
Adding Pebbles to Weighted Automata?

Paul Gastin, and Benjamin Monmege

LSV, ENS Cachan, CNRS, Inria, France
firstname.lastname@lsv.ens-cachan.fr

Abstract. We extend weighted automata and weighted rational expres-
sions with 2-way moves and (reusable) pebbles. We show with examples
from natural language modeling and quantitative model-checking that
weighted expressions and automata with pebbles are more expressive
and allow much more natural and intuitive specifications than classical
ones. We extend Kleene-Schützenberger theorem showing that weighted
expressions and automata with pebbles have the same expressive power.
We focus on an efficient translation from expressions to automata. We
also prove that the evaluation problem for weighted automata can be
done very efficiently if the number of (reusable) pebbles is low.

1 Introduction

Regular expressions have always been used to specify patterns. Popular because
they propose a concise and intuitive way of denoting such patterns, they have
also a long history in the formal language community. A seminal result, known
as Kleene’s theorem, establish that the (denotational) regular expressions have
the same expressive power as the (operational) finite state automata. Efficient
translation algorithms of regular expressions into finite automata are crucial
since expressions are convenient to denote patterns and automata are amenable
to efficient algorithms. Regular expressions and finite automata have been ex-
tended in several directions, e.g., tree (walking) automata, (regular) XPath, etc.

Nowadays, quantitative models and quantitative analysis are intensively stud-
ied, resulting in a revision of the foundation of computer science where classical
yes/no answers are replaced by quantities such as probability, energy consump-
tion, reliability, cost, etc. In the 60s, Schützenberger provided a generic way of
turning qualitative into quantitative systems, starting the theory of weighted au-
tomata [31] (see [18,16,3] for recent books on this theory). Indeed, probabilistic
automata and word transducers appear as instances of that framework, which
found its way into numerous application areas such as natural language pro-
cessing, speech recognition or digital image compression. Schützenberger proved
the equivalence between weighted automata and weighted regular expressions,
extending Kleene’s theorem. Various translation algorithms can be extended
from the Boolean framework to the weighted case, see [27,29] for surveys about
these methods, and [22] which obtains Schützenberger’s theorem as a corollary
of Kleene’s theorem.
?

Supported by LIA INFORMEL.

In Sections 4 and 5, we extend weighted expressions and automata with 2-
way moves and pebbles. There are several motivations for these extensions. First,
as shown in Section 2 for applications in natural language processing and quan-
titative model-checking, 2-way moves and pebbles allow more natural and more
concise descriptions of the quantitative expressions we need to evaluate. Second,
in the weighted case, 2-way and pebbles do increase the expressive power as
already observed in [8] in relation with weighted logics or in [26] in the prob-
abilistic setting. This is indeed in contrast with the Boolean case where 2-way
and pebbles do not add expressive power over words (see, e.g., [19]) even though
they allow more succinct descriptions (see, e.g., [4]). Our work is also inspired by
pebble tree-walking automata and in particular their links with powerful logics,
XPath formalisms and caterpillar expressions on trees [17,10,6,30,5].

In Sections 6 and 7, we generalize Kleene and Schützenberger theorems to
weighted expressions and automata with 2-way moves and pebbles. We establish
their expressive power equivalence by providing effective translations in both
directions. Showing how to transform an operational automaton into an equiv-
alent denotational expression is indeed very interesting from a theoretical point
of view, but is less useful in practice. On the other hand, we need highly efficient
translations from the convenient denotational formalism of expressions to oper-
ational automata which, as stated above, are amenable to efficient algorithms.
Efficiency is measured both wrt. the size of the resulting automaton and wrt. the
space and time complexities of the translation. We show that, Glushkov’s [20] or
Berry-Sethi [2] translations, which are among the best ones in the Boolean case,
can be extended to weighted expressions with 2-may moves and pebbles. The
constructions for the rational operations (sum, product, star) can be adapted
easily to cope with 2-way moves, even though the correctness proofs are more
involved and require new theoretical grounds such as series over a partial monoid
as explained in Section 4.1. The main novelty in Sections 6 and 7 is indeed the
treatment of pebbles in the translations between expressions and automata.

To complete the picture, we study in Section 8 the evaluation problem of a
weighted automaton with 2-way moves and reusable pebbles over a given word.
The algorithm is polynomial in the size of the word, where the degree is 1 plus
the number of reusable pebbles. We can even decrease the degree by 1 for strongly
layered automata. This applies when we only have one reusable pebble, and we
obtain an algorithm which is linear in the size of the input word. This is in
particular the case for automata derived from weighted LTL.

The paper focuses on intuitive explanations and examples for a better un-
derstanding of weighted expressions with 2-way moves and pebbles, and of the
translations between automata and expressions. Most proofs are omitted and
will appear in a longer version.

2 Motivations

We give in this section two motivating examples for studying weighted expres-
sions and automata with 2-way moves and pebbles.

2

2.1 Language modeling

Since decades, weighted automata have been extensively used in Natural Lan-
guage Processing (see [21]), in particular for automatic translation, speech recog-
nition or transliteration. All these tasks have in common to split the problem
into independent parts, certain directly related to the specific task and others
related to the knowledge of the current language. For example, in the trans-
lation task from French sentences to English sentences, one splits the problem
into first knowing translation of single words and then modeling English sen-
tences (knowledge which is independent from the translation task). The second
part, namely to know whether a sequence of words is a good English sentence,
is known as language modeling. Often this knowledge is learned from a large
corpus of English texts, and stored into a formal model, e.g., a weighted finite
state automaton representing the probability distribution P of well-formed En-
glish sentences. The translation task is then resolved by first generating several
English sentences from the original French one (due to ambiguity of the word-
by-word translation task), and then choosing among this set of sentences the
ones with highest probability.

One broadly used language model is the n-gram model, where the probability
of a word in a sentence depends only on the previous n− 1 words: for example
in a 1-gram model, only the individual word frequencies are relevant to generate
well-formed English sentences, whereas in a 2-gram model, the probability of
a word depends on the very same frequency distribution and also the previous
word. To formally describe these models, and further study them, let us define
them using regular expressions. Let D denote the dictionary of words in the
language. Suppose we are given the conditional probability distributions P(un |
u1, . . . , un−1) in the n-gram model (with ui ∈ D for all i). The probability of
a sentence (ui)1≤i≤m ∈ Dm can be given by the following weighted regular
expression in a 1-gram model and a 3-gram model:

E1 =
(∑
u∈D

uP(u)
)∗

E3 =→→
(∑
u,v,w∈D

←←uvwP(w | u, v)
)∗

where symbols → and ← denote a right or left move, respectively, no matter
what word it is reading. Expression E1 is a classical weighted regular expression
where the Kleene star iterates the computation of the inner expression, which
here computes the probability of the current word u. Expression E3 has the
opportunity to move forward and backward: this allows to easily recover the
context whereas a 1-way automaton would have to store the context in its states.
Notice that expression E3 is quite readable and intuitive. One could write an
equivalent 1-way expression, but imagine how intricate it would be since positions
would have to encode the context, i.e., the last two words. This is an important
motivation for studying 2-way expressions and automata.

Actually, expression E3 is not small since the sum hides the very big set
D3: for a dictionary of size 1 million, this seems already unpracticable. But in
practice, a much smaller expression could be sufficient. First, for many words,
the frequency distribution of the word w is a sufficiently good approximation of

3

English? French?

