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ABSTRACT

The term näıve evaluation refers to evaluating queries
over incomplete databases as if nulls were usual data
values, i.e., to using the standard database query eval-
uation engine. Since the semantics of query answering
over incomplete databases is that of certain answers,
we would like to know when näıve evaluation computes
them: i.e., when certain answers can be found with-
out inventing new specialized algorithms. For relational
databases it is well known that unions of conjunctive
queries possess this desirable property, and results on
preservation of formulae under homomorphisms tell us
that within relational calculus, this class cannot be ex-
tended under the open-world assumption.

Our goal here is twofold. First, we develop a general
framework that allows us to determine, for a given se-
mantics of incompleteness, classes of queries for which
näıve evaluation computes certain answers. Second, we
apply this approach to a variety of semantics, showing
that for many classes of queries beyond unions of con-
junctive queries, näıve evaluation makes perfect sense
under assumptions different from open-world. Our key
observations are: (1) näıve evaluation is equivalent to
monotonicity of queries with respect to a semantics-
induced ordering, and (2) for most reasonable seman-
tics, such monotonicity is captured by preservation un-
der various types of homomorphisms. Using these re-
sults we find classes of queries for which näıve eval-
uation works, e.g., positive first-order formulae for the
closed-world semantics. Even more, we introduce a gen-
eral relation-based framework for defining semantics of
incompleteness, show how it can be used to capture
many known semantics and to introduce new ones, and
describe classes of first-order queries for which näıve
evaluation works under such semantics.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM XXXXXXXXX/XX/XX ...$5.00.

1. Introduction

Database applications need to handle incomplete data;
this is especially true these days due to the proliferation
of data obtained as the result of integrating or exchang-
ing data sets, or data found on the Web. At the same
time, there is a huge gap between our theoretical knowl-
edge and the handling of incompleteness in practice:

‚ In SQL, the design of null-related features is one
of the most criticized aspects of the language [13],
due to the oversimplification of the model (which
even leads to paradoxical behavior: it is consistent
with SQL’s semantics that |X | ą |Y | and X´Y “
H, if the set Y contains nulls!)

‚ In theory, we understand that the proper way of
evaluating queries on incomplete databases is to
find certain answers to them. Unfortunately, for
many classes of queries, even within first-order
logic, this is an intractable problem [2], and even
when it is tractable, there is no guarantee the al-
gorithms can be easily implementable on top of
commercial DBMSs [15].

Despite this seemingly enormous gap, there is one in-
stance when theoretical approaches and functionalities
of practical systems converge nicely. For some types of
queries, evaluating them as if nulls were the usual data
values does produce certain answers. This is usually
referred to as näıve evaluation [1, 19]. To give an ex-
ample, consider databases with näıve nulls (also called
marked nulls), that appear most commonly in integra-
tion and exchange scenarios, and that can very easily be
supported by commercial RDBMSs. Two such relations
are shown below, with nulls indicated by the symbol K
with subscripts:

R:

A B

1 K1

K2 K3

S:

B C

K1 4
K3 5

Suppose we have a conjunctive query πACpR ’ Sq or,
equivalently, ϕpx, yq “ Dz

`

Rpx, zq ^ Spz, yq
˘

. Näıve
evaluation says: proceed as if nulls were usual values;
they are equal only if they are syntactically the same
(for instance K1 “ K1 but K1 ‰ K2). Then evaluating
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the above query results in two tuples: p1, 4q, and pK2, 5q.
Tuples with nulls cannot be certain answers, so we only
keep the tuple p1, 4q.

There are two observations in order. First, one does not
need any new functionalities of the DBMS to find the
result of näıve evaluation (in fact most implementations
of marked nulls are such that equality tests for them
are really the syntactic equality). This is good, but the
second point is that in general, näıve evaluation need
not compute certain answers.

For the query above, the tuple p1, 4q is however the cer-
tain answer. It is found by the näıve evaluation due to
the fact [19] that if Q is a union of conjunctive queries,
then näıve evaluation works for it (i.e., computes certain
answers). This result is not so easy to extend: for in-
stance, [24] showed that under the common open-world
semantics (to be properly defined later), if näıve evalua-
tion works for a Boolean first-order (FO) query Q, then
Q must be equivalent to a union of conjunctive queries.
That result crucially relied on a preservation theorem
from mathematical logic [11], and in particular on its
version over finite structures [30].

This observation suggests that the limits of näıve eval-
uation depend on the semantics of incompleteness, and
that syntactic restrictions on queries admitting such
evaluation may be obtained from preservation theorems
in logic. This is the starting point of our investigation.
In general we would like to understand how, for a given
semantics of incompleteness, we can find the class of
queries for which certain answers will be found näıvely.

In slightly more detail, we would like to answer the
following three questions:

1. What are the most general conditions underlying
näıve evaluation, under different semantics?

2. When can näıve evaluation be characterized by
preservation results?

3. How can we find relevant classes of queries that
admit näıve evaluation?

We answer these three questions, by clarifying the rela-
tionship between semantics, näıve evaluation, preserva-
tion, and syntactic classes. Roughly, our results can be
seen as establishing the following equivalences:

Näıve evaluation works for a query Q
}

Q is monotone wrt the semantic ordering
}

Q is preserved under a class of homomorphisms

We now explain the key ideas behind the main equiva-
lences and the terminology we use.

Näıve evaluation and monotonicity For the first
group of results, we deal with a very abstract setting

that can be applied to many data models (relational,
XML, etc) under different semantics. We assume that
incomplete database objects x come with a notion of se-
mantics rrxss, which is the set of complete objects they
describe. We define the semantic ordering in the stan-
dard way: x ĺ y ô rryss Ď rrxss (that is, x is less in-
formative if it describes more objects, i.e., has more
incompleteness in it). In this setting we define queries,
näıve evaluation, and certain answers and prove that
näıve evaluation works for a query iff it is monotone
with respect to the semantic ordering. This requires, as
a precondition, the existence of what we call a repre-
sentative set of instances. For many commonly consid-
ered semantics, the set of all instances is such and the
precondition is not really needed. For other semantics
considered previously in various closed-world scenarios
[18, 25], the representative set happens to be the set of
cores of instances (cf. [14, 17]).

Monotonicity and preservation We next connect
monotonicity with preservation. To start, we analyze
multiple semantics of incompleteness, and come up with
a uniform scheme for generating them. The key obser-
vation is that each semantics is obtained in two steps.
In step one, common to all interpretations, we substi-
tute constant values for nulls. Step two, that essentially
defines the semantics, is given by a relation R showing
how the result of the substitution can be modified. For
instance, under the open-world semantics, tuples can
be added; under the strictest form of the closed-world
semantics, nothing can be changed at all.

Having done that, we prove that under some very mild
condition, monotonicity of a query Q corresponds to
preservation under homomorphisms that respect rela-
tion R: that is, if Q is true in D (say, for a Boolean
Q), and we have a homomorphism respecting R from
D to D1, then Q is true in D1. Instances of such ho-
momorphisms are the usual homomorphisms, under the
open-world semantics, or onto homomorphisms, under
(a version of) the closed-world semantics.

Preservation and syntactic classes We have so far
established that näıve evaluation is captured by preser-
vation under a class of homomorphisms. Such preserva-
tion results are classical in mathematical logic [11], and
thus we would like to use them to find syntactic classes
of queries for which näıve evaluation works.

One immediate difficulty is that classical logic results
are proved for infinite structures, and they tend to fail in
the finite [4, 32], or are notoriously hard to establish (a
well-known example is Rossman’s theorem [30], which
answered a question opened for many years). Thus,
we are in general happy with good sufficient conditions
for preservation, especially if they are given by nice
syntactic classes corresponding to meaningful classes of
database queries. The key ideas behind the classes we
use are restrictions to positive formulae (admitting @
but disallowing  ) or existential positive formulae (i.e.,
unions of conjunctive queries), and extending some of
them with universally quantified guarded formulae.
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This gives us a good understanding of what is required
to make näıve evaluation work. In Sections 3–5 we carry
out the program outlined above and obtain classes of
FO queries for which näıve evaluation works under stan-
dard relational semantics. Also, to keep notations sim-
ple initially, in these early sections we deal with Boolean
queries (all results extend to arbitrary queries easily, as
we show in Section 9).

In Sections 6–8 we offer a more detailed study of other
relational semantics of incompleteness. We look at
Codd databases, that model SQL’s null features, and
discuss lifting semantic orderings from Codd databases
to those with näıve nulls, resulting in new incomplete-
ness semantics. We show how our methodology easily
produces classes of FO queries which can be evaluated
näıvely under those semantics. We look at minimal se-
mantics that find their justification in the study of var-
ious forms of the closed world assumption. For them,
the notion of a core of an instance [17] plays a crucial
role: for example, näıve evaluation for previously con-
sidered classes of queries is only guaranteed if they are
evaluated over cores.

Organization In Section 2, we give the main defini-
tions. In Section 3, we explain the connection between
näıve evaluation and monotonicity, and in Section 4
we relate monotonicity to preservation. In Section 5
we deal with Boolean FO queries and provide sufficient
conditions for näıve evaluation. In Section 6, we study
the Codd semantics of incompleteness, and in Section
7 we lift it to näıve databases, resulting in a new class
of semantics, for which we study näıve evaluation. In
Section 8, we carry out a similar program for minimal
semantics. Section 9 shows how to lift all the results for
Boolean queries to queries with free variables. Com-
plete proofs of all the results are in the appendix.

2. Preliminaries

Incomplete databases We begin with some standard
definitions. In incomplete databases there are two types
of values: constants and nulls. The set of constants is
denoted by Const and the set of nulls by Null. These are
countably infinite sets. Nulls will normally be denoted
by K, sometimes with sub- or superscripts.

A relational schema (vocabulary) is a set of relation
names with associated arities. An incomplete relational
instance D assigns to each k-ary relation symbol S from
the vocabulary a k-ary relation over Const Y Null, i.e.,
a finite subset of pConst Y Nullqk. Such incomplete re-
lational instances are referred to as näıve databases [1,
19]; note that a null K P Null can appear multiple times
in such an instance. If each null K P Null appears at
most once, we speak of Codd databases. If we talk
about single relations, it is common to refer to them
as näıve tables and Codd tables.

We write ConstpDq and NullpDq for the sets of constants
and nulls that occur in a database D. The active do-

main of D is adompDq “ ConstpDq Y NullpDq. A com-
plete database D has no nulls, i.e., adompDq Ď Const.

Homomorphisms They are crucial for us in two con-
texts: to define the semantics of incomplete databases,
and to define the notion of preservation of logical for-
mulae as a condition for näıve evaluation to work.

Given two relational structures D and D1, a homomor-
phism h : D Ñ D1 is a map from the active domain of
D to the active domain of D1 so that for every relation
symbol S, if a tuple ū is in relation S in D, then the
tuple hpūq is in the relation S in D1.

In database literature, it is common to require that ho-
momorphisms preserve elements of Const. That is, the
map h is also required to satisfy hpcq “ c for every
c P Const. Of course this can easily be cast as a special
instance of the general notion, simply by extending the
vocabulary with a constant symbol for each c P Const.
To make clear what our assumptions are, whenever
there is any ambiguity, we shall talk about database
homomorphisms if they are the identity on Const.

Given a homomorphism h and a database D, by hpDq
we mean the image of D, i.e., the set of all tuples
Sphpūqq where Spūq is in D. If h : D Ñ D1 is a ho-
momorphism, then hpDq is a subinstance of D1.

Semantics and valuations We shall see many possi-
ble semantics for incomplete information, but first we
review two common ones: open-world and closed-world
semantics. We need the notion of a valuation, which
assigns a constant to each null. That is, a valuation is
a database homomorphism whose values are in Const.

In general, the semantics rrDss of an incomplete
database is a set of complete databases D1. The seman-
tics under the closed-world assumption (or cwa seman-
tics) is defined as

rrDss
cwa

“ thpDq | h is a valuationu.

The semantics under the open-world assumption (or
owa semantics) is defined as

rrDss
owa

“

"

D1

ˇ

ˇ

ˇ

ˇ

D1 is complete and
there is a valuation h : D Ñ D1

*

.

Alternatively, D1 P rrDss
owa

iff D1 is complete and con-
tains a database D2 P rrDss

cwa
.

As an example, consider D0 “ tpK,K1q, pK1,Kqu.
Then rrD0sscwa

contains all instances tpc, c1q, pc1, cqu with
c, c1 P Const, and rrD0ssowa

has all instances containing
tpc, c1q, pc1, cqu, for c, c1 P Const.

Certain answers and näıve evaluation Given an
incomplete database D, a semantics of incompleteness
rr ss, and a query Q, one normally computes certain an-
swers under the rr ss semantics:

certainpQ,Dq “
č

tQpRq | R P rrDssu,

i.e., answers that are true regardless of the interpre-
tation of nulls. Even for first-order queries, the stan-
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dard semantics are problematic in general: finding cer-
tain answers under the owa semantics may be undecid-
able, and finding them under the cwa semantics may
be coNP-hard [2].

Näıve evaluation of a query Q refers to a two-step pro-
cedure: first, evaluate Q as if nulls were values (i.e.,
equal iff they are syntactically the same: e.g., K1 “ K1,
K1 ‰ K2, K1 ‰ c for every c P Const), and then elim-
inate tuples with nulls from the result. Note that if Q
is a Boolean query, the second step is unnecessary.

We say that näıve evaluation works for Q (under se-
mantics rr ss) if its result is exactly the certain answers
under rr ss, for every D.

Fact 1. (see [19, 24]) Let Q be a union of conjunctive
queries. Then näıve evaluation works for Q under both
owa and cwa. Moreover, if Q is a Boolean FO query
and näıve evaluation works for Q under owa, then Q
is equivalent to a union of conjunctive queries.

The last equivalence result only works under the owa

semantics. Consider again the instance D0 and a query
Dx, y Dpx, yq^Dpy, xq. The certain answer to this query
is true under both owa and cwa, and indeed it eval-
uates to true näıvely over D0. On the other hand, a
query Q given by @xDy Dpx, yq (not equivalent to a
union of conjunctive queries) evaluated näıvely, returns
true on D0, but under owa its certain answer is false.
However, under cwa, its certain answer is true. This
is not an isolated phenomenon: we will later see that
Q belongs to a class, extending unions of conjunctive
queries, for which näıve evaluation works under cwa

on all databases.

3. Naı̈ve evaluation and monotonicity

The goal of this section is twofold. First we present
a very general setting for talking about incompleteness
and its semantics, as well as orderings representing the
notion of “having more information”. We formulate the
notion of näıve evaluation in this setting, and establish
a result saying that it guarantees to compute certain
answers for queries that are monotone.

Database domains, semantics, and ordering We
now define a simple abstract setting for handling incom-
pleteness. We operate with just four basic concepts: the
set of instances, the set of complete instances, their iso-
morphism, and their semantics.

A database domain is a structure D “ xD, C, rr¨ss,«y,
whereD is a set and C is its subset, rr¨ss is a function from
D to nonempty subsets of C, and « is an equivalence
relation on D. The interpretation is as follows:

‚ D is a set of database objects (e.g., incomplete
relational databases over the same schema),

‚ C is the set of complete objects (e.g., databases
without nulls);

‚ rrxss Ď C is the semantics of an incomplete
database x, i.e., the set of all complete databases
that x can represent; and

‚ « is the structural equivalence relation, that we
need to describe the notion of generic queries; for
instance, for relational databases, D « D1 means
that they are isomorphic as objects, i.e., πpDq “
D1 for some 1-1 mapping on data values in D.

The semantic function of a database domain lets us de-
scribe the degree of incompleteness via an ordering de-
fined as x ĺ y iff rryss Ď rrxss. Indeed, the less we know
about an object, the more other objects it can poten-
tially describe. This setting is reminiscent of the ideas
in programming semantics, where partial functions are
similarly ordered [16], and such orderings have been
used to provide semantics of incompleteness in the past
[9, 23, 24, 26, 31]. Note that ĺ is a preorder, i.e., it is
transitive and reflexive.

There is a natural duality between preorders and se-
mantics: the semantics gives rise to an ordering, but
conversely any preorder ď on D gives a semantics
rrxss

ď
“ ty P C | x ď yu. As the least requirement

for database domains we need to impose that the se-
mantics rr ss and its semantic ordering ĺ agree: that is,
the semantics that the ordering ĺ gives rise to is the
semantics rr ss itself. In that case, we call a database
domain admissible.

