
Random Measurable Selections

Jean Goubault-Larrecq1 Roberto Segala2

1 ENS Cachan goubault@lsv.ens-cachan.fr
2 Università di Verona roberto.segala@univr.it

Abstract. We make the first steps towards showing a general “random-
ness for free” theorem for stochastic automata. The goal of such theorems
is to replace randomized schedulers by averages of pure schedulers. Here,
we explore the case of measurable multifunctions and their measurable
selections. This involves constructing probability measures on the mea-
surable space of measurable selections of a given measurable multifunc-
tion, which seems to be a fairly novel problem. We then extend this to
the case of IT automata, namely, non-deterministic (infinite) automata
with a history-dependent transition relation. Throughout, we strive to
make our assumptions minimal.

1 Introduction

This paper grew out of an attempt at proving a “randomness for free” type the-
orem [5] for stochastic automata [4]. We present the first steps in this direction.

A stochastic automaton is a transition system on a measurable space Q of
states. When in state q ∈ Q, we have access to a set θ(q) of fireable transitions,
from which we choose non-deterministically. A transition is a pair (a, µ) of an
action a, from a fixed measurable space L, and of a probability measure µ on Q.
Once we have chosen such a transition, we pick the next state q′ at random with
respect to µ, and proceed. There are two ways to resolve the non-deterministic
choice of a transition (a, µ) ∈ θ(q). A pure scheduler σ is a function that maps
each path w = q0a1q1 · · · anqn of states and actions seen so far to an element
σ(w) of θ(qn) (or to a special termination constant ⊥). A randomized scheduler
η instead maps w to a (sub)probability measure concentrated on θ(qn), thereby
drawing the transition at random as well. In each case, given a scheduler η, the
stochastic automaton behaves as a purely probabilistic transition system, and
one can define the probability Pη(E) that the automaton will follow a path that
lies in the measurable set E .

The “randomness for free” question we envision is as follows: given a ran-
domized scheduler η, and a measurable set E of paths, can we find two pure
schedulers σ−, σ+ such that Pσ−(E) ≤ Pη(E) ≤ Pσ+(E)? This has a number of
important applications, and was solved positively by Chatterjee, Doyen et al.
[5, Section 4], in the case that Q and L are finite. In general, we consider the
following more general question: given a randomized scheduler η, and a mea-
surable payoff function h from paths to R+, can we find two pure schedulers



σ−, σ+ such that
∫
ω
h(ω)dPσ− ≤

∫
ω
h(ω)dPη ≤

∫
ω
h(ω)dPσ+? This includes the

previous question, by taking the characteristic function χE of E for h.
Beware that one cannot reasonably ask for the existence of a pure scheduler

σ such that Pσ(E) = Pη(E). For example, let Q = {0, 1, 2}, L = {∗}, θ(0) =
{t1 = (∗, δ1), t2 = (∗, δ2)} (where δx is the Dirac mass at x), θ(1) = θ(2) = ∅.
There are only two pure schedulers, one that reaches state 1 with probability 1,
while the other reaches 2 with probability 1. But one can reach 1 with arbitrary
probability p using the randomized scheduler η(0) = pδt1 + (1− p)δt2 .

While Chatterjee, Doyen et al. are concerned with finite state and action
spaces, infinite spaces are useful as well: in modeling timed probabilistic and
non-deterministic transition systems [7, Example 1.1], or devices that interact
with the physical world [6, 1], where each state includes information about time,
position, impulse and other real-valued data, for example. Considering his pub-
lication record (see for example [16] on labeled Markov processes, or [10] on
Markov decision processes), Prakash would probably be the first to approve us.

Our initial aim was to prove such “randomness for free” theorems for general
stochastic automata. During the year 2008, we found very complex arguments
that proved only very weak versions of what we were after. We were on the wrong
path. On the opposite, Chatterjee, Doyen et al. [5, Section 4] used a simple idea:
draw pure schedulers σ themselves at random, with respect to some measure
$, designed so that Pη(E) =

∫
σ
Pσ(E)d$. The claim then follows by standard

integration arguments (Fact 1 below).
The probability measure $ on pure schedulers has an intuitive description,

too: we merely choose the transition σ(w) at random with respect to probability
η(w), where η is our given randomized scheduler, for each finite path w, indepen-
dently. Now this is the source of typical measure-theoretic complications. First,
we must force our pure schedulers to be measurable. Otherwise,

∫
σ
Pσ(E)d$,

and in fact already Pσ, makes no sense. Second, we need to make clear what
the intended σ-algebra is on the space of all pure schedulers. If we don’t have
any, nothing of the above makes any sense either. Third, what does it mean to
draw σ(w) for each w independently? The sheer fact that σ is measurable must
enforce at least some moderate amount of non-independence.

Chatterjee, Doyen et al. did not need to address these issues: on finite state
and action spaces, all pure schedulers are measurable, and the problems above
disappear. Going to infinite spaces of states and actions requires extra effort.

While we were writing this paper, we soon realized that we would have
to choose between: (1) solving the full question, by applying all the required
measure-theoretic clout if necessary, possibly making it so complex that nobody
would understand it; or (2) solving a few restricted cases, showing a few elegant
proof tricks along the way. It should be clear that (2) was a better choice. We
hope that Prakash will appreciate the techniques, if not the results.

That is, we shall be content to solve the problem in the special case of IT
automata, namely, stochastic automata with a trivial action space, no option for
termination, and no random choice at all: randomness will be induced by the
randomized scheduler only. We shall deal with the general case in another paper.



The plan of the paper is as follows. We recapitulate some required basic mea-
sure theory in Section 2. In Section 3, we define a σ-algebra on the set Sel(F ) of
measurable selections of a given multifunction F—these are just what we have
called pure schedulers, for the transition relation F of a stochastic automaton
without probabilistic choice; and we show that any randomized scheduler g de-
fines a canonical probability measure $g on Sel(F ) such that, for every x, draw-
ing a point at random with probability g(x) gives the same result as drawing a
measurable selection f with probability $g and computing f(x) (Proposition 1).
This is the most important construction of the paper. In Section 4, we extend
this result from random measurable selections to random measurable pure sched-
ulers of IT automata. Although the setting looks extremely similar, there is no
hope of reusing the previous result. Instead, we use similar proof techniques, but
with a more complex implementation. We conclude in Section 5.

2 Basics on Measure Theory

A σ-algebra on a set X is a family of subsets that is closed under complement
and countable unions. We shall write A for the complement of A in X. A pair
X = (|X|, ΣX) of a set |X| and a σ-algebra ΣX on |X| is a measurable space, and
the elements of ΣX are called the measurable subsets of X. We shall sometimes
write X instead of |X| to avoid pedantry.

Given any family F of subsets of a set A, there is a smallest σ-algebra that
contains the elements of F . This is called the σ-algebra generated by F . We shall
sometimes refer to the elements of F as the basic measurable subsets of this
σ-algebra, despite some ambiguity. One example is R with its Borel σ-algebra,
generated by intervals. Another one is the product X1 ×X2 of two measurable
spaces is (|X1| × |X2|, ΣX1

⊗ ΣX2
), whose basic measurable subsets are the

rectangles E1 × E2, E1 ∈ ΣX1
, E2 ∈ ΣX2

. In general, the σ-algebra on the
product of an arbitrary family of measurable spaces (Xi)i∈I is the one generated
by the subsets π−1i (E) where E ∈ ΣXi

, i ∈ I, and πi :
∏
i∈I |Xi| → |Xi| is the

usual projection onto coordinate i.
The coproduct X1+X2 of two measurable spaces X1, X2 is simpler: |X1+X2|

is the disjoint union of |X1| and |X2|, and ΣX1+X2 consists of unions E1 ∪ E2

of a measurable subset E1 of X1 and of a measurable subset E2 of X2. This
construction generalizes to countable coproducts

∑
n∈NXn in the obvious way.

A measurable map f : X → Y is one such that f−1(E) ∈ ΣX for every
E ∈ ΣY . If F generates ΣY , it is enough to check that f−1(E) ∈ ΣX for every
E in F to establish the measurability of f .