OK KO OK KOTaskEn TaskFr

↓
x

↓
x↑ ↑ ↑ ↑

→

→ → →

Fig. 1. Pebble automaton for the multi-language modeling task.

the conditional probability P(w | u, v). Let us denote D0 this set of words. For
instance, the probability of observing the word the may not really depend on
the previous words. Then, let D1 be the set of words (disjoint from D0) such
that only the previous word is necessary to describe the probability. Finally, let
D2 be the rest of the dictionary. Now, we may replace expression E3 by the
following expression, whose size is much smaller if D0 and D1 contain enough
words:(∑

w∈D0

wP(w) +
∑

w∈D1,v∈D
←vwP(w | v) +

∑
w∈D2,u,v∈D

←←uvwP(w | u, v)
)∗

To motivate the introduction of pebbles, let us add internationalization,
which means that the user has the ability to write/speak alternately in two
or more languages, e.g., English and French. All tasks such as automatic trans-
lation or speech recognition are now more complex since there is no a priori
knowledge of the current language of the speaker. Again, splitting the problem
into independent parts, we have to know the probability distributions PL for
every involved language L, and, assuming a current language L, we should be
able to solve the language processing task with a procedure TaskL. Then, before
processing the next word, we start a computation which re-reads the current
prefix of the text in order to compute using PL the probability that the current
language L is still valid. The next word is then processed with the current or
the alternate language (see Figure 1). In order to compute the probability that
the current language is still valid, we mark the current position with a pebble
(↓x) and read the current prefix of the text with the automaton modeling the
current language. Then we return to the marked position and lift the pebble (↑)
in order to resume the top level computation.

2.2 Weighted Linear Temporal Logic

Whereas weighted automata and weighted expressions have been extensively
studied, logical formalisms adapted to the weighted case still need deeper under-
standing. This is especially true for weighted linear temporal logics [23], whereas
weighted branching temporal logics have received more attention [13,12,25,7].

4

We would like to illustrate that using pebbles in weighted expressions or au-
tomata is a natural and powerful way to deal with nesting in LTL formulas. For
this motivating example, we only consider finite words and the probabilistic set-
ting. Temporal logics implicitely use a free variable to denote the position where
the formula has to be evaluated. We will mark this position with a pebble, say
x, in expressions Eϕ(x) or automata Aϕ(x) associated with an LTL formula ϕ.

Consider an LTL formula Fϕ, for Finally ϕ. Given a word u and a position
i in the word, we want to compute the probability P(Fϕ, u, i) that ϕ holds on
u at position i. For instance, with ϕ = 1

3a, we should compute P(Fϕ, abba, 0) =
1
3 + 2

3 (0+ 2
3 (0+ 2

3 (1
3 +0))): either ϕ is satisfied immediately with probability 1

3 or
it is not (probability 2

3) and (product) it should be satisfied later. More generally,
we have

P(Fϕ, u, i) = P(ϕ, u, i) + P(¬ϕ, u, i)
(
P(ϕ, u, i+ 1)

+ P(¬ϕ, u, i+ 1)
(
P(ϕ, u, i+ 2) + · · ·

))
.

For every LTL formula ϕ, we want to give an equivalent expression Eϕ(x)
which evaluates to P(ϕ, u, i) over word u when pebble x marks position i. For
Finally ϕ, we set

EFϕ(x) = .?→∗x?
(
(y!E¬ϕ(y))→

)∗
(y!Eϕ(y))→∗/?

= .?→∗x?
∑
n≥0

(
(y!E¬ϕ(y))→

)n
(y!Eϕ(y))→∗/? .

The expression starts at the beginning of the word (.?), moves right (→∗) until
it sees the marked position (x?), for each possible n ≥ 0 it iterates n times
the computation of ¬ϕ with the current position marked with y (y!E¬ϕ(y)) and
moving right between two computations, and it finally computes ϕ with y!Eϕ(y)
before moving to the end of the word (→∗/?).

Similarly, for Globally ϕ (Gϕ), we have P(Gϕ, u, i) =
∏
j≥i P(ϕ, u, j), leading

to the simpler expression

EGϕ(x) = .?→∗x?
(
(y!Eϕ(y))→

)∗
/? .

Finally, based on the equivalence ϕUψ ≡ (¬ψ ∧ ϕ)Uψ, the expression for the
Until modality is

EϕUψ(x) = .?→∗x?
(
(y!(E¬ψ(y)←∗Eϕ(y)))→

)∗
(y!Eψ(y))→∗/? .

In terms of automata, let us assume that for every formula ϕ, there is an au-
tomaton Aϕ with 2 designated terminal states {OK,KO}, such that runs ending
in OK computes expression Eϕ and those ending in KO computes expression
E¬ϕ. We have depicted below automata for the modalities Finally and Globally.

5

⊳?

Aϕ(y)
OK

KO

→

x? →

↓
y

⊳?↑

⊳?↑

→

⊳?

Aϕ(y)
OK

KO

→

x? →

↓
y

⊳?↑

3 Preliminaries

Words. The set of non-empty words over a finite alphabet A is denoted A+. We
write u = u0 · · ·un−1 ∈ A+ a non-empty word of length |u| = n ≥ 1 with ui ∈ A
for 0 ≤ i < |u|. The set of positions of u is pos(u) = {0, 1, . . . , |u|}. In particular,
we include |u| in pos(u) even though the last letter is on position |u| − 1.

Semirings. A semiring is a set S equipped with two binary internal operations
denoted + and ×, and two neutral elements 0 and 1 such that (S,+, 0) is a
commutative monoid, (S,×, 1) is a monoid, × distributes over + and 0 × s =
s × 0 = 0 for every s ∈ S. If the monoid (S,×, 1) is commutative, the semiring
itself is called commutative. See [15,27] for more discussions about semirings,
especially complete and continuous ones, as we describe now.

A semiring S is complete if every family (si)i∈I of elements of S over an
arbitrary indexed set I is summable to some element in S denoted

∑
i∈I si and

called sum of the family, such that the following conditions are satisfied:

–
∑
i∈∅ si = 0,

∑
i∈{1} si = s1 and

∑
i∈{1,2} si = s1 + s2;

– if I =
⋃
j∈J Ij is a partition,

∑
j∈J

(∑
i∈Ij si

)
=
∑
i∈I si;

–
(∑

i∈I si
)
×
(∑

j∈J tj
)

=
∑

(i,j)∈I×J(si × tj).

Intuitively, this means that it is possible to define infinite sums that extends the
binary addition and satisfies infinite versions of associativity and distributivity.

In a complete semiring, for every s ∈ S, the element s∗ =
∑
i∈N s

i exists
(where si is defined recursively by s0 = 1 and si+1 = si × s). Here are some
examples of complete semirings.

– The Boolean semiring ({0, 1},∨,∧, 0, 1) with
∑

defined as an infinite dis-
junction.

– (R≥0 ∪{∞},+,×, 0, 1) with
∑

defined as usual for positive (not necessarily
convergent) series: in particular, s∗ = ∞ if s ≥ 1 and s∗ = 1/(1 − s) if
0 ≤ s < 1.

– (N ∪ {∞},+,×, 0, 1) as a complete subsemiring of the previous one.
– (R∪ {−∞},min,+,−∞, 0) with

∑
= inf and (R∪ {∞},max,+,∞, 0) with∑

= sup.
– Complete lattices such as ([0, 1],min,max, 0, 1).
– The semiring of languages over an alphabet A: (2A

∗
,∪,+, ∅, {ε}) with

∑
defined as (infinite) union.

6

In this paper, we consider continuous semirings which are complete semirings
in which infinite sums can be approximated by finite partial sums. Formally, a
complete semiring S is continuous if the relation ≤ defined over S by a ≤ b if
b = a + c for some c ∈ S is an order relation; and for every family (si)i∈I in S,
the sum

∑
i∈I si is the least upper bound of the finite sums

∑
i∈J si for J ⊆ I

finite. All the above complete semirings are also continuous.

Series and polynomials Let Z be a set. A series f over Z is a map f : Z → S.
We denote by S〈〈Z〉〉 the set of series over Z with coefficients in S. The support
of a series f ∈ S〈〈Z〉〉 is the set {z ∈ Z | f(z) 6= 0}. A series with a finite support
is called a polynomial. We denote by S〈Z〉 the set of polynomials over Z with
coefficients in S.