Proposition 1. A database domain D is admissible iff
the following conditions hold:

1. c P rrcss for each c P C;

2. if c P rrxss, then rrcss Ď rrxss.

All the usual semantics – including those seen in the
previous section – satisfy these conditions. The first
one says that the semantics of a complete object should
contain at least that object. The second says that by
removing incompleteness from an object, we cannot get
one that denotes more objects.

Certain answers For now we look at Boolean queries
in the most abstract setting (we generalize them later).
Given a database domain D “ xD, C, rr¨ss,«y, a query is
a mapping Q : D Ñ t0, 1u. We use 0 to represent false
and 1 to represent true, as usual. A query is generic if
Qpxq “ Qpyq whenever x « y.

For each x P D, the certain answer (under the semantics
rr ss) is

certainpQ, xq “
ľ

tQpcq | c P rrxssu

We say that näıve evaluation works for Q if Qpxq “
certainpQ, xq for every x.

Representative sets We need this concept in order to
characterize when näıve evaluation works for queries.
Essentially, these sets of objects contain all complete
ones and have a proper representation for each object
x. Formally, a set S Ď D is representative if
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‚ C Ď S (it contains all complete objects);

‚ for each x P S there is y P rrxss such that x « y
(every object in S has a complete object in its
semantics that is isomorphic to it); and

‚ there is a function χS : D Ñ S such that rrxss “
rrχSpxqss for every x P D (each object has a repre-
sentation in S with the identical semantics).

In many examples, we shall have S “ D, but there
will be others (for instance, when the representative set
contains all cores).

We say that a query Q is

‚ monotone if x ĺ y implies Qpxq ď Qpyq;

‚ weakly monotone if y P rrxss implies Qpxq ď Qpyq.

Recall that x ĺ y iff rryss Ď rrxss. Of course Qpxq ď Qpyq
says that if Qpxq is true, then Qpyq is true. Note that in
an admissible domain, y P rrxss implies x ĺ y, so weak
monotonicity is indeed weaker than monotonicity.

Theorem 1. Let D be an admissible database domain,
and Q a generic Boolean query. Assume that D has a
representative set S. Then the following are equivalent:

1. Näıve evaluation works for Q;

2. Q is monotone;

3. Q is weakly monotone and Qpxq “ QpχSpxqq for
every x P D.

This establishes the first promised connection between
monotonicity and näıve evaluation. We remark that
the equivalence 1 Ø 3 does not actually require the
admissibility of D. Extension to non-Boolean queries
will be given in Section 9.

4. Semantics, relations, and homomorphisms

We have seen that getting näıve evaluation to work (at
least for Boolean queries), is equivalent to their mono-
tonicity and, with an extra condition, even to weak
monotonicity. Now we start applying this to concrete
semantics. To do so, we need to understand how differ-
ent semantics can be defined. We explain that most of
them are obtained by composing two types of relations:
one corresponds to applying valuations to nulls, and the
other to specific semantic assumptions such as open or
closed-world.

After that, we show a connection between näıve evalua-
tion and preservation under a class of homomorphisms.

Semantics via relations

We have already seen two concrete relational seman-
tics: the owa semantics rrDss

owa
and the cwa seman-

tics rrDss
cwa

. What is common to them is that they are

all defined in two steps. First, valuations are applied
to nulls (i.e., nulls are replaced by values). Second, the
resulting database may be modified in some way (left
as it was for cwa, or expanded arbitrarily for owa).
Our idea is then to capture this via two relations. We
now define them in the setting of database domains and
then show how they behave in concrete cases. Given a
database domain D “ xD, C, rr ss,«y, we consider a pair
R “ pRval,Rsemq of relations:

The valuation relation Rval Ď D ˆ C between arbi-
trary databases and complete databases that is to-
tal and, when restricted to C, is the identity (i.e.,
Rval X pC ˆ Cq “ tpc, cq | c P Cu).

Intuitively, this corresponds to replacing nulls by con-
stant values in databases. Since in the absence of nulls
there is nothing to substitute them with, the restriction
to C is the identity, and since for every object there must
be some way to replace nulls by constants, the relation
is total.

The semantic relation Rsem is a reflexive binary rela-
tion on C (i.e., Rsem Ď C ˆ C).

Intuitively, this corresponds to the modification step
such as extending complete relations by new tuples.
Since, at the very least, one can do nothing with the
result of the substitution of nulls by constants, such a
relation must be reflexive.

We say that rr ss is given by R if R satisfies the above
conditions, and y P rrxss iff px, yq P Rval ˝Rsem.

Proposition 2. Let D be a database domain whose se-
mantics rr ss is given by a pair R “ pRval,Rsemq. Then
D is admissible iff Rsem is transitive.

When we move to relational databases, owa and cwa

semantics are given by pairs of relations, as follows:

Relation Rval is the same for both: pD,D1q P Rval iff
D1 “ vpDq for some valuation v. We denote this
relation by Rall

val
.

Relation Rsem For cwa, it is the identity; for owa,
it is the subset relation.

Looking at semantics of incompleteness of relational
databases given by pairs R, where Rval is the relation
Rall

val
(e.g., owa and cwa semantics), we can establish

the following.

Proposition 3. If a relational semantics is given by a
pair pRall

val
,Rsemq, then the set of all databases is a rep-

resentative set.
In particular, if Q is a generic Boolean query, then
näıve evaluation works for Q iff Q is weakly monotone.
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Naı̈ve evaluation via homomorphism preservation

We shall now relate weak monotonicity and preservation
under homomorphisms (at least for relational seman-
tics). We now deal with relational databases over con-
stants, and say that a mapping h defined on the active
domain adompDq of D is an Rsem-homomorphism from
D to D1 if phpDq, D1q P Rsem. A query Q is preserved
under Rsem-homomorphisms if for every database D
and every Rsem-homomorphism h : D Ñ D1, if Q is
true in D, then Q is true in D1.

Proposition 4. If a relational semantics is given by a
pair pRall

val
,Rsemq and Q is a generic Boolean query,

then Q is weakly monotone iff it is preserved under
Rsem-homomorphisms.

Putting everything together, we have our first key result
for näıve evaluation over incomplete databases.

Theorem 2. Assume that a relational incompleteness
semantics is given by a pair pRall

val
,Rsemq, and let Q be

a generic Boolean query. Then näıve evaluation works
for Q iff Q is preserved under Rsem-homomorphisms.

Relational semantics: owa, cwa, and wcwa We
now investigate what the notion of preservation under
Rsem-homomorphisms means for the standard owa and
cwa semantics. We also observe that another well stud-
ied preservation notion is closely related to a previously
studied semantics of incompleteness [28], which we call
wcwa, or weak closed-world assumption.

owa semantics In this case Rsem is the subset rela-
tion, and Rsem-homomorphisms are the usual ho-
momorphisms.

cwa semantics In this case Rsem is the identity, and
Rsem-homomorphisms are the strong onto homo-
morphism, i.e., homomorphisms D Ñ hpDq.

One may ask what happens to the usual onto homo-
morphisms, and it turns out that they correspond to
another semantics, considered in [27]. A strong onto
homomorphism h is one mapping D to hpDq, while
an onto homomorphism h : D Ñ D1 is one satisfying
hpadompDqq “ adompD1q. In other words, no elements
except those already present in hpDq can appear in D1.

The semantics considered in [27] (defined in a slightly
different, deductive-database way) boils down to the
following: rrDss

wcwa
consists of all complete D1 such

that there is a valuation h satisfying hpDq Ď D1 and
adompD1q “ adomphpDqq. Here wcwa stands for weak
cwa. This semantics is given by Rall

val
and relation

Rsem containing all pairs pD,D1q so that D Ď D1 and
adompDq “ adompD1q. In other words, D can be ex-
panded only within its active domain.

For this relation Rsem, the notion of preservation under
Rsem-homomorphisms is exactly the notion of preserva-
tion of under onto homomorphisms. Thus, the wcwa

semantics, defined long time ago, also corresponds to a
very natural logical notion of preservation.

Note that rrDss
cwa

Ď rrDss
wcwa

Ď rrDss
owa

, and in gen-
eral inclusions can be strict. For instance, if D “
tpK,K1qu, then tp1, 2qu is in rrDss

cwa
, while tp1, 2q, p2, 1qu

is not in rrDss
cwa

but is in rrDss
wcwa

, since it added a tu-
ple p2, 1q that uses elements already presented tp1, 2qu.

These three semantics lead to semantic orderings ĺ˚,
where ˚ is owa, cwa, or wcwa. They are characterized
via database homomorphisms as follows (the first item
was already shown in [24]).

Proposition 5. D ĺowa D
1 (respectively D ĺcwa D

1 or
D ĺwcwa D1) iff there is a database homomorphism
(respectively, strong onto, or onto database homomor-
phism) from D to D1.

Naı̈ve evaluation and relational semantics

We can finally state the equivalence of näıve evaluation
and homomorphism preservation for three concrete re-
lational semantics:

Corollary 1. Let Q be a Boolean generic relational
query. Then:

‚ Under owa, näıve evaluation works for Q iff Q is
preserved under homomorphisms.

‚ Under cwa, näıve evaluation works for Q iff Q is
preserved under strong onto homomorphisms.

‚ Under wcwa, näıve evaluation works for Q iff Q
is preserved under onto homomorphisms.

5. Naı̈ve evaluation and preservation for FO

queries

Corollary 1 reduces the problem of checking whether
näıve evaluation works to preservation under homomor-
phisms. Thus, for FO queries, we deal with a very well
known notion in logic [11]. However, what we need
is preservation on finite structures, and those notions
are well known to behave differently from their infinite
counterpart. In fact, it was only proved recently by
Rossman that for FO sentences, preservation under ar-
bitrary homomorphisms in the finite is equivalent to be-
ing an existential positive formula [30]. In database lan-
guage, this means being a union of conjunctive queries,
which led to an observation [24] that näıve evaluation
works for a Boolean FO query Q iff Q is equivalent to
a union of conjunctive queries.

The difficulty in establishing preservation results in the
finite is due to losing access to classical logical tools
such as compactness. Rossman’s theorem, for instance,
was a major open problem for many years. To make
matters worse, even some existing infinite preservation
results [21] have holes in their proofs.
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Thus, it is unrealistic for a single paper to settle several
very hard problems concerning preservation results in
the finite (sometimes even without infinite analogs!).
What we shall do instead is settle for classes of queries
that imply preservation, and at the same time are easy
to describe syntactically.

Positive and existential positive formulae Recall
that the class Pos of positive formulae is defined induc-
tively as follows:

‚ true and false are in Pos;

‚ every positive atomic formula (i.e., Rpx̄q or x “ y)
is in Pos;

‚ if ϕ, ψ P Pos, then ϕ_ ψ and ϕ^ ψ are in Pos;

‚ if ϕ is in Pos, then Dxϕ and @xψ are in Pos.

If only Dxϕ remains in the class, we obtain the class DPos
of existential positive formulae. Safe formulae from DPos
are also known as unions of conjunctive queries.

Rossman’s theorem [30] says that an FO sentence ϕ is
preserved under homomorphisms over finite structures
iff ϕ is equivalent to a sentence from DPos. Lyndon’s
theorem [11] says that an FO sentence ϕ is preserved
under onto homomorphisms (over arbitrary structures)
iff ϕ is equivalent to a sentence from Pos. Lyndon’s
theorem fails in the finite [4, 32] but the implication
from being positive to preservation is still valid.

A characterization of preservation under strong onto
homomorphisms was stated in [20, 21], but the syntactic
class had a rather messy definition and was limited to
a single binary relation. Even worse, we discovered a
gap in one of the key lemmas in [21]. So instead we
propose a simple extension of positive formulae that
gives preservation under strong onto homomorphisms.

Extensions with universal guards The fragment
Pos ` @G, whose definition is inspired by [12], extends
Pos with universal guards. It is defined as a fragment
closed under all the formation rules for Pos and, in ad-
dition, the following rule:

‚ for a Pos` @G formula ϕ, a tuple of distinct vari-
ables x̄, and a relation symbol R, the formula
@x̄

`

Rpx̄q Ñ ϕ
˘

is in Pos` @G.

Clearly we have DPos Ĺ Pos Ĺ Pos` @G.

Proposition 6. Sentences in Pos`@G are preserved un-
der strong onto homomorphisms.

We now combine all the previous implications (preserva-
tion Ñ monotonicity Ñ näıve evaluation) to show that
näıve evaluation can work beyond unions of conjunctive
queries under realistic semantic assumptions.

Theorem 3. Let Q be a Boolean FO query. Then:

‚ If Q is in DPos, then näıve evaluation works for Q
under owa.

‚ If Q is in Pos, then näıve evaluation works for Q
under wcwa.

‚ If Q is in Pos ` @G, then näıve evaluation works
for Q under cwa.

Contrast this with the result of [24] saying that under
owa, the first statement is ‘if and only if’, i.e., one can-
not go beyond DPos. Now we see that one can indeed
go well beyond that class, essentially limiting only un-
restricted negation, and still use näıve evaluation.

One immediate question is what happens with non-
Boolean queries. There is a simple answer: all results
extend to non-Boolean queries. We explain how this is
done in Section 9, once we have looked at other seman-
tics (as the lifting will apply to all of them).

6. Codd databases

We now look at a common way of interpreting nulls,
essentially adopted by SQL. Codd databases are just
like näıve databases, except that nulls cannot repeat.
This model actually pre-dates SQL, which adopted es-
sentially this approach, complementing it with the 3-
valued logic for comparisons in queries. We now use
our framework to describe Codd databases and seman-
tic orderings for them.

Consider a function χCodd from näıve to Codd
databases that “forgets” about equalities of nulls, e.g.,:

χCodd

´

1 K K1

K K1 2

¯

“
1 K1 K2

K3 K4 2

Formally, for an instance D with n occurrences of nulls
(not necessarily distinct), χCoddpDq replaces these oc-
currences with fresh nulls K1, . . . ,Kn. It generates se-

mantics rrDssCodd

˚ “ rrχCoddpDqss˚, where ˚ is one of
owa, cwa, or wcwa. One can easily check that for all
of them, the set of Codd databases is a representative
set, with χCodd the witnessing function. Hence:

Corollary 2. If Q is a Boolean generic relational query,
then näıve evaluation works for it under the Codd in-
terpretation and owa (resp., cwa, or wcwa) iff Q is
preserved under homomorphisms (resp., strong onto, or
onto homomorphisms) and QpDq “ QpχCoddpDqq for
every database D.

This explains a well known phenomenon that näıve
evaluation under Codd semantics is problematic for
instances with repeating nulls [1, 19]: the condition
QpDq “ QpχCoddpDqq essentially forbids any equality
comparisons in queries, ruling out operations such as
join and selection.

Semantic orderings of Codd databases We now
look at the orderings ĺowa and ĺcwa (stating the ex-
istence of homomorphisms or strong onto homomor-
phisms) in the context of Codd databases. Note that
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over Codd databases, these are the orderings given by

the semantics rr ss
Codd

owa
and rr ss

Codd

cwa
.

For tuples t “ pa1, . . . , anq and t1 “ pa1
1, . . . , a

1
nq over

ConstYNull, we write t Ď t1 if ai P Const implies a1
i “ ai.

There are two standard ways of lifting Ď to sets:

D ĎH D1 ô @t P D Dt1 P D1 : t Ď t1

D ĎP D1 ô @t1 P D1 Dt P D : t Ď t1 and D ĎH D1

Superscripts H and P stand for Hoare and Plotkin, who
first studied these orderings in the context of the seman-
tics of concurrent processes, cf. [16]. These had been
previously accepted as the correct orderings to represent
the owa and the cwa semantics over Codd databases
[9, 23, 26, 31]. This was partly justified in [24] which
proved that over Codd databases,

‚ ĺowa and ĎH coincide;

‚ D ĺcwa D1 iff D ĎP D1 and relation Ď has a
perfect matching from D1 to D.

So this leads to a question: is there is a “natural” se-
mantic ordering over näıve databases that, when re-
stricted to Codd databases, coincides precisely with
ĎP? In the next section, we present such an order-
ing, and show that it gives rise to a whole new family
of semantics of incompleteness.

7. Powerset semantics

Our search for the answer to the question at the end of
the previous section leads us to consider a new class of
semantics of incompleteness, in which not one, but sev-
eral valuations can be applied to nulls. In other words,
we produce several valuations (hence the name powerset
semantics), and then combine them into a single one.
Notationally, we distinguish them by using

`

| |
˘

brackets.