Ameasure µ onX is a map from ΣX to R+∪{+∞} that is countably additive
(µ(∅) = 0, and µ(

⋃
n∈NEn) =

∑
n∈N µ(En) for every countable family of disjoint

measurable subsets En). A probability measure is one such that µ(X) = 1. The
Dirac mass at x, δx, is the probability measure defined by δx(E) = 1 if x ∈ E,
0 otherwise.

A measure µ is concentrated on a measurable subset A of X if and only if
µ(XrA) = 0. For example, if X is finite and ΣX = P(|X|), then µ =

∑
x∈X axδx



is concentrated on {x ∈ X | ax 6= 0}. Any subset A (even non-measurable) of
|X| gives rise to a measurable subspace, again written A, with ΣA = {A ∩ B |
B ∈ ΣX}. If A is measurable, one can define the restriction µ|A of µ to the
subspace A, by µ|A(B) = µ(B) for every B ∈ ΣA. If µ is a probability measure
that is concentrated on A, then µ|A is also a probability measure.

There is a standard notion of integral of measurable maps h : X → R+ with
respect to a measure µ onX, which we write

∫
x∈X h(x)dµ. Other notations found

in the literature are
∫
x∈X h(x)µ(dx) or 〈h, µ〉. We shall also use the notation∫

x∈X dµ h(x), especially when h(x) is a long formula, as in
∫
x1∈E1

dµ1

∫
x2∈E2

dµ2

h(x1, x2). Writing χE for the characteristic map of a measurable subset E of X,∫
x∈X χE(x)dµ equals the measure µ(E) of E.

Given a map f : A→ |X| (not necessarily measurable) where X is a measur-
able space and A is a set, the family (f−1(E))E∈ΣX

is a σ-algebra on A, called
the σ-algebra induced by f on A. When f is the inclusion map of a subset A of
|X|, we retrieve the subspace σ-algebra ΣA.

If µ is concentrated on a measurable subset A of X, then
∫
x∈X g(x)dµ =∫

x∈A g(x)dµ|A, where A is considered as a subspace of X on the right-hand side.
We write P(X) for the space of all probability measures on X, with the weak

σ-algebra, generated by the subsets [E > r] = {µ ∈ |P(X)| | µ(E) > r}. One
can equate µ ∈ P(X) with a vector of real numbers (µ(E))E∈ΣX

, i.e., with an
element of the measurable space RΣX . The weak σ-algebra is nothing else than
the σ-algebra induced by the inclusion of |P(X)| into the product RΣX .

Given a measurable map f : X → Y , and a measure µ on X, the formula
f [µ](E′) = µ(f−1(E′)) defines a measure f [µ] on Y , called the image measure
of µ by f . For any measurable h : Y → R+, the following change of variables
formula holds [2, Theorem 16.13]:∫

y∈Y
h(y)df [µ] =

∫
x∈X

(h ◦ f)(x)dµ. (1)

More trivially, the function eX : X → P(X) that sends x to the Dirac mass
δx is measurable. These facts assemble to define the so-called Giry monad [11,
Section 1], of which e is the unit. (More precisely, one of the two Giry monads.)
Prakash stressed the importance of this monad in [14]—probably the one paper
that popularized it.

Finally, we shall use the following well-known fact near the end of the paper.

Fact 1 For every integrable map h : X → R on a measurable space X, for every
a ∈ R, if

∫
x∈X h(x)dµ = a for some probability measure µ on X, then there are

points x−, x+ ∈ |X| such that h(x−) ≤ a ≤ h(x+).

Indeed, if x− did not exist, say, then h(x) > a for every x ∈ |X|. Let An =
h−1(a + 1/n,+∞) for every non-zero natural number n: so |X| =

⋃
n≥1An.

Since h(x) ≥ a for every x ∈ |X| and h(x) ≥ a + 1/n if additionally x ∈ An,
a =

∫
x∈X h(x)dµ ≥ a+1/n µ(An), so µ(An) = 0. A consequence of σ-additivity

is that the measure of the union of a countable chain of measurable subsets is
the sup of their measures, so 1 = µ(|X|) = sup+∞n=1 µ(An) = 0: contradiction.



Carathéodory’s measure extension theorem. The following measure extension
theorem, due to Carathéodory, was singled out as “a very useful type of theorem”
by Prakash [15, Theorem 18]; see also [2, Theorem 11.3].

A semiring A on a set Ω is a collection of subsets of Ω that contains the
empty set, is closed under binary intersections, and such that the difference ArB
of any two sets A,B ∈ Ω can be written as a finite union of elements of A. A
map µ is countably subadditive on A if and only if for every countable disjoint
family of elements An of A whose union A is in A, µ(A) ≤

∑
n∈N µ(An).

Theorem 1 (Carathéodory). Let Ω be a set, and A be a semiring on Ω.
Every function µ : A → [0,+∞] such that µ(∅) = 0, that is finitely additive and
countably subadditive on A, extends to a measure on the σ-algebra generated by
A. In particular, this is so if µ(∅) = 0 and µ is countably additive on A.

A typical application is Ω = R, A is the semiring of all half-closed intervals
[a, b), and µ[a, b) = b− a, leading to Lebesgue measure.

The Ionescu-Tulcea Theorem. Let Qn, n ∈ N, be countably many measurable
spaces, and assume countably many measurable maps gn :

∏n−1
i=0 Qi → P(Qn).

One can think of Qn as the space of all possible states of a probabilistic transition
system at (discrete) time n ∈ N. Given that at time n we have gone through
states q0 ∈ Q0, q1 ∈ Q1, . . . , qn−1 ∈ Qn−1, gn(q0, q1, · · · , qn−1) is a probability
distribution along which we draw the next state qn. The following Ionescu-Tulcea
Theorem states that these data define a unique probability measure on infinite
paths q0, q1, · · · , qn−1, · · · :

Theorem 2 (Ionescu-Tulcea). Let Qn, n ∈ N, be measurable spaces, and
g∗ = (gn :

∏n−1
i=0 Qi → P(Qn))n≥1 be measurable maps. For every q0 ∈ Q0, there

is a unique probability measure Pg∗(q0) on
∏+∞
i=0 Qi such that:

Pg∗(q0)(

n∏
i=0

Ei×
+∞∏
i=n+1

|Qi|) = χE0
(q0)

∫
q1∈E1

dg1(q0)

∫
q2∈E2

dg2(q0q1) · · ·
∫
qn∈En

dgn(q0q1 · · · qn−1).

(2)
Moreover, Pg∗ defines a measurable map from Q0 to P(

∏+∞
i=0 Qi).

We consider tuples (q0, q1, q2, · · · , qn−1) as words, and accordingly write them as
q0q1q2 · · · qn−1. The notation

∫
qi∈Ei

dµi h(qi) (where µi = gi(q0q1 · · · qi−1) above)
stands for

∫
qi∈Qi

dµi χEi(qi)h(qi), and the rightmost integral in Theorem 2 is
an integral of the constant 1, which is standardly omitted—i.e., the rightmost
integral is

∫
qn∈Qn

χEn
(qn)dgn(q0q1q2 · · · qn−1) = gn(q0q1q2 · · · qn−1)(En).

There are several small variations on the Ionescu-Tulcea Theorem. Our ver-
sion is Giry’s [11, Theorem 3], except for the fact that Giry considers more gen-
eral ordinal-indexed sequences of measurable spaces. We will not require that.

The following is needed in the proof of Lemma 2. Lemma 2 looks perfectly
obvious, yet requires some effort to prove. Measure theory is full of these.



Lemma 1. Under the assumptions of Theorem 2, for every n ∈ N, and for every
measurable map h :

∏n
i=0Qi → R+, for every q ∈ Q0,∫

q0q1···∈
∏+∞

i=0 Qi

h(q0q1 · · · qn)dPg∗(q) (3)

=

∫
q1∈Q1

dg1(q)

∫
q2∈Q2

dg2(qq1) · · ·
∫
qn∈Qn

dgn(qq1q2 · · · qn−1)h(qq1q2 · · · qn−1qn).