We can lift addition from S to S〈〈Z〉〉 pointwise by (f + g)(z) = f(z) + g(z)
for all z ∈ Z. Then, (S〈〈Z〉〉,+, 0) is a commutative monoid where 0 is the
series mapping every element z ∈ Z to 0. If Z is a monoid and the semiring is
complete, we can also define the (Cauchy) product of two series by (f × g)(z) =∑
z=xy f(x)g(y) for all z ∈ Z. This sum may be infinite, but is well-defined

since the semiring is complete. The Cauchy product is associative and admits as
unit the characteristic function (denoted 1) of the neutral element of Z. Hence,
(S〈〈Z〉〉,+,×, 0, 1) is a semiring. When S is continuous, we can also lift infinite
sums pointwise to S〈〈Z〉〉 which becomes a continuous semiring.

4 Weighted Expressions with pebbles

The syntax of our weighted expressions is carefully chosen so that an effi-
cient translation to weighted automata can be obtained, essentially based on
Glushkov’s construction as we will see in Section 7. Formally, for a (continuous)
semiring S, an alphabet A and a set Peb of pebbles, the syntax is given by the
grammar:

E ::= s | ϕ | → | ← | x!E | E + E | E · E | E+

ϕ ::= a? | .? | /? | x? | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ

with s ∈ S, a ∈ A, x ∈ Peb. We denote by Test the set of test formulas ϕ defined
by the second line of the grammar above. For instance, one can check with .?
and /? whether we are at the beginning or at the end of the word. This is indeed
useful since we have 2-way expressions. We denote by pebWE the set of weighted
expressions with pebbles. Below, we give the intuitive meaning of our weighted
expressions. We start without pebbles (i.e., without x!E). Then, we introduce
pebbles. The formal semantics is given in Table 1.

Notice that from the irreflexive iteration E+ =
∑
n>0E

n, we get also the
classical Kleene star: E∗

def
= 1 + E+. Indeed, we also have E+ = E · E∗ but if

we apply Glushkov’s construction (blindly) to E ·E∗ we get an automaton with
twice the number of states needed for E+. This is basically why we prefer to
have E+ as a primary construct.

7

We have chosen to distinguish between checking the current position with
some test ϕ and moving to the right or left position with → and ←. This is
in the spirit of XPath in trees. This allows to write concise expressions, e.g.,
E = →+a?←+b?→+c?←+d?→+ to describe patterns consisting of an a having
in its past a b, having in its future a c, having in its past a d. In the Boolean
semantics, this expression defines words having this pattern. In the semiring
N of natural numbers, the expression counts the number of occurrences of the
pattern, e.g., [[E]](cabcdbadcbab) = 8. Indeed we may write an equivalent 1-way
expression for this pattern but it would be less concise and harder to decipher
(see e.g., [4] for succinctness results in the Boolean case).

Let u = u0u1 · · ·u|u|−1 ∈ A+. A test ϕ will be evaluated at a position i ∈
pos(u): .? holds if i = 0, /? holds if i = |u| and a? holds if i < |u| and ui = a.

With the 2-way mechanism, a sub-expression such as a?←+b?→+c?←+d?
may start from position i, end in position j and still visit the whole word. In
order to inductively define the semantics of expressions, we assign to triples
(u, i, j) a value [[E]](u, i, j) ∈ S.

It is also convenient to check-and-move so we introduce the macros a
def
= a?→

and a
def
= a?←. Then, we can write→∗ blue←+ .?→∗ black→∗ to define words

having both blue and black as subwords. This allows to write classical (1-way)
regular expressions such as (ab)+aa. In order to get the classical semantics for
usual 1-way expressions, the evaluation of an expression on a whole word is
defined as [[E]](u) = [[E]](u, 0, |u|). For instance, [[a]](a) = [[a?→]](a, 0, 1) = 1,
[[→∗a→∗]](baaba) = [[→∗a?→→∗]](baaba, 0, 5) = 3, and [[(2→)+]](u) = 2|u|.

Our 2-way expressions are uncomparable with expressions over the free group.
Indeed, the expression aāb always evaluates to 0 in our setting, whereas over the
free group it would evaluate to 1 on b = aab.

Notice that with the 2-way mechanism we may write E = E1 /?←∗ .?E2

to compute the product (intersection in the boolean semantics) of the values
computed by E1 and E2: [[E]](u) = [[E1]](u)× [[E2]](u).

The 2-way mechanism together with iteration gives rise to infinite sums. This
may be useful for probabilistic systems. For instance, in the continuous semiring
(R∞≥0,+,×, 0, 1), consider the expression E = (¬/?(s→+(1−s)¬.?←))∗ /? with

0 < s < 1 some probability. Expression E describes a random walk1 and it will
be used again in Section 5. Let F = ¬/?(s→+ (1− s)¬.?←) so that E = F ∗ /?.
Let u be a word of length m ≥ 2. We can easily see that for all i, j ∈ pos(u)
and all n > |j − i|, the expression Fn computes a positive value on (u, i, j).
Therefore, the expression F ∗ computes an infinite sum on (u, i, j). In the present
case (0 < s < 1), the series

∑
n≥0[[Fn]](u, i, j) converges and [[F ∗]](u, i, j) ∈ R≥0.

On the other hand, for the expression G = ¬/?→ + ¬.?←, we can check that
the series

∑
n≥0[[Gn]](u, i, j) diverges and we get [[G∗]](u, i, j) = ∞. Since we

are considering complete semirings, infinite sums exist and the semantics of an
iteration E∗ or E+ is always well-defined.

1 With α = 1−s
s

, one can show that [[E]](u, 0, |u|) = 1

1+α+...+α|u|
.

8

[[s]](u, σ, i, j) =

{
s if j = i

0 otherwise
[[ϕ]](u, σ, i, j) =

{
1 if j = i ∧ u, σ, i |= ϕ

0 otherwise

[[→]](u, σ, i, j) =

{
1 if j = i+ 1

0 otherwise
[[←]](u, σ, i, j) =

{
1 if j = i− 1

0 otherwise

[[x!E]](u, σ, i, j) =

{
[[E]](u, σ[x 7→ i], 0, |u|) if j = i < |u|
0 otherwise

[[E + F]](u, σ, i, j) = [[E]](u, σ, i, j) + [[F]](u, σ, i, j)

[[E · F]](u, σ, i, j) =
∑

k∈pos(u)

[[E]](u, σ, i, k)× [[F]](u, σ, k, j)

[[E+]](u, σ, i, j) =
∑
n>0

[[En]](u, σ, i, j)

Table 1. Semantics of weighted expressions

We explain now the pebble mechanism used in our expressions. The construct
x!E marks with x the current position in u and evaluates E on the marked word,
from beginning to end. Indeed, we can use x? in E to test whether the current
position is marked. For instance, consider

E =→+ a?x!
(

(¬x?→)∗ b? (¬x?→)+ c?←+ d?→+
)
→∗

which is a variant of our first example. Here the pattern consists of an a for
which the corresponding prefix contains a b, having in its future a c, having in
its past a d. In particular, the c must be on the left of the current a which is
marked with x. Hence, we get [[E]](cabcdbadcbab) = 4.

As another example, on a word u, the expression (x!((2→)+)→)+ computes

2|u|
2

over the natural semiring2. Actually, the pebble is not tested in this expres-
sion: it is only used to restart the computation |u| times.

We give now the formal semantics of tests and of pebWE. For each word
u ∈ A+, valuation σ : Peb → pos(u) and position i ∈ pos(u), the semantics
u, σ, i |= ϕ of tests is defined inductively. The Boolean connectives are as usual.
For the atoms, .? holds if i = 0, /? holds if i = |u|, a? holds if i < |u| and ui = a
and x? holds if σ(x) = i < |u| (the last position |u| cannot be marked).

A marked word is a tuple (u, σ, i, j) where u ∈ A+ is a word, σ : Peb→ pos(u)
is a valuation and i, j ∈ pos(u) are positions. We denote by Mk(A+) the set of
marked words (we will see below that it forms a partial monoid).

2 This function cannot be computed without pebble by a classical 1-way weighted
expression. We can see this using Schützenberger’s theorem since weighted automata
only compute values in 2O(|u|).