We start with a semantics defined as follows: D1 P
`

|D|
˘

cwa
iff there exists a set of valuations h1, . . . , hn

on D so that D1 “
Ť

thipDq | 1 ď i ď nu. We call
it the cwa powerset semantics, and denote the result-
ing semantic ordering by Ťcwa (that is, D Ťcwa D

1 iff
`

|D1|
˘

cwa
Ď

`

|D|
˘

cwa
). We explain the intuition behind

this semantics after describing the ordering Ťcwa.

Proposition 7. ‚ D Ťcwa D
1 iff there exists a set of

database homomorphisms h1, . . . , hn defined on D
so that D1 “

Ť

thipDq | 1 ď i ď nu.

‚ Over Codd databases, Ťcwa and ĎP coincide.

Update justification for ĺowa,ĺcwa and Ťcwa

To provide an intuition behind
`

| |
˘

cwa
, we first use

SQL’s interpretation of nulls. Suppose we have two tu-
ples p1, 2q and p2, 2q, and somehow lose the value of the
first attribute. SQL has a unique null value, so both
tuples become pnull, 2q, which thus must represent the

instance tp1, 2q, p2, 2qu even under cwa, since no tuples
were lost, only individual values. Alternatively, one
can view this as an allowed update, under cwa, from
pnull, 2q, that produces a more informative instance
tp1, 2q, p2, 2qu. This idea of using updates to describe
semantic orderings was developed for Codd databases
in [23] to justify orderings ĎH and ĎP. Now we show
how to extend it to näıve databases.

We consider updates D  D1 which are elementary
steps that make D1 more informative than D. We
state which updates are intuitively allowed under dif-
ferent assumptions, and then prove that sequences of
such updates precisely capture information orderings
ĺowa,ĺcwa and Ťcwa.

Let K be a null that occurs in D. By Drv{Ks we mean
D in which v P ConstYNull replaces K everywhere. By
DYRptq we meanD in which tuple t is added to relation
R. Now we consider three types of updates.

‚ cwa update: D cwa Drv{Ks; this update simply
replaces a null K everywhere in D;

‚ copying cwa update: D ։cwa Drv{Ks Y Dfresh,
where Dfresh is a copy of D in which all nulls are
replaced by fresh ones. This is a relaxation of cwa:
we can add tuples in an update, but only in a very
limited way, if they mimic the original database.

‚ owa update: D owa D Y Rptq, which allows, as
is normal under owa, to add a tuple to D.

Each type of updates defines a binary relation on in-
stances. Sequences of such updates give us the seman-
tic orderings. We now state the result and explain its
meaning. We use the superscript ˚ to denote the tran-
sitive closure of a relation.

Theorem 4. ‚ 
˚
cwa

“ ĺcwa;

‚ pcwa Yowaq
˚ “ ĺowa;

‚ pcwa Y։cwaq
˚ “ Ťcwa.

In other words, D is less informative than D1 iff D1 is
obtained from D by a sequence of

‚ cwa updates, under cwa;

‚ cwa and owa updates, under owa;

‚ cwa updates (both usual and copying), under the
`

| |
˘

cwa
semantics.

Abstract framework for powerset semantics

We now cast the powerset semantics in our general
relation-based framework, which enables us to estab-
lish when näıve evaluation works for it. For a set D of
databases and a set C of complete databases, we have a
pair R “ pRval,Rsemq of relations with Rval Ď Dˆ 2C

and Rsem Ď 2C ˆ C. The first relation corresponds to
applying multiple valuations (e.g., relating D with sets
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th1pDq, . . . , hnpDqu). The second relation, in our ex-
ample, is RY “ tpX , Xq | X “

Ť

X u.

The basic conditions on these relations are essentially
the same as we used before for non-powerset semantics
except that we need to deal with relations between C

and 2C . Let idℓ Ď C ˆ 2C contain precisely all pairs
pc, tcuq and idr Ď 2C ˆ C contain precisely all pairs
ptcu, cq for c P C. We say that a semantics rr ss

R
is

given by R if both relations are total, relation Rval

equals idℓ when restricted to C, relation Rsem contains
idr, and D

1 P rrDss
R

iff DpRval ˝RsemqD
1. Previously

we just used identity instead of idℓ and idr.

We say that Rsem is transitive if Rsem ˝ idℓ ˝Rsem Ď
Rsem. Note that RY is transitive. Now we have an
analog of Proposition 2.

Proposition 8. A pair R “ pRval,Rsemq gives rise to
an admissible database domain if Rsem is transitive.

Preservation for powerset semantics

We now apply general-framework results to easily de-
rive a condition for näıve evaluation to work under
`

| |
˘

cwa
and related semantics. We look at complete

databases of vocabulary σ, and a relation Rsem be-
tween a set of such databases and one such database.
An Rsem-homomorphism between D and D1 is a set
th1, . . . , hnu of mappings defined on adompDq so that
th1pDq, . . . , hnpDquRsemD

1 (note that if n “ 1, this
is exactly the notion of Rsem-homomorphisms seen ear-
lier). It is very easy to show that any semantics based on

R
all

val “ tpD, tv1pDq, . . . , vnpDquq | vi’s are valuationsu
has the set of all databases as a representative set.
Thus:

Proposition 9. For every powerset semantics based on
R

all

val, näıve evaluation works for a generic Boolean
query Q iff Q is preserved under Rsem-homomorphisms.

When the relation Rsem is RY, the notion of preserva-
tion underRsem-homomorphisms becomes preservation
under union of strong onto homomorphisms: if Q is true
in D, and h1, . . . , hn are homomorphisms defined on D,
then Q is true in h1pDq Y . . .Y hnpDq.

For previous preservation results among FO queries, we
looked at classes Pos and DPos of positive and existen-
tial positive queries, and the class Pos` @G of positive
queries with universal guards. Now let DPos ` @Gbool

be the class of existential positive queries extended with
Boolean universal guards, i.e., universally guarded for-
mulae which are sentences. More precisely, if x̄ is a tuple
of distinct variables, ϕpȳq is a formula in DPos`@Gbool,
where all ȳ variables are contained in x̄, and R is a rela-
tion symbol, then @x̄ pRpx̄q Ñ ϕpȳqq is in DPos`@Gbool.

Lemma 1. Sentences in DPos`@Gbool are preserved un-
der unions of strong onto homomorphisms.

Combining, we get the following result.

Corollary 3. If Q is a Boolean query from the class
DPos`@Gbool, then näıve evaluation works for Q under
the

`

| |
˘

cwa
semantics.

Semantics similar to
`

| |
˘

cwa
did appear in the literature.

In fact, the closest comes from the study of cwa in the
context of data exchange [5]. It was presented in [18]
(and based in turn on a semantics from [25]), and es-
sentially boils down to the

`

| |
˘

cwa
semantics, but based

on a restricted notion of valuations, namely minimal
valuations. We study those in the next section.

8. Minimal valuations and their semantics

So far all the semantics that we saw allowed arbitrary
valuations to be applied to instances with nulls. These
are not the only possible semantics. In fact [18], based
on earlier work in the area of logic programming [25],
proposed a semantics that is based on minimal valu-
ations. We now introduce it in our context (as [18]
defined it in the context of data exchange).

For now we deal with database homomorphisms, i.e.,
hpcq “ c for each c P Const. We say that a homomor-
phism h defined on an instance D is D-minimal if no
proper subinstance of hpDq is a homomorphic image of
D; equivalently, there is no other homomorphism h1 so
that h1pDq Ĺ hpDq. If h is a valuation, then we talk
about a D-minimal valuation.

The semantics of [18], denoted by
`

|D|
˘min

cwa
, is defined as

"

D1

ˇ

ˇ

ˇ

ˇ

D1 “
Ť

thpDq | h P Hu,
H is a nonempty set of D-minimal valuations.

*

This is a powerset-based semantics given by the pair
R “ pRmin

val ,RYq where R
min

val has all the pairs
pD, thpDq | h P Huq, with H ranging over nonempty
sets of D-minimal valuations.

One can define a non-powerset analog of such a se-
mantics with valuation relation Rmin

val
“ tpD,hpDqq |

h is a D-minimal valuationu. For the identity relation,
playing the role of Rsem for cwa, this gives us

rrDss
min

cwa
“ thpDq | h is a D-minimal valuationu.

Combining Rmin

val
with the subset relation (playing the

role ofRsem for owa) gives us the usual owa semantics.

Thus, we study the rr ss
min

cwa
and

`

| |
˘min

cwa
semantics. We

start by looking at the connection between minimal ho-
momorphisms and the closely related notion of cores.

Minimal homomorphisms and cores Recall that a
core of a structure D (in our case, a relational database
of vocabulary σ) is a substructure D1 Ď D such that D1

is a homomorphic image ofD but no proper subinstance
of D1 is. In other words, there is a homomorphism
h : D Ñ D1 but there is no homomorphism g : D Ñ D2

for D2 Ĺ D1. It is known that a core is unique up
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to isomorphism, so we can talk of the core of D, and
denote it by corepDq. A structure is called a core if
D “ corepDq. The cores are commonly used over graphs
[17] but here we shall use them with the database notion
of homomorphism that preserves constants (in which
case all results about cores remain true [14]).

Even if minimal homomorphisms are related to cores,
their images cannot be described precisely in terms of
cores. We now strengthen results given in several exam-
ples in [18] (where they used constants in an essential
way).

Proposition 10. If h is D-minimal, then hpDq is a core
and hpDq “ hpcorepDqq. However, there exists a core
D and a homomorphism h defined on it so that hpDq
is a core, but h is not D-minimal. In fact this is true
if both D and hpDq contain only nulls, and if D is a
graph.

This result also shows that rrDss
min

cwa
need not be the

same as rrcorepDqss
cwa

. Nevertheless, cores do play a
crucial role in the study of minimal semantics.

Theorem 5. For the semantics rr ssmin

cwa
and

`

| |
˘min

cwa
, the

set of cores is a representative set.
This remains true for every semantics given by pairs
R “ pRmin

val
,Rsemq or R “ pRmin

val ,Rsemq.

Immediately from here we obtain:

Corollary 4. Let Q be a generic Boolean relational
query. Then näıve evaluation works for Q under the

rr ssmin

cwa
or the

`

| |
˘min

cwa
semantics iff Q is weakly mono-

tone (under the corresponding semantics), and QpDq “
QpcorepDqq for every D.

Hence, the crucial new condition for minimal semantics
is that Q cannot distinguish a database from its core.

Preservation and näıve evaluation We now relate
weak monotonicity to homomorphism preservation. For
this, we consider minimality for instances D over Const.
For such an instance, and a homomorphism h, we let
fixph,Dq “ tc P ConstpDq | hpcq “ cu. Then h is
called D-minimal if there is no homomorphism g with
fixph,Dq Ď fixpg,Dq and gpDq Ĺ hpDq. Note that
database homomorphisms fix precisely the set of con-
stants in D, so the first condition was not necessary.

Given a Boolean query Q, we say that it is preserved
under minimal homomorphisms if, whenever D is a
database over Const and h is a D-minimal homomor-
phism, then QpDq “ 1 implies QphpDqq “ 1. Like-
wise, Q is preserved under unions of minimal homo-
morphisms, if for any nonempty set H of D-minimal ho-
momorphisms such that fixph,Dq “ fixpg,Dq whenever
f, g P H, we have that QpDq “ 1 implies Qp

Ť

thpDq |
h P Huq “ 1.

Proposition 11. Let Q be a Boolean generic query.

Then it is weakly monotone under rr ss
min

cwa
(respectively,

under
`

| |
˘min

cwa
) iff it is preserved under minimal homo-

morphisms (respectively, their unions).

Combining this with Corollary 4 and results in Section
5, we obtain:

Corollary 5. Let Q be a Boolean FO query such that
QpDq “ QpcorepDqq for all D.

‚ If Q is in Pos ` @G, then näıve evaluation works

for Q under the rr ss
min

cwa
semantics.

‚ If Q is in DPos ` @Gbool, then näıve evaluation

works for Q under the
`

| |
˘min

cwa
semantics.

The precondition QpDq “ QpcorepDqq is essential for
the result to work. To see this, consider an incomplete
instance D “ tpK,Kq, pK,K1qu. Every D-minimal val-
uation h must satisfy hpKq “ hpK1q, i.e., their images
are precisely the instances tpc, cqu for c P Const. Hence,

under rr ss
min

cwa
, the certain answer to @x Dpx, xq is true,

while evaluating this formula on D produces false. The
reason näıve evaluation does not return certain answers
is that QpDq ‰ QpcorepDqq, since corepDq “ tpK,Kqu.

Thus, the extra condition is essential, but it is not fully
satisfactory, as we do not know how to check for this
condition in relevant FO fragments. We present two
ways to deal with this issue.

First, a corollary of our results is that if we only need
to compute queries on cores, then the condition is not
necessary. More precisely, we say that näıve evaluation
works for Q over a class K of instances, under a given
semantics, if for each D P K, certain answer to Q over
D is the same as QpDq. Then

Corollary 6. Let Q be a Boolean FO query.

‚ If Q is in Pos ` @G, then näıve evaluation works

for Q over cores under the rr ss
min

cwa
semantics.

‚ If Q is in DPos ` @Gbool, then näıve evaluation

works for Q over cores under the
`

| |
˘min

cwa
semantics.

A second corollary states that for the above classes of
queries, even without the extra condition we can con-
clude that if näıve evaluation returns true, then so will
the certain answer. In other words, we can run Q
näıvely on D, not on corepDq. If the result is true,
then the certain answer is true; but if the result is false,
we cannot conclude anything. That is, näıve evaluation
provides an approximation of certain answers.

Corollary 7. Let Q be a Boolean FO query. If Q is
in Pos ` @G (or in DPos ` @Gbool), and QpDq “ 1,

then the certain answer to Q over D under the rr ss
min

cwa

(respectively
`

| |
˘min

cwa
) semantics is true.

The table in Figure 1 summarizes results on näıve eval-
uation for fragments of FO queries. The first line of
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Semantics symbol Näıve evaluation works for
open world rr ss

owa
DPos “ unions of CQs

weak closed-world rr ss
wcwa

Pos

closed world: rr ss
cwa

Pos` @G

powerset closed-world
`

| |
˘

cwa
DPos` @Gbool

minimal closed-world rr ss
min

cwa
Pos` @G, over cores; result always contained in certain answers

minimal, powerset closed-world
`

| |
˘min

cwa
DPos` @Gbool, over cores; result always contained in certain answers

Figure 1: Summary of näıve evaluation results for FO queries

course is the classical result of [19], proved to be optimal
in [24]. Other results were shown using the methodol-
ogy established here, that reduced näıve evaluation to
monotonicity and preservation under homomorphisms.

9. Lifting results to nonBoolean queries

So far our results dealt with Boolean queries. Now we
show how to lift them to the setting of arbitrary k-
ary relational queries. The basic idea is to consider
database domains where objects are pairs consisting of a
database and a k-tuple of constants. This turns queries
into Boolean, and we apply our results. This requires
more technical development than seems to be implied
by the simple idea, but it can be carried out for all the
semantics. We sketch now how the extension works.

A k-ary query Q maps a database D to a subset of
adompDqk. It is generic if, for each one-to-one map f :
adompDq Ñ ConstYNull, we have QpfpDqq “ fpQpDqq.

Given a semantics rr ss, certain answers to Q are defined
as certainpQ,Dq “

Ş

tQpD1q | D1 P rrDssu. Näıve evalu-
ation works for Q if certainpQ,Dq is precisely the set of
tuples in QpDq that do not have nulls. We refer to this

set (i.e., QpDq X Const
k) as QCpDq.

As before, Q is monotone if D ĺ D1 implies QCpDq Ď
QCpD1q for the semantic ordering ĺ, and Q is weakly
monotone if the above is true whenever D1 P rrDss.

A representative set S is called strong if for each finite
set C Ă Const and each instance D there is an isomor-
phic instance D1 P rrDss such that both the isomorphism
D Ñ D1 and its inverse are the identity on C. If we
deal with semantics given by pairs R “ pRval,Rsemq,
we say that a k-ary query is weakly preserved under a
class of Rsem-homomorphisms if for every database D,
a k-tuple t of constants, and an Rsem-homomorphism
h : D Ñ D1 from the class that is the identity on t, the
condition t P QpDq implies t P QpD1q. Note that for
Boolean queries this is the same as preservation under
Rsem-homomorphisms.

Then the main connections continue to hold.