Proof. This is true for functions h of the form χ∏n
i=0 Ei

, Ei ∈ ΣQi
, as one can

check by using (2). Let S be the set of measurable subsets E of
∏n
i=0Qi such that

(3) holds for h = χE , i.e., such that Pg∗(q)(E) =
∫
q1∈Q1

dg1(q)
∫
q2∈Q2

dg2(qq1) · · ·∫
qn∈Qn

dgn(qq1q2 · · · qn−1)χE(qq1q2 · · · qn−1qn). S contains all the rectangles, is
closed under complements (using χE = 1 − χE), and under countable disjoint
unions. For the latter, consider countably disjoint elements Em, m ∈ N, of S, let
E =

⋃
m∈N Em, and realize that χE = supm∈N

∑m
k=0 χEk . The Monotone Con-

vergence Theorem [2, Theorem 16.2] states that integrals of non-negative real
functions commute with pointwise suprema of countable chains, so Pg∗(q)(E) =
supm∈N

∑m
k=0

∫
q1∈Q1

dg1(q)
∫
q2∈Q2

dg2(qq1) · · ·
∫
qn∈Qn

dgn(qq1q2 · · · qn−1)χEk(qq1
q2 · · · qn−1qn) =

∑+∞
m=0 Pg∗(q)(Em). It follows that S is a σ-algebra containing

the rectangles, and therefore contains Σ∏n
i=0Qi

.
It follows easily that (3) holds for step functions h, i.e., when h is of the

form
∑m
k=0 akχEk , m ∈ N, ak ∈ R+, Ek measurable. Since every measurable

map h :
∏n
i=0Qi → R+ is the pointwise supremum of a countable chain of step

functions (namely hm =
∑m2m

k=1 k/2mχh−1(k/2m,+∞), m ∈ N), (3) follows by the
Monotone Convergence Theorem. ut

Consider now any family of measurable subsets En of
∏n−1
i=0 Qi ×Qn, n ≥ 1,

and assume that for all q0, q1, . . . , qn−1, gn(q0q1 · · · qn−1) draws qn at random
so that q0q1 · · · qn−1qn is in En. It seems obvious that what we shall get in the
end is an infinite path q0q1 · · · qn · · · such that every finite prefix q0q1 · · · qn is in
En. This actually needs a bit of proof. Given a measurable subset E of a product
A×B, and a ∈ |A|, the vertical cut E|a is the set {b ∈ |B| | (a, b) ∈ E}. This is
measurable as soon as E is [2, Theorem 18.1 (i)].

Lemma 2. Under the assumptions of Theorem 2, let En be measurable subsets
of

∏n−1
i=0 Qi × Qn, n ≥ 1, and assume that for all q0q1 · · · qn−1 ∈

∏n−1
i=0 Qi,

gn(q0q1 · · · qn−1) is concentrated on (En)|q0q1···qn−1
.

For every q ∈ Q0, Pg∗(q) is concentrated on the set PathE of infinite paths
whose finites prefixes q0q1 · · · qn are in En for every n ≥ 1. If additionally {q}
is measurable in Q0, then Pg∗(q) is concentrated on the set PathE(q) of those
infinite paths in PathE such that q0 = q.

Proof. First, PathE is measurable, as a countable intersection of measurable sub-
sets En ×

∏+∞
i=n+1 |Qi|. Since gn(q0q1 · · · qn−1) is concentrated on (En)|q0q1···qn−1

,
and the complement of the latter in |Qn| is (En)|q0q1···qn−1

,
∫
qn∈Qn

χ(En)|q0q1···qn−1



dgn(q0q1 · · · qn−1) = gn(q0q1 · · · qn−1)((En)|q0q1···qn−1
) = 0. By taking h = χEn in

(3), and realizing that χEn(q0q1 · · · qn−1qn) = χ(En)|q0q1···qn−1
(qn), we obtain that∫

q0q1···∈
∏+∞

i=0 Qi
χEn(q0q1 · · · qn)dPg∗(q) = 0. In other words, the Pg∗(q)-measure

of the complement of En×
∏+∞
i=n+1 |Qi| is zero. As a consequence of σ-additivity,

the union of these complements when n ranges over N has measure that is
bounded by the sum of their measures, namely 0. So the complement of PathE
has Pg∗(q)-measure 0.

For the second claim, if {q} is measurable, then Pg∗(q)((|Q0|r{q})×
∏+∞
i=1 |Qi|)

is equal to 0 by (2). The measure of the complement of PathE(q) = PathE ∩
({q} ×

∏+∞
i=1 |Qi|) therefore also has Pg∗(q)-measure 0. ut

3 Drawing Measurable Selections at Random

Before we go to the more complicated case of schedulers, we illustrate our basic
technique on random choice of measurable selections of a multifunction. We
believe this has independent interest.

A multifunction from a set A to a set B is a map F from A to P∗(B), the
non-empty powerset of B. We say that F is measurable if and only if its graph
GrF = {(x, y) | y ∈ F (x)} is a measurable subset of X × Y . This is one of the
many possible notions of measurability for relations, see [12]. The set F (x) is
exactly the vertical cut (GrF )|x, showing that for a measurable multifunction,
F (x) is a (non-empty) measurable subset of B (see comment before Lemma 2).

A selection for a multifunction F is a map f : A→ B such that f(x) ∈ F (x)
for every x ∈ A. Every multifunction has a selection: this is the Axiom of Choice.
In measure theory, we would like f to be measurable as well. Theorems guar-
anteeing the existence of measurable selections for certain multifunctions are
called measurable selection theorems. There are many of them (see Wagner [18],
or Doberkat [8]), but one should remember that measurable multifunctions do
not have measurable selections in general: Blackwell showed that there is a mul-
tifunction from [0, 1] to Baire space NN whose graph is closed (hence measurable)
but has no measurable selection [3] (see also Example 5.1.7 of [17]).

Given two measurable spaces X and Y , let us write 〈X → Y 〉 for the space
of all measurable maps from X to Y , with the weak σ-algebra. The latter is by
definition the subspace σ-algebra, induced by the inclusion of |〈X → Y 〉| into
the product space Y |X|. In other words, this is the smallest σ-algebra that makes
the maps ϕ ∈ 〈X → Y 〉 7→ ϕ(x) measurable, for every x ∈ |X|.

More generally, given a multifunction F : |X| → P∗(|Y |), we also consider the
subspace Sel(F ) of 〈X → Y 〉 of all measurable selections of F , with the induced
σ-algebra. (Beware that Sel(F ) need not be a measurable subset of 〈X → Y 〉.)
We again call the latter the weak σ-algebra, on this subset. In each case, the
weak σ-algebra is generated by subsets that we write [x → E], with x ∈ |X|
and E ∈ ΣY , and defined as those measurable functions, resp. those measurable
selections of F , that map x into E.

Assume now a measurable map g : X → P(Y ) such that, for every x ∈ |X|,
g(x) is concentrated on F (x). For each x ∈ |X|, pick an element f(x) in F (x) with



probability g(x). The function f is a selection of F , but will not be measurable
in general. Can we pick f at random so that f is measurable and f(x) is drawn
with probability g(x)? This is the question we answer in the affirmative here.

The problem looks similar to the construction of Wiener measure, a model of
Brownian motion, where we would like to draw a map from R to some topological
space at random, and this map should be continuous [2, Section 37]; or to the
construction of Skorokhod’s J1 topology, which allows one to make sense of
random càdlàg functions. Our solution will be simpler, though: measurability is
easier to enforce than continuity or being càdlàg.

One can explain the problem in terms of independence [2, Section 5]. Let
us remind the reader that independence is not pairwise independence. Consider
for example two independent random bits b1 and b2, and the random variable
b3 = b1 ⊕ b2, where ⊕ is exclusive-or. These random variables are pairwise inde-
pendent, meaning that any pair among them is formed of independent random
variables. However, they are not independent, since given the value of any two,
one obtains the third one in a deterministic way. In our case, if we are to draw
a measurable map f at random, then the random infinite tuple (f(x))x∈|X| can-
not be a collection of independent random variables. However, the results below
essentially say that we can choose f measurable at random, in such a way that
all countable sequences (f(xn))n∈N are independent.

A general way to draw several values at random, independently, is to draw
them with respect to a product measure. The following says that product mea-
sures exists not only for finite products but also for countable products of prob-
ability measures. This is well-known, and can even be extended to uncountable
products: this is the Łomnick-Ulam Theorem [13, Corollary 5.18].