9

The semantics3 of a pebWE E is a map [[E]] : Mk(A+) → S, i.e., a series
over marked words: [[E]] ∈ S〈〈Mk(A+)〉〉. It is is defined in Table 1. Note that,
since we are considering complete semirings, the infinite sum in the semantics
of E+ is always well-defined. If the expression has no free pebbles then we omit
the valuation and simply write [[E]](u, i, j). For whole words we let [[E]](u, σ) =
[[E]](u, σ, 0, |u|) and [[E]](u) = [[E]](u, 0, |u|) as explained above.

Notice that for tests ϕ1 and ϕ2, the expressions ϕ1 ∧ ϕ2 and ϕ1 · ϕ2 are
equivalent, but ϕ1∨ϕ2 and ϕ1 +ϕ2 are not equivalent in general. One can check
that ϕ1 + ¬ϕ1 · ϕ2 is equivalent to the disjunction ϕ1 ∨ ϕ2. Hence, conjunctions
and disjunctions in tests are not necessary for the expressive power of pebWE
and they could have been defined as macros.

Similar to the star-height of an expression, we define the pebble-depth:

pebd(s) = pebd(ϕ) = pebd(←) = pebd(→) = 0

pebd(E + F) = pebd(E · F) = max(pebd(E),pebd(F))

pebd(E+) = pebd(E) pebd(x!E) = 1 + pebd(E) .

4.1 Series over a partial monoid

We show in this subsection that the set of marked words can be endowed with
a partial monoid structure which allows to define a Cauchy product on series in
S〈〈Mk(A+)〉〉. Since the sums can be lifted pointwise from S to series over S, we
show that S〈〈Mk(A+)〉〉 is actually a continuous semiring. Indeed, the semantics
defined for sum, product and iteration of pebWE in Table 1 corresponds to sum,
Cauchy product and star in the continuous semiring S〈〈Mk(A+)〉〉. This more
formal view of the semantics of pebWE is especially useful for proofs, but since
proofs are omitted in this paper this section may be skipped in a first reading.

Pebble weighted expressions and pebble weighted automata introduce two
new difficulties. The first one comes from the 2-way navigation mechanism which
prevents the computation of the behavior of an expression (or an automaton)
using the concatenation of words in the underlying monoid, here the free monoid
A+. The second one comes indeed from pebbles which allow to restart the com-
putation. To address both problems, we had to fix the word when defining the
semantics and we no more use the monoid structure of A+. Here, we define a
partial monoid structure on the marked words and show how this allows us to
reuse existing results from the classical theory of rational series.

A partial monoid is a triple (Z, ·, Y) where Z is the set of elements, · : Z2 → Z
is a partially defined associative concatenation4 and Y ⊆ Z is a set of partial

3 We may also define the semantics [[E]]V of an expression E using valuations over a
subset V ⊆ Peb, provided it contains the free pebbles of E.

4 for all x, y, z ∈ Z, (x · y) · z is defined iff x · (y · z) is defined, and in this case
(x · y) · z = x · (y · z)

10

units satisfying:

∀x, z ∈ Z ∀y ∈ Y x · y = z =⇒ x = z

∀x, z ∈ Z ∀y ∈ Y y · x = z =⇒ x = z

∀z ∈ Z ∃!y ∈ Y y · z = z

∀z ∈ Z ∃!y ∈ Y z · y = z .

Indeed, a classical monoid is a partial monoid with the concatenation being
totally defined and with the set of partial units being the singleton set consisting
of the (real) unit.

We are especially interested in the partial monoid (Mk(A+), ·,Unit(A+)) of
marked words over A+ where

Mk(A+) = {(u, σ, i, j) | u ∈ A+, σ : Peb→ pos(u), i, j ∈ pos(u)}
Unit(A+) = {(u, σ, i, i) | u ∈ A+, σ : Peb→ pos(u), i ∈ pos(u)}

and the partial concatenation is defined for all u ∈ A+, σ : Peb → pos(u) and
i, j, k ∈ pos(u) by (u, σ, i, k) · (u, σ, k, j) = (u, σ, i, j) and it is undefined in all
other cases. We can see that this partial concatenation is associative and that
the above requirements for partial units are satisfied.

Note that a partial monoid needs not be graded and in particular, the partial
monoid of marked words defined above is not graded. Hence, we cannot apply
directly the theory of rational series over graded monoids as developped e.g. in
[28]. Instead, we will use the theory of rational series over a continuous semiring
S (see e.g., [27, III.5]). We first show that, even if the monoid Z, and more
specifically Mk(A+), is only partial, we can define (infinite) sums and (Cauchy)
product on series over Z so that S〈〈Z〉〉 forms a continuous semiring.

Let S be a continuous semiring and (Z, ·, Y) be a partial monoid. As described
in Section 3, infinite sums may be lifted from S to series in S〈〈Z〉〉. We may also
define the Cauchy product as usual. Note that, even though the concatenation
in Z may be partially defined, the Cauchy product in S〈〈Z〉〉 is always defined
by (f × g)(z) =

∑
x,y∈Z,z=x·y f(x) × g(y) for f, g ∈ S〈〈Z〉〉 and z ∈ Z. The sum

ranges over all pairs (x, y) for which the concatenation is defined and such that
x · y = z. The sum may be finite or infinite but it must be nonempty since we
have the left and right partial units for z. Finally, we let 1Y be the characteristic
function of the set Y of partial units of Z and we can easily check that it is a
unit for the Cauchy product. Mimicking the proof for classical monoids, we can
show the following.

Proposition 1. If S is a continuous semiring and (Z, ·, Y) is a partial monoid
then the series S〈〈Z〉〉 forms a continuous semiring (S〈〈Z〉〉,+,×, 0, 1Y).

This allows to apply the theory of rational series over continuous semirings
(see e.g., [27, III.5]). In particular, a star operation may be defined.

11

1
⊳?

5

2 3

4

(2a? + 3b?)→

c? ↓
x

¬x?→

7→

↑

→

I =
(

5 0 0 0
)

M =


(2a? + 3b?)→ c? ↓x 0 0

0 ¬x?→ 7→ 0
0 0 0 ↑
→ 0 0 0



T =


/?
0
0
0



Fig. 2. A pebWA and its matrix representation.

We can check that the semantics of pebWE in the continuous semiring
S〈〈Mk(A+)〉〉 as defined in Table 1 satisfies

[[E + F]] = [[E]] + [[F]] [[E∗]] = [[E]]∗

[[E · F]] = [[E]]× [[F]] [[E+]] = [[E]]+ .

5 Weighted Automata with Pebbles

We fix a finite set Peb of pebbles and a (continuous) semiring S. We denote by
Move = {←,→, ↑} ∪ {↓x | x ∈ Peb} the set of possible moves of an automaton.

A pebble weighted automaton (pebWA) is a tuple A = (Q,A, I,M, T) with Q
a finite set of states, A a finite alphabet, I ∈ SQ a row vector assigning an initial
weight to each state, T ∈ S〈Test〉Q a column vector assigning to each state a
polynomial over tests, and M ∈ (S〈Test〉〈Move〉)Q×Q the transition matrix.

We explain first the semantics of a pebWA on the automaton A1 represented
in Figure 2 with its matrix representation on the right.

Intuitively, we enter state 1 with weight 5. We can loop on state 1 if the
current letter is either an a or a b, in which case we move right in the word. The
weight of this loop is 2 or 3 depending on the current letter. If A1 reads letter
c while being in state 1, then it drops pebble x and restarts at the beginning of
the word in state 2. There, it moves right in the word, either staying in state 2
with weight 1 (provided the current position does not carry the pebble), or going
to state 3 with weight 7. Once we reach state 3, we must lift the pebble and go
to state 4. Then, we move right coming back to state 1.

