
Form Methods Syst Des
DOI 10.1007/s10703-011-0136-y

Bounded underapproximations

Pierre Ganty · Rupak Majumdar · Benjamin Monmege

© Springer Science+Business Media, LLC 2011

Abstract We show a new and constructive proof of the following language-theoretic re-
sult: for every context-free language L, there is a bounded context-free language L′ ⊆ L

which has the same Parikh (commutative) image as L. Bounded languages, introduced by
Ginsburg and Spanier, are subsets of regular languages of the form w∗

1w
∗
2 · · ·w∗

m for some
w1, . . . ,wm ∈ Σ∗. In particular bounded context-free languages have nice structural and de-
cidability properties. Our proof proceeds in two parts. First, we give a new construction that
shows that each context free language L has a subset LN that has the same Parikh image as
L and that can be represented as a sequence of substitutions on a linear language. Second,
we inductively construct a Parikh-equivalent bounded context-free subset of LN .

We show two applications of this result in model checking: to underapproximate the
reachable state space of multithreaded procedural programs and to underapproximate the
reachable state space of recursive counter programs. The bounded language constructed
above provides a decidable underapproximation for the original problems. By iterating the
construction, we get a semi-algorithm for the original problems that constructs a sequence

This research was sponsored in part by the NSF grants CCF-0546170 and CCF-0702743, DARPA grant
HR0011-09-1-0037, Comunidad de Madrid’s Program PROMETIDOS-CM (S2009TIC-1465),
PEOPLE-COFUND’s program AMAROUT (PCOFUND-2008-229599), and by the Spanish Ministry
of Science and Innovation (TIN2010-20639).

P. Ganty
IMDEA Software, Facultad de Informática (UPM), Campus Montegancedo, 28660-Boadilla del Monte,
Madrid, Spain
e-mail: pierre.ganty@imdea.org

R. Majumdar
MPI-SWS, Gottlieb-Daimler-Strasse Building 49, 67663 Kaiserslautern, Germany
e-mail: rupak@mpi-sws.org

R. Majumdar
UC Los Angeles, Los Angeles, CA, USA

B. Monmege (�)
LSV, ENS Cachan, CNRS & INRIA, 61, avenue du Président Wilson, 94235 Cachan Cedex, France
e-mail: monmege@lsv.ens-cachan.fr

mailto:pierre.ganty@imdea.org
mailto:rupak@mpi-sws.org
mailto:monmege@lsv.ens-cachan.fr


Form Methods Syst Des

of underapproximations such that no two underapproximations of the sequence can be com-
pared. This provides a progress guarantee: every word w ∈ L is in some underapproximation
of the sequence, and hence, a program bug is guaranteed to be found. In particular, we show
that verification with bounded languages generalizes context-bounded reachability for mul-
tithreaded programs.

Keywords Context-free grammar · Bounded languages · Parikh-boundedness ·
Multithreaded reachability · Recursive counter machines

1 Introduction

Many problems in program analysis reduce to undecidable problems about context-free lan-
guages. For example, checking safety properties of multithreaded recursive programs re-
duces to checking emptiness of the intersection of context-free languages [3, 21]. Checking
reachability for recursive counter programs relies on context-free languages to describe valid
control flow paths.

We study underapproximations of these problems, with the intent of building tools to
find bugs in systems. In particular, we study underapproximations in which one or more
context-free languages arising in the analysis are replaced by their subsets in a way that
(P1) the resulting problem after the replacement becomes decidable and (P2) the subset
preserves “many” strings from the original language. Condition (P1) ensures that we have
an algorithmic check for the underapproximation. Condition (P2) ensures that we are likely
to retain behaviors that would cause a bug in the original analysis.

We show in this paper an underapproximation scheme using bounded languages [12, 13].
A language L is bounded if there exist k ∈ N and finite words w1,w2, . . . ,wm such that L

is a subset of the regular language w∗
1 · · ·w∗

m. In particular, context-free bounded languages
(hereunder bounded languages for short) have stronger properties than general context-free
languages: for example, it is decidable to check if the intersection of a context-free lan-
guage and a bounded language is non-empty [13]. For our application to verification, these
decidability results ensure condition (P1) above.

The key to condition (P2) is the following Parikh-boundedness property: for every
context-free language L, there is a bounded language L′ ⊆ L such that the Parikh images
of L and L′ coincide. (The Parikh image of a word w maps each letter of the alphabet to
the number of times it appears in w, the Parikh image of a language is the set of Parikh
images of all words in the language.) A language L′ meeting the above conditions is called
a Parikh-equivalent bounded subset of L. Intuitively, L′ preserves “many” behaviors as for
every string in L, there is a permutation of its letters that matches a string in L′.

The Parikh-boundedness property was first proved in [2, 18], however, the chain of rea-
soning used in these papers made it difficult to see how to explicitly construct the Parikh-
equivalent bounded subset. Our paper gives a direct and constructive proof of the theorem.
We identify three contributions in this paper.

Explicit construction of Parikh-equivalent bounded subsets Our constructive proof has two
parts. First, given a context-free language L, we show how to compute a subset of L that
has the same Parikh image and that can be represented as a finite sequence of substitutions
on a linear grammar. (A linear grammar is a context-free grammar where each rule has at
most one non-terminal on the right-hand side.)

Second, we provide a direct constructive proof that takes as input such a sequence of
linear substitutions, and constructs by induction a Parikh-equivalent bounded subset of the



Form Methods Syst Des

language denoted by the sequence. Our constructions are optimal, and construct a bounded
expression which is exponential in the size of the original grammar. We show that the expo-
nential is necessary.

Along the way, for regular languages, we show an analogous Parikh boundedness prop-
erty (where the bounded language is also regular), and give a construction that is exponential
in the size of the alphabet but polynomial in the size of the regular expression. Again, we
show that the construction is optimal by showing an exponential lower bound in the size of
the alphabet.

Reachability analysis of multithreaded programs with procedures Using the above con-
struction, we obtain a semi-algorithm for reachability analysis of multithreaded programs
with the intent of finding bugs. To check if configuration (c1, c2) of a recursive 2-threaded
program is reachable, we construct the context-free languages L0

1 = L(c1) and L0
2 = L(c2)

respectively given by the execution paths whose last configurations are c1 and c2, and check
if either L′

1 ∩L0
2 or L0

1 ∩L′
2 is non-empty, where L′

1 = L0
1 ∩w∗

1 · · ·w∗
m and L′

2 = L0
2 ∩v∗

1 · · ·v∗
l

are two Parikh-equivalent bounded subsets of L0
1 and L0

2, respectively. If either intersection
is non-empty, we have found a witness trace. Otherwise, we construct L1

1 = L0
1 ∩ w∗

1 · · ·w∗
m

and L1
2 = L0

2 ∩ v∗
1 · · ·v∗

l in order to exclude, from the subsequent analyses, the execution
paths we already inspected. We continue by rerunning the above analysis on L1

1 and L1
2.

If (c1, c2) is reachable, the iteration is guaranteed to terminate; if not, it could potentially
run forever. Moreover, we show our technique subsumes and generalizes context-bounded
reachability [20].

Reachability analysis of programs with counters and procedures We also show how to
underapproximate the set of reachable states of a procedural program that manipulates a
finite set of counters. This program is given as a counter machine M (see [19] for a detailed
definition) together with a context-free language L over the transitions of M . Our goal is to
compute the states of M that are reachable using a sequence of transitions in L.

A possibly non terminating algorithm to compute the reachable states of M through ex-
ecutions in L is to (1) find a Parikh-equivalent bounded subset L′ of L; (2) compute the
states that are reachable using a sequence of transitions in L′ (as explained in [19], this
set is computable if (i) some restrictions on the transitions of M ensures the set is Pres-
burger definable and (ii) L′ is bounded, i.e., L′ ⊆ w∗

1 · · ·w∗
m); and (3) rerun the analysis

using for L ∩ w∗
1 · · ·w∗

m so that runs already inspected are omitted in every subsequent anal-
yses. Again, every path in L is eventually covered in the iteration.

Related work Bounded languages were introduced and studied by Ginsburg and Spanier
[13] (see also [12]). The existence of a bounded, Parikh-equivalent subset for a context-
free language was shown in [2] using previous results on languages in the Greibach hier-
archy [18]. In an earlier version of our proof [11], we showed the existence of a language
representable as a sequence of linear transformations of a linear language which is Parikh-
equivalent to a context-free language using Newton’s iterations [9] on the language and
Parikh semirings. (Such a construction was independently done in [8].) In this paper, we
give a new, and greatly simplified, construction using some recent observations by [7, 9].

Bounded languages have been proposed by Kahlon for tractable reachability analysis of
multithreaded programs [17]. His observation is that in many practical instances of multi-
threaded reachability, the languages are actually bounded. In that case, his algorithm checks
the emptiness of the intersection (using the algorithm in [13]). In contrast, our results are
applicable even if the boundedness property does not hold. Recently, Esparza and Ganty [6]



Form Methods Syst Des

introduced a technique for verification of multithreaded programs based on patterns which
are expressions of the form w∗

1 · · ·w∗
m.

For multithreaded reachability, context-bounded reachability [20, 22] is a popular under-
approximation technique which tackles the undecidability by limiting the search to those
runs where the active thread changes at most k times. Our algorithm using bounded lan-
guages subsumes context-bounded reachability, and can capture unboundedly many syn-
chronizations in one analysis.

For underapproximating the reachable states of a counter machine along context-free ex-
ecutions, our technique complements the work of Ibarra [15] (see also the recent work of
M. Hague and A.W. Lin in [14]). Their work is of independent interest since their restric-
tion is on the counters’ behavior only while our technique does not put restriction on the
counters’ behavior but on the set of executions instead. In fact, our algorithm computes the
reachable states for a bounded (in the sense of bounded language) subset of the context-free
executions.

Another way to analyze context-free executions of counter machines is to encode the
stack (used for the context-free executions) using counters (after all, counter machines are
Turing-powerful). However we believe that keeping the natural structure of context-free
languages and approximating it through bounded languages allows us to compute reach-
able configurations which cannot be computed using existing techniques. This is because
bounded languages allows to isolate the control flow from the data in programs.

2 Preliminaries

We assume the reader is familiar with the basics of language theory (see, e.g., [16]). An
alphabet Σ is a finite non-empty set of letters. The concatenation L � L′ of two languages
L,L′ ⊆ Σ∗ is defined using word concatenation as L � L′ = {l · l′ | l ∈ L ∧ l′ ∈ L′}. For the
sake of clarity we sometimes abbreviate w · w′ and L � L′ as ww′ and LL′, respectively.
A bounded expression over Σ is a regular expression of the form w∗

1 · · ·w∗
m for some fixed

w1, . . . ,wm ∈ Σ∗. The size of a bounded expression w∗
1 . . .w∗

m is defined as
∑m

i=1 |wi |.

Vectors For p ∈ N, we write Z
p and N

p for the set of p-dim vectors (or simply vec-
tors) of integers and naturals, respectively. We write 0 for the vector (0, . . . ,0) and ei

the vector (z1, . . . , zp) ∈ N
p such that zj = 1 if j = i and zj = 0 otherwise. Addition

on p-dim vectors is the componentwise extension of its scalar counterpart, that is, given
(x1, . . . , xp), (y1, . . . , yp) ∈ Z

p (x1, . . . , xp) + (y1, . . . , yp) = (x1 + y1, . . . , xp + yp). Given
λ ∈ N and x ∈ Z

p , we write λx as the λ-times sum x + · · · + x. Using vector addi-
tion, we define the operation � on sets of vectors as follows: given Z,Z′ ⊆ N

p , let
Z � Z′ = {z + z′ | z ∈ Z ∧ z′ ∈ Z′}.