Theorem 6. Let D be an admissible relational database
domain, and Q a k-ary generic query. If D has a strong
representative set, then the following are equivalent:

1. Näıve evaluation works for Q;

2. Q is monotone;

3. Q is weakly monotone and QCpxq “ QCpχSpxqq for
every x P D.

Furthermore, for semantics given by pRall

val
,Rsemq, näıve

evaluation works for Q iff Q is weakly preserved un-
der Rsem-homomorphisms, and for semantics given by
pRmin

val
,Rsemq, näıve evaluation works for Q iff Q is

weakly preserved under minimal Rsem-homomorphisms
and QCpDq “ QCpcorepDqq for each D.

One can then check that for all the classes of FO for-
mulae considered here, preservation results hold when
extended to formulae with free variables. In addition,
one can develop similar transfer technique for powerset
semantics (this is done in the appendix) and conclude
that all the results remain true for non-Boolean queries.

Theorem 7. All the results from Theorem 3 and Corol-
laries 3 and 5 remain true for k-ary FO queries.

10. Conclusions

We now present the main directions in which we would
like to extend this work.

Other data models So far we looked at either a very
general setting, which can subsume practically every
data model, or at relational databases. We would like to
extend our results to XML. At this time, we have a good
understanding of the semantics of incomplete XML doc-
uments and the complexity of answering queries over
them [3, 8, 15]. That will be the starting point of our in-
vestigation of classes of XML queries which admit näıve
evaluation under various semantics.

Other languages When we dealt with relations, we
studied FO as the main query language. However, our
structural results are in no way limited to FO. In fact it
is known that näıve evaluation works for datalog (with-
out negation). Given the toolkit of this paper, we would
like to consider queries in languages that go beyond FO
and admit näıve evaluation.

Preservation results There are open questions re-
lated to preservation results in both finite and infinite
model theory. We already mentioned that the results
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of [21] about preservation under strong onto homomor-
phisms are limited to a simple vocabulary, and even
then appear to be problematic. We would like to estab-
lish a precise characterization in the infinite case, and
see whether it holds or fails in the finite. We also want
to look at preservation on restricted classes of struc-
tures, following [7] which looked at bounded treewidth.
We note in passing that [7] does not apply directly to
the study of XML since models of documents with data
generate relational structures of arbitrary treewidth.

The impact of constraints It is well known that con-
straints (e.g., keys and foreign keys) have a huge impact
on the complexity of finding certain answers [10, 33]. It
is thus natural to ask how they affect good classes we
described in this paper. Constraints appear in another
model of incompleteness – conditional tables [19] – that
in general have higher complexity of query evaluation
[2] but are nonetheless useful in several applications [6].

Applications In applications such as data integra-
tion and exchange, finding certain answers is the stan-
dard query answering semantics [5, 22]. In fact one of
our semantics came from data exchange literature [18].
We would like to see whether our techniques help find
classes of queries for which query answering becomes
easy in exchange and integration scenarios.

Bringing back the infinite We have used a number
of results from infinite model theory to get our syn-
tactic classes. Another way of appealing to logic over
infinite structures to handle incompleteness was advo-
cated by Reiter [27, 29] three decades ago. In that ap-
proach, an incomplete database D is viewed as a logical
theory TD, and finding certain answers to Q amounts
to checking whether TD entails Q. This is in general
an undecidable problem, and entailment in the finite is
known to be more problematic than unrestricted one.
This is reminiscent of the situation with homomorphism
preservation results, but we saw that we can use infinite
results to obtain useful sufficient conditions. Motivated
by this, we would like to revisit Reiter’s proof-theoretic
approach and connect it with our semantic approach.
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APPENDIX

Proofs

We shall use the following notations throughout the appendix.

If D “ xD, C, rr¨ss,«y is a database domain, Q : D Ñ t0, 1u is a query, and R Ď D ˆ D, we say that Q is preserved
under R if Qpxq “ 1 implies Qpyq “ 1 whenever px, yq P R. Notice that monotonicity corresponds to preservation
under the semantic ordering ĺ, and weak monotonicity corresponds to preservation under the graph of rr ss. If D1 is
a subset of D, with C Ď D1, we say that Q is monotone (weakly monotone, preserved under R, respectively) over D1

if Q is monotone (weakly monotone, preserved under R, respectively) when restricted to D1.

We say that D is a relational database domain if D “ xD, C, rr¨ss,«y, where D is the set of (possibly incomplete)
relational instances, C is the set of complete relational instances and « is the isomorphism relation between instances
(i.e. D « D1 iff there exists an injective mapping π on adompDq such that πpDq “ D1).

If D is a relational instance, h is a mapping h : adompDq Ñ Const Y Null and K Ď Const, we say that h is the
identity on K if hpcq “ c for all c P adompDq XK.

Proofs for Section 3

Proof of Proposition 1

Let D “ xD, C, rr¨ss,«y be a database domain and let ĺ be the preorder obtained from it. Recall that by definition
x ĺ y iff rryss Ď rrxss and so rrxss

ĺ
“ tc P C | x ĺ cu, i.e., rrxss

ĺ
“ tc P C | rrcss Ď rrxssu. Now we want to show that D

is admissible, i.e., for all x, rrxss “ rrxss
ĺ
.

So let x P D, c P C such that c P rrxss. By condition 2, rrcss Ď rrxss. But then c P tc P C | rrcss ĺ rrxssu, i.e., c P rrxss
ĺ

and so for all x, rrxss Ď rrxss
ĺ
.

Now let x P D, c P C such that c P rrxss
ĺ
. So rrcss ĺ rrxss. By condition 1, c P rrcss, which yields c P rrxss and so for all

x, rrxss
ĺ
Ď rrxss.

Proof of Theorem 1

Theorem 1 follows immediately from the following two Lemmas

Lemma 2. Let D “ xD, C, rr¨ss,«y be a database domain, and Q a generic Boolean query. Assume that D has a
representative set S, and let D1 be a set S Ď D1 Ď D. Then näıve evaluation works for Q over D1 iff Q is weakly
monotone over D1 and Qpxq “ QpχSpxqq for every x P D1.
In particular if S “ D then näıve evaluation works for Q iff Q is weakly monotone.

Proof. Let Q be a Boolean generic query. Assume that näıve evaluation works for Q over D1; then weak
monotonicity of Q over D1 immediately follows.

For all x P D1, we have rrxss “ rrχSpxqss; moreover näıve evaluation works for Q on both x and χSpxq (because
D1 Ě S). Then we have Qpxq “ certainpQ, xq “ certainpQ,χSpxqq “ QpχSpxqq.

Conversely assume that Q is weakly monotone over D1 and Qpxq “ QpχSpxqq for all x P D1. Let x P D1. By weak
monotonicity over D1 (and because D1 Ě S Ě C) we have Qpxq ď certainpQ, xq. To prove the converse, assume
certainpQ, xq “ 1. Recall that rrxss “ rrχSpxqss and χSpxq P S. Therefore there exists c P rrxss such that c « χSpxq.
We know Qpcq “ 1; then by genericity QpχSpxqq “ 1 “ Qpxq. Hence certainpQ, xq “ Qpxq for all x P D1.

We have thus proved that näıve evaluation works for Q over D1 if and only if Q is weakly monotone over D1 and
Qpxq “ QpχSpxqq for all x P D1. Now if in particular S “ D we can always assume χS to be the identity mapping
D Ñ D. In this case then näıve evaluation works for Q if and only if Q is weakly monotone.

Lemma 3. Let D “ xD, C, rr¨ss,«y be an admissible database domain, and Q a generic query. Assume that D has a
representative set S, and let D1 be a set S Ď D1 Ď D. Then näıve evaluation works for Q over D1 iff Q is monotone
over D1.
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Proof. Assume that näıve evaluation works Q over D1, and consider objects x, y P D1 such that x ĺ y and
Qpxq “ 1. We prove Qpyq “ 1. We have Qpxq “ certainpQ, xq “ 1 and rryss Ď rrxss, therefore certainpQ, yq “ Qpyq “ 1.

Conversely assume that Q is monotone over D1. Let x be in D1, we prove that Qpxq “ certainpQ, xq. Let c P rrxss.
Recall that D1 Ě S Ě C therefore c P D1. Since the database domain is admissible, x ĺ c. Then the monotonicity of
Q implies Qpxq ď Qpcq, and therefore Qpxq ď certainpQ, xq.

For the converse implication assume certainpQ, xq “ 1. Recall that rrxss “ rrχSpxqss, therefore certainpQ,χSpxqq “ 1.
But χSpxq P S, then there exists c1 P rrχSpxqss such that c1 « χSpxq. We know Qpc1q “ 1, then by genericity,
QpχSpxqq “ 1. Now since χS preserves the semantics, χSpxq ĺ x. Observe also that χSpxq P D

1 ( because D1 Ě S),
then we can use monotonicity of Q over D1, and conclude that Qpxq “ 1. This shows Qpxq “ certainpQ, xq – i. e.
näıve evaluation works for Q over D1 – and concludes the proof of the lemma.

Proofs for Section 4

Proof of Proposition 2

Assume first that Rsem is transitive, and take arbitrary x P D and c P C. We have

1. c P rrcss.

Indeed we know pc, cq P Rval and pc, cq P Rsem, then c P rrcss.

2. c P rrxss implies rrcss Ď rrxss.

Indeed if c P rrxss then there exists y P C such that px, yq P Rval and py, cq P Rsem. Moreover if c1 P rrcss
then pc, c1q P Rsem (because Rval is the identity when restricted to C). By transitivity of Rsem we then have
py, c1q P Rsem. This implies px, c1q P Rval ˝Rsem, and therefore c1 P rrxss.

By Proposition 1, D is admissible.

Conversely assume that D is admissible, and assume there exist pc, dq and pd, eq in Rsem. Now recall that pc, cq and
pd, dq are in Rval, thus pc, dq and pd, eq are in Rval ˝ Rsem, i.e. d P rrcss and e P rrdss. By item 2. of Proposition 1
e P rrcss. Then pc, eq P Rsem. This proves that Rsem is transitive.

Strong representative sets

We define a stronger notion of representative set over relational database domains. If D “ xD, C, rr¨ss,«y is a relational
database domain, S Ď D is a strong representative set if the following three conditions are satisfied:

1. C Ď S

2. for each D P S, and for each finite set of constants K Ď Const there exists D1 P rrDss and a bijection i :
adompDq Ñ adompD1q such that both i and i´ are the identity on K and ipDq “ D1.

3. There exists a function χS : D Ñ S such that rrDss “ rrχSpDqss for every D P D.

Lemma 4. If a relational semantics is given by a pair pRall

val
,Rsemq, the set of all relational instances is a strong

representative set.

Proof. Clearly the set of all relational instances contains the complete ones. Moreover given a finite set of
constants K and a (possibly incomplete) relational instance D, let v be an injective valuation v : adompDq Ñ
ConstzK. It is easy to check that v is a bijection adompDq Ñ adompvpDqq such that both v and v´ are the
identity on K. Clearly pD, vpDqq P Rall

val
. Moreover since Rsem is reflexive, pvpDq, vpDqq P Rsem. As a consequence

vpDq P rrDss.

The function χD is the identity.

Proof of Proposition 3

Proposition 3 immediately follows from Lemma 4 and Lemma 2, since any strong representative set is also a repre-
sentative set.
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Weak monotonicity and Rsemhomomorphisms

If D “ xD, C, rr¨ss,«y is a database domain, R and R1 are subsets of D ˆ C, we say that R1 is «-equivalent to R if
the following two conditions are satisfied:

1. if px, cq P R then there exists x1 P D such that x1 « x and px1, cq P R1;

2. if px, cq P R1 then there exists x1 P D such that x1 « x and px1, cq P R.

We say that R1 is strongly «-equivalent to R if moreover x1 in the definition of «-equivalence only depends on x (an
not on c).

Lemma 5. Let D “ xD, C, rr¨ss,«y be an arbitrary database domain and let R1 Ď D ˆ C be «-equivalent to the graph
of rr ss. Then a generic Boolean query over D is weakly monotone iff it is preserved under R1.

Proof. Assume that Q is a generic Boolean query over D, and Q is weakly monotone. Consider a pair px, cq P R1

and assume that Qpxq “ 1. By the fact that R1 is «-equivalent to the graph of rr ss, there exists y P D, such that
y « x and c P rryss. Since Q is generic Qpyq “ 1, and since Q is weakly monotone Qpcq “ 1. This proves that Q is
preserved under R1. The converse is proved symmetrically.

When the semantics is given by a pair pRval,Rsemq, we have:

Lemma 6. Let D “ xD, C, rr¨ss,«y be a database domain whose semantics rr ss is given by a pair pRval,Rsemq and let
R1 Ď D ˆ C be «-equivalent to Rval, then R1 ˝ Rsem is «-equivalent to the graph of rr ss (i.e. to Rval ˝ Rsem). In
particular a generic Boolean query over D is weakly monotone iff it preserved under R1 ˝Rsem

Proof. Assume that px, cq P Rval ˝Rsem. Then there exists e P C such that px, eq P Rval and pe, cq P Rsem. We
know that there exists x1 P D such that x1 « x and px1, eq P R1. Then px1, cq P R1 ˝Rsem. Symmetrically we prove
that for all px1, cq P R1 ˝Rsem there exists x P D such that x1 « x and such that px, cq P Rval ˝Rsem. We conclude
by Lemma 5.

If M is a function associating to each complete relational instance D a class of mappings adompDq Ñ Const, we say
that M is a mapping type.
If M is a mapping type, we denote by RM the set of pairs tpD,hpDqq | D is a complete relational instance and h P
MpDqu. Given two complete relational instances D and D1, an M-Rsem-homomorphism from D to D1 is an Rsem-
homomorphism h from D to D1 such that h PMpDq.

The following claim follows directly from definitions:

Claim 1. If M is a mapping type then pD,D1q P RM ˝Rsem iff there exists an M-Rsem-homomorphism from D to
D1

By combining the above claim with Lemma 6 we have:

Corollary 8. Let D “ xD, C, rr¨ss,«y be a relational database domain whose semantics rr ss is given by a pair
pRval,Rsemq and let M be a mapping type. Assume that RM is «-equivalent to Rval. Then a generic Boolean
query is weakly monotone iff it preserved under M-Rsem-homomorphisms.

Proof of Proposition 4

We consider the mapping type M “ all which associates to each complete relational instance D the set of all
mappings adompDq Ñ Const, and we prove the following lemma:

Lemma 7. If M “ all and « is relational isomorphism, then RM is strongly «-equivalent to Rall

val
.

Proof. Let D be a (possibly incomplete) relational instance. We prove that there exists a complete relational
instance E such that 1) D « E and 2) pD,D1q P Rall

val
implies pE,D1q P RM.

The instance E is obtained from D by replacing nulls of D with new distinct constants not occurring in ConstpDq.
Clearly there exists an isomorphism i : E Ñ D, thus E « D. Now let pD,D1q P Rall

val
. Then D1 “ vpDq for some

valuation v. Let h “ v ˝ i; then hpEq “ vpDq “ D1 and hence pE,D1q P RM (because M “ all). This prove 1) and
2) above.
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Conversely let E be a complete relational instance. We prove that there exists a relational instance D such that 1)
D « E and 2) pE,D1q P RM implies pD,D1q P Rall

val
.

The instance D is obtained from E by replacing each element of adompEq with a new distinct null. Clearly this
replacement defines an isomorphism i : D Ñ E and therefore E « D. Now let pE,D1q P RM. We know that
D1 “ hpEq where h is an arbitrary mapping adompEq Ñ Const. Let v “ h ˝ i. Then v is a valuation on D (because
adompDq contains no constants, and D1 is complete) and hence pD,D1q P Rall

val
.

Now remark that with M “ all, M-Rsem-homomorphisms coincide with Rsem-homomorphisms. Then the proposi-
tion follows immediately from Corollary 8 with M “ all.

Proof of Proposition 5

Let Rsem belong to one of the following semantic relations

1. OWA: tpD,D1q | D is a complete relational instance and D Ď D1u;

2. CWA: tpD,Dq | D is a complete relational instanceu;

3. WCWA: tpD,D1q | D is a complete relational instance, D Ď D1 and adompDq “ adompD1qu.

Let rr ss be the semantics given by the pair pRall

val
,Rsemq (this semantics is OWA, CWA and WCWA, respectively),

and let ĺrr ss be the ordering arising from rr ss.

From Lemma 4 we know that, for any finite set of constants K, there exists D1 P rrDss and a bijection i : adompD1q Ñ
adompDq which is the identity on K and such that ipD1q “ D.