An accepting run of A1 must start in state 1 and end in state 1. The weight of
a run is the product of the weights of its transitions. Over the natural semiring
(N∞,+,×, 0, 1), each accepting run of A1 has weight 5 × 2|u|a × 3|u|b × 7|u|c .
The non-deterministic choice in state 2 induces several runs. The semantics of
the automaton is as usual the sum of the weights of all accepting runs. In our

12

A2 =

s¬⊳?→

(1− s) (¬⊲? ∧ ¬⊳?)←

⊳?
0 1 2 n− 2 n− 1 n

s

1− s

s

1− s

. . .
s

1− s

s

Fig. 3. Markov Chain obtained by synchronizing A2 with a word of length n

example,

[[A1]](u) = 5× 2|u|a × 3|u|b × 7|u|c ×
∏

i∈pos(u)
ui=c

(i+ 1) .

Consider also the 2-way automaton A2 over the semiring (R∞≥0,+,×, 0, 1),
with 0 < s < 1. The matrix M of A2 admits as unique coefficient the polynomial
s¬/?→+(1−s) (¬.?∧¬/?)←, which, for clarity, we preferred to draw with two
loops in Figure 3. This is a compact and elegant way of representing a Markov
chain describing a random walk, see Figure 3. The same example was decribed
with a pebWE in Section 4.

As for expressions, we allow macros in M and T : for a ∈ A, we use a
def
= a? ·→

and a
def
= a? · ←, for d ∈ Move, we write d instead of tt? · d. For instance, the

label of the loop on state 1 of A1 could be written 2a+ 3b.
For each p, q ∈ Q and d ∈ Move, we denote by Md

p,q ∈ S〈Test〉 the coefficient

of move d in Mp,q. For instance, M
↓x
1,2 = c? in A1. We collect these coefficients

in matrices Md = (Md
p,q) ∈ (S〈Test〉)Q×Q.

We turn now to the formal definition of the semantics of pebWA. A config-
uration of A is a tuple (u, σ, q, i, π) with u ∈ A+ a word, σ : Peb → pos(u)
a valuation, q ∈ Q the current state, i ∈ pos(u) the current position, and
π ∈ (Peb × pos(u))∗ the stack of pebbles currently dropped. Since pebbles are
reusable, the stack of pebbles may contain several occurrences of the same peb-
ble dropped on different positions. In this case, only the last occurrence of each
pebble is still visible for the automaton, older occurrences being hidden. This
mechanism mimics the ability in pebWE to reuse the same pebble x in nested
expressions x!E. We extract the visible pebbles from the stack π of dropped peb-
bles and the underlying valuation σ, hence defining a valuation σπ by induction
over π by σε = σ and σπ(x,i) = σπ[x 7→ i].

We define the semantics of pebWA in terms of a weighted transition system
TS(A) whose locations are the configurations of the automaton. The weight of
(u, σ, p, i, π) ; (u, σ, q, j, π′) is defined by

[[M→p,q]](u, σπ, i, i) if j = i+ 1 and π′ = π (S1)

[[M←p,q]](u, σπ, i, i) if j = i− 1 and π′ = π (S2)

[[M↓xp,q]](u, σπ, i, i) if j = 0, i < |u| and π′ = π(x, i) (S3)

[[M↑p,q]](u, σπ, i, i) if π = π′(y, j) for some y ∈ Peb (S4)

13

where [[Md
p,q]] is the semantics of Md

p,q ∈ S〈Test〉, seen as a pebWE. Note from
(S3) that a pebble cannot be dropped on position |u| in agreement with the
convention adopted for weighted expressions.

The set of transitions of TS(A) consists of those (u, σ, p, i, π) ; (u, σ, q, j, π′)
with a non-zero weight: hence TS(A) is a disjoint union of transition systems
depending on the pair (u, σ) considered. A run of A is a path ρ in TS(A). Its
weight is the product of the weights of its transitions from left to right.

Given a marked word (u, σ, i, j) ∈ Mk(A+) and two states p, q ∈ Q, we
define [[Ap,q]](u, σ, i, j) =

∑
ρ weight(ρ) where the sum ranges over all runs ρ

from configuration (u, σ, p, i, ε) to configuration (u, σ, q, j, ε). This sum could be
infinite, but is well defined since the semiring is complete. The semantics of A
also use the initial and terminal weights:

[[A]](u, σ, i, j) =
∑
p,q∈Q

Ip × [[Ap,q]](u, σ, i, j)× [[Tq]](u, σ, j, j) .

When reading the whole word, we simply write [[A]](u, σ) for [[A]](u, σ, 0, |u|).
Note that we can compute the set of free pebbles of an automaton, i.e., the set
of pebbles x that may be tested with x? before being dropped with ↓x. If the
automaton has no free pebble, then the underlying valuation σ is not necessary
and we simply write [[A]](u) for the semantics.

Layered automata. As observed in automaton A1, it is handy, if possible, to
visualize a pebWA in terms of layers, where each layer contains subruns where
no pebble is dropped or lifted. We will require in the following that there are a
finite number of such layers: intuitively, this means that the depth of the current
stack of pebbles is bounded by a fixed parameter K. Remark however that the
stack may contain several occurrences of the same pebble. Also, due to the 2-way
mechanism, runs may still be of unbounded size. More formally, we assume given
a function ` : Q → {0, . . . ,K} mapping each state to its layer. The top layer is
K so `(q) is the number of pebbles that can still be dropped on top of the stack.
We want to start and end the computation at the top layer so we suppose that
for all q ∈ Q, if Iq 6= 0 or Tq 6= 0 then `(q) = K. To maintain syntactically
the condition along every possible run, we also suppose for all p, q ∈ Q that if
M←p,q 6= 0 or M→p,q 6= 0 then `(q) = `(p); if M↑p,q 6= 0 then `(q) = `(p) + 1; and

for all x ∈ Peb, if M
↓x
p,q 6= 0 then `(q) = `(p) − 1. An automaton A verifying

these conditions will be called K-layered in the following. If we order states by
decreasing layers, a 2-layered automaton A = (Q,A, I,M, T) is thus of the form

I =
(
I(2) 0 0

)
, M =


N (2) D(2) 0

L(1) N (1) D(1)

0 L(0) N (0)

 , T =


T (2)

0

0

 (1)

14

↓
x

2→
2→

⊳? ↑

→

↓
x

(2→)+
⊳? ↑

→

x!(2→)+

→

Fig. 4. A pebWA and two equivalent generalized pebWA.

where entries in N (i) are in S〈Test〉〈{←,→}〉, entries in L(i) are in S〈Test〉〈{↑}〉,
and entries in D(i) are in S〈Test〉〈{↓x | x ∈ Peb}〉. The entries of I(2) and T (2)

are as usual in S and S〈Test〉 respectively.

6 From Automata to Expressions

In this section, we prove that everyK-layered pebble weighted automaton admits
an equivalent pebble weighted expression. We first show that, for 2-way weighted
automata (or 0-layered pebWA), we can use the classical constructions, e.g., the
state elimination method of Brzozowski and McCluskey [11], the procedure of
McNaughton and Yamada [24] and the recursive algorithm [14]. We refer to the
survey of Sakarovitch [29, Section 6.2] where these methods are presented and
compared for 1-way weighted automata.

In the state elimination method, states are progressively suppressed and tran-
sitions are labeled with (weighted) rational expressions. To deal with pebbles,
we will also eliminate the lower layers and subsume their computations with
expressions of the form x!E. Therefore, it is convenient to consider automata
allowing pebWE in the labels of transitions.

We first introduce these generalized pebWA. Then, we show how to compute
pebWE equivalent to the behaviors of 0-layered generalized pebWA. Finally, we
explain how to deal with drop and lift moves of K-layered automata.

6.1 Generalized Pebble Automata

We start with an example presented in Figure 4. The loop of the left automa-
ton gives rise to the iteration (2→)+ on the middle automaton. Moreover, the
drop/lift process has even been replaced with the x!− feature of pebWE in the
right automaton. This gives already the intuition of the construction of a pebWE
equivalent to a pebWA. Note that the right automaton has a single layer whereas
the left and middle ones have 2 layers.