Parikh image Give Σ a fixed linear order: Σ = {a1, . . . , ap}. The Parikh image of a letter
ai ∈ Σ , written ΠΣ(ai), is ei . The Parikh image is extended to words of Σ∗ as follows:
ΠΣ(ε) = 0 and ΠΣ(u · v) = ΠΣ(u) + ΠΣ(v). Finally, the Parikh image of a language on
Σ∗ is the set of Parikh images of its words. Thus, the Parikh image maps 2Σ∗

to 2N
p
. When

it is clear from the context we generally omit the subscript in ΠΣ . Two languages L1 and
L2 are Parikh equivalent if Π(L1) = Π(L2).

The following lemma establishes a simple property of Π we need in the sequel.

Lemma 1 (Preservation of Π ) Let X,Y ⊆ Σ∗ we have Π(X � Y ) = Π(X) � Π(Y).



Form Methods Syst Des

Proof

Π(X � Y ) = {Π(w) | w ∈ X � Y } definition of Π

= {Π(x · y) | x ∈ X ∧ y ∈ Y } definition of �
= {Π(x) + Π(y) | x ∈ X ∧ y ∈ Y } definition of Π

= {a + b | a ∈ Π(X) ∧ b ∈ Π(y)}
= Π(X) � Π(Y) definition of � �

Context-free languages A context-free grammar (CFG) G is a tuple (X ,Σ, P) where X
is a finite non-empty set of variables (non-terminal letters), Σ is an alphabet of terminal
letters and P ⊆ X × (Σ ∪ X )∗ a finite set of productions (the production (X,w) may also
be noted X → w). Given two strings u,v ∈ (Σ ∪ X )∗ we define the derivation relation
u ⇒ v, if there exists a production (X,w) ∈ P and some words y, z ∈ (Σ ∪ X )∗ such that
u = yXz and v = ywz. A partial derivation is a finite sequence u1 ⇒ u2 ⇒ ul for some
l and strings u1, . . . , ul ∈ (Σ ∪ X )∗. We use ⇒∗ for the reflexive transitive closure of ⇒.
A word w ∈ Σ∗ is recognized by the grammar G from the state X ∈ X if X ⇒∗ w. Given
X ∈ X , the language LX(G) is given by {w ∈ Σ∗ | X ⇒∗ w}. A language L is context-
free (CFL) if there exists a context-free grammar G = (X ,Σ, P) and an initial variable
X ∈ X such that is L = LX(G). A linear (resp. regular) grammar G is a CFG where each
production is in X ×Σ∗(X ∪{ε})Σ∗ (resp. X × (Σ ∪{ε})(X ∪{ε})). A language L is linear
(resp. regular) if L = LX(G) for some linear (resp. regular) grammar G and initial variable
X of G. In what follows we usually write regular grammar as follows R = (Q,Σ, δ). A CFL
L is bounded if it is a subset of the language of some bounded expression.

2.1 Proof plan

The main result of the paper is the following.

Theorem 1 For every CFL L, there is an effectively computable CFL L′ such that (i) L′ ⊆ L,
(ii) Π(L) = Π(L′), and (iii) L′ is bounded.

We actually solve the following related problem in our proof.

Problem 1 Given a language L, compute a bounded expression B such that

Π(L ∩ B) = Π(L).

In this paper we study the particular problem of solving Problem 1 when the language L

is a CFL. If we can compute such a bounded expression B , then we can compute the CFL
L′ = B ∩ L which satisfies conditions (i) to (iii) of the Theorem 1. Thus, solving Problem 1
proves the theorem constructively.

We solve Problem 1 for a CFL L as follows: (1) we find a CFL L′ such that L′ ⊆ L,
Π(L′) = Π(L), and L′ has a “simple” structure (Sect. 3) and (2) then we show how to
compute a bounded expression B which is a solution to Problem 1 for instance L′. Observe
that because L′ ⊆ L and Π(L) = Π(L′), we find that if B is a solution to Problem 1 for
instance L′, then so is B for instance L. In Sect. 4, we also give some bounds on the size the
smallest bounded expression which solves Problem 1 for various classes of instances like
regular, linear and context-free languages. Finally, Sect. 5 provides applications of the result
for program analysis problems.



Form Methods Syst Des

We conclude this section by pointing out that the existence of a solution to Problem 1
is not a trivial property of every class of languages. In fact, the existence of a solution
to Problem 1 for context-sensitive languages is not guaranteed as shown by the following
example taken from [2]. Consider Problem 1 for the language

L1 = {10102 . . .10h | h ≥ 1}
there is no bounded expression which solves Problem 1, namely Π(L1 ∩ B) = Π(L1) for
every bounded expression B . Observe that Π(L1) is not semilinear.

Moreover, consider L2 = L1 ∪{1i0j | (j, i) /∈ Π(L1)}.1 It follows from [2] that Problem 1
for instance L2 has no solution. It is worth pointing that Π(L2) = N

2 is semilinear, but
L2 ∩ 1∗0∗ is not.

3 A Parikh-equivalent representation

This section is devoted to showing that given a CFL L, we can compute a language L′ such
that L′ ⊆ L, Π(L′) = Π(L), and L′ has a “simple” representation.

3.1 Derivation tree, yield and dimension

In this section, we follow ideas from [9] and give tree versions of the semantics of context-
free grammars. Let G = (X ,Σ, P) be a fixed CFG. In the following, we will define some
ordered unbounded trees with nodes labeled by production rules (X,α) ∈ P . For a given
tree t , define λv(t) to be the variable labeling the root, i.e., λv(t) = X if the root of t is
labeled by (X,α) ∈ P .

Definition 1 (Derivation tree, yield) The derivation trees of G and their yields are induc-
tively defined as follows:

– For every production (X,α) ∈ P ∩ (X × Σ∗), the tree t consisting of one single node
labeled by (X,α) is a derivation tree of G. Its yield Y(t) is equal to α.

– For every production (X,α) ∈ P such that α = a1X1a2X2 · · ·akXkak+1 for some k ≥ 1,
let t1, . . . , tk be derivation trees of G such that for every 1 ≤ i ≤ k, λv(ti) = Xi . Then
the tree t with root labeled by (X,α) and having t1, . . . , tk as (ordered) children is also a
derivation tree of G, and its yield Y(t) is equal to a1 Y(t1) · · ·ak Y(tk)ak+1.

The yield Y(T ) of a set T of derivation trees is defined by Y(T ) = ⋃
t∈T Y(t). We denote by

T (G) the set of derivation trees of G, simply writing T if G is clear from the context. More-
over we define TX(G) to be the subset of all derivation trees t ∈ T (G) such that λv(t) = X.
In what follows, we often abbreviate derivation tree to tree.

Observe first that, since every word in LX(G) is the yield of some derivation tree, we
have LX(G) = Y(TX(G)).

We want to find a Parikh-equivalent sublanguage of LX(G) for a fixed X ∈ X . This will
be achieved by showing that a subset of TX(G) is Parikh-equivalent to LX(G). This subset
of TX(G) is characterized using the notion of dimension of a derivation tree.

1Σ = {0,1} is ordered as 0 ≺ 1.



Form Methods Syst Des

Intuitively, a tree has dimension 0 if every node has at most one child; a tree has di-
mension i if there is a path from its root to some node which has at least two children
with dimension i − 1 and all subtrees of the path that are not themselves on the path have
dimension at most i − 1.

Definition 2 (Dimension) The dimension d(t) of a tree t is inductively defined as follows:

1. If t is a node with no child, then d(t) = 0.
2. If t has exactly one child t1, then d(t) = d(t1).
3. If t has at least two children, let t1, t2 be two distinct children of t such that d(t1) ≥ d(t2)

and d(t2) ≥ d(t ′) for every child t ′ = t1. Then

d(t) =
{

d(t1) + 1 if d(t1) = d(t2),

d(t1) if d(t1) > d(t2).

We denote by Di (G) (resp. Di
X(G)) the set of derivation trees of dimension at most i

(resp. and with λv-labels X). We omit the argument G if it is clear from the context.

The next lemma states that every tree is Parikh-equivalent to a tree of at most dimension
n where n = |X | is the number of variables in G. This result has been proved in [7, 9] with
slightly different notations and in a different context so we do not reformulate the proof
here.

Lemma 2 Let G be a CFG with n variables. For each tree t ∈ T , there is a tree t ′ ∈ Dn

such that

1. t and t ′ have the same number of nodes,
2. λv(t) = λv(t

′) and {λv(t1) | t1 is a subtree of t} = {λv(t2) | t2 is a subtree of t ′},
3. Π(Y(t)) = Π(Y(t ′)).

We shall use the following simple corollary of this result.

Corollary 1 Let G = (X ,Σ, P) be a context-free grammar and n = |X |. For every vari-
able X ∈ X , the language Y(Dn

X) is a subset of LX(G) and is Parikh-equivalent to
LX(G).

Given n and a context-free grammar G = (X ,Σ, P), we define the context-free grammar
G[n] = (X [n],Σ, P [n]) which annotates the variables of X with a positive integer superscript
bounding the dimension of the underlying derivation tree. We will then show that for every
X ∈ X we have LX[n](G[n]) = Y(Dn

X).
Our definition is inspired by an example appearing in [9].

Definition 3 Let G = (X ,Σ, P) be a CFG and n ∈ N. Define the CFG G[n] = (X [n],Σ, P [n])
as follows. Define X [n] = {X[i] | 0 ≤ i ≤ n ∧ X ∈ X }. Define P [n] as the smallest set such
that (X[i], α) ∈ P [n] if (X, erase(α)) ∈ P and either α ∈ Σ∗ or ∃α1 ∈ (X [n] ∪ Σ)∗, α2 ∈
(X [n] ∪ Σ)∗, Y ∈ X : α = α1Y

[i]α2 and Sidx(α1) ∪ Sidx(α2) ⊆ {i − 1} where erase(α) re-
moves the superscript from every variable occurrence in α and Sidx(α) returns the set of
superscripts, if any, that occurs in α.



Form Methods Syst Des

Example 1 Let us define the CFG G and G[1] thereof which are given by:

X → AX′ | $ X[1] → A[0]X′[1] | A[1]X′[0] | $ A[1] → a

X′ → XB X[0] → $ A[0] → a

A → a X′[1] → X[1]B [0] | X[0]B [1] B [1] → b

B → b B [0] → b

Note that there is no rule with left hand side having the decorated variable X′[0] by definition.

Lemma 3 Let G = (X ,Σ, P) be a CFG, X ∈ X and n ∈ N. Let G[n] be given as in Defini-
tion 3, we have LX[n](G[n]) = Y(Dn

X).