Assume D and D1 are two relational instances and D ĺrr ss D
1. Let E P rrD1ss be an instance having a bijection

i : adompEq Ñ adompD1q which is the identity on ConstpDq and such that ipEq “ D1. We know E P rrDss therefore
pE,Dq P Rall

val
˝Rsem, or in other words there exists a valuation h : adompDq Ñ Const such that phpDq, Eq P Rsem.

Let h1 “ i ˝ h, we prove that h1pDq and D1 are in the same relationship as hpDq and E

1. Under OWA: hpDq Ď E therefore h1pDq “ iphpDqq Ď ipEq “ D1

2. Under CWA: hpDq “ E therefore h1pDq “ iphpDqq “ ipEq “ D1

3. Under WCWA: hpDq Ď E and adomphpDqq “ adompEq, therefore h1pDq “ iphpDqq Ď ipEq “ D1 and
adomph1pDqq “ ipadomphpDqqq “ ipadompEqq “ adompD1q.

Moreover h1 is the identity on ConstpDq, because both h and i are, and h1pDq and D1 are related according to Rsem.

This implies that:

1. Under OWA h1 is a database homomorphism D Ñ D1

2. Under CWA h1 is a database strong onto homomorphism D Ñ D1

3. Under WCWA h1 is a database onto homomorphism D Ñ D1.

Conversely assume that there exists a database ˚-homomorphism D Ñ D1 where ˚ is

1. ”arbitrary”, if rr ss “ owa,

2. ”strong onto” rr ss “ cwa,

3. ”onto” if rr ss “ wcwa

Remark that the existence of a database ˚-homomorphism is a transitive relation, i.e. if there exists a database
˚-homomorphism from D to D1 and a database ˚-homomorphism from D1 to D2, then there exists a database
˚-homomorphism from D to D2.

Remark also that rrD1ss is precisely the set of complete relational instance E such that there exists a database
˚-homomorphism from D1 to E.

Then, by transitivity, there exists a database ˚-homomorphism from D to each E P rrD1ss. Hence E P rrDss for all
E P rrD1ss. In other words, rrD1ss Ď rrDss, and therefore D ĺrr ss D

1.
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Proofs for Section 5

We prove that sentences in given FO fragments are preserved under (strong onto) homomorphisms by structural
induction. To this end we need first to define what it means for a formula with free variables to be preserved under
(strong onto) homomorphisms.

If Q is a k-ary relational query over complete instances (i.e. a mapping associating to each complete relational
instance D a k-ary relation over adompDq), we say that Q is preserved under (strong onto) homomorphisms if
whenever h is a (strong onto) homomorphism from an instanceD to an instance D1, and ā P QpDq then hpāq P QpD1q.

Proof of Proposition 6

Proposition 6 immediately follows from the lemma below:

Lemma 8. Formulae in Pos` @G are preserved under strong onto homomorphisms.

Proof. We proceed by structural induction on the formula ϕ.

If ϕ “false or ϕ “true, it is clearly preserved under strong onto homomorphisms.

Assume now that ϕpx̄q is a positive atom Rpȳq (including the case of an equality atom), where variables occurring in
ȳ are precisely x̄. It follows from the definition of homomorphism that if an instance D |ù ϕpāq then hpDq |ù ϕphpāqq,
for every homomorphism h.

It is also easy to verify that if ϕ1 and ϕ2 are preserved under strong onto homomorphisms, so are ϕ1 ^ ϕ2 and
ϕ1 _ ϕ2.

Now assume ϕpx̄q “ Dyϕ1py, x̄q, where ϕ1 is preserved under strong onto homomorphisms. Assume that an instance
D |ù ϕpāq, and that h is a strong onto homomorphism from D to D1 “ hpDq. Then D |ù ϕ1pb, āq for some value b P
adompDq. Since ϕ1 is preserved under strong onto homomorphisms, D1 |ù ϕ1phpbq, hpāqq. Thus D1 |ù Dyϕ1py, hpāqq,
i.e. D1 |ù ϕphpāqq.

Assume now that ϕpx̄q “ @yϕ1py, x̄q. Assume that an instance D |ù ϕpāq and D has a strong onto homomorphism h
to D1. We prove D1 |ù ϕphpāqq. Let b P adompD1q, we have to prove D1 |ù ϕ1pb, hpāqq. Since D1 “ hpDq, there exists
a P adompDq such that hpaq “ b; moreover D |ù ϕ1pa, āq. Now, by the induction hypothesis ϕ1py, x̄q is preserved
under strong onto homomorphism, therefore D1 |ù ϕ1phpaq, hpāqq “ ϕ1pb, hpāqq.

Now consider the case that ϕ “ @x̄pRpx̄q Ñ ϕ1q. Let ȳ be the free variables of ϕ1 not occurring in x̄. So we write
ϕ1 “ ϕ1px̄1, ȳq and ϕ “ ϕpȳq, where variables in x̄1 are from x̄. Assume that an instance D |ù ϕpāq, and D1 “ hpDq,
for some homomorphism h; we prove D1 |ù ϕphpāqq. Assume D1 |ù Rpb̄q for some tuple b̄ over adompD1q; we have
to prove D1 |ù ϕ1pb̄1, hpāqq, where b̄1 is the restriction of b̄ to x̄1. By the fact that h is a strong onto homomorphism
from D to D1, we know that there exists a tuple c̄ such that Rpc̄q holds in D and hpc̄q “ b̄. Thus, since variables x̄
are pairwise distinct, D |ù Rpx̄q in x̄ “ c̄, and therefore D |ù ϕ1pc̄1, āq, where c̄1 is the restriction of c̄ to x̄1.

We now use the induction hypothesis on ϕ1 to conclude that D1 |ù ϕ1pb̄1, hpāqq.

Proofs for Section 6

For an arbitrary relational semantics rr ss, the semantics rr ss
Codd

for an instance D is defined as rrDss
Codd

“
rrχCoddpDqss.

We first prove the following auxiliary lemma:

Lemma 9. Let rr ss be a relational semantics given by a pair pRall

val
,Rsemq, and let Q be a Boolean relational query

such that QpDq “ QpχCoddpDqq for every relational instance D. Then Q is weakly monotone under rr ss
Codd

iff Q is
weakly monotone under rr ss.

Proof. We first show that rrDss
Codd

Ě rrDss, for every relational instance D. In fact there exists a natural
database homomorphism hCodd from χCoddpDq to D such that hCoddpχCoddpDqq “ D. Now assume D1 P rrDss, then
pD,D1q P Rall

val
˝Rsem. Then there exists a valuation h on D such that phpDq, D1q P Rsem. This mapping composed

with hCodd defines a valuation h1 on χCoddpDq such that ph1pχCoddpDqq, D
1q P Rsem. Hence D1 P rrχCoddpDqss “

rrDss
Codd

.
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Assume that Q is weakly monotone under rr ss
Codd

. Since rrDss
Codd

Ě rrDss for all D, we have that Q is also weakly
monotone under rr ss.

Now assume that Q is weakly monotone under rr ss. Then QpχCoddpDqq ď QpD1q for all relational instances D and all

D1 P rrχCoddpDqss. Thus we have QpDq “ QpχCoddpDqq ď QpD1q for all relational instances D and all D1 P rrDssCodd.

Hence Q is weakly monotone under rr ss
Codd

.

Proof of Corollary 2

We prove a more general statement:

Proposition 12. Let rr ss be a relational semantics given by a pair pRall

val
,Rsemq and let Q be a Boolean generic query.

Then näıve evaluation works for Q under rr ssCodd iff Q is preserved under Rsem-homomorphisms and QpDq “
QpχCoddpDqq for every relational instance D.

Proof. First notice that rr ssCodd is given by the pair pRval,Rsemq where pD,D1q P Rval iff pχCoddpDq, D
1q P

Rall

val
. Then the relational database domain having semantics rr ss

Codd
has a representative set consisting of all Codd

databases.

Then, by Theorem 1, one has that näıve evaluation works for Q under rr ss
Codd

iff Q is weakly monotone (under

rr ss
Codd

) and QpDq “ QpχCoddpDqq for all relational instances D.

By Lemma 9, Q is weakly monotone under rr ss
Codd

and QpDq “ QpχCoddpDqq for all D iff Q is weakly monotone
under rr ss and QpDq “ QpχCoddpDqq for all D.

Moreover by Proposition 4, Q is weakly monotone under rr ss iff it is preserved under Rsem-homomorphisms. This
concludes the proof of the proposition.

Proofs for Section 7

Proof of Proposition 7

Let D and D1 be two Codd databases. Assume D Ťcwa D
1, i.e., there exists a set of homomorphisms h1, . . . , hn

from D so that D1 “
Ť

thipDq | 1 ď i ď nu. So for every tuple pa1, . . . , amq P D, there is some 1 ď i ď n such that
phipa1q, . . . , hipamqq P D

1, i.e., pa1, . . . , amq Ď phipa1q, . . . , hipamqq. It follows that D ĎH D1. Similarly for every
tuple pb1, . . . , bmq P D

1, there exists i such that pb1, . . . , bmq P hipDq, which entails that there is pa1, . . . , amq P D
such that for every 1 ď j ď m, hipajq “ bj and so pa1, . . . , amq Ď pb1, . . . , bmq. It follows that D ĎP D1.

Conversely, assume D ĎP D1. For every tuple t P D, consider the set tt1 P D1 | t Ď t1u and observe that it is both
finite and non empty. Now for every tuple t P D, let Ht “ t11, . . . , t

1
k be a finite arbitrarily ordered sequence of tuples

such that for every 1 ď i ď k:

t1i P Ht iff t
1
i P tt

1 P D1 | t Ď t1u

Note that nothing prevents tuples to be repeated in the Ht’s. So without loss of generality we can assume that there
is some m big enough so that for every t P D, Ht “ t11, . . . , t

1
m for some t11, . . . , t

1
m P D

1. For every 1 ď i ď m, we can
now put:

D1
i “ tt

1 P D1 | Dt P D such that Ht “ t11, . . . , t
1
i, . . . , t

1
m and t1 “ t1iu

Observe that by D ĎP D1,
Ť

1ďiďmD1
i “ D1. Now for every 1 ď i ď m let hi : D Ñ Di be as follows. For every

x P Null Y Const occurring as the jth component in a tuple t P D, we define hipxq as the j
th component of the ith

tuple in Ht. As nulls are repeated neither in D nor in D1 and by D ĎP D1, hi is a homomorphism and moreover
hipDq “ Di. It follows that D Ťcwa D

1.

Proof of Theorem 4

We first show pcwa Y։cwaq
˚ “ Ťcwa.

ñ Let D Ťcwa D
1, i.e., there exists a set of homomorphisms h1, . . . , hn from D so that D1 “

Ť

1ďjďn hjpDq. We

takem “ rlogns (i.e., the smallest integerm such that n ď 2m) and we letD0 ։cwa . . .։cwa Dm be a sequence
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of։cwa-updates of length m, where D0 “ D and for every 1 ď i ď m, we haveDi “ Di´1rK{Ks YD
fresh
i´1 , where

K P Null is some arbitrary null. Observe that Dm consists of 2m isomorphic copies of D. Now let tK1, . . . ,Kku
be the set of nulls occurring in D. Then Dm is of the form

Dm “
ď

1ďjď2m

DrKj
1
{K1, . . . ,K

j
k{Kks,

where Kj
i are distinct null values.

We now merge nulls in Dm in order to shrink it to a database Dm`s containing n distinct isomorphic copies of
D as follows. We let Dm cwa . . .cwa Dm`s be a finite sequence of cwa-updates such that

Dm`s “
ď

1ďjďn

DrKj
1
{K1, . . . ,K

j
k{Kks

where for every m ă i ď m` s

Di “ Di´1rK
n
l {K

j
l s for some j ą n and some 1 ď l ď k.

Finally we define one last finite sequence of cwa-updates Dm`s cwa . . .cwa Dm`s`r such that

Dm`s`r “
ď

1ďiďn

hipDq

where for every m` s ă i ď m` s` r

Di “ Di´1rhjpKlq{K
j
l s for some 1 ď j ď n and some 1 ď l ď k.

This proves that Ťcwa is contained in pcwa Y։cwaq
˚.

ð Assume Dpcwa Y ։cwaq
˚D1. Then there is a sequence of nulls K1, . . . ,Kk, a sequence v1, . . . , vk over

ConstYNull, a sequence of uniform renamings of nulls denoted by fresh1, . . . , freshk (i.e., functions from current
nulls to fresh nulls), and a sequence D0  D1  . . . Dk of updates length k such that

‚ D0 “ D,

‚ Dk “ D,

‚ each  update is either cwa or ։cwa;

‚ Di “ Di´1rvi{Kis whenever Di´1 cwa Di, for i ď k,

‚ Di “ Di´1rvi{Kis Y Dfreshi

i´1
whenever Di´1 ։cwa Di, for i ď k. Here, slightly abusing notation, we let

Dfreshi

i´1
stand for Dfresh

i in which nulls were replaced according to freshi.

Out of this sequence of cwa and ։cwa-updates of length k, we will now construct for every 0 ď i ď k and for
every 1 ď j ď 2i a family of homomorphisms hij ’s from D to Di so that Di “

Ť

1ďjď2i
hijpDq, which will entail in

particular that D1 “
Ť

1ďjď2k
hkj pDq, i.e., D Ťcwa D

1 and will achieve the proof of pcwa Y։cwaq
˚ “ Ťcwa.

We construct the hij ’s by induction on i, first ordering them in a binary tree of depth k to ease the construction.

We start by defining h01 and use it to label the root of the tree. We then label the rest of the nodes so that
each homomorphism hij lies at depth i and labels the jth node according to the left to right ordering in the tree.

This will conveniently allow us to define each hij as function of some previously defined homomorphism lying at

depth i´ 1. Now for each hij with i ‰ 0, observe that there is a unique s such that hij is the child of hi´1
s . We

can now proceed to define the hij ’s. We let h01 be the identity and for all i ‰ 0 we define hij as follows:

‚ whenever hij is the first child of its parent hi´1
s , then hij is exactly as hi´1

s , except that it assigns the value

vi to all the preimages of Ki by h
i´1
s ,

‚ whenever hij is the second child of its parent hi´1
s and the ith update is a cwa-update, then h

i
j is exactly

as hi´1
s , except that it assigns the value vi to all the preimages of Ki by h

i´1
s ,

‚ whenever hij is the second child of its parent hi´1
s and the ith update is a ։cwa-update, then for every

K P Null occurring in Di´1, we let hij assign the null freshipKq to all the preimages by hi´1
s of K.

We now show the correctness of the construction. Assume as inductive hypothesis that for all i ă k, the
following property holds:

‚ for every 1 ď j ď 2i, the function hij : D Ñ Di is a homomorphism and moreover Di “
Ť

1ďjď2i
hijpDq.

19



(Notice in particular that the property holds trivially for i “ 0.) We now derive that it also holds for i “ k.
For each 1 ď j ď 2k, the fact that hkj : D Ñ Dk is a homomorphism follows from the fact that its parent hk´1

s :

D Ñ Dk´1 is a homomorphism. Indeed, either hkj is exactly as hk´1
s except that it assigns the value vk to all

the preimages of Kk by hk´1
s . But then hkj pDq “ Dk´1rvk{Kks, which by assumption is a subinstance of Dk. Or

hkj pDq “ Dfreshk

k´1
, which by assumption is also a subinstance of Dk. But given that Dk´1 “

Ť

1ďjď2k´1 h
k´1

j pDq,

this also implies that Dk “
Ť

1ďjď2k
hkj pDq.

Observe now that a 
˚
cwa-update is just a special case of pcwa Y։cwaq

˚-update and so the proof of pcwa Y

։cwaq
˚ “ Ťcwa adapts immediately to a proof of ˚

cwa “ ĺcwa. Showing 
˚
cwa Ě ĺcwa amounts to restricting in

the first direction of the proof to the last type of updates described (which are all cwa-updates), while showing


˚
cwa Ď ĺcwa amounts to restricting in the second direction to the special case where every two nodes lying at the

same depth in the tree actually correspond to one and the same homomorphism.

The fact that powa Y cwaq
˚ “ ĺowa now follows from 

˚
cwa

“ ĺcwa. Consider indeed D ĺowa D
1. So there

is a homomorphism h such that hpDq is a subinstance of D1 and D 
˚
cwa hpDq. But then there is also a sequence

of owa updates hpDqowa . . . owa D
1 and so Dpowa Ycwaq

˚D1. Conversely let Dpowa Ycwaq
˚D1. So

there is a sequence D “ D0  D1  . . .  Dk “ D1, where each i is either owa or cwa. In both cases, we
trivially have a homomorphism from Di to Di`1, for i ă k; in other words, Di ĺowa Di`1. Since ĺowa is transitive,
and contains both owa and cwa, we conclude that it contains powa Ycwaq

˚, finishing the proof.