Lemma 3. Let µn be probability measures on the measurable spaces Xn, n ∈ N.
There is a unique probability measure µ, written

⊗
n∈N µn, on

∏
n∈NXn such that

µ(
⋂
i∈I π

−1
i (Ei)) =

∏
i∈I µi(Ei) for every finite subset I of N, and all measurable

subsets Ei of Xi, i ∈ I.

Proof. Apply Ionescu-Tulcea’s Theorem 2 to Q0 = {∗}, Qn+1 = Xn, let gn be
the constant map gn(q0q1 · · · qn−1) = µn, and note that for every finite set I,⋂
i∈I π

−1
i (Ei) is just the product

∏n
i=0Ei×

∏+∞
i=n+1 |Qi|, for some n large enough,

and where we extend the notation Ei to denote |Qi| for i 6∈ I. ut

We shall use the following general technique to construct measurable maps.

Lemma 4 (Patching). Let X, Y be measurable spaces, (Ei)i∈I be a countable
partition of |X| in measurable subsets (I ⊆ N), and (fi)i∈I be a matching family
of measurable maps from Ei to Y . The patch f : X → Y , defined as mapping
every x ∈ Ei to fi(x), is a measurable map.

Proof. Categorically, this follows from the fact that X is the coproduct
∑
i∈I Ei.

Alternatively, f−1(E) =
⋃
i∈I(f

−1
i (E) ∩ Ei) is measurable as soon as E is. ut

As an application, we show that a measurable multifunction F that has a
measurable selection must have plenty of measurable selections. Precisely, we
can fix their values, arbitrarily, at countably many arguments:



Lemma 5. Let X, Y be measurable spaces, F : X → P∗(Y ) be a measurable
multifunction with a measurable selection f , (xi)i∈I be countably many points in
X (I ⊆ N), and yi be an element of F (xi) for every i ∈ I. Write #»y for (yi)i∈I .

There is a measurable selection f #»y of F such that f #»y (xi) = yi for every
i ∈ I. Moreover, we can choose f #»y in such a way that the mapping #»y 7→ f #»y is
itself a measurable map from

∏
i∈I F (xi) to Sel(F ).

Proof. Without loss of generality, assume that I is N, or an initial segment
{0, 1, . . . , n − 1} of N. Similarly to vertical cuts, we may define horizontal cuts
of Gr(F ) at y, namely {x ∈ X | y ∈ F (x)}, and they are measurable as well.
Write F−1(y) for such a vertical cut. Define Ei, for each i ∈ I, as F−1(yi) r⋃i−1
j=0 F

−1(yj). Together with E∞ = |X|r
⋃
i∈I Ei, they form a partition of |X|

in measurable subsets. Define fi as the constant map on Ei equal to yi for i ∈ I,
and f∞ as the restriction of f to E∞, then form their patch f #»y , using Lemma 4.
It is plain to see that f #»y is a selection of F , and f #»y is measurable.

To show that #»y 7→ f #»y is itself measurable, we must show that the set A of
tuples #»y such that f #»y ∈ [x → E] is measurable, for x ∈ |X| and E ∈ ΣY . For
convenience, write Ei( #»y ) for the set we called Ei above, and similarly with E∞.
Let E′i be the set of tuples #»y ∈

∏
i∈I F (xi) such that yi ∈ F (x) and yj 6∈ F (x)

for every j, 0 ≤ j < i. E′i is measurable since F (x) is measurable: E′i is just the
rectangle

∏i−1
j=0(F (xj)rF (x))× (F (xi)∩F (x))×

∏
j∈I,j>i F (xj). Also,

#»y ∈ E′i
if and only if x ∈ Ei( #»y ). Write πi for ith projection. Since f #»y (x) ∈ E if and
only if there is an i ∈ I such that x ∈ Ei( #»y ) and yi ∈ E, or for every i ∈ I,
x 6∈ Ei( #»y ) and f(x) ∈ E, it follows that A = (

⋃
i∈I E

′
i∩π

−1
i (E)) if f(x) 6∈ E, and

A = (
⋃
i∈I E

′
i∩π

−1
i (E))∪ (

⋂
i∈I E

′
i) otherwise. In any case, A is measurable. ut

Theorem 3 is the keystone of our construction, and allows us to provide
foundations to the notion of a random measurable selection.

Theorem 3. Let X, Y be two measurable spaces, and F : X → P∗(Y ) be a
measurable multifunction with a measurable selection. Let also g : X → P(Y ) be
a measurable map such that, for every x ∈ X, g(x) is concentrated on F (x).

There is a unique probability measure $g on the space Sel(F ) of measurable
selections of F such that $g(

⋂n
i=1[xi → Ei]) =

∏n
i=1 g(xi)(Ei) for every finite

collection of pairwise distinct points (xi)1≤i≤n of X and of measurable subsets
(Ei)1≤i≤n of Y .

Before we prove it, we note the following consequence. Proposition 1 can also
be seen as a partial implementation of the Chatterjee-Doyen-Gimbert-Henzinger
idea of the introduction in the Markovian case: given a (Markovian) randomized
scheduler g, draw (Markovian) pure schedulers f at random so that f(x) is drawn
with probability g(x).

Proposition 1. Under the assumptions of Theorem 3, let h : Y → R+ be a
measurable map, and x be a point of X, then:∫

f∈Sel(F )

h(f(x))d$g =

∫
y∈Y

h(y)dg(x).



Proof. Let αx be the measurable map f ∈ Sel(F ) 7→ f(x). By the change of
variables formula (1),

∫
f∈Sel(F )

h(f(x))d$g =
∫
y∈Y h(y)dαx[$g]. Now note that

αx[$g](E) = $g(α
−1
x (E)) = $g([x→ E]) = g(x)(E), so αx[$g] = g(x). ut

Proof (of Theorem 3). We use Carathéodory’s measure extension Theorem 1. Let
A be the semiring of subsets of the form

⋂n
i=1[xi → Ei] given in the statement of

the Lemma. To check that this is a semiring, consider any two sets A andB of this
form. We must show that ArB is a finite union of elements of A. We may write
A as

⋂n
i=1[xi → Ei], B as

⋂m
j=1[x

′
j → E′i]. Then ArB is the finite union of the

sets Aj , 1 ≤ j ≤ m, defined by: if x′j = xk for some (unique) k, 1 ≤ k ≤ n, then
Aj =

⋂n
i=1
i 6=j

[xi → Ei]∩ [xk → EirE′j ], else Aj =
⋂n
i=1[xi → Ei]∩ [x′j → ΩrE′j ].

Note that A generates the weak σ-algebra on Sel(F ), by definition. Assume
there is a map µ : A → [0,+∞] that satisfies the formula given in the statement of
the Lemma: µ(

⋂n
i=1[xi → Ei]) =

∏n
i=1 g(xi)(Ei). For now, this is an assumption,

not a definition. For it to be a definition, we would need to check that this
is unambiguous: if

⋂n
i=1[xi → Ei] =

⋂m
j=1[x

′
j → E′j ], we should verify that∏n

i=1 g(xi)(Ei) =
∏m
j=1[x

′
j → E′j ]. This will be easier to prove later. Until then,

we concentrate on the more interesting question of σ-additivity.
Let Ak =

⋂
i∈Ik [xki → Eki], k ∈ N, be a countable family of disjoint elements

of A whose union is some element A of A again, where each index set Ik is finite.
We must show that µ(A) =

∑+∞
k=0 µ(Ak).

There is a simple trick to prove this: we exhibit a measure (sJ [µJ ] below) that
coincides with µ on A and each Ak, k ∈ N. We shall call this the Łomnick-Ulam
trick, since this also subtends the classical proof of the Łomnick-Ulam theorem.

Observe that the set of points (xki)k∈N,i∈Ik is countable. For each countable
set J of points of X, let sJ :

∏
x∈J F (x)→ Sel(F ) be the map #»y 7→ f #»y given in

Lemma 5. Let µJ be the product probability measure
⊗

x∈J g(x) on
∏
x∈J F (x),

as given in Lemma 3.
By definition, sJ [µJ ](E) = µJ(s

−1
J (E)) for every measurable subset E of

Sel(F ). In particular, if J contains all the points x1, . . . , xn, then sJ [µJ ](
⋂n
i=1[xi

→ Ei]) = µJ{ #»y ∈
∏
x∈J F (x) | ∀i, 1 ≤ i ≤ n · yxi

∈ Ei} (since sJ( #»y )(xi) =
f #»y (xi) = yxi

, where we agree to write the tuple #»y with indices in J , namely, as
(yx)x∈J)= µJ(

⋂n
i=1 π

−1
xi

(Ei)). By definition of µJ , this is equal to
∏
i=1 g(xi)(Ei),

hence to µ(
⋂n
i=1[xi → Ei]).