Proof We extend the substitution erase to derivation trees by applying it recursively over
every label (X[i], α), mapping it to (erase(X[i]) = X, erase(α)). Then, we show by induction
on h ∈ N that for every derivation tree t of G of height at most h we have for every n ≤ h

(the dimension of a tree is always less or equal than its height):

t ∈ Dn
X(G) ⇐⇒ t ∈ erase(TX[n](G[n]))

For the base case, let h = 0. Let t ∈ D0
X(G) be a tree of height 0. This is a childless root

labeled by (X,α) ∈ P with α ∈ Σ∗. By definition of G[0] we find that (X[0], erase(α) =
α) ∈ P [0]. Hence, the tree t ′ consisting of the childless root labeled (X[0], α) belongs to
TX[0](G[0]) and t = erase(t ′).

We now suppose that h > 0 and that the result holds for every tree of height at most h−1.
Let t ∈ Dn

X(G) with height h. By definition of the dimension, we have three cases.

– If t has no child, then its height is 0, and we can conclude using the base case.
– If t has exactly one child t1, then d(t1) = d(t). Let Y be such that Y = λv(t1). Clearly

the height of t1 is less than the one of t and so, by induction hypothesis, there exists
t ′1 ∈ TY [n](G[n]) with t1 = erase(t ′1). Moreover, if (X,α) is the root of t , we necessarily can
decompose α as α1Yα2, with α1, α2 ∈ Σ∗. Then the tree t ′ rooted by (X[n], α1Y

[n]α2) ∈
P [n] with only child t ′1 is clearly in TX[n](G[n]) and it further verifies t = erase(t ′).

– If t has at least two children, let (X,a1Y1a2 · · ·akYkak+1) be the label of the root of t . The
definition of dimension shows that there exists two distinct subtrees ti , tj of t such that
d(ti) ≥ d(tj ) and d(tj ) ≥ d(t ′) for every child t ′ = ti . Moreover, we have:

d(t) =
{

d(ti) + 1 if d(ti) = d(tj ),

d(ti) if d(ti) > d(tj ).

Every child t� has height less or equal than h−1, so we conclude by induction hypothesis
that for � = i there exists a derivation tree t ′� ∈ T

Y
[n−1]
�

(G[n]) (as G[n−1] is included in G[n])
such that t� = erase(t ′�), and that there exists a derivation tree t ′i ∈ T

Y
[n]
�

(G[n]) such that ti =
erase(t ′i ). Then the tree t ′ with root labeled (X[n], a1Y

[n−1]
1 a2 · · ·Y [n−1]

i−1 aiY
[n]ai+1Y

[n−1]
i+1 · · ·

akY
[n−1]
k ak+1) ∈ P [n] and with children t ′1, . . . , t

′
k ∈ T (G[n]) is a derivation tree of G[n] with

t = erase(t ′).

The reverse implication is proved similarly. �



Form Methods Syst Des

Lemma 3 and Corollary 1: let L be a CFL given by LX(G) where G = (X ,Σ, P) is a
CFG with n variables and X ∈ X , if B is a solution to Problem 1 for the instance LX[n](G[n])
then so is B for the instance L.

In order to compute the bounded expression B solving Problem 1, in the following sec-
tion, we give an equivalent representation of LX[n](G[n]). Roughly, the idea is to give a rep-
resentation in n + 1 layers, such that layer i will simulate the derivation steps of G[n] where
only non-terminals with superscript i are expanded. Formally each layer will correspond to
a linear context-free grammar. In order to simulate a derivation of LX[n](G[n]), we need the
layers to interact with each other. Interactions will be formally defined using substitutions.

3.2 t -fold composition

A substitution σ from alphabet Σ1 to alphabet Σ2 is a function which maps every word
over Σ1 to a set of words of Σ∗

2 such that σ(ε) = {ε} and σ(u · v) = σ(u) � σ(v). A ho-
momorphism h is a substitution such that for each word u, h(u) is a singleton. We write
σ[a/b] : Σ1 ∪ {a} → Σ1 ∪ {b} for the substitution which maps a to b and leaves all other
letters unchanged.

Given X and i ≥ 0, define the set vX (i) = {vX(i) | X ∈ X } of letters. Moreover, define the
substitution τi which replaces each X[i] by vX(i) . Finally, define τ−1 as the identity.

Definition 4 Given the CFG G[n] = (X [n],Σ, P [n]), let {G(0), . . . ,G(n)} be the family of
CFGs defined as follows. For each i ∈ {0, . . . , n}, define G(i) = (X (i),Σ(i), P (i)) where
X (i) = {X(i) | X[i] ∈ X [n]},

Σ(i) = Σ ∪
{

vX (i−1) if i > 0,

∅ otherwise

and P (i) is the smallest set given by:

– if (A[i] → α) ∈ P [n] where α ∈ Σ∗ then (A(i) → α) ∈ P (i);
– if (A[i] → α1Y

[i]α2) ∈ P [n] then (A(i) → τi−1(α1)Y
(i)τi−1(α2)) ∈ P (i).

We conclude from Definition 4 that each G(i) is a linear CFG, and the grammars differ
to each other by their superscript only (except for G(0)). Informally, they represent layers of
derivations of the grammar G[n]. Our next step is to relate the layers: we do that iteratively
by applying substitutions.

We will use the notions of substitution and linear grammar to define t -fold compositions.
For t ∈ {1, . . . , n}, we define σt : Σ ∪ vX (t) → Σ ∪ vX (t−1) as the substitution which maps
each vX(t) onto LX(t) (G(t)) and leaves Σ unchanged. Note that for t = 0, the substitution σ0

has the signature Σ ∪ vX (0) → Σ .
Let �, t be such that 0 ≤ � ≤ t ≤ n. We define σ t

� to be σ� if t = � and σ t−1
� � σt otherwise

(or equivalently σ� � σ t
�+1). Hence, σn

0 is such that: (Σ ∪ vX (n) )∗ σn−→ (Σ ∪ vX (n−1) )∗ · · · (Σ ∪
vX (1) )∗ σ1−→ (Σ ∪ vX (0) )∗ σ0−→ Σ∗.

Definition 5 Given a CFG G = (X ,Σ, P), variable X ∈ X and t ∈ N, define the t -fold
composition to be σ t

0(vX(t) ).

The following lemma establishes equivalence between representations.



Form Methods Syst Des

Lemma 4 Given a CFG G = (X ,Σ, P), variable X ∈ X and t ∈ N, we have

σ t
0(vX(t) ) = LX[t](G[t]).

Proof The result is shown by induction on t .
t = 0. We have that σ 0

0 (vX(0) ) = σ0(vX(0) ) = LX(0) (G(0)) which in turn equals LX[0](G[0])
by definition of G[0].

t > 0. For each word w ∈ Σ∗ we have:

w ∈ LX[t](G[t]) iff X[t] ⇒∗ w definition of derivation (in G[t])
iff ∃αi : ϕ(αi) ∧ αi ⇒∗ w derive highest index first

where ϕ(αi) is the property

∃αi−1 : X[t] ⇒∗ αi−1 ⇒ αi where Sidx(αi−1) ⊆ {t, t − 1},Sidx(αi) ⊆ {t − 1}.

Let αi be a word such that ϕ(αi) holds. Then, αi is necessarily of the form x1A
[t−1]
1 x2 · · ·

xsA
[t−1]
s xs+1 with xj ∈ Σ∗ for every j . Then,

αi ⇒∗ w iff w ∈ x1LA
[t−1]
1

(G[t]) · · ·L
A

[t−1]
s

(G[t])xs+1 definition of derivation

iff w ∈ x1LA
[t−1]
1

(G[t−1]) · · ·L
A

[t−1]
s

(G[t−1])xs+1 only prod. of G[t−1]

iff w ∈ x1σ
t−1
0 (v

A
[t−1]
1

) · · ·σ t−1
0 (v

A
[t−1]
s

)xs+1 induction hypothesis

iff w ∈ σ t−1
0 (x1vA

[t−1]
1

· · ·v
A

[t−1]
s

xs+1) property of substitutions

iff w ∈ σ t−1
0

(
x1τt−1(A

[t−1]
1 ) · · · τt−1(A

[t−1]
s )xs+1

)
definition of τt−1

iff w ∈ σ t−1
0 (τt−1(αi)) property of τt−1.

Finally, w belongs to LX[t](G[t]) iff there exists such a αi verifying property ϕ(αi) such that
w ∈ σ t−1

0 (τt−1(αi)). As i is the least value such that t /∈ Sidx(αi), we have reached the end of
a layer of the grammar G(t), so w ∈ LX[t](G[t]) iff w ∈ σ t−1

0 (LX(t) (G(t))), i.e., LX[t](G[t]) =
σ t−1

0 (LX(t) (G(t))). By definition of σt (vX(t) ), we get LX[t](G[t]) = σ t−1
0 (σt (vX(t) )), and by

definition of σ t
0 , we finally have proved LX[t](G[t]) = σ t

0(vX(t) ). �

4 Constructing a Parikh equivalent bounded subset

We now show how to solve Problem 1 for the class of t -fold compositions. This will com-
plete the solution to Problem 1 for the class of CFLs, hence the proof of Theorem 1. In this
section, we give an effective construction of a bounded expression that solves Problem 1
first for regular languages, then for linear languages, and finally for t -fold compositions.

First we need to introduce the notion of semilinear sets. Recall that a set S ⊆ N
k , k ≥ 1, is

linear if there is an offset b ∈ N
k and periods p1, . . . ,pj ∈ N

k such that S = {b+∑j

i=1 λipi |
λ1, . . . , λj ∈ N}. Let P = {p1, . . . ,pj }, we write S as L(b;P ). A set is semilinear if it is the
union of a finite number of linear sets. Parikh’s theorem (cf. [12]) shows that the Parikh
image of every CFL is a semilinear set that is effectively computable.



Form Methods Syst Des

4.1 Regular languages

The construction of a bounded expression that solves Problem 1 for a regular language L is
known from [18] (see also [19], Lemma 4.1). We give here a proof of this result inspired by
recent developments in the computation of Parikh images of regular languages (see [23]).

In this subsection, we fix a regular grammar R = (Q,Σ, δ) with Q = {q1, . . . , qn} and
Σ = {a1, . . . , ak}, where we assign to both Σ and Q a fixed linear order.

The partial derivation τ ≡ p0 ⇒ u1 ·p1 ⇒ u1u2 ·p2 ⇒∗ u1 · · ·ur ·pr , with p1, . . . , pr ∈ Q

and u1, . . . , ur ∈ Σ∗, is said elementary if there is no 0 ≤ i < j ≤ r such that pi = pj . We
say that τ is a cycle if p0 = pr , and finally that τ is an elementary cycle if it is a cycle
but its prefix p0 ⇒∗ ur−1 · pr−1 is elementary. We extend the notion of elementary to the
derivations of R.

Definition 6 Given q ∈ Q we define the set Wq = {w | q ⇒∗ w · q ∧ |w| ≤ n}. Moreover,
for every language L, we define [L]Π to be a Parikh-equivalent subset of L such that, for
every vector b ∈ Π(L), there is exactly one word w ∈ [L]Π such that Π(w) = b.

For a set W = {w1, . . . ,wm}, ordered according to some linear order, we write
⊙

W for
the concatenation w∗

1w
∗
2 · · ·w∗

m. For example,
⊙

Σ = a∗
1a

∗
2 · · ·a∗

k .
Finally, we inductively define the set of bounded expressions {Bi}i≥0 over Σ as follows:

B0 =
(⊙

[Wq1 ]Π
)

�
(⊙

[Wq2 ]Π
)

� · · · �
(⊙

[Wqn ]Π
)
,

Bi = Bi−1 �
(⊙

Σ
)

� B0.