Proof of Proposition 8

We prove a necessary and sufficient condition for admissibility:

Lemma 10. A powerset semantics given by R “ pRval,Rsemq gives rise to an admissible database domain iff
Rval ˝Rsem ˝ idℓ ˝Rsem ĎRval ˝Rsem. In particular if Rsem is transitive then the database domain is admissible.

Proof. Assume first that Rval ˝Rsem ˝ idℓ ˝Rsem Ď Rval ˝Rsem, and take an arbitrary x P D and c P C. We
have

1. c P rrcss
R
.

Indeed we know pc, tcuq PRval and ptcu, cq PRsem, then c P rrcssR.

2. c P rrxss
R

implies rrcss
R
Ď rrxss

R
.

Indeed if c P rrxss
R

there exists y Ď C such that px, yq P Rval and py, cq P Rsem. Moreover if c1 P rrcss
R

then
pc, c1q P idℓ ˝Rsem (because Rval is idℓ when restricted to C). Hence px, c1q P Rval ˝Rsem ˝ idℓ ˝Rsem. This
implies px, c1q PRval ˝Rsem, and therefore c1 P rrxss

R
.

By Proposition 1, the database domain is admissible.

Conversely assume that the database domain is admissible, and px, cq PRval ˝Rsem ˝ idℓ ˝Rsem, then there exist c1

such that px, c1q PRval ˝Rsem and pc1, cq P idℓ ˝Rsem. Then c
1 P rrxss

R
and c P rrc1ss

R
(because Rval coincides with

idℓ over C). Then by admissibility, c P rrxss
R
, and hence px, cq PRval ˝Rsem.

Additional properties of powerset semantics

We prove some auxiliary results about a special form of powerset semantics.

Given a database domain D with set of objects D and complete objects C, a relation R Ď D ˆ C, and a relation
R Ď D ˆ 2C, we say that R “ PpRq if R consists of precisely the pairs px,X q such that X ‰ H and px, yq P R for
all y P X .

Remark that Rall

val “ PpRall

val
q, and R

min

val “ PpRmin

val
q.

Claim 2. If a powerset semantics rr ss
R

is given by a pair pRval,Rsemq where Rval “ PpRvalq. The following holds:

‚ For all x, x1 P D, if x and x1 are related by Rval to the same set of instances (i.e px, cq P Rval iff px
1, cq P Rval

for all c P C) then rrxss
R
“ rrx1ss

R
.

‚ Rval ˝Rsem Ě Rval
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Proof. The first item immediately follows from the fact that Rval “ PpRvalq.

As for the second item, assume px, cq P Rval then px, tcuq P Rval. Since Rsem contains idr, we have that ptcu, cq P
Rsem. Hence px, cq PRval ˝Rsem.

The following lemma easily follows:

Lemma 11. Let id be the identity relation over complete relational instances. Assume that S is a strong representative
set under a relational semantics given by a pair pRval, idq. Then S is a strong representative set also under any
powerset semantics given by pPpRvalq,Rsemq.

Proof. Because S is a strong representative set under a semantics, S Ě C. Moreover there exists a function
χS : D Ñ S, such that D and χSpDq are related by Rval to precisely the same instances. Then by Claim 2, D and
χSpDq have the same semantics under pPpRvalq,Rsemq.

We further know that for all D P S and for all K Ď Const there exists D1 with pD,D1q P Rval and a bijection
i : adompDq Ñ adompD1q with ipDq “ D1 such that i and i´ are the identity on K. Again by Claim 2, pD,D1q P
PpRvalq ˝Rsem.

This proves that S is a strong representative set under the semantics pPpRvalq,Rsemq.

Weak monotonicity and Rsemhomomorphisms for powerset semantics

We define a notion of «-equivalence for powerset semantics.

If D “ xD, C, rr¨ss,«y is a database domain, R and R
1 are subsets of D ˆ 2C , we say that R1 is «-equivalent to R if

the following two conditions are satisfied:

1. if px,X q PR then there exists x1 P D such that x1 « x and px1,X q PR1;

2. if px,X q PR1 then there exists x1 P D such that x1 « x and px1,X q PR.

When the semantics is given by a pair pRval,Rsemq, we have the exact analog of Lemma 6:

Lemma 12. Let D “ xD, C, rr¨ss,«y be a database domain whose semantics rr ss is given by a pair pRval,Rsemq and
let R1 Ď D ˆ 2C be «-equivalent to Rval, then R

1 ˝Rsem is «-equivalent to the graph of rr ss (i.e. to Rval ˝Rsemq.
In particular a generic Boolean query over D is weakly monotone iff it is preserved under R

1 ˝Rsem.

A powerset mapping type M is a function which associates to each complete relational instance D a class
tH1, . . .Hn, . . . u, where each Hi is a finite non-empty set of mappings adompDq Ñ Const.

IfM is a powerset mapping type, we denote byRM the set of pairs pD, th1pDq, . . . hkpDquq such thatD is a complete
instance and th1, . . . hku PMpDq. Given two complete relational instances D and D1, an M-Rsem-homomorphism
from D to D1 is an Rsem-homomorphism th1, . . . hku from D to D1 which belongs to MpDq.

The following claim follows directly from definitions:

Claim 3. If M is a powerset mapping type then pD,D1q PRM ˝Rsem iff there exists an M-Rsem-homomorphism
from D to D1

By combining the above claim with Lemma 12 we have:

Corollary 9. Let D “ xD, C, rr¨ss,«y be a relational database domain whose semantics rr ss is given by a pair
pRval,Rsemq and let M be a powerset mapping type. Assume that RM is «-equivalent to Rval. Then a generic
Boolean query is weakly monotone iff it preserved under M-Rsem-homomorphisms.

We now consider a special case when Rval “ PpRvalq. If M is a mapping type, we denote as PpMq the powerset
mapping type associating to each instance D the set consisting of all possible finite non-empty H ĎMpDq.

It is easy to check that if M “ PpMq then RM “ PpRMq.

Lemma 13. On an arbitrary database domain, assume R Ď D ˆ C and R “ PpRq. If R1 Ď D ˆ C is strongly
«-equivalent to R, then PpR1q is «-equivalent to R.
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If a powerset relational semantics rr ss is based on Rval “ PpRvalq and RM is strongly «-equivalent to Rval, for
some mapping type M, then a generic Boolean query is weakly monotone iff it is preserved under M-Rsem-
homomorphisms, where M “ PpMq.

Proof. Assume R1 is strongly «-equivalent to R. Let px,X q be in R. Note that px, cq P R for all c P X . Since
R1 is strongly «-equivalent to R, there exists y « x such that py, cq P R1 for all c P X . Thus py,X q P PpR1q.
Symmetrically we prove that if py,X q is in PpR1q then there exists x « y such that px,X q P R. This proves that
PpR1q is «-equivalent to R.

Now assume a powerset relational semantics is based on Rval “ PpRvalq, and RM is strongly «-equivalent to Rval.
The PpRMq is «-equivalent to Rval. But PpRMq “RM for M “ PpMq. Then by Corollary 9, a generic Boolean
query is weakly monotone iff it is preserved under M-Rsem-homomorphisms.

Proof of Proposition 9

Recall that Rall

val “ PpRall

val
q. Moreover by Lemma 7, if M “ all, then RM is strongly «-equivalent to Rall

val
. Remark

also that for M “ all, PpMq-Rsem-homomorphisms are precisely Rsem-homomorphisms. It follows then from
Lemma 13 that a generic Boolean query is weakly monotone iff it is preserved under Rsem-homomorphisms. Now
note that, by Lemma 11, for all semantics based on R

all

val, the set of all instances is a representative set. Then the
statement immediately follows from Lemma 2.

Preservation under unions of strong onto homomorphisms

We first define the notion of preservation under unions of strong onto homomorphisms for non-Boolean queries.

If Q is a k-ary query over complete relational instances (i.e. Q associates to each complete relational instance D a
k-ary relation over adompDqq, we say that Q is preserved under unions of strong onto homomorphisms if, whenever
there exists a union of strong onto homomorphisms th1 . . . hnu from an instance D to an instance D1, and ā P QpDq,
then hipāq P QpD

1q, for all i P 1..k.

Proof of Lemma 1

Lemma 1 immediately follows from the lemma below:

Lemma 14. Formulae in DPos` @Gbool are preserved under unions of strong onto homomorphisms.

Proof. We proceed by structural induction on the formula ϕ.

If ϕ “false or ϕ “true, it is clearly preserved under unions of strong onto homomorphisms.

Assume now that ϕpx̄q is a positive atom Rpȳq (including the case of an equality atom), where variables occurring in
ȳ are precisely x̄. It follows from the definition of homomorphism that if an instance D |ù ϕpāq then hpDq |ù ϕphpāqq,
for every homomorphism h. Then if D1 “ h1pDq Y ¨ ¨ ¨ Y hkpDq one has that D1 |ù ϕphipāqq for all i “ 1..k.

It is also easy to verify that if ϕ1 and ϕ2 are preserved under unions of strong onto homomorphisms, so are ϕ1 ^ϕ2

and ϕ1 _ ϕ2.

Now assume ϕpx̄q “ Dyϕ1py, x̄q, where ϕ1 is preserved under unions of strong onto homomorphisms. Assume that
an instance D |ù ϕpāq, and that D1 “ h1pDq Y ¨ ¨ ¨ Y hkpDq. Then D |ù ϕ1pb, āq for some value b P adompDq.
Since ϕ1 is preserved under unions of strong onto homomorphisms, D1 |ù ϕ1phipbq, hipāqq for each i P 1..k. Thus
D1 |ù Dyϕ1py, hipāqq, i.e. D

1 |ù ϕphipāqq, for each i P 1..k.

Now assume that ϕ is a sentence of the form @x̄pRpx̄q Ñ ϕ1pȳqq where variables x̄ are pairwise distinct and variables
ȳ are contained in x̄. Assume that an instance D |ù ϕ and that D1 “ h1pDq Y . . . hkpDq. We prove D1 |ù ϕ.
Assume that D1 |ù Rpb̄q for some tuple b̄; then hipDq |ù Rpb̄q for some i P 1..k. Thus there exists a tuple ā over
adompDq such that D |ù Rpāq and hipāq “ b̄. Since D |ù ϕ one has that D |ù ϕ1pā1q, where ā1 is the restriction of
ā to ȳ. Now, by the induction hypothesis, ϕ1px̄q is preserved under union of strong onto homomorphisms, therefore
D1 |ù ϕ1phipā

1qq “ ϕ1pb̄1q, where b̄1 is the restriction of b̄ to ȳ. Since this holds for all b̄ such that D1 |ù Rpb̄q, we have
that D1 |ù ϕ.
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Proofs for Section 8

Proof of the claim that owa nonpowerset minimal semantics coincides with usual owa semantics

We show here that as informally claimed in Section 8, combining Rmin

val
with the subset relation (playing the role of

Rsem for owa) gives us the usual owa semantics. Recall that the non-powerset minimal valuation semantics under
the open-world assumption is defined as

rrDss
min

owa
“

"

D1

ˇ

ˇ

ˇ

ˇ

D1 is complete and
there is a D-minimal valuation h : D Ñ D1

*

.

Proposition 13. rr ss
min

owa
“ rr ss

owa
.

Proof. rr ss
min

owa
Ď rr ss

owa
is immediate, so let D1 P rrDss

owa
. So there is a homomorphism h : D Ñ D1 such that

hpDq is a subinstance of D1. Now let Hom “ tfpDq | f : D Ñ hpDq with f a homomorphismu. Observe that
pHom,Ďq is a finite preorder. It follows that there is fpDq P Hom such that fpDq Ď hpDq and there exists no
f 1pDq P Hom such that f 1pDq Ă fpDq, i.e., there exists a D-minimal homomorphism h1 such that h1pDq Ď hpDq. It

follows that D1 P rrDss
min

owa
.

Minimal mappings

We now extend the D-minimality notion to arbitrary mappings. For an arbitrary mapping h : adompDq Ñ ConstY
Null we define, fixph,Dq “ tc P ConstpDq | hpcq “ cu.

Given a relational instance D and a mapping h : adompDq Ñ ConstYNull we say that h is D-minimal if there is no
mapping g : adompDq Ñ ConstY Null with fixph,Dq Ď fixpg,Dq and gpDq Ĺ hpDq.

Notice that a D-minimal database homomorphism (D-minimal homomorphism, D-minimal valuation, resp.) is a
database homomorphism (homomorphism, valuation, resp.) which is also a D-minimal mapping.

We first prove a technical lemma about minimal mappings.

Lemma 15. Let D and D1 be relational instances and assume there exists a D-minimal mapping h : adompDq Ñ
ConstYNull with D1 “ hpDq. Let E and E1 be relational instances with isomorphisms µ : E Ñ D and µ1 : D1 Ñ E1,
such that µ, µ1 and their inverses are the identity on fixph,Dq. Then the mapping µ1 ˝ h ˝ µ is E-minimal.

Proof. Let h1 “ µ1 ˝ h ˝ µ. First notice that h1 is a mapping over adompEq such that h1pEq “ E1, and h1 is the
identity on fixph,Dq.

Now assume by contradiction that there exists a mapping g : adompEq Ñ ConstYNull such that fixph1, Eq Ď fixpg, Eq
and gpEq Ĺ h1pEq. Then gpEq Ĺ E1 and g is the identity on fixph,Dq. Let g1 “ µ1´ ˝ g ˝ µ´; clearly g1 is a mapping
over adompDq and is the identity on fixph,Dq; therefore fixph,Dq Ď fixpg1, Dq. We now show that g1pDq Ĺ hpDq. In
fact g1pDq “ µ1´pgpEqq. Recall that gpEq Ĺ E1, therefore µ1´pgpEqq Ĺ µ1´pE1q “ D1 “ hpDq

This contradicts the assumption that h is D-minimal.

Proof of Proposition 10

Let D be a relational instance and let h be a D-minimal database homomorphism. Assume by contradiction that
hpDq is not a core. Then there exists a database homomorphism h1 on hpDq such that h1phpDqq Ĺ hpDq. Clearly
h1 ˝ h is a database homomorphism on D, then this contradicts the D-minimality of h.

Now assume by contradiction that hpcorepDqq Ĺ hpDq, and let hcore be the database homomorphism from D onto
corepDq. Clearly h ˝ hcore is a database homomorphism on D and hcorephpDqq “ hpcorepDqq Ĺ hpDq. Again this
contradicts the D-minimality of h.

We now prove that there exists a core D and a database homomorphism h : adompDq Ñ Null such that hpDq is a
core, but h is not D-minimal.

Fix a schema with a single 4-ary relation, and consider instances
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D
K1 K1 K2 K3

K4 K5 K2 K2

hpDq
K6 K6 K7 K7

K6 K7 K7 K7

where h : K1 Ñ K6, K2 Ñ K7, K3 Ñ K7, K4 Ñ K6, K5 Ñ K7

It is easy to check that both D and and hpDq are cores. However h is not D-minimal. In fact there exists a mapping
h1 : K1 Ñ K6, K2 Ñ K7, K3 Ñ K7, K4 Ñ K6, K5 Ñ K6 such that h1pDq Ĺ hpDq.

In fact one can produce a pure graph example (below, we shall assume that the nodes in graphs are distinct nulls,
so we use the standard graph homomorphisms).

Let Cn be the directed cycle on n vertices. Let G “ C4 `C6, where ` stands for disjoint union. Note that each Cn

is a core. Moreover, G is a core, since there is no homomorphism from C6 to C4. Let H “ C3 ` C2. Likewise, it is
a core, and there is a strong onto homomorphism h : G Ñ H that sends C4 to C2 and C6 to C3 (as in general we
have C2n Ñ Cn). Hence, H,G are cores, but h is not G-minimal since GÑ C2, as G is 2-colorable.

This also provides an example of D such that rrDss
min

cwa
‰ rrcorepDqss

cwa
(which was stated right after Proposition 10).