In other words, sJ [µJ ] coincides with µ on all subsets of A of the form⋂n
i=1[xi → Ei] where every xi is in J . It is certainly not the case in general that

sJ [µJ ] and µ coincide! The condition that every xi is in J is crucial. This condi-
tion is satisfied by A and every Ak, k ∈ N, provided we take J = (xki)k∈N,i∈Ik .
Since sJ [µJ ] is σ-additive, the equation µ(A) =

∑+∞
k=0 µ(Ak) holds.

This construction also shows that µ indeed exists, something we had de-
ferred the verification of. The problem was to show that if

⋂n
i=1[xi → Ei] =⋂m

j=1[x
′
j → E′j ] then

∏n
i=1 g(xi)(Ei) =

∏m
j=1[x

′
j → E′j ]. Take J = {x1, · · · , xn}∪

{x′1, · · · , x′m}. The inverse image by sJ of the set
⋂n
i=1[xi → Ei] =

⋂m
j=1[x

′
j →



E′j ] is equal to
⋂n
i=1 π

−1
xi

(Ei) =
⋂m
j=1 π

−1
x′j

(E′j), and its µJ -measure is
∏n
i=1 g(xi)

(Ei) =
∏m
j=1[x

′
j → E′j ], by definition of the product probability measure.

The existence of $g follows directly from Carathéodory’s theorem. It is clear
that it is a probability measure. Uniqueness follows from the fact that probability
measures are uniquely determined by their values on any π-system that generates
the σ-algebra [2, Theorem 3.3]. A π-system is a collection of sets that is closed
under binary intersections, and certainly A qualifies, as a semiring. ut

4 IT Automata

Consider the following simple form of non-deterministic automaton, which we
call an IT automaton (for Ionescu-Tulcea automaton): a tuple (Z,Λ, F ) where Z,
Λ are measurable spaces, and F : ZΛ∗ → P∗(Λ) is a measurable multifunction
with a measurable selection. Z can be thought as a space of input values, Λ
as a space of states, and F as a generalized transition relation, which given a
finite history zλ1 · · ·λn produces a non-empty set F (zλ1 · · ·λn) of possible next
states. The idea is that the system starts with some input value z, goes to the
first state λ1 ∈ F (z), then to a second state λ2 ∈ F (zλ1), . . . , to an nth state
λn ∈ F (zλ1 · · ·λn−1), and so on. In other words, IT automata are just like
non-deterministic automata, except on possibly infinite state spaces and with a
history-dependent transition relation.

We use the notation Λ∗ for the space of all finite words on the alphabet Λ,
which we equate with the countable coproduct

∑
n∈N Λ

n. We also write ZΛ∗
instead of Z×Λ∗, and will more generally drop the × symbol in cases where this
is not ambiguous. Accordingly, we write zλ1 · · ·λn in word notation, instead of
as the tuple (z, λ1, · · · , λn). We have already done so before.

Since an IT automaton starting from input value z will produce infinitely
many states λ1, . . . , λn, it is natural to study the space ZΛN of infinite paths of
the automaton, where ΛN is the product of countably infinitely many copies of
Λ. (This is written Λω in language theory.) The σ-algebra on ZΛN is generated
by so-called cylinders, which are exactly the products X0Λ1Λ2 . . . ΛnΛ

N with
X0 ∈ ΣZ and Λi ∈ ΣΛ, 1 ≤ i ≤ n, and n ∈ N.

A randomized scheduler for such an IT automaton is a measurable map
g : ZΛ∗ → P(Λ) such that g(zλ1 · · ·λn) is concentrated on F (zλ1 · · ·λn) for
every zλ1 · · ·λn ∈ ZΛ∗.

Given a measurable subset E of ZΛN, and an input value z ∈ |Z|, the proba-
bility that the induced infinite path lies in E , where λn is chosen at random with
probability g(zλ1 · · ·λn−1) at each step, is given by Theorem 2, with Q0 = ZΛ∗,
Qi = Λ for every i ≥ 1, and letting gn be the restriction of g to ZΛn−1. Explicitly:

Proposition 2. Let Z, Λ be two measurable spaces, and g : ZΛ∗ → P(Λ) be a
measurable map. There is a unique map Pg : ZΛ∗ → P(ZΛN) such that Pg(w)(X0

Λ1Λ2 · · ·Λn · · ·Λn+mΛN) is equal to:

χX0
(z)χΛ1

(λ1) · · ·χΛn
(λn)

∫
λn+1∈Λn+1

dg(w)

∫
λn+2∈Λn+2

dg(wλn+1) · · ·
∫
λn+m∈Λn+m

dg(wλn+1 · · ·λn+m−1)



for all measurable subsets X0 of Z, Λi of Λ (1 ≤ i ≤ m, n ≤ m), and elements
w = zλ1 · · ·λn ∈ ZΛ∗. Moreover, Pg is measurable.

A pure scheduler for the IT automaton (Z,Λ, F ) is just a measurable selection
of F : given the history zλ1 · · ·λn−1, pick a next state λn from F (zλ1 · · ·λn−1).

Given a pure scheduler f , define f̃ : ZΛ∗ → ZΛN so that f̃(zλ1 · · ·λn) is the
unique infinite path that we obtain by starting with the history zλ1 · · ·λn and re-
peatedly computing next states, using f : f̃(zλ1 · · ·λn) = zλ1 · · ·λnλn+1 · · ·λn+m · · ·
where λn+k+1 = f(zλ1 · · ·λnλn+1 · · ·λn+k), for every k ∈ N.

One might think of doing the following. Fix an IT automaton (Z,Λ, F ),
and a randomized scheduler g for this automaton. Pick a pure scheduler f at
random, with respect to the probability measure $g given by Theorem 3, and
show that the probability that f̃(z) falls into any given measurable set E of
infinite paths is equal to the probability Pg(z)(E) given in Proposition 2. We
did the computation, and checked that this indeed holds. . . except this is all
wrong! This does not make sense unless the map f 7→ f̃(z) (for z ∈ |Z| fixed) is
measurable. We cannot dismiss the problem: this is the central question here.

To state it another way, the weak σ-algebra on the space of pure schedulers
has to be replaced by a larger one: the w̃eak σ-algebra on the set |Sel(F )| of pure
schedulers is the smallest that makes every map f ∈ |Sel(F )| 7→ f̃(zλ1 · · ·λn)
measurable, for every zλ1 · · ·λn ∈ ZΛ∗. We write S̃el(F ) for |Sel(F )| with the
w̃eak σ-algebra.

For w = zλ1 · · ·λn ∈ ZΛ∗, and a measurable subset E of ΛN, let us write wE
for {z} × {λ1} × · · · × {λn} × E . The w̃eak σ-algebra is generated by the sets
[w →̃ wE ], defined as the set of pure schedulers f such that f̃(w) ∈ wE .

We wish to define our probability measure ω̃g on pure schedulers f by saying
that the probability that f̃(w) ∈ wE (for any fixed w, E) is exactly Pg(w)(E),
where Pg is given in Proposition 2: namely, ω̃g([w →̃ wE ]) = Pg(w)(E). That
cannot be enough to define ω̃g, and we need to at least define ω̃g(

⋂n
i=1[wi →̃

wiEi]) for all finite intersections of sets [wi →̃ wiEi]. Now there is a big difference
with the case of random measurable selections (Section 3): the choices we make
for f̃(wi) for different indices i cannot in general be independent. Indeed, imagine
we have chosen f̃(wi), for some i, to be wiλn+1 · · ·λn+m · · · : then we have no
choice for f̃(wiλn+1), and also for f̃(wiλn+1λn+2), . . . , which must all be equal
to wiλn+1 · · ·λn+m · · · . This is the consistency condition mentioned in the proof
of Proposition 3 below: in general, if we have chosen f̃(wi) as wiωi for some
ωi ∈ ΛN, and later we need to choose f̃(wj) where wi is a prefix of wj , and wj
is a prefix of wiωi, then we must choose it as f̃(wj) = wiωi.