In the definition of B0, we assume an arbitrary linear ordering of words in [Wq]Π , and
our results are independent of the specific ordering used.

Lemma 5 Let R = (Q,Σ, δ) be a regular grammar and let q ∈ Q, the bounded expression
B = B(n−1)2 solves Problem 1 for the instance Lq(R).

Proof We assume, without loss of generality, that q does not occur on the right-hand
side of any productions of δ. We have to prove that Π(B(n−1)2 ∩ Lq(R)) ⊇ Π(Lq(R)).
In order to prove it, let w ∈ Lq(R), and τ ≡ q = p0 ⇒ u1 · p1 ⇒ u1u2 · p2 ⇒ ·· · ⇒
u1 · · ·ur · pr ⇒ u1 · · ·urur+1 = w be a derivation of w. We denote the subderivation
u1 · · ·ui · pi ⇒∗ u1 · · ·uj · pj of τ by τ [i, j ] in the sequel.

We associate to each state p occurring in τ , the maximum index i ∈ {0, . . . , r} such
that pi = p. We can order all these indexes increasingly: i0 < i1 < · · · < is with s < n.
Observe that is = r and also that, since q does not occur on the right-hand side of any
productions of δ, i0 = 0. Using techniques of graph theory, we can easily decompose for
every j ∈ {0, . . . , s − 1} each subderivation τ [ij , ij+1] of τ as the interleaving of

– an elementary partial derivation τj ≡ pij ⇒∗ vj · pij+1 of length at most n − 1,

– finitely many elementary cycles C
(j)

1 ≡ p
(j)

1 ⇒∗ w
(j)

1 ·p(j)

1 , . . . ,C
(j)

hj
≡ p

(j)

hj
⇒∗ w(j)

hj
·p(j)

hj
,

producing words w(j)
1 , . . . ,w(j)

hj
each of length at most n,

such that Π(uij +1 · · ·uij+1) = Π(vj ) + ∑hj

i=1 Π(w
(j)

i ).
Observe that w(j)

i ∈ Wp
(j)
i

for every j ∈ {0, . . . , s} and i ∈ {1, . . . , hj }. We will moreover
assume, without loss of generality, that w(j)

i ∈ [Wp
(j)
i

]Π .



Form Methods Syst Des

Such a decomposition result, however, does not guarantee that every C(j)
i for i ∈

{1, . . . , hj } meets with τj (see [23, Fact 7.3.3]), which means that some p(j)
i may not appear

in the partial derivation τj . On the other hand, C(j)
i must visit states from pi0 , . . . , pis as this

sequence contains all states in τ .
Therefore, we can conclude that there exists a derivation τ ′ given by some interleaving of

τ0 · · · τs−1 with the elementary cycles in C(0)
1 , . . . ,C(0)

h0
, . . . ,C(s)

1 , . . . ,C(s)
hs

and ending with
the firing of (pr → ur+1) ∈ δ such that for w′, the word generated by τ ′, we have Π(w′) =
Π(w). Moreover, since every w

(j)

i belongs to [Wp
(j)
i

]Π , we conclude from the definition of
B0, s < n and the fact that each τj is no more than n−1 steps, that w′ ∈ (Bn−1)

n−1 ⊆ B(n−1)2 .
This proves that Π(w) ∈ Π(B(n−1)2 ∩ Lq(R)). �

We now derive a bound on the size of B(n−1)2 . We start by bounding the size of B0. First,
for a fixed alphabet size k, we have |Σ≤n| = ∑n

i=0 ki , but |[Σ≤n]Π | ≤ (
n+k

k

)
. This is because

the latter is the number of solutions to the equation x1 + · · · + xk ≤ n for non-negative
integers x1, . . . , xk . The term

(
n+k

k

) = 2O(k logn) is polynomial in n for each fixed k.
By definition of the operator [·]Π , the number of words in [Wq ]Π is bounded above by

|[Σ≤n]Π |, and hence |[Wq ]Π | ≤ (
n+k

k

)
. Moreover, each word in Wq has length at most n. So,

the concatenation
⊙[Wq1 ]Π � · · · � ⊙[Wqn ]Π has size at most n · (

n+k

k

)
. The size of the

bounded expression B0 is then bounded by

n · n ·
(

n + k

k

)

= n2 · 2O(k logn) = 2O(k logn).

Thus, for a fixed value of k the size of B0 is polynomial in n. From the definition of Bi , for
each polynomial P , we have BP(n) is polynomial in n (and exponential in k). To compute
B(n−1)2 , inspired again by [23, Lemma 7.3.6], we will use dynamic programming. Note
that we just have to compute the bounded expression B0, and then repeat it (n − 1)2 times
interleaved with

⊙
Σ to compute B(n−1)2 .

We denote by � the lexicographic order over Σ∗. Let ⊥ be a fresh letter, and let W =
{⊥} ∪ Σ∗: we can extend the order � to W by w � ⊥ for every w ∈ Σ∗. For every vector
b ∈ N

k , we define Mb = (mb
i,j )1≤i,j≤n the matrix over W where mb

i,j is the minimal word
w ∈ Σ∗ with Parikh image Π(w) = b such that there exists a partial derivation τ ≡ qi ⇒∗
w · qj , if such a word exists, and ⊥ otherwise.

We can define a minimization operation ∨ : W × W → W defined for w,w′ ∈ W by
∨(w,w′) the minimal element in {w,w′} for the order �. We can extend this operation over
the finite sets of elements of W : hence, if S ⊆ W ,

∨
S is the unique minimal element in S,

for the order �. Moreover, we can extend the concatenation � of words to elements of W by
defining for w ∈ Σ∗, ⊥ � w = w � ⊥ = ⊥ � ⊥ = ⊥. These two operations make possible
to multiply matrices over W . Finally, let ≤ be the partial order over N

k defined by b ≤ b′ if
and only if for every i ∈ {1, . . . , k}, bi ≤ b′

i .

Lemma 6 Let b = (r1, r2, . . . , ri−1, ri + 1, ri+1, . . . , rk) with each ri ∈ N. Then, the follow-
ing identity holds

Mb =
∨

c,d

Mc � Mei � Md

where (ei )1≤i≤k is the standard basis for R
k , c ranges over all vectors ≤ b whose i-th entry

is 0, and d is the vector b − ei − c.



Form Methods Syst Des

Proof Let i, j ∈ {1, . . . , n}. Any partial derivation qi ⇒∗ u · qj with Π(u) = b is uniquely
decomposed into three partial derivations τ1 ≡ qi ⇒∗ v · p, τ2 ≡ p ⇒ ai · p′, τ3 ≡ p′ ⇒∗

w · qj with the word v containing no letter ai . Thus, the vector c = Π(v) is ≤ b and its i-th
entry is 0, Π(ai) = ei and d = Π(w) = b − ei − c. Hence, the coefficient mb

i,j is � than the
coefficient of index (i, j) of the matrix N = ∨

c,d Mc � Mei � Md.
Reciprocally, the concatenation of three compatible partial derivations leading to words

v, ai,w verifying Π(v) ≤ b with i-th entry equal to 0, and Π(w) = b − ei − Π(v), is a
partial derivation from qi to qj leading to a word u with Parikh image Π(u) = b. Hence,
mb

i,j is � than the coefficient of index (i, j) of the matrix N . �

Applying this lemma and dynamic programming, we get

Lemma 7 We can compute the matrices Mb for vector b such that b1 +· · ·+ bk ≤ n in time
2O(k logn). Hence, for every state qi ∈ Q, we can compute the set [Wqi

]Π = ⋃
b1+···+bk≤n{mb

i,i}
in time 2O(k logn).

Finally, we show that the exponential dependency on k cannot be improved.

Lemma 8 There is a family {Lk}k∈N of regular languages, where each Lk is over an alpha-
bet of size 2k, such that every bounded expression Bk solving Problem 1 for instance Lk has
size 2Ω(k).

Proof Define Lk to be a regular language over alphabet {a1, b1, . . . , ak, bk} given by the
regular expression

(
(a1 | b1) · (a2 | b2) · · · (ak | bk)

)∗
.

We show that every bounded Bk such that Π(Lk ∩Bk) = Π(Lk) must be of size exponential
in k.

Fix a k. Assume that B = w∗
1 · · ·w∗

m solves Problem 1 for instance Lk . Let L̂k = (a1 |
b1) · (a2 | b2) · · · (ak | bk). Since for all y, z ∈ L̂k , we have Π(y) = Π(z) implies z = y, we
have that for each i ≥ 0 and for each z ∈ L̂k , the word zi is in B .

Pick z ∈ L̂k . For each iz ≥ 0, we know that

ziz = w
iz,1
1 w

iz,2
2 · · ·wiz,m

m

for some iz,1, iz,2, . . . , iz,m, and further, by picking iz big enough, we can ensure that iz,j > 1
for some j . Then, wj � wj contains z as a subword (since z does not have any letters
repeated). Also, for any y ∈ L̂k \ {z}, it cannot be that wj � wj contains y as a subword,
even though by the same argument as for z, there is some j ′ such that wj ′ � wj ′ contains y

as a subword. This means that m ≥ 2k . �

4.2 Linear languages

We now extend the previous construction to the case of linear languages. Recall that linear
languages are the main ingredient of t -fold compositions. Lemma 9 gives a characteriza-
tion of linear languages based on regular languages, homomorphism, and some additional
structures.



Form Methods Syst Des

Lemma 9 (From [16]) Let G = (X ,Σ, P) be a linear CFG. There exist an alphabet A

and its distinct copy Ã, a homomorphism h : (A ∪ Ã)∗ → Σ∗ and a regular language R =
(X ,A, δ) such that for every X ∈ X we have LX(G) = h(LX(R)Ã∗ ∩S) where S = {ww̃−1 |
w ∈ A∗} and w−1 denotes the reverse image of the word w. Moreover there is an effective
procedure to construct h, A, and R.

Proof Define the alphabet A to be {ap | p ∈ P}. Define the regular CFG R = (X ,A, δ) such
that

δ = {(X,apY ) | p = (X,αYβ) ∈ P ∧ p ∈ X × Σ∗X Σ∗}
∪ {(X,ap) | p = (X,α) ∈ P ∧ p ∈ X × Σ∗}.

Note that δ ⊆ X × A(X ∪ ε) shows that for every X ∈ X , LX(R) is a regular language.
Next we define the homomorphism, h which, for each p = (X,αYβ) ∈ P , maps ap and ãp

to α and β , respectively. By construction and induction on the length of a derivation, it is
easily seen that the result holds. �

Next, we have a technical lemma which relates homomorphism and the Parikh image
operator.

Lemma 10 Let X,Y ⊆ Σ∗ and a homomorphism h : Σ∗ → A∗, we have:

Π(X) = Π(Y) implies Π(h(X)) = Π(h(Y )).

Proof It suffices to show that the result holds for = replaced by ⊆. Let x ′ ∈ h(X). We
know that there exists x ∈ X such that x ′ = h(x). The equality Π(X) = Π(Y) shows that
there exists y ∈ Y such that Π(y) = Π(x). It is clear by property of homomorphism that
Π(h(y)) = Π(h(x)). �

The next result shows that a bounded expression that solves Problem 1 can be effectively
constructed for every linear language L.