Indeed, take D to be C6 ` C4 consisting of all nulls; note that corepDq “ D. Let CC
n be the cycle Cn whose nodes

are distinct constants. Then CC
3 ` CC

2 is in rrDss
cwa

. However, it is not in rrDssmin

cwa
. Indeed, if it were, there would

be an onto homomorphism h : C6 ` C4 Ñ CC
3 ` CC

2 . Since we have no homomorphism C4 Ñ C3, then C4 ought to
be mapped by h to CC

2 , and hence C6 will be mapped by h to CC
3 as h is onto. But we already saw that such a

homomorphism cannot be minimal, since we have a homomorphism g : C6 ` C4 Ñ CC
2 . Thus, C

C
3 ` C

C
2 R rrDss

min

cwa
.

Proof of Theorem 5

The theorem is straightforward from the following proposition:

Proposition 14. If a relational semantics is given by a pair pRmin

val
,Rsemq or pR

min

val ,Rsemq, the set S of cores is a
strong representative set, and χSpDq “ corepDq for every instance D.

Proof. It suffices to prove that for a semantics rr ss given by pRmin

val
,Rsemq the set of cores is a strong representative

set. This will imply by Lemma 11, that the set of cores is a strong representative set also under any powerset semantics
given by pRmin

val ,Rsemq (because R
min

val “ PpRmin

val
q).

Clearly the set of cores contains all complete instances (recall that cores are defined w.r.t database homomorphisms
here).

We now prove that if D is a core and K Ď Const, there exists a D-minimal valuation v such that D and vpDq are
isomorphic in the way required by the definition of strong representative set. We observe that this property indeed
follows from [18] (Proposition 6.11 (1) and (2)), but we prove it here directly for completeness.

If D is a core and K Ď Const, let v be an arbitrary injective valuation adompDq Ñ ConstzK. Clearly v is an
isomorphism between D and vpDq and both v and v´ are the identity on ConstpDq YK, and therefore the identity
on K, as required by the definition of strong representative set. We need to prove that vpDq P rrDss. Now notice
that the identity mapping over adompDq is D-minimal, because D is a core. Moreover v and v´ are the identity on
ConstpDq, which is precisely the set of constants fixed by the identity mapping on D. Then we can apply Lemma
15 with D “ D1 “ E and conclude that v is D-minimal.

Thus pD, vpDqq P Rmin

val
and, since Rsem contains the identity, vpDq P rrDss.

It remains to prove that rrDss “ rrcorepDqss. This will show that one can define χSpDq “ corepDq for every instance
D. Let D be a relational instance. We prove that D and corepDq have the same minimal images, i.e. pD,D1q P Rmin

val

iff pcorepDq, D1q P Rmin

val
, for all D1. This will imply rrDss “ rrcorepDqss. We observe that this property has been

proved in [18] (Lemma 6.9) restricted to the canonical solution in data exchange and its core.

Assume first that pD,D1q P Rmin

val
, then there exists a D-minimal valuation h such that D1 “ hpDq. We know

by Proposition 10 that hpcorepDqq “ hpDq “ D1. Moreover h has to be a corepDq-minimal valuation. In fact
assume by contradiction that there exists a valuation h1 on corepDq such that h1pcorepDqq Ĺ hpcorepDqq “ D1. Let
hcore be the database homomorphism from D to corepDq. Then h1 ˝ hcore is a valuation on D and h1 ˝ hcorepDq “
h1pcorepDqq Ĺ D1. This contradicts the assumption that h is D-minimal. Then h is a corepDq-minimal valuation
and thus pcorepDq, D1q P Rmin

val
.
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Conversely assume that pcorepDq, D1q P Rmin

val
, then there exists a corepDq-minimal valuation h such that

hpcorepDqq “ D1. Therefore h ˝ hcore is a valuation and hphcorepDqq “ hpcorepDqq “ D1. We prove that h ˝ hcore
is D-minimal. Assume by contradiction that there exists a valuation h1 on D such that h1pDq Ĺ D1. Then, since
corepDq Ď D1 we have h1pcorepDqq Ď h1pDq Ĺ D1 ,contradicting the fact that h is corepDq-minimal.

We have then shown that the set S of cores is a representative set and χSpDq “ corepDq for all relational instances
D. This concludes the proof of the proposition.

Weak monotonicity and minimal homomorphisms

From Proposition 14 and Lemma 2 we derive the relationship between näıve evaluation and weak monotonicity for
general semantics based on Rmin

val
and R

min

val :

Corollary 10. If a relational semantics is given by a pair pRmin

val
,Rsemq or pR

min

val ,Rsemq and Q is a generic Boolean
query, then näıve evaluation works for Q iff Q is weakly monotone (under the corresponding semantics), and QpDq “
QpcorepDqq for every D.

We now characterize weak monotonicity. We consider the mapping type M “ min which associates to each complete
relational instance D the set of all D-minimal mappings adompDq Ñ Const.

We prove the following lemma:

Lemma 16. If M “ min and « is relational isomorphism, then RM is «-equivalent to Rmin

val
.

Proof. Let pD, vpDqq P Rmin

val
, where v is a D-minimal valuation; we prove that there exists a complete relational

instance E « D such that pE, vpDqq P RM.

The instance E is obtained from D by replacing nulls of D with new distinct constants not occurring in ConstpDq.
Clearly there exists an isomorphism i : E Ñ D, thus E « D. Note that both i and i´ are the identity on ConstpDq.
Let h “ v ˝ i, then hpEq “ vpDq. Note that i and i´ are the identity on fixpv,Dq “ ConstpDq. Hence by Lemma 15
h is an E-minimal mapping. As a consequence pE, vpDqq P RM (because M “ min). This proves one direction.

Conversely assume pE, hpEqq P RM, where h is an E-minimal mapping; we prove that there exists a relational
instance D « E such that pD,hpEqq P Rmin

val
.

The instance D is obtained from E by replacing each element of adompEqzfixph,Eq with a new distinct null. Clearly
this replacement defines an isomorphism i : D Ñ E and therefore E « D. Note that both i and i´ are the identity
on fixph,Eq. Then the mapping v “ h ˝ i is also the identity on fixph,Eq; moreover vpDq “ hpEq. But ConstpDq “
fixph,Eq, then v is a valuation on D. Moreover by Lemma 15, v is D-minimal, and hence pD,hpEqq P Rmin

val
.

We say that a set H “ th1, . . . hku of mappings over adompDq is D-minimal if each hi is D-minimal and fixphi, Dq “
fixphj , Dq for all i, j P 1..k. We now consider the powerset mapping type M “min which associates to each D the
class consisting of all non-empty finite D-minimal sets of mappings adompDq Ñ Const

Lemma 17. If M “min and « is relational isomorphism, then RM is «-equivalent to R
min

val

Proof. Let pD,X q PRmin

val ; we prove that there exists a complete relational instance E « D such that pE,X q P
RM. Let ConstpX q be the union of ConstpD1q, for all D1 P X . The instance E is obtained from D by replacing
nulls of D with new distinct constants not occurring in ConstpDq Y ConstpX q. Clearly there exists an isomorphism
i : E Ñ D, thus E « D. Note that both i and i´ are the identity on ConstpDq Y ConstpX q.

For each D1 P X there exists a D-minimal valuation v such that vpDq “ D1. Let h “ v ˝ i, then hpEq “ D1 and,
by Lemma 15 h is E-minimal. Note also that fixph,Eq “ ConstpDq. Since such an h exists for all D1 P X , we have
pE,X q PRM. This proves one direction.

Conversely assume pE,X q P RM, then X “ th1pEq, . . . hkpEqu where where th1, . . . hku is E-minimal; we prove

that there exists a relational instance D « E such that pD,X q P R
min

val . Let K “ fixphi, Eq (which is the same for
all i P 1..k).

The instance D is obtained from E by replacing each element of adompEqzK with a new distinct null. Clearly this
replacement defines an isomorphism i : D Ñ E and therefore E « D. Note that both i and i´ are the identity on K.
Then the mappings vj “ hj ˝ i, for j P 1..k are all D-minimal, by Lemma 15. Moreover notice that ConstpDq “ K,

then vj is a D-minimal valuation on D, and vjpDq “ hjpEq, for all j “ 1..k. It follows that pD,X q PRmin

val .
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M-Rsem-homomorphisms with M “ min will be also referred to as minimal Rsem-homomorphisms. Similarly
M-Rsem-homomorphisms with M “min will be also referred to as minimal Rsem-homomorphisms.

Using Corollary 8 with M “ min, and Corollary 9 with M “min we then have:

Corollary 11. If a relational semantics is given by a pair pRmin

val
,Rsemq (or pR

min

val ,Rsemq, respectively) and Q is a
generic Boolean relational query, then Q is weakly monotone (under the corresponding semantics) iff it is preserved
under minimal Rsem-homomorphisms (minimal Rsem-homomorphisms respectively).
Moreover näıve evaluation works for Q iff Q is preserved under minimal Rsem-homomorphisms (minimal Rsem-
homomorphisms respectively), and QpDq “ QpcorepDqq for every D.

Proof of Proposition 11

Notice that minimal homomorphisms are precisely minimal Rsem-homomorphisms where Rsem is the identity. Simi-
larly unions of minimal homomorphisms are precisely minimal Rsem-homomorphisms where Rsem “RY. Then the
proposition is a special case of Corollary 11.

Proof of Corollary 6

As a corollary of Lemma 2, we have that for a database domain D which has a representative set S and a generic
query Q, näıve evaluation works for Q over S iff Q is weakly monotone over S. By applying this to relational

database domains, under the rr ssmin

cwa
(respectively the

`

| |
˘min

cwa
semantics) we have that näıve evaluation works for a

generic query Q over cores iff Q is weakly monotone (under the corresponding semantics) over cores. By Proposition
11, if Q is preserved under minimal homomorphisms (their unions, respectively) then it is weakly monotone over
cores. The corollary then follows from Proposition 6 and Lemma 1.

Proofs for Section 9

In order to be able to deal with constants in queries, we use the notion of C-genericity (instead of the stronger notion
of genericity). If C Ď Const, a relational k-ary query is C-generic if for all relational instances D and all one-to-one
mappings i : adompDq Y C Ñ ConstY Null which are the identity on C, one has QpipDqq “ ipQpDqq.

Clearly if C “ H the notion of C-genericity coincides with the usual notion of genericity for k-ary queries.

We now relate the notions of näıve evaluation and monotonicity for k-ary queries. To this end, for each relational
database domain D and k-ary query Q over D, we define a new database domain D

˚ and a Boolean query Q˚ over
D

˚. These are defined so that the “Boolean” notions of certain answers , näıve evaluation and monotonicity for Q˚

over D˚ are precisely equivalent to the corresponding notions for Q over D. We then apply results from the Boolean
case to Q˚ over D˚, and so derive corresponding results for Q over D.

In what follows, if t is tuple over Const, with a little abuse of notation, we denote as t also the set of constants
occurring in the tuple t

Given a relational database domain D “ xD, C, rr¨ss,«y, and a C-generic k-ary query Q over D, we define D
˚ “

xD˚, C˚, rr¨ss
˚
,«˚y, and Q˚ over D˚ as follows:

‚ D˚ is the set of pairs pD, tq where D P D and t is a k-tuple over Const;

‚ C˚ is the set of pairs of D˚ where the instance D is in C

‚ for all pairs pD, tq P D˚ the semantics rrpD, tqss
˚
is defined as the set of pairs pD1, tq such that D1 P rrDss.

‚ pD, tq «˚ pD1, t1q iff there exists a bijection i : adompDq Y tÑ adompD1q Y t1 such that D1 “ ipDq and t1 “ iptq
(as tuples), and both i and i´ are the identity on C.

‚ Q˚pD, tq “ 1 iff t P QpDq.

Note that D˚ and Q˚ depend on D and Q.

The following claim easily follows from definitions:

Claim 4. 1) If D is admissible, D˚ is also admissible;

2) Q˚ is generic (i.e. it does not distinguish «˚-equivalent objects);
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3) certainpQ˚, D, tq “ 1 iff t P certainpQ,Dq, for every pD, tq P D˚ ;

4) Näıve-evaluation works for Q˚ iff näıve-evaluation works for Q ;

5) Q˚ is monotone iff Q is monotone;

6) Q˚ is weakly monotone iff Q is weakly monotone;

7) QCpDq “ QCpD1q iff for every k-tuple t over Const one has Q˚pD, tq “ Q˚pD1, tq;

8) If D has a strong representative set S, then D
˚ has a representative set S˚ with χS˚pD, tq “ pχSpDq, tq.

Proof. 1) Assume D is admissible and consider pD, tq P C˚. Since D is admissible D P rrDss. The pD, tq P
rrpD, tqss

˚
. Assume now that pD, tq P rrpD1, tqss

˚
. Then D P rrD1ss. We also have rrpD, tqss

˚
“ tpE, tq | E P rrDssu,

and since D is admissible rrDss Ď rrD1ss. Thus rrpD, tqss˚ Ď tpE, tq | E P rrD1ssu “ rrpD1, tqss
˚
.

By Proposition 1, D˚ is admissible.

2) We know Q is C-generic. Consider two objects pD, tq, pD1, t1q P D˚ such that pD, tq «˚ pD1, t1q. We prove
Q˚pD, tq “ Q˚pD1, t1q, i.e. t1 P QpD1q iff t P QpDq.

We know there exists an bijection i : adompDq Y tÑ adompD1q Y t1 such that ipDq “ D1, iptq “ t1 , and both i
and i´ are the identity C. Note that i can be extended to a bijection f : adompDqY tYC Ñ adompD1qY t1YC
which is the identity on C and such that fpDq “ D1 and fptq “ t1.

Since f is injective on adompDq Y C, it is the identity on C, and Q is C-generic, QpD1q “ fpQpDqq. Thus
t1 P QpD1q iff t1 P fpQpDqq. Since f is injective over adompDq Y t and fptq “ t1, we have that t1 P fpQpDqq iff
t P QpDq. Then t1 P QpD1q iff t P QpDq.

3) Consider D P D˚ and a k-tuple t over Const. We have certainpQ˚, D, tq “ 1 iff Q˚pD1, tq “ 1 for all pD1, tq P
rrpD, tqss

˚
. This is equivalent to say that t P QpD1q for all D1 P rrDss, i.e that t P certainpQ,Dq.

4) We recall that näıve evaluation works for Q˚ iff certainpQ˚, D, tq “ Q˚pD, tq for every D P D and every k-tuple
t over Const. By using the previous item, certainpQ˚, D, tq “ Q˚pD, tq is equivalent to say that t P certainpQ,Dq
iff t P QpDq. In other words näıve evaluation works for Q˚ iff certainpQ,Dq “ QCpDq, for every D P D iff näıve
evaluation works for Q.

5) Assume that Q˚ is monotone and consider D,D1 P D such that rrD1ss Ď rrDss. We prove that QCpDq Ď QCpD1q.
By definition of rr ss

˚
we know that rrpD1, tqss

˚
Ď rrpD, tqss

˚
, for all k-tuples t over Const. Since Q˚ is monotone,

Q˚pD, tq ď Q˚pD1, tq, i.e. t P QpDq implies t P QpD1q for all k-tuples t over Const. Then QCpDq Ď QCpD1q.

Assume now that Q is monotone and consider pD, tq and pD1, t1q in D˚ such that rrpD1, t1qss
˚
Ď rrpD, tqss

˚
. Then

t1 “ t and rrD1ss Ď rrDss. Since Q is monotone, QCpDq Ď QCpD1q; then Q˚pD, tq ď Q˚pD1, tq “ Q˚pD1, t1q.

6) It is proved in the same way as 5).

7) It immediately follows from the definition of Q˚.

8) Assume D has a strong representative set S, and take S˚ “ tpD, tq|D P S and t is a k-tuple over Constu. We
prove that S˚ is representative for D˚.

Notice that for all pD, tq P C˚ we have that D P C, therefore D P S. Thus pD, tq P S˚.

Now consider pD, tq P S˚, then D P S; therefore for K “ C Y t there exists D1 P rrDss and a bijection
i : adompDq Ñ adompD1q such that ipDq “ D1 and both i and i´ are the identity onK. Then pD1, tq P rrpD, tqss

˚
.

We let i1 be the mapping obtained by extending i with the identity mapping on t. It is easy to see that i1 is a
bijection adompDq Y t Ñ adompD1q Y t, such that i1pEq “ D and i1ptq “ t. Moreover both i1 and i1

´
are the

identity on C. Therefore pD, tq «˚ pD1, tq.

Now we define χS˚pD, tq “ pχSpDq, tq, for all pD, tq P D˚. Clearly rrχS˚pD, tqss˚ “ tpD1, tq | D1 P rrχSpDqssu,
for all pD, tq P D˚. Therefore rrχS˚pD, tqss

˚
“ tpD1, tq | D1 P rrDssu “ rrpD, tqss

˚
.