We still proceed in a manner similar to Section 3. We now need an extra
assumption: say that measurable space X has measurable diagonal if and only if
the diagonal ∆ = Gr(=) = {(x, x) | x ∈ |X|} is measurable in X ×X. Dravecký
[9, Theorem 1] shows a number of equivalent conditions. One of these is that
X has measurable diagonal if and only if there is a countable family (En)n∈N
of measurable subsets of X that separates points, that is, such that for any two



distinct points x, y, there is an En that contains one and not the other. This is
true for all Polish spaces, notably. Another one is thatX has measurable diagonal
if and only if for every measurable function f from an arbitrary measurable space
Y to X, the obvious multifunction y ∈ Y 7→ {f(y)} is measurable. This apparent
tautology is wrong when X does not have measurable diagonal! The canonical
counter-example is Y = X, f = idX : the corresponding multifunction is precisely
the one whose graph is ∆. Finally, every one-element subset {x} of a space X
with measurable diagonal is measurable in X; indeed, {x} is the vertical cut ∆|x.

Proposition 3. Let (Z,Λ, F ) be an IT automaton, with a randomized scheduler
g : ZΛ∗ → P(Λ). Assume that Z and Λ both have measurable diagonals. Let
Pg : ZΛ

∗ → P(ZΛN) be the probability-on-paths map given in Proposition 2.
There is a probability measure ω̃g on S̃el(F ) such that ω̃g([z →̃ E ]) = Pg(z)(E)
for all z ∈ Z and E ∈ ΣZΛN .

Proof. (Outline. The technical details are relegated to Appendix A.) As a nota-
tional help, we write w, possibly subscripted or primed, for finite words in ZΛ∗,
and ω, possibly subscripted or primed, for infinite words in ΛN.

Let us write � for the prefix relation on finite and infinite words. Say that a
set of words A of ZΛ∗ is prefix-closed if and only if for every w ∈ ZΛ∗ that is a
prefix of some element of A, w is in A as well.

Let A be the semiring of all finite intersections of basic measurable subsets⋂n
i=1[wi →̃ wiEi]. By adding extra words if needed, we may assume that I =
{w1, . . . , wn} is prefix-closed.

It is hard to even attempt to describe explicitly the values of ω̃g on elements
of A. In the proof of Theorem 3, we had eventually shown that the value of the
desired measure $g coincided with the image measure of some other measure
defined on a product space for sufficiently small parts of the semiring. We define
ω̃g on A(I) by a similar Łomnick-Ulam-like trick: through image measures of
some measures µW under maps αW , for countably infinite subsets W of ZΛ∗.

Given a countably infinite set W = (wj)j∈J of words in ZΛ∗ (with J =

Nr {0}, say), let CstW be the subspace of
∏
w∈W PathF (w) consisting of those

tuples (wjωj)j∈J that are consistent : for all i, j ∈ J such that wi � wj � wiωi,
then wiωi = wjωj . In pictures, if the leftmost two zones are equal then the
rightmost zones are equal, too:

ωj

ωi

· · ·

· · ·

wj

wi

Using Ionescu-Tulcea’s Theorem 2, we build a probability measure µW on CstW
(Proposition 5 in Appendix A). Intuitively, µW picks w1ω1 at random using
probability measure Pg(w1), then picks w2ω2, . . . , wjωj , . . . , as follows. At step
j, if wi � wj � wiωi for some previous i, 1 ≤ i < j, then we pick wjωj ,
deterministically, as equal to wiωi, enforcing consistency; otherwise, we pick
wjωj at random using probability measure Pg(wj). All this makes sense provided



we sort W topologically, i.e., we choose the indexing scheme so that any wi that
is a prefix of wj occurs before wj , viz., i ≤ j (Lemma 6 in Appendix A).

Given w ∈ W, say w = wj , let us write [w : E ] for the set of consistent tuples
#    »wω in CstW such that ωj ∈ E . One can show that, given any finite prefix-closed
set {w1, . . . , wn} of words in ZΛ∗, the value µW(

⋂n
i=1[wi : Ei]) is the same for all

countably infinite subsetsW that contain w1, . . . , wn (Lemma 9 in Appendix A).
The formula we obtain simplifies when n = 1 and w1 is a single letter z ∈ Z:
µW([z : E ]) = Pg(z)(zE) (Lemma 10 in Appendix A).

We take the image measure of µW under a measurable map αW : #    »wω ∈
CstW 7→ f #   »wω ∈ S̃el(F ) that retrieves a canonical pure scheduler from a con-
sistent set of tuples (Proposition 6 in Appendix A), defined in such a way that
f̃ #   »wω(wj) = wjωj for every j ∈ J . This is done by patching, similarly to Lemma 5.

Note that αW [µW ](
⋂n
i=1[wi →̃ wiEi]) is independent of W, provided that

W contains the prefix-closed subset {w1, . . . , wn}. Indeed, αW [µW ](
⋂n
i=1[wi →̃

wiEi]) = µW(
⋂n
i=1[wi : Ei]), which we have shown independent of W. We can

therefore define ω̃g as coinciding with αW [µW ] on those elements
⋂n
i=1[wi →̃

wiEi] of A with {w1, . . . , wn} ⊆ W. As such, it is σ-additive on A: as in the
proof of Theorem 3, let Ak =

⋂
w∈Ik [w →̃ Ewi], k ∈ N, be a countable family of

disjoint elements of A, where Ik is finite and prefix-closed, and A =
⋂
w∈I [w →̃

Ew] be their union, assumed in A, with I prefix-closed again. Then ω̃g(A) =∑
k∈N ω̃g(Ak), since ω̃g coincides with the measure αW [µW ] on A and every Ak,

for W =
⋃
k∈N Ik ∪ I (which is countable).

Finally, ω̃g([z →̃ zE ]) = µW([z : E ]) = Pg(z)(zE), for every measurable subset
E of ΛN. Since Pg(z) is concentrated on PathF (z), hence on zΛN, for every
measurable subset E of ZΛN, ω̃g([z →̃ E ]) = ω̃g([z →̃ zE|z]) = Pg(z)(zE|z) =

Pg(z)(E ∩ zΛN) = Pg(z)(E). ut

We can now integrate on infinite paths ω with respect to Pg(z), or on pure
schedulers, and this will give the same average value:

Proposition 4. Under the assumptions of Proposition 3, let h : ZΛN → R+ be
a measurable map, and z ∈ Z, then:∫

f∈S̃el(F )

h(f̃(z))dω̃g =

∫
ω∈ZΛN

h(ω)dPg(z).

Proof. Let α̃z : f 7→ f̃(z). This is a measurable map, since α̃−1z (E) = [z →̃ E ].
The left-hand side is

∫
f∈S̃el(F )

h(α̃z(f))dω̃g =
∫
ω∈ZΛN h(ω)dα̃z[ω̃g] by the change

of variables formula (1). Proposition 3 states precisely that α̃z[ω̃g] = Pg(z). ut

We may think of h as a payoff function on infinite paths. The above shows that
the average payoff with respect to Pg(z) is also the average of the individual
payoffs h(f̃(z)) one would get by drawing a pure scheduler f at random instead.

Fact 1 then implies that the value of the average payoff is bounded by the
payoff evaluated on two pure schedulers f− and f+:



Corollary 1 (Randomness for Free). Under the assumptions of Proposi-
tion 3, let h : ZΛN → R+ be a measurable map, and z ∈ Z. There are two pure
schedulers f− and f+ in Sel(F ) such that:

h(f̃−(z)) ≤
∫
ω∈ZΛN

h(ω)dPg(z) ≤ h(f̃+(z)).

5 Conclusion

We have established a few “randomness for free” type theorems for measurable
multifunctions first, for IT automata second. The results are pleasing, and our
assumptions are fairly minimal. Our proofs use fairly simple ideas, too: there
is the Chatterjee-Doyen-Gimbert-Henzinger idea of drawing measurable selec-
tions/pure schedulers at random first, and this makes sense because of a com-
bination of patching, of Carathéodory’s measure extension theorem, and of a
Łomnik-Ulam type trick.