Formally, a generalized pebWA (GpebWA) is a tuple A = (Q,A, I,M, T)
with I ∈ SQ, T ∈ S〈Test〉Q and M ∈ (pebWE + S〈Test〉〈Move \ {←,→}〉)Q×Q.
Intuitively, the entries M←p,q · ← + M→p,q · → have been extended to arbitrary

pebWE MpebWE
p,q . The semantics of pebWA is easily extended to GpebWA. In

fact, we only have to replace (S1-S2) by (G1-2) below:

[[MpebWE
p,q]](u, σπ, i, j) if π′ = π (G1-2)

15

The definition of K-layered automata can easily be extended to GpebWA. Lay-
ered automata are still of the form given in (1), the only difference being that
the entries of matrices N (i) are now pebWE instead of simple polynomials in
S〈Test〉〈{←,→}〉. It is clear from the definition that every (K-layered) pebWA
can be seen as a (K-layered) GpebWA.

6.2 Automata to expressions: 0-layered generalized pebWA

We deal in this section with GpebWA A = (Q,A, I,M, T) with no drop or lift
transitions, i.e., 0-layered GpebWA where the entries of the transition matrix
M are all pebWE.

Theorem 2. Let A = (Q,A, I,M, T) be a 0-layered GpebWA. We can construct
a matrix Φ(M) ∈ pebWEQ×Q which is equivalent to the automaton: for all
p, q ∈ Q, we have [[Φ(M)p,q]] = [[Ap,q]], i.e., for all (u, σ, i, j) ∈ Mk(A+)

[[Φ(M)p,q]](u, σ, i, j) = [[Ap,q]](u, σ, i, j) .

Moreover, the entries of Φ(M) are in the rational closure5 of the entries of M .

The matrix Φ(M) can be constructed from M using one of the classical
algorithm, e.g., the recursive algorithm or McNaughton-Yamada algorithm. We
can also apply the state elimination method or the system resolution method
starting from any initial state p and final state q.

We quickly justify below the correctness of the construction based on the
partial monoid structure of marked words introduced in Section 4.1. In a first
reading, one may go directly to the next subsection.

Recall that K = S〈〈Mk(A+)〉〉 is a continuous semiring by Proposition 1.
For each finite set Q, the semiring of matrices KQ×Q is also continuous and,
given a matrix H in KQ×Q, the entries of the matrix H∗ =

∑
n≥0H

n ∈ KQ×Q
are in the rational closure of the entries of H. Moreover, H∗ can be computed

inductively: if H =

(
A B
C D

)
is a block decomposition, with A and D square

matrices, then ([14])

H∗ =

(
(A+BD∗C)∗ A∗B(D + CA∗B)∗

D∗C(A+BD∗C)∗ (D + CA∗B)∗

)
. (2)

We apply the above to H = [[M]] = ([[Mp,q]])p,q∈Q ∈ KQ×Q. As usual, the
matrix Mn describes the paths of length n of the automaton A and the matrix
Hn = [[M]]n gives the semantics restricted to paths of length n. Summing over
all paths, we obtain the full semantics:

[[Ap,q]] =
∑
n≥0

([[M]]n)p,q = ([[M]]∗)p,q

Using recursively (2) on the matrix M , we obtain a matrix Φ(M) whose entries
are in the rational closure of the entries of M and such that [[Φ(M)]] = [[M]]∗.

5 The rational closure is the closure under sum (+) concatenation (·) and star (∗).

16

6.3 Automata to expressions: Generalized pebWA

We will now extend Theorem 2 to any K-layered GpebWA A = (Q,A, I,M, T).
For i ≤ K, we let Q(i) = `−1(i) be the set of states in layer i.

Proposition 3. Let A = (Q,A, I,M, T) be a 1-layered GpebWA. We can con-
struct a 0-layered GpebWA A(1) = (Q(1), A, I(1),M (1), T (1)) which is equivalent

to A: [[Ap,q]] = [[A(1)
p,q]] for all p, q ∈ Q(1).

We use the layered decomposition given in Section 5 (1). To simplify the
notation, we write N = N (1), D = D(1), L = L(0) and P = N (0) so that

M =

 N D

L P

 =

 N 0

0 0

+

 0 D

L P

 .

Let p, q ∈ Q(1) be in layer 1 and p′, q′ ∈ Q(0) be in layer 0. Then, D is a drop-
matrix whose (p, p′)-entry can be written

∑
x∈Peb d

x
p,p′ · ↓x with dxp,p′ ∈ S〈Test〉.

The (q′, q)-entry of the lift-matrix L can be written eq′,q · ↑ with eq′,q ∈ S〈Test〉.
Now, P is a Q(0) × Q(0) matrix of pebWE and we may apply Theorem 2 in
order to get a matrix Φ(P) of pebWE which is equivalent to the iteration of P :
[[Φ(P)]] = [[P]]∗. From (D,P,L), we define the Q(1) ×Q(1) pebWE-matrix G by

Gp,q =
∑
p′,q′

∑
x∈Peb

dxp,p′ · x!
(
Φ(P)p′,q′ · eq′,q · →∗

)
.

The matrix G is also denoted C(D,P,L) below. Note that the maximal pebble-
depth of the entries of G is at most 1 plus the maximal pebble-depth of the
entries of P since the construction Φ(P) does not increase the pebble-depth.

Lemma 4. For all p, q ∈ Q(1) and all (u, σ, i, j) ∈ Mk(A+), we have

[[Gp,q]](u, σ, i, j) =
∑
ρ weight(ρ)

where the sum ranges over all runs ρ on (u, σ) from configuration (p, i, ε) to
configuration (q, j, ε) and using only intermediate states in layer 0.

To conclude the proof of Proposition 3, we simply set

M (1) = N +G = N + C(D,P,L)

and we can check using Lemma 4 that [[Ap,q]] = [[A(1)
p,q]] for all p, q ∈ Q(1).

Proposition 5. Let A = (Q,A, I,M, T) be a K-layered GpebWA. We can con-
struct a 0-layered GpebWA A(K) = (Q(K), A, I(K),M (K), T (K)) which is equiv-

alent to A: [[Ap,q]] = [[A(K)
p,q]] for all p, q ∈ Q(K).

17

We use again the notation of the layered decomposition. The proof is by
induction on K. When K = 0 we simply have A(0) = A, i.e., M (0) = N (0).
For K > 0, we set M (K) = N (K) + C(D(K),M (K−1), L(K−1)) where the matrix
M (K−1) is obtained by induction. The correctness follows from Proposition 3.
From Theorem 2 and Proposition 5 we deduce:

Theorem 6. Let A = (Q,A, I,M, T) be a K-layered GpebWA. The matrix
H = Φ(M (K)) of pebWE satisfies [[Hp,q]] = [[Ap,q]] for all p, q ∈ Q(K).
Therefore, the pebWE E(A) = I × H × T is equivalent to A: [[E(A)]] = [[A]].
Moreover, the pebble-depth of E(A) is at most K if A is a K-layered pebWA.

7 From Expressions to Automata

We describe in this section how to transform a weighted expression with pebbles
to an equivalent weighted automaton with pebbles. Expressions are very conve-
nient to denote in a rather clear and intuitive way the quantitative functions that
we want to compute. On the other hand, automata are much more amenable to
efficient algorithms, e.g., for evaluation as shown in Section 8. Hence, we need
efficient translations from expressions to automata. Such translations have been
well-studied both in the boolean and in the weighted (1-way) cases. Glushkov’s
tranlsation (or Berry-Sethi) is acknowledged to be among the best ones. The
good news is that this construction can be adapted to cope with 2-way moves
and pebbles as we will show in this section. The construction is by structural
induction on the expression.

Theorem 7. For each pebWE E we can construct a layered pebWA A(E) such
that [[A(E)]] = [[E]], i.e., for all (u, σ, i, j) ∈ Mk(A+) we have

[[A(E)]](u, σ, i, j) = [[E]](u, σ, i, j) .

Moreover, the number of layers in A(E) is the pebble-depth of E.

We define the litteral-length ``(E) of an expression as the number of occur-
rences of moves (← or→) plus twice the number of occurrences of ! (in x!−). We
will see that the number of states of A(E) will be 1 + ``(E). For a 2-way expres-
sion E of pebble-depth 0 (2-way-WE) the litteral-length is simply the number
of moves, which are the positions to be marked for Glushkov’s construction.