Using this claim in addition to the known relationship between näıve evaluation, monotonicity and weak monotonicity
over D˚ and Q˚, we immediately get the following corollaries.

From Lemma 2 on D
˚ and Q˚:

Corollary 12. Let D be a relational database domain that has a strong representative set S. and let Q be a C-generic
k-ary query. Then näıve evaluation works Q if and only if

1. Q is weakly monotone and
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2. QCpDq “ QCpχSpDqq for all D P D

In particular if the whole set D is strong representative, then näıve evaluation works for Q if and only if Q is weakly
monotone.

Similarly from Lemma 3:

Corollary 13. Let D be an admissible relational database domain, and Q be a C-generic k-ary query. Assume that
D has a strong representative set. Then näıve evaluation works for Q if and only if Q is monotone.

Now recall that for relational semantics based on Rall

val
as well as on R

all

val the whose set D is strong representative
(see Lemma 4 and Lemma 11). Then we have:

Corollary 14. If a relational semantics is given by a pair pRall

val
,Rsemq or a pair pRall

val,Rsemq, and Q is a C-generic
k-ary query, näıve evaluation works for Q iff Q is weakly monotone (under the corresponding semantics).

As for semantics based on minimal valuations, using Proposition 14 we have:

Corollary 15. If a relational semantics is given by a pair pRmin

val
,Rsemq or by a pair pRmin

val ,Rsemq, and Q is a C-
generic k-ary query, näıve evaluation works for Q iff Q is weakly monotone and QCpDq “ QCpcorepDqq, for every
relational instance D.

Weak monotonicity and Rsemhomomorphisms for arbitrary queries

We now characterize weak monotonicity in terms of preservation for C-generic k-ary queries. In the sequel we use
the following additional notation.

If H “ th1, . . . hnu is a set of mappings over adompDq, we say that H is the identity on a set of constants K if hi is
the identity on K for all i P 1..n. Moreover we let HpDq denote the set th1pDq, . . . hnpDqu.

If t is a tuple over Const and X “ tD1 . . .Dnu is a set of instances we let pX , tq denote the set tpD1, tq, . . . pDn, tqu.

Let D “ xD, C, rr¨ss,«y be a relational database domain and where rr ss is given by a pair pRval,Rsemq (respectively
pRval,Rsemq), and let Q be a C-generic k-ary query over D.

Recall the definition of D˚ and Q˚ based on D and Q. Recall that Q˚ is generic over D˚ and remark that rr ss
˚
is

given by the pair pR˚
val
,R˚

semq (respectively pR
˚
val,R

˚
semq) where

R
˚
val
“ tppD, tq, pD1, tqq | pD,D1q P Rval and t is a k-tuple over Constu

R
˚
sem “ tppD, tq, pD

1, tqq | pD,D1q P Rsem and t is a k-tuple over Constu

Similarly R
˚
val “ tp pD, tq, pX , tq q | pD,X q P Rval and t is a k-tuple over Constu and R

˚
sem “

tp pX , tq, pD, tq q | pX , Dq PRsem and t is a k-tuple over Constu

If M is a mapping type, we let R˚
M

“ tpx, yq P C˚ ˆ C˚ | x “ pD, tq, y “ phpDq, tq, the mapping h P
MpDq and h is the identity on C Y tu.

Similarly if M is a powerset mapping type, we let R
˚
M “ tpx,X q P C˚ ˆ 2C

˚

| x “ pD, tq, X “
pHpDq, tq, the set of mappings H PMpDq and H is the identity on C Y tu.

The above notion of R˚
M

(respectively R
˚
M) is easily related to M-Rsem-homomorphisms (respectively M-Rsem-

homomorphisms).

Claim 5. ppD, tq, pD1, tqq P R˚
M
˝ R˚

sem (respectively ppD, tq, pD1, tqq P R
˚
M ˝R˚

sem) if and only if there exists an
M-Rsem-homomorphism (respectively an M-Rsem-homomorphism) from D to D1 which is the identity on C Y t.

Given a class T of Rsem-homomorphisms (respectively Rsem-homomorphisms), we say that a k-ary query Q̃ over D

is weakly preserved under T if t P Q̃pDq implies t P Q̃pD1q whenever t is a k-tuple over Const, and in T there exists
an Rsem-homomorphism (respectively an Rsem-homomorphism) from D to D1 which is the identity on t.

From the above claim it follows that weak preservation of Q can be characterized as follows:
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Claim 6. Q˚ is preserved under R˚
M
˝R˚

sem (respectively under under R
˚
M ˝R˚

sem) iff Q is weakly preserved under
M-Rsem-homomorphisms (respectively under M-Rsem-homomorphisms) which are the identity on C.

We now use the above claim and apply Lemma 6 and Lemma 12 to the database domain D
˚ and the generic query

Q˚. We obtain the following corollary

Claim 7. If the semantics rr ss in D is given by pRval,Rsemq and R˚
M

is «˚-equivalent to R˚
val

, then Q is weakly
monotone iff it is weakly preserved under M-Rsem-homomorphisms which are the identity on C.
If rr ss is given by pRval,Rsemq and R

˚
M is «˚-equivalent to R

˚
val, then Q is weakly monotone iff it is weakly preserved

under M-Rsem-homomorphisms which are the identity on C.

We now consider mapping types M “ all and M “ min, as well as M “ all (defined as Ppall)) and M “min for
powerset semantics.

Claim 8. 1) If rr ss is based on Rval “ Rall

val
then R˚

M
is strongly «˚-equivalent to R˚

val
for M “ all ;

2) If rr ss is based on Rval “ Rmin

val
then R˚

M
is «˚-equivalent to R˚

val
for M “ min;

3) If rr ss is based on Rval “ R
all

val (respectively Rval “ R
min

val ) then R
˚
M is «˚-equivalent to R

˚
val for M “ all

(respectively M “min).

Proof. 1) Consider a pair ppD, tq, pD1, tqq where pD,D1q P Rall

val
and t is a k-tuple over Const. We prove that

there exists pE, tq P C˚ such that pD, tq «˚ pE, tq and ppE, tq, pD1, tqq P R˚
M
. The instance E is obtained from D

by replacing nulls of D with new distinct constants not occurring in ConstpDq Y C Y t. Clearly there exists an
isomorphism i : E Ñ D such that both i and i´ are the identity on CY t. We let i1 be the mapping obtained by
extending i with the identity mapping on t. It is easy to see that i1 is a bijection adompEq Y tÑ adompDq Y t,

such that i1pEq “ D and i1ptq “ t. Moreover both i1 and i1
´
are the identity on C. Therefore pE, tq «˚ pD, tq.

We know that there exists a valuation v on D such that vpDq “ D1. Let h “ v ˝ i; then hpEq “ vpDq “ D1 and
h is the identity on C Y t (because both v and i are). This implies ppE, tq, pD1, tqq P R˚

M
, for M “ all. Remark

that pE, tq only depends on pD, tq (and not on v).

Conversely consider a pair ppE, tq, pD1, tqq P R˚
M
. Let D1 “ hpEq where h is the identity on C Y t. We prove

that there exists pD, tq P D˚ such that pD, tq «˚ pE, tq and pD,D1q P Rall

val
. The instance D is obtained from E

by replacing each element of adompEq not occurring in C Y t with a new distinct null. Clearly this replacement
defines an isomorphism i : D Ñ E such that both i and i´ are the identity on C Y t. As in the previous case i
can be extended to show pE, tq «˚ pD, tq.

Let v “ h ˝ i. Remark that v is the identity on ConstpDq (because ConstpDq Ď C Y t and both i and h are the
identity on C Y t). Then v is a valuation on D, and hence pD,D1q P Rall

val
. Note that D depends only on pE, tq

(and not on h).

Thus R˚
M

is strongly «-equivalent to pRall

val
q˚, for M “ all.

2) Consider a pair ppD, tq, pD1, tqq where pD,D1q P Rmin

val
and t is a k-tuple over Const. We then know that

D1 “ hpDq where h is a D-minimal valuation. We prove that there exists pE, tq P C˚ such that pD, tq «˚ pE, tq
and ppE, tq, pD1, tqq P R˚

M
. The instance E is obtained from D by replacing nulls of D with new distinct

constants not occurring in ConstpDq Y C Y t. Clearly there exists an isomorphism i : E Ñ D such that both
i and i´ are the identity on ConstpDq Y C Y t. It is easy to check that i can be extended over t to show
pE, tq «˚ pD, tq.

Now using Lemma 15, the mapping h1 “ h ˝ i is E-minimal. Moreover h1pEq “ D1 and h1 is the identity on
C Y t. It follows that ppE, tq, pD1, tqq P R˚

M
for M “ min.

Conversely consider a pair ppE, tq, pD1, tqq P R˚
M

(whereM “ min). LetD1 “ hpEq, where h is anE-minimal and
h is the identity on C Y t. We prove that there exists pD, tq P D˚ such that pD, tq «˚ pE, tq and pD,D1q P Rmin

val
.

The instance D is obtained from E by replacing each element of adompEq not occurring in fixph,Eq with a
new distinct null. Clearly this replacement defines an isomorphism i : D Ñ E such that both i and i´ are
the identity on fixph,Eq. Remark that i and i´ are also the identity on C Y t. Indeed i is the identity on all
constants, and i´ is the identity on C Y t because pC Y tq X adompEq Ď fixph,Eq. Thus as in the previous
case, i can be extended to show pE, tq «˚ pD, tq. Now let h1 “ h ˝ i. By Lemma 15 h1 is D-minimal. Moreover
h1pDq “ hpEq “ D1, and h1 is the identity on fixph,Eq. Now remark that ConstpDq “ fixph,Eq, therefore h1 is
a valuation on D. We then conclude that pD,D1q “ pD,h1pDqq P Rmin

val
.

3) We fist prove that if rr ss is based on Rval “R
all

val then R
˚
M is «˚-equivalent to R

˚
val for M “ all.
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Recall the notation Pp q for powerset semantics. Notice that pRall

valq
˚ “ PppRall

val
q˚q. We also know by the first

item that R˚
M

is strongly «˚-equivalent to pRall

val
q˚ for M “ all. Then by Lemma 13, PpR˚

M
q, for M “ all, is

«˚-equivalent to pRall

valq
˚. Now remark that for M “ all we have PpR˚

M
q “R

˚
M, where M “ all.

We now prove that If rr ss is based on Rval “R
min

val , then R
˚
M is «˚-equivalent to R

˚
val for M “min.

Let ppD, tq, pX , tqq P pRmin

val q
˚; then pD,X q P R

min

val . We prove that there exists a complete relational instance
E such that pE, tq «˚ pD, tq and ppE, tq, pX , tqq P R

˚
M (where M “ min). Let ConstpX q be the union of

ConstpD1q, for all D1 P X . The instance E is obtained from D by replacing nulls of D with new distinct
constants not occurring in ConstpDq Y ConstpX q YC Y t. Clearly there exists an isomorphism i : E Ñ D. Note
that both i and i´ are the identity on ConstpDq Y ConstpX q Y C Y t. Therefore i can be extended to show
pE, tq «˚ pD, tq.

For each D1 P X there exists a D-minimal valuation v such that vpDq “ D1. Let h “ v ˝ i, then hpEq “ D1

and, by Lemma 15, h is E-minimal. Note also that fixph,Eq “ ConstpDq, and h is the identity on C Y t. Since
such an h exists for all D1 P X , the set of all h mappings, when D1 ranges over X , is E-minimal, as well as the
identity on C Y t. Then ppE, tq, pX , tqq PR˚

M (for M “min).

pE,X q PRM. This proves one direction.

Conversely assume ppE, tq, pX , tqq PR˚
M forM “min, then X “ th1pEq, . . . hnpEqu where where th1, . . . hnu is

E-minimal and the identity on CYt. We prove that there exists a relational instanceD such that pD, tq «˚ pE, tq
and pD,X q PRmin

val . Let K “ fixphi, Eq (which is the same for all i P 1..n).

The instance D is obtained from E by replacing each element of adompEqzK with a new distinct null. Clearly
this replacement defines an isomorphism i : D Ñ E. Note that both i and i´ are the identity on K; thus they
are the identity on C Y t. Indeed i is the identity on all constants; moreover pC Y tq X adompEq Ď K, then i´

is the identity on C Y t. Then we can extend i to show pD, tq «˚ pE, tq.

The mappings vj “ hj ˝ i, for j P 1..n are all D-minimal, by Lemma 15. Moreover notice that ConstpDq “ K,
then vj is the identity on ConstpDq, and therefore a D-minimal valuation on D. Moreover vjpDq “ hjpEq, for

all j “ 1..n. It follows that pD,X q PRmin

val .

By combining the above two claims with Corollaries 14 and 15, we get a characterization of weak monotonicity under
both standard an minimal semantics:

Theorem 8. Assume that a relational semantics is given by a pair pRall

val
,Rsemq, (respectively pRall

val,Rsemq) and
let Q be a C-generic k-ary relational query. Then Q is weakly monotone iff Q is weakly preserved under Rsem-
homomorphisms (respectively Rsem-homomorphisms) which are the identity on C.
Moreover näıve evaluation works for Q iff Q is weakly preserved under Rsem-homomorphisms (respectively Rsem-
homomorphisms) which are the identity on C.

Theorem 9. Assume that a relational semantics is given by a pair pRmin

val
,Rsemq, (respectively pRmin

val ,Rsemq) and
let Q be a C-generic k-ary relational query. Then Q is weakly monotone iff Q is weakly preserved under minimal
Rsem-homomorphisms (respectively minimal Rsem-homomorphisms) which are the identity on C.
Moreover näıve evaluation works for Q iff Q is weakly preserved under minimal Rsem-homomorphisms (respectively
minimal Rsem-homomorphisms) which are the identity on C, and QCpDq “ QCpcorepDqq for all relational instances
D.

Proof of Theorem 6

By combining Corollaries 12 and 13, we have that näıve evaluation works for Q iff Q is monotone iff Q is weakly
monotone and QCpxq “ QCpχSpxqq.

If moreover the semantics is given by a pair pRall

val
,Rsemq, as a special case of Theorem 8 with C “ H, we have that

näıve evaluation works for Q iff Q is weakly preserved under Rsem-homomorphisms. Similarly if the semantics is
given by a pair pRmin

val
,Rsemq, we use Theorem 9.

Proof of Theorem 7

Since every k-ary FO query is generic, by using Theorem 8 we have
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Claim 9. If Q is a k-ary FO query, näıve evaluation works for Q iff Q is weakly preserved under

‚ homomorphisms, under owa

‚ strong onto homomorphisms, under cwa

‚ onto homomorphisms, under wcwa

‚ unions of strong onto homomorphisms, under
`

| |
˘

cwa

We proved (Lemma 8 and Lemma 14) that k-ary formulae of Pos` @G are preserved under strong onto homomor-

phisms, and k-ary formulae of DPos` @Gbool are preserved under unions of strong onto homomorphisms. Moreover
it is known that k-ary formulae of DPos (respectively Pos) are preserved under homomorphisms (respectively onto
homomorphisms) in the sense of Lemma 8.

Now notice that, for all these notions of homomorphism, preservation of k-ary formulae implies weak preservation.
Then we have

Claim 10. Let Q be a k-ary FO query. If Q is in DPos (respectively , Pos, Pos ` @G, DPos ` @Gbool) then näıve
evaluation works for Q under owa (respectively wcwa, cwa,

`

| |
˘

cwa
).

which is the analog of Theorem 3 and Corollary 3.

As for semantics based on minimal valuations, genericity of FO queries together with Theorem 9 imply the following
claim.

Claim 11. Let Q be a k-ary FO query such that QCpDq “ QCpcorepDqq for each relational instance D. Then

näıve evaluation works for Q under rr ss
min

cwa
(respectively under

`

| |
˘min

cwa
) iff Q is weakly preserved under minimal

homomorphisms (their unions, respectively).

Now remark that, for any k-ary FO query, preservation under strong onto homomorphisms (respectively their unions)
implies weak preservation under minimal homomorphisms (respectively their unions). Then we have

Claim 12. Let Q be a k-ary FO query such that QCpDq “ QCpcorepDqq for each relational instance D. Then If Q is

in Pos`@G (respectively DPos`@Gbool) näıve evaluation works for Q under the rr ssmin

cwa
semantics (respectively under

the
`

| |
˘min

cwa
semantics).

which is the analog of Corollary 5. This concludes the proof of the theorem.
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