Where should we go next? One may push the results on IT automata to par-
tially observable IT automata. Instead of a measurable transition multifunction
F : ZΛ∗ → P∗(Λ), such automata have a measurable transition multifunction
F : ZΛ∗ → P∗(Ξ), where Ξ is an (additional) measurable space Ξ of actual
states. Such states q are mapped to observable states λ ∈ Λ by a measurable
map τ : ZΛ∗ × Ξ → Λ; this may depend on the past history w ∈ ZΛ∗, viz.,
λ = τ(w, q). We pick the next observable state λ after history w by picking q
from F (w), then computing τ(w, q). Modifying the notion of consistent paths
as required, it seems feasible to prove an analogue of Proposition 3 for partially
observable IT automata. The σ-algebra on Sel(F ) needs to be changed again!
so that we cannot reuse Proposition 3 as is. Once this is done, we can proceed
to stochastic automata [4]. Given a stochastic automaton with state space Q
and action space L, take Z = Q, Λ = (L×Q)⊥ (writing X⊥ for X + {⊥}), and
Ξ = P(Λ). Taking g to be the second projection map π2, Theorem 3 allows us
to draw the observation maps τ : Q(L × Q)∗⊥ × P((L × Q)⊥) → (L × Q)⊥ at
random, and this will simulate the probabilistic choice of q′ with respect to µ
described in the introduction. Combining this with the alluded “randomness for
free” result for partially observable IT automata, we hope that it would settle
the “randomness for free” question for general, stochastic automata.
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A Auxiliary Results Needed for Proposition 3

In the following, we fix an IT automaton (Z,Λ, F ) with a randomized scheduler
g : ZΛ∗ → P(Λ). We also assume that Z and Λ both have measurable diagonals.
Let Pg : ZΛ∗ → P(ZΛN) be the probability-on-paths map given in Proposition 2.

In the rest of this section, we fix a countably infinite set W of words in ZΛ∗.
We let J = {1, 2, · · · } = Nr {0}. This will serve as an index set.

Lemma 6. One can write W as a family (wj)j∈J in such a way that for all
i, j ∈ J , if wi � wj then i ≤ j.



In other words, one can sort the words topologically. Proving this involves show-
ing that the order type of W under the prefix ordering is at most ω.

Proof. There are only countably many elements of Z, resp. Λ, that can occur
in any word from W, so one can attribute each of them a unique natural num-
ber. Equate each element with the corresponding natural number. Each word
w = zλ1 · · ·λn can now be encoded as pz1p

λ1
2 · · · p

λn
n+1, where p1, p2, . . . , pn, . . .

enumerate the prime numbers. This way, if wi is a proper prefix of wj , then wi
will be encoded as a lower number than wj . Now enumerate the words wi in the
order of their encodings. ut

In the rest of Section A, we assume such a topologically sorted indexing
scheme (wj)j∈J for W.

Lemma 7. For every n ∈ J , Pg(wn) is concentrated on PathF (wn).

Proof. Since Z and Λ have measurable diagonals, so does ZΛ∗. For each n ∈ J ,
{wn} is therefore measurable in ZΛ∗, so we can apply Lemma 2 and conclude
that Pg(wn) is concentrated on PathF (wn). ut

In particular, the restriction Pg(wn)|PathF (wn) makes sense. To reduce visual
clutter, we simply write Pg(wn) for the latter probability measure on PathF (wn).

We shall write wnΛN for the set of words in ZΛN that have wn as a prefix.
As the product {wn} × ΛN, this is a measurable set. (Recall that one-element
sets are measurable, since Z and Λ have measurable diagonals.)

We wish to draw the values wjωj of f̃(wj), j ∈ J , in a consistent way, namely,
if we have already mapped wi to the value wiωi, and wi � wj � wiωi, then we
have no choice and must choose to map wj to wiωi as well. We achieve this by
using Ionescu-Tulcea’s Theorem 2 on another probabilistic transition system,
defined as follows, and which we only use as a mathematical helper. This is
certainly no real-life, practical transition system, and is not meant to be.

We let Q0 = {∗}, q0 = ∗, Qn = PathF (wn) for n ∈ J , and gn :
∏n−1
i=0 Qi →

P(Qn) map (∗, w1ω1, · · · , wn−1ωn−1) to:

– the Dirac mass δwiωi
, where i is the least index in 1, · · · , n − 1 such that

wi � wn � wiωi, if one such index exists; this implements consistency;
– otherwise, the probability measure Pg(wn).

Both are probability measures on Qn = PathF (wn): the second one by Lemma 7,
the first one because wiωi is a path in PathF starting with wn.

Lemma 8. For every n ∈ J , gn is measurable.

Proof. For every i, 1 ≤ i < n, such that wi � wn, the set Ai of infinite words
wiωi in PathF (wi) that have wn as a prefix is PathF (wi) ∩ wnΛN, hence is
measurable. By extension, when wi 6� wn, write Ai for the empty set. Rephrasing
the definition, gn(∗, w1ω1, · · · , wn−1ωn−1) is defined as ePathF (wn)(wiωi) on Ei =
{∗} × A1 × · · · × Ai−1 × Ai × |Qi+1| × · · · × |Qn−1|, 1 ≤ i < n (recall that e



is the monad unit, which is a measurable map), and as Pg(wn) on
⋃n−1
i=1 Ei (a

constant map). So gn is a patch of measurable maps, and is therefore measurable
by Lemma 4. ut

We can now apply Ionescu-Tulcea’s Theorem, as promised, and obtain a
probability measure on {∗} ×

∏
j∈J PathF (wj)

∼=
∏+∞
j=1 PathF (wj) that we de-

cide to call µW . (This is the measure Pg∗(∗) of Theorem 2, but we wish to avoid
any visual confusion with Pg.)

Let CstW be the set of tuples of paths (wjωj)j∈J in
∏
j∈J PathF (wj) that are

consistent, i.e., such that for all i, j ∈ J such that wi � wj � wiωi, wjωj = wiωi.
These are the only ones we can ever hope to produce from a pure scheduler f ,
namely, that are of the form (f̃(wj))j∈J .

Proposition 5. The probability measure µW is concentrated on the set CstW
of consistent tuples.

Proof. Let Fn be the multifunction from
∏n−1
j=1 PathF (wj) to PathF (wn) de-

fined, similarly to gn, by letting Fn(w1ω1, · · · , wn−1ωn−1) be:

– {wiωi}, where i is the least index in 1, · · · , n− 1 such that wi � wn � wiωi,
if one such index exists;

– otherwise, PathF (wn).

One checks easily that Fn is a measurable multifunction, and that gn(w1ω1, · · · ,
wn−1ωn−1) is concentrated on Fn(w1ω1, · · · , wn−1ωn−1). We apply Lemma 2 to
En = GrFn and obtain that µW is supported on PathE .

It remains to show that PathE = CstW . Given any inconsistent tuple (wjωj)j∈J ,
there must be two indices i, j ∈ J such that wi � wj � wiωi but wjωj 6= wiωi.
SinceW is topologically sorted, i ≤ j. Take i minimal. Then wjωj would be out-
side {wiωi} = Fj(w1ω1, · · · , wj−1ωj−1) = (Ej)|(w1ω1,··· ,wj−1ωj−1), showing that
the tuple is not in PathE . This establishes that PathE ⊆ CstW . The converse
inclusion is obvious. ut

The restriction µW|CstW therefore makes sense. Again, we simply write µW for
this restriction, and consider it as a probability measure on CstW .

Given w ∈ W, say w = wj , let us write [w : E ] for the set of consistent tuples
#    »wω in CstW such that ωj ∈ E .

A set A of words in ZΛ∗ is prefix-closed if and only if, for every w ∈ ZΛ∗
and λ ∈ Λ, wλ ∈ I implies w ∈ I.

Lemma 9. Let {w′1, . . . , w′n} be a finite prefix-closed set of words in ZΛ∗. For
all measurable subsets E1, . . . , En of ΛN, the value of µW(

⋂n
i=1[w

′
i : Ei]) is inde-

pendent of the countably infinite setW, provided it is a superset of {w′1, . . . , w′n}.