Proposition 1 For every linear language L = h(RÃ∗ ∩ S) where h and R are given, there
is an effective procedure which solves Problem 1 for the instance L.

Proof Since R is a regular language, we can use the result of Lemma 5 to effec-
tively compute the set {w1, . . . ,wm} of words such that for R′ = R ∩ w∗

1 · · ·w∗
m we have

Π(R′) = Π(R). Also, we observe that for every language Z ⊆ A∗ we have ZÃ∗ ∩ S =
{ww̃−1 | w ∈ Z}.

Π(R′) = Π(R) by above

only if Π(R′Ã∗ ∩ S) = Π(RÃ∗ ∩ S) by above

only if Π(h(R′Ã∗ ∩ S)) = Π(h(RÃ∗ ∩ S)) Lemma 10

only if Π(h(R′Ã∗ ∩ S)) = Π(L) definition of L

only if Π
(
h(RÃ∗ ∩ w∗

1 · · ·w∗
mw̃−1

m

∗ · · · w̃−1
1

∗ ∩ S)
) = Π(L) definition of R′

only if Π
(
h(RÃ∗ ∩ S) ∩ h(w∗

1 · · ·w∗
mw̃−1

m

∗ · · · w̃−1
1

∗
)
) = Π(L)

only if Π(L ∩ h(w∗
1 · · ·w∗

mw̃−1
m

∗ · · · w̃−1
1

∗
)) = Π(L) definition of L

only if Π(L ∩ h(w1)
∗ · · ·h(wm)∗h(w̃−1

m )∗ · · ·h(w̃−1
1 )∗) = Π(L)

which concludes the proof since h(w) ∈ Σ∗ if w ∈ (A ∪ Ã)∗. �



Form Methods Syst Des

From the proof, and the construction for regular languages, it is clear that the bounded ex-
pression B is exponential in the size of the alphabet k but polynomial in n. The exponential
dependence on k is inevitable and follows from the lower bound for regular languages.

4.3 Linear languages with substitutions

Our goal is to solve Problem 1 for the class of t -fold compositions, i.e., for languages of the
form σ t

0(vX(t) ). Proposition 1 gives an effective procedure for the case σ �
� (vX(�) ) since it is a

linear language. Proposition 2 generalizes to the case σ �
t (vX(�) ) where t < �: given a solution

to Problem 1 for the instance σ �
t+1(vX(�) ), there is an effective procedure for Problem 1 for

the instance σt � σ �
t+1 = σ �

t (vX(�) ).
But prior to that we need the following result.

Lemma 11 Let L and B be respectively a CFL and a bounded expression over Σ such
that B solves Problem 1 for instance L, i.e., Π(L ∩ B) = Π(L). There is an effectively
computable bounded expression B ′ which solves Problem 1 for instance L∗, i.e., Π(Lr ∩
B ′) = Π(Lr) for all r ∈ N.

Proof By Parikh’s theorem, we know that Π(L) is a computable semilinear set⋃�

i=1 L(ci;Pi) where each Pi = {pi1, . . . ,piki
}. Let us consider u1, . . . , u� ∈ L such that

ΠΣ(ui) = ci for i ∈ {1, . . . , �}.
Let B ′ = u∗

1 · · ·u∗
�B

�. We see that B ′ is a bounded expression. Let r > 0 be a natural
integer. We have to prove that Π(Lr) ⊆ Π(Lr ∩ B ′).

Case r ≤ �. We conclude from the preservation of Π (Lemma 1) and the hypothesis
Π(L) = Π(L ∩ B) that

Π(Lr) = Π((L ∩ B)r)

⊆ Π(Lr ∩ Br) monotonicity of Π

⊆ Π(Lr ∩ B�) Br ⊆ B� since ε ∈ B

⊆ Π(Lr ∩ B ′) definition of B ′.

Case r > �. Let us consider w ∈ Lr . For every i ∈ {1, . . . , �} and j ∈ {1, . . . , ki}, there
exist some positive integers λij and μi , with

∑�

i=1 μi = r such that

Π(w) =
�∑

i=1

μici +
�∑

i=1

ki∑

j=1

λij pij .

We define a new variable for each i ∈ {1, . . . , �}:

αi =
{

μi − 1 if μi > 0,

0 otherwise.

For each i ∈ {1, . . . , �}, define zi ∈ L ∪ {ε} such that zi = ε if μi = 0 and Π(zi) = ci +∑ki

j=1 λij pij otherwise.
Let w′ = u

α1
1 · · ·uα�

� z1 · · · z�. Clearly, Π(w′) = Π(w) and w′ ∈ u∗
1 · · ·u∗

�(L ∪ {ε})�. The
equality Π(L ∩ B) = Π(L) shows that there is z′

i ∈ (L ∩ B) ∪ {ε} such that Π(z′
i ) = Π(zi)

for each i ∈ {1, . . . , �}. Let w′′ = u
α1
1 · · ·uα�

� z′
1 · · · z′

�. We find that Π(w′′) = Π(w), w′′ ∈ B ′
and we can easily verify that w′′ ∈ Lr . �



Form Methods Syst Des

Proposition 2 Let

1. L be a CFL over Σ ;
2. B a bounded expression such that Π(L ∩ B) = Π(L);
3. σ and τ be two substitutions over Σ such that for each a ∈ Σ , (i) σ(a) and τ(a) are

respectively a CFL and bounded expression and (ii) Π(σ(a) ∩ τ(a)) = Π(σ(a)).

Then, there is an effective procedure that computes B ′ such that B ′ solves Problem 1 for the
instance σ(L).

Proof Let w1, . . . ,wm ∈ Σ∗ be the words such that B = w∗
1 · · ·w∗

m. Let Li = σ(wi) for
each i ∈ {1, . . . ,m}. Since σ(a) is a CFL so is σ(wi) by property of the substitutions and
the closure of CFLs by finite concatenations. For the same reason, τ(wi) is a bounded ex-
pression. Next, Lemma 11 where the bounded expression is given by τ(wi), shows that
we can construct a bounded expression Bi such that for all r ∈ N, Π(Lr

i ∩ Bi) = Π(Lr
i ).

Define B ′ = B1 · · ·Bm that is a bounded expression. We have to prove the inclusion
Π(σ(L)) ⊆ Π(σ(L) ∩ B ′) since the reverse one trivially holds. So, let w ∈ σ(L). Since
Π(L∩w∗

1 · · ·w∗
m) = Π(L), there is a word w′ ∈ σ(L∩w∗

1 · · ·w∗
m) such that Π(w) = Π(w′).

Then we have

w′ ∈ σ(L ∩ w∗
1 · · ·w∗

m)

∈ σ(w
r1
1 · · ·wrm

m ) for some r1, . . . , rm

∈ σ(w
r1
1 ) · · ·σ(wrm

m ) property of substitution

∈ σ(w1)
r1 · · ·σ(wm)rm property of substitution

∈ L
r1
1 · · ·Lrm

m σ(wi) = Li

For each i ∈ {1, . . . ,m}, we have Π(L
ri
i ∩ Bi) = Π(L

ri
i ), so we can find w′′ ∈ (L

r1
1 ∩

B1) · · · (Lrm
m ∩ Bm) such that Π(w′′) = Π(w′). Definition of B ′ also shows that w′′ ∈ B ′.

Moreover

w′′ ∈ (L
r1
1 ∩ B1) · · · (Lrm

m ∩ Bm)

∈ L
r1
1 · · ·Lrm

m

∈ σ(w1)
r1 · · ·σ(wm)rm σ (wi) = Li

∈ σ(w
r1
1 ) · · ·σ(wrm

m ) property of substitution

∈ σ(w
r1
1 · · ·wrm

m ) property of substitution

∈ σ(L ∩ w∗
1 · · ·w∗

m) w
r1
1 · · ·wrm

m ∈ L ∩ w∗
1 · · ·w∗

m

∈ σ(L)

Finally, w′′ ∈ B ′ and w′′ ∈ σ(L) and Π(w′′) = Π(w′), which in turn equals Π(w), prove
the inclusion. �

We use the above result inductively to solve Problem 1 for t -fold composition as follows:
fix L to be σ t

�+1(vX(t) ), B to be the solution of Problem 1 for the instance L, σ to be σ� and
τ a substitution which maps every vX(�) to a solution of Problem 1 for the instance σ�(vX(�) ).
Then B ′ is the solution of Problem 1 for the instance σ t

� (vX(t) ).

4.4 t -fold compositions

Let L be a CFL such that L = LX(G) where G = (X ,Σ, P) is a CFG with n = |X | and
X ∈ X . Let us now solve Problem 1 where the instance is given by the n-fold composition



Form Methods Syst Des

Algorithm 1: Bounded Sequence

Data: Linear CFGs {G(0), . . . ,G(n)}
Data: Bounded expressions {B̃(j)

Y | 0 ≤ j ≤ n, Y ∈ X } such that
each B̃

(j)

Y solves Problem 1 for instance LY(j) (G(j))

Result: Bounded expressions {B(j)

Y | 0 ≤ j ≤ n, Y ∈ X } such that
each B

(j)

Y solves Problem 1 for instance σn
j (vY (n) )

Let B
(n)
X = B̃

(n)
X for each X ∈ X ;1

for i = n − 1, n − 2, . . . ,0 do
Let τi be the substitution which maps each vX(i) onto L(B̃

(i)
X ) and leaves each

letter of Σ unchanged;
foreach X ∈ X do

Let B
(i)
X be the bounded expression returned by Proposition 2 on input2

σn
i+1(vX(n) ), B

(i+1)
X , and σi, τi ;

σn
0 (vX(n) ). To do so, we compute, following Definition 4, the linear CFGs {G(0), . . . ,G(n)}

which define the n-fold composition σn
0 (vX(n) ) of Definition 5. With the result of Propo-

sition 1, we inductively construct the bounded expressions {B(j)

Y | 0 ≤ j ≤ n,Y ∈ X } each
of which is such that B

(�)
X solves Problem 1 for instance σn

� (vX(n) ). The above reasoning is
formally explained in Algorithm 1 for which we prove the following invariant.

Lemma 12 When Algorithm 1 returns we have:

∀i ∈ {0, . . . , n} ∀X ∈ X B
(i)
X solves Problem 1 for instance σn

i (vX(n) ).

Proof By induction on i:
Base case (i = n). Algorithm 1, line 1 shows that B

(n)
Y is initialized with B̃

(n)
Y for every

Y ∈ X . Therefore since B̃
(n)
X solves Problem 1 for instance LX(n) (G(n)) for any X ∈ X , we

find that so it does for instance σn(vX(n) ) by definition of σn and finally for instance σn
n (vX(n) )

because σn = σn
n .

Inductive case (0 ≤ i < n). At line 2, B
(i)
X is the bounded expression returned by Propo-

sition 2 provided some assumptions are satisfied. Let us show that those assumptions
hold: (1) σn

i+1(vX(n) ) is a CFL (CFLs are closed by context-free substitutions), (2) B
(i+1)
X

is a bounded expression which, by induction hypothesis, solves Problem 1 for instance
σn

i+1(vX(n) ), (3) for every variable X ∈ X we have σi(vX(i) ) = LX(i) (G(i)) is a CFL,

τi(vX(i) ) = L(B̃
(i)
X ) is the language of the bounded expression B̃

(i)
X such that τi(vX(i) ) solves

Problem 1 for instance σi(vX(i) ). Hence by Proposition 2 we find that for every X ∈ X ,
B

(i)
X solves Problem 1 for instance σi

(
σn

i+1(vX(n) )
)
, hence for instance σn

i (vX(n) ) because
σn

i = σi � σn
i+1. �

Finally the procedure which solves Problem 1 for CFL instances, hence the proof of
Theorem 1, goes as follows.