For the rational operations (+, ·, ∗, and +), we can still use the classical
constructions even though we are working with pebWA. We recall these con-
structions below for the sake of completeness. The main novelty is indeed the
treatment of pebbles.

We adopt the presentation of standard automata by Sakarovitch [29]. A stan-
dard automaton A = (Q,A, I,M, T) has a single initial state ι with (initial)
weight 1, all other states have initial weight 0. Moreover, the initial state ι has
no ingoing transition. We use both the graphical representation and the matrix

18

representation of an automaton:

A = ι

c
NJ U A =

(
1 0

) 0 J

0 N


 c

U


Since terminal weights allow polynomials over Test with the mapping T : Q →
S〈Test〉, we will be able to cope with expressions of the form E · ϕ? and E · s
without adding unnecessary states. For s ∈ S and ϕ ∈ Test, we simply write s
for stt? and ϕ for 1ϕ, and also → for 1tt?→ and ← for 1tt?←.

We start with atoms. Compared to the classical (1-way) translation, a slight
difference is that we are using tests (ϕ) and moves (←,→) instead of letters
(a = a?→) for the atoms. The automata for the atoms are defined as

A(s) = ι
s A(→) = ι

→ 1

A(ϕ) = ι
ϕ

A(←) = ι
← 1

and we can easily see that they are equivalent to the corresponding atoms: if E
is an atom then [[E]](u, σ, i, j) = [[A(E)]](u, σ, i, j) for all (u, σ, i, j) ∈ Mk(A+).

The constructions for sum and concatenation are as usual.

A1 +A2 = ι

c1 + c2

N1J1 U1

N2J2 U2

A1 · A2 = ι

c1c2

N1J1 U1c2

N2
c1J2 U2

U1J2

In the concatenation, we are overloading the product notation as follows. The
product of two monomials s1ϕ1 and s2ϕ2 from S〈Test〉 should be understood
as (s1s2)(ϕ1 ∧ ϕ2) to stay in S〈Test〉. Hence c1c2 and the entries of U1c2 are
in S〈Test〉. Similarly, in U1J2, the product of a monomial s1ϕ1 ∈ S〈Test〉 and
a monomial s2ϕ2d (with d ∈ Move) is defined as (s1s2)(ϕ1 ∧ ϕ2)d. Hence, the
entries of the matrices c1J2 and U1J2 are in S〈Test〉〈Move〉. The matrix repre-
sentation is therefore:

A1 · A2 =
(

1 0 0
)


0 J1 c1J2

0 N1 U1J2

0 0 N2




c1c2

U1c2

U2


For instance, the automaton for 2a = 2 · a? · → is computed as follows:

ι

2

· ι

a?

· ι
→

1

= ι
2a

1

19

Similarly, for the expression E = (2a? + b?)→(2b? + 3c?) we compute the con-
catenation of 3 automata as follows:

ι

2a? + b?

· ι
→

1

· ι

2b? + 3c?

= ι
2a+ b

2b? + 3c?

Finally, the star is also computed as usual with the following construction.

A∗ = ι

c∗
N + Uc∗Jc∗J Uc∗

A∗ =
(

1 0
) 0 c∗J

0 N + Uc∗J


 c∗

Uc∗


Notice that c∗ ∈ S is well-defined since the semiring is complete. As for the
concatenation, we can check that the entries of Uc∗ are in S〈Test〉 and the entries
of Uc∗J are in S〈Test〉〈Move〉. The strict iteration A+ is computed similarly by
simply changing the final weight of ι to c+ (note that 0+ = 0), but keeping the
other occurrences of c∗ in c∗J , Uc∗J and Uc∗.

For instance, for expression E = →+a?←+b?→+c?←+d?→+ introduced in
Section 4, we can compute the automaton as follows:

A(→+) = ι

→

→ 1 A(→+ · a?) = ι

→

→ a?

A(E) = ι

→

→

←

a?←

→

b?→

←

c?←

→

d?→ 1

Finally, we give the construction for x!E which should drop the pebble on the
current position, evaluate E from beginning to end (/?) of the word and finally
lift the pebble. From a standard automaton A equivalent to E, we construct the
following standard automaton x!A :

x!A = ι

ι′

↓
x

τ

NJ U⊳?↑

x!A =
(

1 0 0 0
)


0 0 ↓x 0

0 0 0 0

0 0 0 J

0 U/?↑ 0 N




0

1

0

0



20

The correctness of this construction follows easily from Proposition 3. Assume
for simplicity that A is a 0-layered automaton, then x!A is a 1-layered automa-
ton and it’s layer decomposition is shown both in the graphical and matricial
representations above. Let Q = {ι, τ, ι′}]Q′ be the set of states of x!A where Q′

are the non-initial states of A. Using the notation of Section 6.3, the drop-matrix
D of x!A contains a single non-zero entry which is Dι,ι′ = ↓x, the non-zero en-
tries of the lift-matrix L are in the Q′ × τ column U/?↑, and F is the transition
matrix of A. Therefore, the matrix G = C(D,F,L) has a single non-zero entry
which is

Gι,τ =
∑
q′∈Q′

x!
(
(Φ(F)ι′,q′Uq′)/?→∗

)
≡ x!

(∑
q′∈Q′

Φ(F)ι′,q′Uq′
)
≡ x!E .

As last example, consider again expression E below used in Section 4:

E =→+ a?x!
(

(¬x?→)∗ b? (¬x?→)+ c?←+ d?→+
)
→∗ .

The construction applied to E gives the following pebWA.

ι
→

→

a?↓
x

¬x?→

¬x?→

(b? ∧ ¬x?)→

(b? ∧ ¬x?)→

¬x?→ ←

c?←

→

d?→ ⊳?↑

τ
→

→

1

To close this section, we briefly discuss the complexity of our translation.
Clearly, the number of states of the automaton A(E) is the litteral-length ``(E)
of expression E. The time complexity is cubic in the length of E. It should be
possible to get a quadratic algorithm by generalizing the notion of star normal
form introduced in [9] for word languages or the algorithm presented in [1] for
classical weighted expressions and automata.

8 Evaluation of pebble weighted automata

In this section, we study the evaluation problem of a K-layered pebWA A with
reusable pebbles: given a word u and a valuation σ : Peb → pos(u), compute
[[A]](u, σ). The challenge is important since, even if the word is fixed, the number
of accepting runs may be infinite.

Let A = (Q,A, I,M, T) be a K-layered pebWA. As in Section 6.3, for i ≤ K,
we let Q(i) = `−1(i) be the set of states in layer i.

Theorem 8. Given a K-layered pebWA with p pebbles and a word w ∈ A+, we
can compute with O((K + 1)|w|p+1) matrix operations (sum, product, iteration)
the values [[Ap,q]](w, σ) for all p, q ∈ Q(K) and valuations σ : Peb→ pos(w).

21

It is important to notice that the complexity only linearly depends on the
number K of layers. The number of pebbles occurs in the exponent but since
we allow reusable pebbles, this number may be much smaller than the number
of layers. This is in the same vein as restricting the number of variable names,
e.g., in first-order logic, without restricting the quantifier depth. Restricting the
number of variable names often results in much lower complexity. For instance,
the complexity of the evaluation (model-checking) problem of first-order logic
over relational structures drops from PSPACE to PTIME when the number of
variable names is bounded [32,33].

We have seen in Section 2.2 that weighted LTL formulas can be described
with pebWE using two pebbles x and y. Actually, the same constructions are
valid if we reuse pebble x instead of y. For instance, until may be described with

EϕUψ(x) = .?→∗x?
(
(x!(E¬ψ(x)←∗Eϕ(x)))→

)∗
(x!Eψ(x))→∗/? .

