , ô$õã�¶õã� ,
for fresh predicates

× � , . . . ,
× Ü , and repeat the process on the latter clauses. This yields

clauses in ¿ � , and is guaranteed to have a least Herbrand model that is an upper approx-
imation of that of the original clause set. (In effect, this defines a set-constraint based
typing discipline.) Since most clauses arise from the abstract semantics of the program,
we do not lose much precision by doing this second abstraction step. Moreover, past
experience in the verification of cryptographic protocols demonstrates that this does
not throw away any essential information [13]. We have yet to evaluate whether this
abstraction to ¿ � remains practical in the context of program verification.

6 Implementation

We have implemented this in the CSur project [21].
In a first phase, a specific compiler csur_cc reads, manages and generates a

control-flow graph for each function of the program. All control flow graphs are stored
in a unique table. Starting from the main function, the second phase uses a hybrid
analyzer (computing abstract memory zones and collecting all Horn clauses for all pro-
gram points) and performs function calls using the above table. Our tool follows the
Compile-Link-Analysis technique of Heintze and Tardieu [14].

For each function, a control flow graph is generated and the compiler collects types
for each variable of programs. For all types, the physical representation is also computed
(using low level representations, for example field offsets of structures are computed
as seen as Figure 4). Finally a linker merges all control flow graphs and types into a
unique table. In the same way a library manager csur_ar (used just like ar) was
implemented to help collect control flow graphs as single archives. These tools are
defined as gcc front-ends to collect compilation options of source file.

The csur_cc compiler also collects trust assertions as it analyzes C code, and spits
out a collection of Horn clauses which are then fed to an ¿ � solver—currently SPASS
[27, 26] or the first author’s prototype h1 prover. The fact that most clauses are in ¿ � , a
polynomial class, is a treat: despite several optimizations meant to decrease the number



of generated clauses, a running 229 line implementation (excluding included files) of
� ’s role in the Needham-Schroeder protocol results in a set of 459 clauses.

7 Conclusion

This paper is one of the first attempts at analyzing actual implementations of crypto-
graphic protocols. Our aim is not to detect subtle buffer overflows, which are better
handled by other techniques, but to detect the same kind of bugs that cryptographic
protocols are fraught with, only on actual implementations. We must say that combin-
ing the intricacies of analyzing C code with cryptographic protocol verification is still a
challenge. This can be seen from the fact that our abstract semantics for C is still fairly
imprecise. First experiments however show that this is enough on the small examples
we tested. Despite the shortcomings that our approach clearly still has, and which will
be the subject of future work, we would like to stress the importance of trust assertions
as a logical way of linking the in-memory model of values to the abstract Dolev-Yao
model of messages; and the fact that compiling to Horn clauses is an effective, yet
simple way of checking complex trust and security properties.
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