Proof of Theorem 1 Let G = (X ,Σ, P) be a CFG with initial variable X ∈ X where
|X | = n. Moreover let B be a bounded expression, Corollary 1 shows that B solves Prob-
lem 1 for instance LX(G) iff so does B for instance Y(Dn

X) iff so does B for instance



Form Methods Syst Des

LX[n](G[n]) (by Lemma 3) iff so does B for instance σn
0 (vX(n) ) (by Lemma 4). Moreover

the CFGs {G(0), . . . ,G(n)} which represent σn
0 (vX(n) ) are effectively constructible given G

and n. Finally Algorithm 1 and the result of Lemma 12 show that there exists an effective
procedure to solve Problem 1 for σn

0 (vX(n) ). �

This concludes the proof of Theorem 1. Unfortunately, as the example below illustrates,
the bounded expression can be exponential in the size of the grammar even when the alpha-
bet is held to a fixed size.

Lemma 13 There is a family {Gn}n∈N of CFG each of which defined over the alphabet Σ =
{0,1} such that every bounded expression Bn solving Problem 1 for LS(Gn) has size 2Ω(n).

Proof Define Gn to have variables {S,A0, . . . ,An}, and productions:

S → ε An → An−1An−1 A0 → 0

S → 1AnS
...

A1 → A0A0

The definition of Gn shows that LS(Gn) = (102n
)∗. A possible (and trivial) bounded ex-

pression Bn solving Problem 1 for instance LS(Gn) is (102n
)∗, which is exponential in the

size of n (note that the size of Bn is given by the number of letters in its words). We now
show that any bounded expression which solves Problem 1 for instance LS(Gn) must be
exponential in n.

First, note that there is at most one word of any length in LS(Gn), and so for any i, j ∈ N,
we have that Π(wi) = Π(wj ) implies i = j . Thus, B must contain every word wi , i ≥ 0.

Suppose that B = w∗
1 · · ·w∗

m is a bounded expression solving Problem 1 for instance
LS(Gn). Clearly, at least one of w1, . . . ,wm must have the letter 1. Since m is fixed, for
large enough i (indeed, i > m suffices), we will have that wi = w

i1
1 w

i2
2 · · ·wim

m such that
there is a j with the following properties: (1) wj contains the letter 1, and (2) ij > 1. This
is because wi has exactly i occurrences of 1, and all these occurrences must be “captured”
by B . However, in wi , any two occurrences of 1 has exactly 2n occurrences of 0 between
them. This implies that the length of wj must be at least 2n. �

Iterative algorithm We conclude this section by showing a result related to the notion of
progress if the result of Theorem 1 is applied repeatedly.

Lemma 14 Given a CFL L, define two sequences (Li)i∈N, (Bi)i∈N such that (1) L0 = L,
(2) Bi is a bounded expression and Π(Li ∩ Bi) = Π(Li), (3) Li+1 = Li ∩ Bi . For every
w ∈ L, there exists i ∈ N such that w /∈ Li . Moreover, given L0, there is an effective proce-
dure to compute Li for every i > 0.

Proof Let w ∈ L and let v = Π(w) be its Parikh image. We conclude from Π(L0 ∩ B0) =
Π(L0) that there exists a word w′ ∈ B0 such that Π(w′) = v. Two cases arise: either w′ = w

and we are done; or w′ = w. In that case L1 = L0 ∩ B0 shows that w′ /∈ L1. Intuitively,
at least one word with the same Parikh image as w has been selected by B0 and then re-
moved from L0 by definition of L1. Repeatedly applying the above reasoning shows that
at each iteration there exists a word w′′ such that Π(w′′) = v, w′′ ∈ Bi and w′′ /∈ Li+1

since Li+1 = Li ∩ Bi . Because there are only finitely many words with Parikh image v



Form Methods Syst Des

we conclude that there exists j ∈ N, such that w /∈ Lj . The effectiveness result follows from
the following arguments: (1) as we have shown above (our solution to Problem 1), given
a CFL L there is an effective procedure that computes a bounded expression B such that
Π(L ∩ B) = Π(L); (2) the complement of B is a regular language effectively computable;
and (3) the intersection of a CFL with a regular language is again a CFL that can be effec-
tively constructed (see [16]). �

Intuitively this result shows that given a context-free language L, if we repeatedly com-
pute and remove a Parikh-equivalent bounded subset of L (L ∩ B is effectively computable
since B is a regular language), then each word w of L is eventually removed from it.

5 Application I: multithreaded procedural programs

A common programming model consists of multiple recursive threads communicating via
shared memory. Formally, we model such systems as pushdown networks [22]. Let k be a
positive integer, a pushdown network is a triple N = (G,Γ, (Δi)1≤i≤k) where G is a finite
non-empty set of globals, Γ is the stack alphabet, and for each 1 ≤ i ≤ k, Δi is a finite set
of transition rules of the form 〈g,γ 〉 ↪→ 〈g′, α〉 for g,g′ ∈ G, γ ∈ Γ , α ∈ Γ ∗.

A local configuration of N is a pair (g,α) ∈ G×Γ ∗ and a global configuration of N is a
tuple (g,α1, . . . , αk), where g ∈ G and α1, . . . , αk ∈ Γ ∗ are individual stack content for each
thread. Intuitively, the system consists of k threads, each of which with its own stack, and
the threads can communicate by reading and manipulating the global storage represented
by g.

We define the local transition relation of the i-th thread, written →i , as follows:
(g, γβ) →i (g′, αβ) iff 〈g,γ 〉 ↪→ 〈g′, α〉 in Δi and β ∈ Γ ∗. The transition relation of
N , denoted →, is defined as follows: (g,α1, . . . , αi, . . . , αk) → (g′, α1, . . . , α

′
i , . . . , αk) iff

(g,αi) →i (g′, α′
i ) for some i ∈ {1, . . . , k}. By →∗

i , →∗, we denote the reflexive and transi-
tive closure of these relations. Let C0 and C be two global configurations, the reachability
problem asks whether C0 →∗ C holds. An instance of the reachability problem is denoted
by a triple (N ,C0,C).

A pushdown system is a pushdown network where k = 1, namely (G,Γ,Δ). A pushdown
acceptor is a pushdown system extended with an initial configuration c0 ∈ G × Γ ∗, labeled
transition rules of the form 〈g,γ 〉 λ

↪→〈g′α〉 for g,g′, γ,α defined as above and λ ∈ Σ ∪ {ε}.
A pushdown acceptor is given by a tuple (G,Γ,Σ,Δ,c0). The language of a pushdown
acceptor is defined as expected where the acceptance condition is given by the empty stack.

In what follows, we reduce the reachability problem for a pushdown network of k threads
to a language problem for k pushdown acceptors. The pushdown acceptors obtained by re-
duction from the pushdown network settings have a special global ⊥ that intuitively models
an inactive state. The reduction also turns the globals into input letters which label transi-
tions. The firing of a transition labeled with a global models a context switch. When such
transition fires, every pushdown acceptor synchronizes on the label. The effect of such a
synchronization is that exactly one acceptor will change its state from inactive to active
by updating the value of its global (i.e., from ⊥ to some g ∈ G) and exactly one acceptor
will change from active to inactive by updating its global from some g to ⊥. All the others
acceptors will synchronize and stay inactive.

Given an instance of the reachability problem, that is a pushdown network (G,Γ,

(Δi)1≤i≤k) with k threads, two global configurations C0 and C (assume without loss of
generality that C is of the form (g, ε, . . . , ε)), we define a family of pushdown acceptors
{(G′,Γ,Σ,Δ′

i , c
i
0)}1≤i≤k

, where:



Form Methods Syst Des

– G′ = G ∪ {⊥}, Γ is given as above, and Σ = G × {1, . . . , k},
– Δ′

i is the smallest set such that:

– 〈g,γ 〉 ε
↪→ 〈g′, α〉 in Δ′

i if 〈g,γ 〉 ↪→ 〈g′, α〉 in Δi ;

– 〈g,γ 〉 (g,j)
↪→ 〈⊥, γ 〉 for j ∈ {1, . . . , k} \ {i}, g ∈ G, γ ∈ Γ ;

– 〈⊥, γ 〉 (g,j)
↪→ 〈⊥, γ 〉 for j ∈ {1, . . . , k} \ {i}, g ∈ G, γ ∈ Γ ;

– 〈⊥, γ 〉 (g,i)
↪→ 〈g,γ 〉 for g ∈ G, γ ∈ Γ .

– let C0 = (g,α1, . . . , αi, . . . , αk), ci
0 is given by (⊥, αi) if i > 1; (g,α1) else.

Proposition 3 Let k be a positive integer, and (N ,C0,C) be an instance of the reachabil-
ity problem with k threads, one can effectively construct CFLs (L1, . . . ,Lk) (as pushdown
acceptors) such that C0 →∗ C iff L1 ∩ · · · ∩ Lk = ∅.

The converse of the proposition is also true, and since the emptiness problem for inter-
section of CFLs is undecidable [16], so is the reachability problem. We will now compare
two underapproximation techniques for the reachability problem: context-bounded switches
[20] and bounded languages, which we first detail below.

Let L1, . . . ,Lk be CFLs, and consider the problem of deciding whether
⋂

1≤i≤k Li =
∅. We give a decidable sufficient condition: given a bounded expression B , we define the
intersection modulo B of the languages {Li}i as

⋂(B)

i Li = (
⋂

i Li)∩B . Clearly,
⋂(B)

i Li =
∅ implies

⋂
i Li = ∅. Below we show that the problem

⋂(B)

i Li = ∅ is decidable.

Lemma 15 Given a bounded expression B = w∗
1 · · ·w∗

n and CFLs L1, . . . ,Lk , it is decidable
to check if

⋂(B)

1≤i≤k Li = ∅.

Proof Define the alphabet A = {a1, . . . , an} disjoint from Σ . Let h be the homomor-
phism that maps the letters a1, . . . , an to the words w1, . . . ,wn, respectively. We show that⋂

1≤i≤k ΠA(h−1(Li ∩ B) ∩ a∗
1 · · ·a∗

n) = ∅ iff
⋂(B)

1≤i≤k Li = ∅.