Therefore, any weighted LTL formula ϕ may be described with a pebWE Eϕ
using a single pebble x. The pebble-depth of Eϕ being the nesting depth of
modalities in ϕ. Using Theorem 7 we obtain a layered pebWA Aϕ equivalent to
Eϕ. The number K of layers in Aϕ is the pebble-depth of Eϕ, i.e., the nesting
depth of ϕ. Moreover, Aϕ uses only one pebble. Theorem 8 yields an evaluation
algorithms using O((K + 1)|w|2) matrix operations. We see below that there is
an algorithm which is also linear in |w|.

We say that a K-layered pebWA A = (Q,A, I,M, T) is strongly K-layered
if in each layer only a fixed pebble may be dropped: for all i ≤ K, there is a
pebble xi ∈ Peb such that for all q, q′ ∈ Q and x ∈ Peb, if `(q) = i and x 6= xi
then M

↓x
q,q′ = 0.

Theorem 9. Given a strongly K-layered pebWA with p pebbles and a word
w ∈ A+, we can compute with O((K + 1)|w|max(1,p)) matrix operations (sum,
product, iteration) the values [[Ap,q]](w, σ) for all states p, q ∈ Q(K) and valua-
tions σ : Peb→ pos(w).

Notice that if p ≤ 1 then any K-layered pebWA is strongly K-layered. In this
case, we get an evaluation algorithm using O((K+1)|w|) matrix operations. This
is in particular the case for pebWA arising from weighted LTL formulas.

9 Discussion

To conclude, let us briefly mention some interesting topics that could be studied
in the future. As already stated in Section 7, one should try to obtain a quadratic
algorithm for the translation of pebWE to pebWA. Next, as in Section 8 for
the evaluation problem, one should develop efficient algorithms for quantitative
model-checking, emptiness, containment, etc.

We have no restriction over the syntax of expressions or automata. In partic-
ular, 2-way moves may give rise to unbounded loops which is why we considered
continuous semirings. We believe that continuous semirings are suitable for most

22

applications. But in case one needs to work without this hypothesis, it is possible
to put restrictions on the syntax of expressions and automata in order to rule
out unbounded loops and have a well-defined semantics in arbitrary semirings.
For instance, one may restrict iterations to forward proper or backward proper
expressions.

The correctness of our translations between pebWE and pebWA relies on the
partial monoid structure of marked words, which does not use concatenation of
words. We can also endow marked trees with such a partial monoid structure.
Therefore, pebWE can be extended to trees with a semantics in the contin-
uous semiring of series over marked trees. We obtain in this way a weighted
extension of caterpillar expressions or Regular XPath. Similarly, one may define
tree-walking pebWA. We believe that the translations presented in this paper
also apply to pebWE over trees and tree-walking pebWA.

A more prospective problem is to replace the x!− construction of pebWE
with a chop product E ; F which evaluates E on the current prefix and F on
the current suffix. We can easily simulate this relativization mechanism using
a pebble to mark the current position. The converse is an interesting problem
which needs to be investigated: is it possible to simulate pebbles with chop
products?

Acknowledgements The authors would like to thank Benedikt Bollig and Jacques
Sakarovitch for helpful discussions.

References

1. C. Allauzen and M. Mohri. A unified construction of the Glushkov, Follow, and
Antimirov automata. In Proceedings of MFCS’06, volume 4162 of LNCS, pages
110–121. Springer, 2006.

2. G. Berry and R. Sethi. From regular expressions to deterministic automata. The-
oretical Computer Science, 48:117–126, 1986.

3. J. Berstel and Ch. Reutenauer. Noncommutative rational series with applications,
volume 137 of Encyclopedia of Mathematics & Its Applications. Cambridge, 2011.

4. J.-C. Birget. State-complexity of finite-state devices, state compressibility and
incompressibility. Theory of Computing Systems, 26:237–269, 1993.

5. M. Bojańczyk. Tree-walking automata. In Proceedings of LATA’08, volume 5196
of LNCS, pages 1–2. Springer, 2008.

6. M. Bojańczyk, M. Samuelides, T. Schwentick, and L. Segoufin. Expressive power
of pebble automata. In Proceedings of ICALP’06, volume 4051 of LNCS, pages
157–168. Springer, 2006.

7. B. Bollig and P. Gastin. Weighted versus probabilistic logics. In Proceedings of
DLT’09, volume 5583 of LNCS, pages 18–38. Springer, 2009.

8. B. Bollig, P. Gastin, B. Monmege, and M. Zeitoun. Pebble weighted automata and
transitive closure logics. In Proceedings of ICALP’10, volume 6199 of LNCS, pages
587–598. Springer, 2010.

9. A. Brüggeman-Klein. Regular expressions into finite automata. Theoretical Com-
puter Science, 120:197–213, 1993.

10. A. Brüggeman-Klein and D. Wood. Caterpillars: A context specification technique.
Markup Languages, 2(1):81–106, 2000.

23

11. J. A. Brzozowski and E. J. McCluskey. Signal flow graph techniques for sequential
circuit state diagrams. IEEE Trans. on Electronic Computers, 12(9):67–76, 1963.

12. P. Buchholz and P. Kemper. Model checking for a class of weighted automata.
Discrete Event Dynamic Systems, 20(1):103–137, Jan. 2009.

13. F. Ciesinski and M. Größer. On probabilistic computation tree logic. In Validation
of Stochastic Systems, volume 2925 of LNCS, pages 333–355. Springer, 2004.

14. J. Conway. Regular Algebra and Finite Machines. Chapman & Hall, 1971.
15. M. Droste and W. Kuich. Semirings and formal power series. In Handbook of

Weighted Automata [16], chapter 1, pages 3–27.
16. M. Droste, W. Kuich, and H. Vogler. Handbook of Weighted Automata. EATCS

Monographs in Theoretical Computer Science. Springer, 2009.
17. J. Engelfriet and H. J. Hoogeboom. Tree-walking pebble automata. In Jewels are

forever, pages 72–83. Springer, 1999.
18. Z. Ésik and W. Kuich. Modern Automata Theory. 2007. Electronic book, http:

//dmg.tuwien.ac.at/kuich.
19. N. Globerman and D. Harel. Complexity results for two-way and multi-pebble

automata and their logics. Theoretical Computer Science, 169:161–184, 1996.
20. V. M. Glushkov. The abstract theory of automata. Russian Math. Surveys, 16:1–

53, 1961.
21. K. Knight and J. May. Applications of weighted automata in natural language

processing. In Handbook of Weighted Automata [16], chapter 14, pages 555–579.
22. D. Kuske. Schützenberger’s theorem on formal power series follows from kleene’s

theorem. Theoretical Computer Science, 401(1-3):243–248, 2008.
23. E. Mandrali. Weighted LTL with discounting. In Proceedings of CIAA’12, LNCS.

Springer, 2012. To Appear.
24. R. McNaughton and H. Yamada. Regular expressions and state graphs for au-

tomata. IRE Trans. on Electronic Computers, 9(1):39–47, 1960.
25. I. Meinecke. A weighted µ-calculus on words. In Proceedings of DLT’09, volume

5583 of LNCS, pages 384–395. Springer, 2009.
26. B. Ravikumar. On some variations of two-way probabilistic finite automata models.

Theoretical Computer Science, 376(1-2):127–136, 2007.
27. J. Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.
28. J. Sakarovitch. Rational and recognisable power series. In Handbook of Weighted

Automata [16], chapter 4, pages 103–172.
29. J. Sakarovitch. Automata and expressions. In AutoMathA Handbook. 2012. To

appear.
30. M. Samuelides and L. Segoufin. Complexity of pebble tree-walking automata. In

Proceedings of FCT’07, volume 4639 of LNCS, pages 458–469. Springer, 2007.
31. M.-P. Schützenberger. On the definition of a family of automata. Information and

Control, 4:245–270, 1961.
32. M. Vardi. The complexity of relational query languages. In Proceedings of

STOC’82, pages 137–146. ACM Press, 1982.
33. M. Vardi. On the complexity of bounded-variable queries. In Proceedings of

PODS’95, pages 266–276. ACM Press, 1995.

24

http://dmg.tuwien.ac.at/kuich
http://dmg.tuwien.ac.at/kuich

	Adding Pebbles to Weighted Automata