Proof. Consider any countably infinite superset W of {w′1, . . . , w′n}. Write W as
(wj)j∈J , as usual. Let w′1 = wj1 , . . . , w′n = wjn . Up to permutation, we may
assume that j1 < j2 < · · · < jn. Then

⋂n
i=1[w

′
i : Ei] is equal to the intersection

of CstW with
∏j1−1
j=1 PathF (wj)× wj1E1 ×

∏j2−1
j=j1+1 PathF (wj)× wj2E2 × · · · ×



∏jn−1
j=jn−1+1 PathF (wj)×wjnEn×

∏+∞
j=jn+1 PathF (wj). We now use formula (2).

This requires an abbreviation for all the integrals
∫
wjωj∈ZΛN dgj(∗, w1ω1, · · · ,

wj−1ωj−1) with j 6∈ {j1, j2, · · · , jn}—which will turn to be useless: write
∫∫
k···`

#  »

dg
for the list of symbols∫

wkωk∈PathF (wk)

dgk(∗, w1ω1, · · · , wk−1ωk−1)
∫
wk+1ωk+1∈PathF (wk+1)

dgk+1(∗, w1ω1, · · · , wkωk)

· · ·
∫
w`ω`∈PathF (w`)

dg`(∗, w1ω1, · · · , w`−1ω`−1).

We can now write:

µW(

n⋂
i=1

[w′i : Ei]) =
∫∫

1···j1−1

#  »

dg

∫
wj1

ωj1
∈wj1

E1
dgj1(∗, w1ω1, · · · , wj1−1ωj1−1) (4)∫∫

j1+1···j2−1

#  »

dg

∫
wj2ωj2∈wj2E2
dgj2(∗, w1ω1, · · · , wj2−1ωj2−1) · · ·∫∫

jn−1+1···jn−1

#  »

dg

∫
wjnωjn∈wjnEn

dgjn(∗, w1ω1, · · · , wjn−1ωjn−1).

Since {w1, . . . , wn} is prefix-closed, for each i, 1 ≤ i ≤ n, gji(∗, w1ω1, · · · ,
wji−1ωji−1) can be written as a function g′i(wj1ωj1 , · · · , wji−1ωji−1) of just those
words wkωk with k ∈ {j1, . . . , jn}, k < ji. Explicitly, g′i(wj1ωj1 , · · · , wji−1ωji−1)
is δwj`

ωj`
where ` is the least index, 1 ≤ ` < i, such that wj` � wji � wj`ωj` if one

exists, and Pg(wji) otherwise. In (4), the final integral
∫
wjnωjn∈wjnEn

dgjn(∗, w1ω1,

· · · , wjn−1ωjn−1) =
∫
wjnωjn∈wjnEn

dg′n(wj1ωj1 , · · · , wjn−1
ωjn−1

) is independent
of all the formal variables wjn−1+1ωjn−1+1, . . . , wjn−1ωjn−1 that the integrals∫
wjω∈PathF (wj)

dgj(∗, w1ω1, · · · , wj−1ωj−1) hidden in
∫∫
jn−1+1···jn−1

#  »

dg intro-
duce. Since all these integrals are with respect to probability measures, they
merely contribute a factor of 1. We repeat the process, from right to left in (4),
erasing all the notations

∫∫
jn−1+1···jn−1

#  »

dg, and obtain:

µW(

n⋂
i=1

[w′i : Ei]) =
∫
wj1

ωj1
∈wj1

E1
dg′j1()

∫
wj2

ωj2
∈wj2

E2
dg′2(wj1ωj1) · · ·

∫
wjnωjn∈wjnEn
dg′n(wj1ωj1 , · · · , wjn−1

ωjn−1
).

(5)
It is now evident that µW(

⋂n
i=1[w

′
i : Ei]) is independent of W. ut

Applying (5) to the case n = 1, wj1 = z ∈ Z (which is automatically prefix-
closed), and noticing that g′j1() = Pg(wj1) = Pg(z), we obtain:

Lemma 10. For every z ∈ Z, for every countably infinite set W of words of
ZΛ∗ containing z, for every measurable subset E of ΛN, µW([z : E ]) = Pg(z)(zE).

Proposition 6. For every consistent tuple #    »wω = (wjωj)j∈J in CstW , there is
a pure scheduler f #   »wω such that f̃ #   »wω(wj) = wjωj for every j ∈ J . Moreover, the
map αW : #    »wω ∈ CstW 7→ f #   »wω ∈ S̃el(F ) is measurable.



Proof. If w ∈ ZΛ∗ is a prefix of an infinite word in ΛN, then this infinite word
can be written in a unique way as wλω for some λ ∈ Λ and ω ∈ ΛN: let us call
λ the letter after w in the infinite word.

Since (Z,Λ, F ) is an IT automaton, F has a measurable selection σ. For each
consistent tuple #    »wω = (wjωj)j∈J in CstW , we define a pure scheduler f #   »wω as
follows. For every w ∈ ZΛ∗,

– either wj � w � wjωj for some j ∈ J , and f #   »wω(w) is the letter after w in
wjωj ;

– or wj � w � wjωj for no j ∈ J , and f #   »wω(w) = σ(w).

In the first case, it does not matter which j ∈ J is picked, because of consistency.
Imagine indeed that wi � w � wiωi and wj � w � wjωj for two indices i, j ∈ J .
Since wi and wj are two prefixes of the same word w, one of them must be a
prefix of the other, say wi � wj . Then wj � w � wiωi, and consistency entails
that wiωi = wjωj , so the letter after w is the same in both infinite words.

For short, let us say that w is stored in #    »wω if and only if wj � w � wjωj for
some j ∈ J . In this case, it is easy to see that f̃ #   »wω(w) = wjωj . This implies our
first claim, namely that f̃ #   »wω(wj) = wjωj for every j ∈ J .

When w is not stored in #    »wω, the situation is a bit more complicated. Let
σ̃0(w) = w, σ̃k+1(w) = σk(w)σ(σk(w)), be the ever longer sequence of finite
prefixes of σ̃(w). If no σ̃k(w) is stored in #    »wω, then f̃ #   »wω(w) = σ̃(w). But there
may be a k ∈ N such that σ̃k(w) is stored in #    »wω. Taking the least such k,
it must be the case that f̃ #   »wω(w) = wjωj where j is any index of J such that
wj � σ̃k(w) � wjωj . These remarks being made, let us proceed.

We wish to show that the map αW : #    »wω ∈ CstW 7→ f #   »wω ∈ S̃el(F ) is mea-
surable. For now, fix w ∈ ZΛ∗.

The set Sk of tuples #    »wω ∈ Cst such that σ̃k(w) is stored in #    »wω, is measurable.
Indeed, σ̃k(w) is stored in #    »wω if and only if there is a j ∈ J such that wj �
σ̃k(w) � wjωj , so Sk =

⋃
j∈J

wj�σ̃k(w)

π−1j (σ̃k(w)Λ
N), where πj : Cst→ PathF (wi)

is projection onto the jth component. It follows that the set S=k = Skr
⋃k−1
`=0 S`

of tuples #    »wω ∈ Cst such that k is the least natural number such that σ̃k(w) is
stored in #    »wω is also measurable. Let S∞ be the (measurable) complement of⋃+∞
k=0 Sk.
Let ϕk map each #    »wω ∈ Sk to f̃ #   »wω(w), i.e., to wjωj where j ∈ J is such

that wj � σ̃k(w) � wjωj . For every measurable subset E of ZΛN, ϕ−1k (E) =⋃
j∈J

wj�σ̃k(w)

σ̃k(w)Λ
N is measurable, so ϕk is measurable. Also, the function ϕ∞

that maps each #    »wω ∈ S∞ to f̃ #   »wω(w) = σ̃(w) is measurable since constant. By
patching ϕk, k ∈ N, and ϕ∞ (Lemma 4), we obtain that the map αw : #    »wω ∈
Cst 7→ f̃ #   »wω(w) is measurable.

We now observe that, for all w ∈ ZΛ∗ and E ∈ ΣΛN , α−1W ([w →̃ wE ]) =

{ #    »wω ∈ CstW | f̃ #   »wω(w) ∈ wE} = α−1w (wE), which is measurable: so αW is
measurable. ut