We conclude from w ∈ ⋂(B)

1≤i≤k Li that w ∈ B and w ∈ Li for every 1 ≤ i ≤ k, hence
there exist t1, . . . , tn ∈ N such that w = w

t1
1 · · ·wtn

n by definition of B . Then, we find that
(t1, . . . , tn) ∈ ΠA(h−1(w) ∩ a∗

1 · · ·a∗
n), hence that (t1, . . . , tn) ∈ ΠA(h−1(Li ∩ B) ∩ a∗

1 · · ·a∗
n)

for every 1 ≤ i ≤ k by above and finally that (t1, . . . , tn) ∈ ⋂
1≤i≤k ΠA(h−1(Li ∩ B) ∩

a∗
1 · · ·a∗

n).
For the other implication, consider (t1, . . . , tn) a vector of

⋂
1≤i≤k ΠA(h−1(Li ∩ B) ∩

a∗
1 · · ·a∗

n) and let w = w
t1
1 · · ·wtn

n . For every 1 ≤ i ≤ k, we will show that w ∈ Li ∩ B .
As (t1, . . . , tn) ∈ ΠA(h−1(Li ∩ B) ∩ a∗

1 · · ·a∗
n), there exists a word w′ ∈ a∗

1 · · ·a∗
n such that

ΠA(w′) = (t1, . . . , tn) and h(w′) ∈ Li ∩ B . We conclude from ΠA(w′) = (t1, . . . , tn), that
w′ = a

t1
1 · · ·atn

n and finally that, h(w′) = w belongs to Li ∩ B .
The class of CFLs is effectively closed under inverse homomorphism and intersection

with a regular language [16]. Moreover, given a CFL, we can compute its Parikh image
which is a semilinear set. Finally, we can compute the semilinear sets ΠA(h−1(Li ∩ B) ∩
a∗

1 · · ·a∗
n) and the emptiness of the intersection of semilinear sets is decidable [12]. �

With respect to the complexity, it is shown in [6] that given an effective representation of
B and L1, . . . ,Lk as CFGs, the problem that asks whether

⋂(B)

1≤i≤k Li = ∅ is NP-complete.

While Lemma 15 shows decidability for any bounded expression, in practice, we want
to select B “as large as possible”. We select B using Theorem 1. We first compute for each



Form Methods Syst Des

Algorithm 2: Intersection

Data: L0
1, L0

2 : CFLs
L1 ← L0

1, L2 ← L0
2;

repeat forever
if Π(L1) ∩ Π(L2) = ∅ then

return L0
1 ∩ L0

2 is empty
else

Compute B1 and B2 which solves Problem 1 for instance L1 and L2,
respectively;
Compute B = B1 � B2 /* B solves Problem 1 for instance

L1 ∪ L2 */;
if L1 ∩(B) L2 = ∅ then

return L0
1 ∩ L0

2 is not empty

L1 ← L1 ∩ B , L2 ← L2 ∩ B

language Li the bounded expression Bi = w
(i)

1

∗ · · ·w(i)
ni

∗
such that Π(Li ∩ Bi) = Π(Li).

Finally, we choose B = B1 · · ·Bk .
By repeatedly selecting and removing a bounded language B from each Li where 1 ≤

i ≤ k we obtain a sequence {Lj

i }j≥0 of languages such that Li = L0
i ⊇ L1

i ⊇ · · · . The result
of Lemma 14 shows that for each word w ∈ Li , there is some j such that w /∈ L

j

i , hence
that the above sequence is strictly decreasing, that is Li = L0

i � L1
i � · · · , and finally that if⋂

1≤i≤k Li = ∅ then the iteration is guaranteed to terminate.
Algorithm 2 gives the pseudocode for the special case of the intersection of two CFLs.

Comparison with context-bounded reachability A well-studied under-approximation for
multithreaded reachability is given by context-bounded reachability [20]. We need a few
preliminary definitions. We define the global reachability relation � as a reachabil-
ity relation where all the moves are made by a single thread: (g,α1, . . . , αi, . . . , αn) �
(g′, α1, . . . , α

′
i , . . . , αn) iff (g,αi) →∗

i (g′, α′
i ) for some 1 ≤ i ≤ n. The relation � holds

between global configurations reachable from each other in a single context. Furthermore
we denote by �j , where j ≥ 0, the reachability relation within j contexts: �0 is the iden-
tity relation on global configurations, and �i+1= �i ��.

Given a pushdown network, global configurations C0 and C, and a number k ≥ 1, the
context-bounded reachability problem asks whether C0 �k C holds, i.e., if C can be reached
from C0 in k context switches. This problem is decidable [20]. Context-bounded reachability
has been successfully used in practice for bug finding. We show that underapproximations
using bounded languages (Lemma 15) subsumes the technique of context-bounded reacha-
bility in the following sense.

Proposition 4 Let N be a pushdown network, C0,C global configurations of N , and
(L1, . . . ,Ln) CFLs over alphabet Σ such that C0 →∗ C iff

⋂
i Li = ∅. For each k ≥ 1, there

is a bounded expression Bk such that C0 �k C only if
⋂(Bk)

i Li = ∅. Also,
⋂(Bk)

i Li = ∅ only
if C0 →∗ C.

Proof Consider all sequences C0 � C1 · · ·Ck−1 � Ck of k switches. By the CFL encoding
(Proposition 3) each of these sequences corresponds to a word in Σk . If C0 �k C, then



Form Methods Syst Des

static int val=0;
// val is local to A
// i.e., B does not access or modify val

A() {
a1: assume(x==1);
a2: x=0;
a3: if * { A(); }
a4: assume(x==3);
a5: x=2;
a6: val++;
a7: if (val >= k) {
a8: /* here */
a9: }
}

B() {
b1: x=1;
b2: if * { B(); }
b3: x=3;
}

Fig. 1 The family of pushdown networks with global shared integer variable x. The symbol * stands for a
non-deterministic choice

there is a word w ∈ ⋂
i Li and w ∈ Σk . Let Σ = {a1, . . . , an}, define Bk to be (a∗

1 · · ·a∗
n)

k .
We conclude from w ∈ Σk and the definition of Bk that w ∈ Bk , hence that

⋂(Bk)

i Li = ∅
since w ∈ ⋂

i Li . For the other direction we conclude from
⋂(Bk)

i Li = ∅ that
⋂

i Li = ∅,
hence that C0 →∗ C. �

However, underapproximation using bounded languages can be more powerful than
context-bounded reachability in the following sense. There is a family {(Nk,C0k,Ck)}k∈N of
pushdown network reachability problems such that C0k �k Ck but C0k �k−1 Ck for each k.
However, there is a single bounded expression B such that

⋂(B)

i Lik = ∅ for each k, where
again (L1k, . . . ,Lnk) are CFLs such that C0k � Ck iff

⋂
i Lik = ∅ (as in Proposition 3).

For clarity, we describe the family of pushdown networks as a family of two-threaded
programs whose code is shown in Fig. 1. The programs in the family differs from each other
by the value to which k is instantiated: k= 1,2, . . . . Each program has two threads, A and B,
each of which consisting of a single recursive procedure. Thread A maintains a local counter
val starting at 0. The global shared variable is given by x whose initial value is given by
0 and such that the set of possible values it can take is {0,1,2,3}. A close inspection of the
code shows that, in order to increment val, one can execute the following schedule: first,
thread B runs and assigns 1 to x by executing statement b1, then thread A runs and executes
statement a1, a2 but it does not execute the recursive call of a3. Next, let us resume the
execution of thread B which first non-deterministically chooses not to execute the recursive
call of b2 and then executes b3. The last step of the schedule is to resume thread A which
executes a4 to a6. In the case where k= 1, the execution can reach a8. If k> 1, then the
execution is required to execute recursive calls in both thread A (a3) and B (b2) in order to
reach a8.

From above we find that, for every value of k, a8 is reachable, but it requires at least
2 ∗ k context switches. Thus, there is no fixed context bound that is sufficient to check
reachability for every instance in the family. In contrast, the bounded expression given by
(B,x==1,A,x==0)∗ · (B,x==3,A,x==2)∗ · (B,x==3,A)∗ is sufficient to show reachabil-
ity of a8 for every instance in the family. In the above bounded expression, the symbol



Form Methods Syst Des

with a predicate gives the value of x at the switching point and the other symbol gives the
identifier of the running thread.

In [20], the k-context reachability problem is shown to be NP-complete. A more detailed
analysis shows that, unless NP = P, k-context reachability is exponential in k but polynomial
in the program size. In [6], it is shown that pattern based reachability (i.e., where the bounded
expression B is fixed a priori, and which reduces to the problem of Lemma 15 in polynomial
time) is also NP-complete. Moreover, the authors show that, unless NP = P, pattern-based
reachability is exponential in the number of threads, the size of the bounded expression, and
the maximum number of procedures per thread, but is polynomial in the maximum size of a
procedure.

6 Application II: recursive counter machines

In verification, counting is a powerful abstraction mechanism. Often, counting abstractions
are used to show decidability of the verification problem. Counting abstractions have been
applied on a wide range of applications from parametrized systems specified as concurrent
JAVA programs to cache coherence protocols (see [24]) and to programs manipulating com-
plex data structures like lists (see for instance [5]). In those works, counting not only implies
decidability, it also yields precise abstractions of the underlying verification problem. How-
ever, in those works recursion (or equivalently the call stack) is not part of the model. One
option is to abstract the stack using additional counters, hence abstracting away the stack
discipline. Because counting abstractions for the stack yields too much imprecision, we pre-
fer to use a precise model of the call stack and perform an underapproximating analysis.
This is what is defined below for a model of recursive programs that manipulate counters.

Counter machine: syntax and semantics An n-dimensional counter machine M =
(Q,T ,α,β, {Gt }t∈T ) consists of the finite non-empty sets Q and T of locations and tran-
sitions, respectively; two mappings α : T → Q and β : T → Q, and a family {Gt }t∈T of
semilinear (or Presburger definable) sets over N

2n.
An M-configuration (q, x) consists of a location q ∈ Q and a vector x ∈ N

n; we define
CM as the set of M-configurations. For each transition t ∈ T , its semantics is given by the
reachability relation RM(t) over CM defined as (q, x)RM(t)(q ′, x ′) iff q = α(t), q ′ = β(t),
and (x, x ′) ∈ Gt . The reachability relation is naturally extended to words of T ∗ by defining
RM(ε) = {((q, x), (q, x)) | (q, x) ∈ CM} and RM(u · v) = RM(u) � RM(v).2 Also, it extends
to languages as expected. Finally, we write (M,D) for a counter machine M with an initial
set D ⊆ CM of configurations. Note that semilinear sets carry over subsets of CM using a
bijection from Q to {1, . . . , |Q|}.

Computing the reachable configurations Let D ⊆ CM an initial set of configurations and
R ⊆ CM × CM the reachability relation, we define the set of configurations post[R](D) as
{(q, x) | ∃(q0, x0) ∈ D ∧ (q0, x0)R(q, x)}. Given an n-dim counter machine M = (Q,T ,α,

β, {Gt }t∈T ), a semilinear set D of configurations and a CFL L ⊆ T ∗ (encoding execution
paths), we want to underapproximate post[RM(L)](D): the set of M-configurations reach-
able from D along words of L. Our underapproximation computes the set post[RM(L′)](D)

2The composition of two relations R1 and R2, denoted R1 � R2, is defined as the relation {(x, x1) |
∃x′ : R1(x, x′) ∧ R2(x′, x1)}.



Form Methods Syst Des

Fig. 2 The γ ′-dim counter machine M ′ = (Q′, T ′, α′, β ′, {Gt }t∈T ′ )

where L′ is a Parikh-equivalent bounded subset L such that L′ = L ∩ B where B =
w∗

1 · · ·w∗
n .

We will construct, given (M,D), L and B (we showed above how to effectively compute
such a B), a pair (M ′,D′) such that the set of M-configurations reachable from D along
words of L ∩ B can be constructed from the set of M ′-configurations reachable from D′.
Without loss of generality, we assume M is such that Q is a singleton. (One can encode
locations using counters.)

Let M = (Q,T ,α,β, {Gt }t∈T ) a γ -dim counter machine with Q = {qf } and B =
w∗

1 · · ·w∗
n such that Π(L ∩ B) = Π(L). Let h be the homomorphism that maps some

fresh letters a1, . . . , an to the words w1, . . . ,wn, respectively. We compute the language
L′

A = h−1(L ∩ B) ∩ a∗
1 · · ·a∗

n . Let S = Π{a1,...,an}(L′
A), and note that S is a semilinear set.

The definition of semilinear set shows that S is given by a finite union
⋃s

i=1 Hi of linear
sets. Let us assume for now that S is given by a single linear set H . Since below we show
that, in that case, the set of M-configurations reachable from D along words in L ∩ B is
Presburger definable, it is easy to generalize to the case where S is given by the union of
an arbitrary number of linear sets, e.g., by taking the disjunction of the Presburger formulas
that are obtained.

Let the linear set H be such that p0 = (p01, . . . , p0n) denotes the offset and
{pi = (pi1, . . . , pin)}i∈I\{0} the set of periods of H and I = {0, . . . , k}. Let J = {1, . . . , n}.
In the following, for every pair of vectors x = (x1, . . . , xr ) and y = (y1, . . . , ys), we denote
by (x, y) the vector (x1, . . . , xr , y1, . . . , ys). The machine M ′ is defined in Fig. 2.

Between q0 and q01, M ′ non-deterministically picks values for all the additional counters
which we denote {λij }i∈I,j∈J

. When M ′ fires tk , we have for all i ∈ I and j, j ′ ∈ J : λij = λij ′
and λ0i = 1. Below, for every i ∈ I , we denote by λi the common value of the counters
{λij }j∈J

. Then, M ′ simulates the behavior of M for the sequence of transitions given by

w
p01+λ1p11+···+λkpk1
1 · · ·wp0n+λ1p1n+···+λkpkn

n the Parikh image of which is p0 + ∑
i∈I λipi . Let

us define the set D′ of configurations of CM ′ as {(q0, (x, v)) | (qf , x) ∈ D ∧ v = 0(k+1)n}.
A sufficient condition for the set of reachable configurations of M ′ starting from D′ to be

effectively computable is that for each t in {t si }i∈I\{0} ∪ {t sij }i∈I,j∈J
(i.e., the loops in Fig. 2),

it holds that (Gt)
∗ is computable and Presburger definable. Given t the problem of deciding

if (Gt)
∗ is Presburger definable is undecidable [1]. However, there exist some subclasses



Form Methods Syst Des

C of Presburger definable sets such that if Gt ∈ C then (Gt)
∗ is Presburger definable and

effectively computable.
A known subclass is that of guarded command Presburger relations. An n-dimensional

guarded command is given by the closure under composition of {(x, x ′) ∈ N
2n | x ′ = x + ei}

(increment), {(x, x ′) ∈ N
2n | x ′ = x − ei} (decrement) and {(x, x) ∈ N

2n | x = (x1, . . . , xn) ∧
xi = 0} (0-test) for 1 ≤ i ≤ n.

Other subclasses are given in [4, 10]. Note that if for each t ∈ T of M , Gt is given by a
guarded command then so is each Gt ′ for t ′ ∈ T ′ of M ′ by definition.

From the above and the definition of M ′, we conclude that an effective representation of
the set of reachable M ′-configurations from D′ is effectively computable. To this end, one
can define a counter machine M1 which is given by M ′ where all the control locations Q′ of
M ′ have been encoded using additional counters. By the same encoding, let us define D1 to
be the set of M1-configurations which is the counterpart to the set D′ of M ′-configurations.

Our next step is to define a Presburger formula Ψ over free variables x representing the
reachable M1-configurations using the above techniques. To this end we first compute for
each transition t of M1 the Presburger formulas representing (Gt)

∗. Then those formulas
and a formula which represents D1 are assembled using boolean connectives and existential
quantifications to give Ψ which is interpreted as follows: a valuation v satisfies Ψ iff the
M1-configuration corresponding to v is reachable from D1.

Also from the relationship between M1 and M ′, the formula Ψ can be seen as an ef-
fective representation for the set M ′-configurations reachable from D′. Therefore, we find
that the set post[RM ′(T ′∗)](D′) of reachable M ′-configurations from the set D′ is effectively
computable.

Finally, we give the following result which relates M ′-configurations reachable from D′
to the M-configurations which are reachable from D using sequences of transitions L′, i.e.
post[RM(L′)](D).

Lemma 16 Let (qf , x) ∈ CM . We have (qf , x) ∈ post[RM(L′)](D) iff there exists
v ∈ N

(k+1)n such that (qf , (x, v)) ∈ post[RM ′(T ′∗)](D′).

Recall that we are interested in the M-configurations reachable from D using sequences
of transition in L′. Such configurations are easily retrieved from Ψ . In fact this set is encoded
by the following Presburger formula: let xqf

be the variables of x which corresponds to the
counter encoding location qf , the formula Ψ ∧xqf

= 1 encodes M-configurations reachable
from D using sequences of transitions in L′.

We conclude by mentioning that in the context of counter machines we can use the result
of Lemma 14 to show that by iterating the above construction we obtain a semi-algorithm
for a context-free language.

Acknowledgements We thank Javier Esparza for his help on the lower bounds of Lemmas 8 and 13,
respectively. We also thank Stefan Kiefer, Michael Luttenberger, and Zhenyue Long for helpful discussions,
and the anonymous referees who gave relevant comments which helped in improving the paper. Finally, we
thank Michael Emmi for the example of Fig. 1.

References

1. Bardin S, Finkel A, Leroux J, Schnoebelen P (2005) Flat acceleration in symbolic model checking. In:
ATVA ’05: proc 3rd int symp on automated technology for verification and analysis. LNCS, vol 3707.
Springer, Berlin, pp 474–488



Form Methods Syst Des

2. Blattner M, Latteux M (1981) Parikh-bounded languages. In: ICALP ’81: proc of 8th int colloquium on
automata, languages and programming. LNCS, vol 115. Springer, Berlin, pp 316–323

3. Bouajjani A, Esparza J, Touili T (2003) A generic approach to the static analysis of concurrent programs
with procedures. In: POPL ’03: proc 30th ACM SIGPLAN-SIGACT symp on principles of programming
languages. ACM Press, New York, pp 62–73

4. Bozga M, Gîrlea C, Iosif R (2009) Iterating octagons. In: TACAS ’09: proc 15th int conf on tools and
algorithms for the construction and analysis of systems. LNCS, vol 5505. Springer, Berlin, pp 337–351

5. Bozga M, Iosif R, Moro P, Vojnar T, Bouajjani A, Habermehl P (2006) Programs with lists are counter
automata. In: CAV ’06: proc 18th int conf on computer aided verification. LNCS, vol 4144. Springer,
Berlin, pp 517–531

6. Esparza J, Ganty P (2011) Complexity of pattern-based verification for multithreaded programs. In:
POPL ’11: proc 38th ACM SIGACT-SIGPLAN symp on principles of programming languages. ACM
Press, New York, pp 499–510

7. Esparza J, Ganty P, Kiefer S, Luttenberger M (2010) Parikh’s theorem: A simple and direct automaton
construction. CoRR, abs/1006.3825

8. Esparza J, Kiefer S, Luttenberger M (2008) Newton’s method for ω-continuous semirings. In: ICALP
’08: proc 35th int coll on automata, languages and programming. LNCS, vol 5126. Springer, Berlin, pp
14–26. Invited paper

9. Esparza J, Kiefer S, Luttenberger M (2010) Newtonian program analysis. J ACM 57(6):331–3347
10. Finkel A, Leroux J (2002) How to compose Presburger-accelerations: applications to broadcast proto-

cols. In: FSTTCS ’02: proc 22nd int conf on foundations of software technology and theoretical computer
science. LNCS, vol 2556. Springer, Berlin, pp 145–156

11. Ganty P, Majumdar R, Monmege B (2010) Bounded underapproximations. In: CAV ’10: proc 20th int
conf on computer aided verification. LNCS, vol 6174. Springer, Berlin, pp 600–614. See also CoRR
report abs/0809.1236

12. Ginsburg S (1966) The mathematical theory of context-free languages. McGraw-Hill, New York
13. Ginsburg S, Spanier EH (1964) Bounded ALGOL-like languages. Trans Am Math Soc 113(2):333–368
14. Hague M, Lin AW (2011) Model checking recursive programs with numeric data types. In: CAV ’11:

proc 21th int conf on computer aided verification. LNCS. Springer, Berlin
15. Harju T, Ibarra OH, Karhumäki J, Salomaa A (2002) Some decision problems concerning semilinearity

and commutation. J Comput Syst Sci 65:278–294
16. Hopcroft JE, Ullman JD (1979) Introduction to automata theory, languages and computation, 1st edn.

Addison-Wesley, Reading
17. Kahlon V Tractable dataflow analysis for concurrent programs via bounded languages. Patent

WO/2009/094439, July 2009
18. Latteux M, Leguy J (1979) Une propriété de la famille GRE. In: FCT ’79: fundamentals of computa-

tion theory, Proc of the conf on algebraic, arithmetic, and categorial methods in computation theory.
Akademie-Verlag, Berlin, pp 255–261

19. Leroux J, Sutre G (2004) On flatness for 2-dimensional vector addition systems with states. In: CONCUR
’04: proc 15th int conf on concurrency theory. LNCS, vol 3170. Springer, Berlin, pp 402–416

20. Qadeer S, Rehof J (2005) Context-bounded model checking of concurrent software. In: TACAS ’05:
proc 11th int conf on tools and algorithms for the construction and analysis of systems. LNCS, vol 3440.
Springer, Berlin, pp 93–107

21. Ramalingam G (2000) Context-sensitive synchronization-sensitive analysis is undecidable. ACM Trans
Program Lang Syst 22(2):416–430

22. Suwimonteerabuth D, Esparza J, Schwoon S (2008) Symbolic context-bounded analysis of multithreaded
Java programs. In: SPIN’08: proc of 15th int model checking software workshop. LNCS, vol 5156.
Springer, Berlin, pp 270–287

23. To AW (2010) Model checking infinite-state systems: generic and specific approaches. PhD thesis,
School of Informatics, University of Edinburgh

24. van Begin L (2003) Efficient verification of counting abstractions for parametric systems. PhD thesis,
Université Libre de Bruxelles, Belgium


	Bounded underapproximations
	Abstract
	Introduction
	Explicit construction of Parikh-equivalent bounded subsets
	Reachability analysis of multithreaded programs with procedures
	Reachability analysis of programs with counters and procedures
	Related work

	Preliminaries
	Vectors
	Parikh image
	Context-free languages
	Proof plan

	A Parikh-equivalent representation
	Derivation tree, yield and dimension
	t-fold composition

	Constructing a Parikh equivalent bounded subset
	Regular languages
	Linear languages
	Linear languages with substitutions
	t-fold compositions
	Iterative algorithm


	Application I: multithreaded procedural programs
	Comparison with context-bounded reachability

	Application II: recursive counter machines
	Counter machine: syntax and semantics
	Computing the reachable configurations

	Acknowledgements
	References


